
Validation of a Secure Programming Concept Inventory

Ida Ngambeki
 Information Systems

 University of Maryland Baltimore
County

 Baltimore, MD USA
 idan1@umbc.edu

Matthew Bishop
 Department of Computer Science

 University of California, Davis
 Davis, CA USA

 mabishop@ucdavis.edu

Jun Dai
 Department of Computer Science

 California State University,
Sacramento

 Sacramento, CA USA
 jun.dai@csus.edu

Phillip Nico
 Department of Computer Science

 California Polytechnic State University
 SanLuis Obispo, CA USA

 pnico@calpoly.edu

ABSTRACT
Security failures in software arising from failures to practice
secure programming are commonplace. Improving this situation
requires that practitioners have a clear understanding of the
foundational concepts in secure programming to serve as a basis
for building new knowledge and responding to new challenges.
We developed a Secure Programing Concept Inventory (SPCI) to
measure students’ understanding of foundational concepts in
secure programming. The SPCI consists of thirty-five multiple
choice items targeting ten concept areas of secure programming.
The SPCI was developed by establishing the content domain of
secure programming, developing a pool of test items, multiple
rounds of testing and refining the items, and finally testing and
inventory reduction to produce the final scale.

Scale development began by identifying the core concepts in
secure programming. A Delphi study was conducted with thirty
practitioners from industry, academia, and government to
establish the foundational concepts of secure programming and
develop a concept map. To build a set of misconceptions in secure
programming, the researchers conducted interviews with
students and instructors in the field. These interviews were
analyzed using content analysis. This resulted in a taxonomy of
misconceptions in secure programming covering ten concept
areas. An item pool of multiple-choice questions was developed.
The item pool of 225 was administered to a population of 690
students across four institutions. Item discrimination and item
difficulty scores were calculated, and the best performing items
were mapped to the misconception categories to create subscales
for each concept area resulting in a validated 35 item scale.

VALIDATING THE INVENTORY
Most assessment methods commonly used in computer science
target procedural knowledge, focusing on whether students can
produce a functional program and ignoring students'
understanding of the underlying processes [1]. A concept
inventory is an educational assessment tool that can be used to
measure the level of a student's understanding of certain content.
Concept inventories have two advantages over most standard
tests: they are easy to administer and score, and they probe
beyond recognition or memorization to examine a student's
understanding of a concept [2].

Students each responded to a subset of fifty randomly selected
items from the full item pool of 225 items. The scores ranged from
2% to 80% with a mean of 31.6% (M = 31.6, SD = 17.4). The item
difficulty and item discrimination index were calculated. The item
difficulty index ranges from 0-1 with items ranging from 0- .29
being too difficult, from .3 -.69 considered appropriately difficult,
and item difficulty indices above .70 considered to easy. Items
considered too difficult or too simple were eliminated. The item
discrimination index measures how well a question distinguishes
poorly performing students from strongly performing students.
Negative item discrimination indices and those below 0.25 were
eliminated as not being strong enough discriminators. Items
ranging from 0.25 – 0.39 were deemed good discriminators while
those with an index above 0.39 were deemed excellent
discriminators. The remaining items were then mapped back to
the ten misconception categories to create subscales for each. The
reliability of each of these scales was calculated using Cronbach’s
alpha. Items were systematically eliminated from each subscale to
leave the items that accounted for the most variance.

REFERENCES
[1.] J. Davis and M.J. Dark, "Teaching students to design secure systems," IEEE

Security and Privacy, vol. 1, no. 2, pp. 56-58, 2003.

[2.] R. ufresne, W. Leonard and W. Gerace, "Making sense of students' answers
to multiple-choice questions," The Physics Teacher, vol. 40, pp. 174-180, 2002.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9433-8/23/03.
https://doi.org/10.1145/3545947.3576367

mailto:idan1@umbc.edu
mailto:mabishop@ucdavis.edu
mailto:jun.dai@csus.edu
mailto:pnico@calpoly.edu

