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Abstract.—The correlation between two characters is often interpreted as evidence that there exists a significant and 
biologically important relationship between them. However, Maddison and FitzJohn (in The unsolved challenge to 
phylogenetic correlation tests for categorical characters. Syst. Biol. 2015;64:127–136) recently pointed out that evidence of 
correlated evolution between two categorical characters is often spurious, particularly, when the dependent relationship 
stems from a single replicate deep in time. Here we will show that there may, in fact, be a statistical solution to the 
problem posed by Maddison and FitzJohn naturally embedded within the expanded model space afforded by the hidden 
Markov model (HMM) framework. We demonstrate that the problem of single unreplicated evolutionary events manifests 
itself as rate heterogeneity within our models and that this is the source of the false correlation. Therefore, we argue that 
this problem is better understood as model misspecification rather than a failure of comparative methods to account for 
phylogenetic pseudoreplication. We utilize HMMs to develop a multirate independent model which, when implemented, 
drastically reduces support for correlation. The problem itself extends beyond categorical character evolution, but we 
believe that the practical solution presented here may lend itself to future extensions in other areas of comparative biology. 
[Macroevolution; model adequacy; phylogenetic comparative methods; rate heterogeneity].

Correlated or dependent evolution on a macroevolu-
tionary scale is defined as a change in a character state 
(e.g., plumage color) that is linked to the presence of a 
particular state in a separate character (e.g., beak color). 
In other words, the evolution of character X can be said 
to be dependent on character Y if, in the presence of 
a particular state of Y (e.g., Y0; black plumage), shifts 
within character X (e.g., X0 to X1; orange beak to red 
beak) occur at a different rate from when the lineage is 
in an alternative state of Y (e.g., Y1; white plumage). For 
example, a shift from X0 to X1 may occur more quickly 
when paired with Y1 than with Y0 resulting in a distri-
bution with many character pairs X1Y1. It is often the 
case that these sorts of dependent relationships between 
characters seem obvious, especially if the observations 
of many species are consistent.

However, what happens when all observations of 
the pair come from, for example, a single clade? In 
other words, there may have been many species in 
which X1Y1 is observed, but they all came from one 
peculiar clade of waterfowl. Since the strength of the 
relationship is related to the number of individual 
observations, their phylogenetic nonindependence 
raises concerns about the validity of the proposed 
correlation. This fact was well understood as early 
as Darwin (1859), and the tools for dealing with the 
resulting statistical nonindependence have been avail-
able to comparative biologists since the foundational 
work of Felsenstein (1985). Nevertheless, this issue of 
“phylogenetic pseudoreplication,” where species are 
nonindependent due to their shared ancestry, served 
as the basis for the concerns raised by Maddison and 
FitzJohn (2015) regarding tests of dependent character 
evolution.

Maddison and FitzJohn (2015) demonstrated that the 
most widely used phylogenetic method for detecting cor-
related evolution between categorical characters (Pagel 
1994), almost always indicates strong evidence of correla-
tion when singular events deep in time can account for 
the codistribution of two characters. To demonstrate their 
point, they fit correlated models to data sets generated 
under their so-called, “Darwin’s” and the “Unreplicated 
Burst” scenarios (Fig. 1a,b). Darwin’s scenario results 
in the perfect codistribution of two characters, which 
in practice, might occur when testing for correlations 
between two synapomorphies (e.g., presence/absence of 
middle ear bones and fur). Under the Unreplicated Burst 
scenario, only one of the two characters has phylogeneti-
cally replicated change. This scenario occurs when one of 
the characters is a synapomorphy for the clade, with the 
other character undergoing several changes within the 
focal clade. Both Darwin’s and the Unreplicated Burst 
scenarios can be contrasted to data sets simulated with 
a model of correlated evolution, where there are sev-
eral repeated and independent instances of the correla-
tion arising (Fig. 1d). However, the issue is that, when 
applied to either Darwin’s or the Unreplicated Burst 
scenario, commonly used comparative methods (Pagel 
1994) will almost always indicate strong evidence of cor-
relation despite the dependent relationship arising from 
little more than a single event deep in time.

There is considerable interest in understanding and, 
ultimately, finding a resolution to the problem posed 
by Maddison and FitzJohn (2015). Recently, Uyeda et 
al. (2018) suggested that for Darwin’s scenario, the rela-
tively long periods of stasis between the two characters 
(i.e., minimal trait change) are the primary cause for their 
significant dependent relationship. In fact, they showed 
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that the probability of selecting a character-dependent 
model (i.e., a model of correlated evolution between the 
two characters) over a character-independent model (i.e., 
a model where the two characters are explicitly not cor-
related) was proportional to the ratio between the length 
of the branch where the shift occurred and the total 
length of the tree. The nature of this ratio ensured that 
a correlated model would always be supported in cases 
where singular evolutionary events led to a codistribu-
tion of characters. Another study by Gardner and Organ 
(2021) tested a variety of correlated models beyond 
Markov models and examined the structure of data sets 
which are susceptible to the problem of false dependence. 
They found that all the tested comparative methods pro-
duced erroneous correlations when data sets were phy-
logenetically pseudoreplicated and suggested that this 
was due to an inability to estimate parameters associated 
with transitions between unobserved states.

