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ABSTRACT 
Security failures in software arising from failures to practice 
secure programming are commonplace. Improving this situation 
requires that practitioners have a clear understanding of the 
foundational concepts in secure programming to serve as a basis 
for building new knowledge and responding to new challenges. 
We developed a Secure Programing Concept Inventory (SPCI) to 
measure students’ understanding of foundational concepts in 
secure programming. The SPCI consists of thirty-five multiple 
choice items targeting ten concept areas of secure programming. 
The SPCI was developed by establishing the content domain of 
secure programming, developing a pool of test items, multiple 
rounds of testing and refining the items, and finally testing and 
inventory reduction to produce the final scale.  

Scale development began by identifying the core concepts in 
secure programming. A Delphi study was conducted with thirty 
practitioners from industry, academia, and government to 
establish the foundational concepts of secure programming and 
develop a concept map. To build a set of misconceptions in secure 
programming, the researchers conducted interviews with 
students and instructors in the field. These interviews were 
analyzed using content analysis. This resulted in a taxonomy of 
misconceptions in secure programming covering ten concept 
areas. An item pool of multiple-choice questions was developed. 
The item pool of 225 was administered to a population of 690 
students across four institutions. Item discrimination and item 
difficulty scores were calculated, and the best performing items 
were mapped to the misconception categories to create subscales 
for each concept area resulting in a validated 35 item scale. 

VALIDATING THE INVENTORY 
Most assessment methods commonly used in computer science 
target procedural knowledge, focusing on whether students can 
produce a functional program and ignoring students' 
understanding of the underlying processes [1]. A concept 
inventory is an educational assessment tool that can be used to 
measure the level of a student's understanding of certain content. 
Concept inventories have two advantages over most standard 
tests: they are easy to administer and score, and they probe 
beyond recognition or memorization to examine a student's 
understanding of a concept [2].  

Students each responded to a subset of fifty randomly selected 
items from the full item pool of 225 items. The scores ranged from 
2% to 80% with a mean of 31.6% (M = 31.6, SD = 17.4). The item 
difficulty and item discrimination index were calculated. The item 
difficulty index ranges from 0-1 with items ranging from 0- .29 
being too difficult, from .3 -.69 considered appropriately difficult, 
and item difficulty indices above .70 considered to easy. Items 
considered too difficult or too simple were eliminated. The item 
discrimination index measures how well a question distinguishes 
poorly performing students from strongly performing students. 
Negative item discrimination indices and those below 0.25 were 
eliminated as not being strong enough discriminators. Items 
ranging from 0.25 – 0.39 were deemed good discriminators while 
those with an index above 0.39 were deemed excellent 
discriminators. The remaining items were then mapped back to 
the ten misconception categories to create subscales for each. The 
reliability of each of these scales was calculated using Cronbach’s 
alpha. Items were systematically eliminated from each subscale to 
leave the items that accounted for the most variance. 
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