In both of these studies, the authors have addressed 
the problem by encouraging scientists to think critically 
about their models and data sets before conducting a 
comparative analysis. While this recommendation is 
certainly admirable and correct, it is not a direct and 
satisfying solution to the statistical problems presented 
so far, as no amount of methodological vigilance will 
ever prevent analyses from being marred by phylo-
genetic pseudoreplication. However, prior analyses 
have limited model comparisons to only a few models 
and have overlooked the very large set of alternative 
Markov models which can also be consistent with cor-
relation or independence depending on the model’s 
structure. These alternative models have been discussed 

previously (Pagel 1994; Pagel and Meade 2006) and, as 
we will show, the inclusion of a few examples within 
the model set can play a crucial role in ensuring a fair 
test of correlation. These underrepresented models, in 
addition to the enormous model space provided by hid-
den Markov models (HMMs) for addressing rate het-
erogeneity across the tree (Beaulieu et al. 2013; Boyko 
and Beaulieu 2021), can severely reduce the bias toward 
correlation noted by Maddison and FitzJohn (2015). We 
acknowledge that the problem itself extends beyond 
categorical character evolution, but we believe that the 
practical framework presented here may lend itself to 
future extensions in other areas.

We draw on two important insights as they relate to 
models of categorical character evolution. The first is 
that model space is severely underexplored and that the 
inclusion of more complex, character-independent mod-
els within our modeling set helps reduce evidence of 
false correlation. We reiterate previous findings (Uyeda 
et al. 2018; Gardner and Organ 2021) that estimates of 
transition rates to and from unobserved character states 
are not statistically identifiable, revealing that the canon-
ical correlated model is overparameterized in phylo-
genetically pseudoreplicated data sets like Darwin’s 
scenario (Fig. 1a). When only two or three of the four 
possible character state combinations are observed, we 
produce models nested within the correlated and inde-
pendent models that are overwhelmingly favored over 
both. Second, the issue of false dependent relationships 
is not one of stasis per se, but rather, a failure to account 
for rate heterogeneity. We demonstrate that an explicit 
character-independent HMIM provides significant 

Figure 1.  The two problematic scenarios from Maddison and FitzJohn (2015) for the evolution of characters X and Y. Character X is painted 
on the left phylogeny using red and orange for state X0 and X1, whereas character Y is painted on the right phylogeny using dark blue and light 
blue for state Y0 and Y1. (a) Darwin’s scenario is depicted as a single event deep in time that has led to the codistribution of X0Y0 outside of the 
focal clade and X1Y1 within the focal clade. (b) Unreplicated Bursts scenario is where a single event deep in time has led to the codistribution 
of X0Y0 outside of the focal clade and X1Y0 and X1Y1 within the focal clade. (c) One realization of a data set simulated under an independent 
model. (d) One realization of a data set simulated under a correlated model. Notice how in this case there is a consistent pattern of correlation 
and multiple independent origins of the potential correlated characters (X0Y0 and X1Y1) throughout the phylogeny.
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evidence for models of independent evolution in cases 
where a correlated model would have previously been 
supported. This is because under the classic Pagel 
(1994) framework, support for correlation comes from 
both a dependent relationship between characters and 
a strong signal of rate heterogeneity. By amending the 
Pagel (1994) framework with a model which allows for 
rate heterogeneity independent of a focal character, we 
correct the bias toward correlation.

Correlated Models Depend on Observations of 
Intermediate States

While much has been written about the specifics of 
Pagel’s model, we briefly review aspects of it in order 
to better illustrate our point—namely, that certain 

transition rates are not estimable and that their inclu-
sion may be an additional cause of false correlations 
uncovered by Maddison and FitzJohn (2015). The 
correlated or dependent model of discrete character 
evolution, introduced by Pagel (1994), uses a continu-
ous-time Markov process to estimate the rate of transi-
tions between character states (Fig. 2a,b). With a single 
binary character, X, the transition rate matrix, denoted 
as Q, is a simple 2 × 2 matrix that contains all the infor-
mation necessary to estimate the probability of a tran-
sition occurring between two states of character X over 
a given period of time. At its most complex, Q would 
contain two transition rates: from state X0 to state X1, 
and from state X1 to state X0. If we introduce a second 
binary character, Y, the number of possible observed 
state combinations is expanded—that is, the possible 

Figure 2.  Representations of the different transition rate matrices, Q, with k number of parameters associated with each. Where transitions 
are fixed to occur at the same rate, the squares are colored to be the same. Unique parameters are also indicated with a roman numeral in the 
bottom left corner of the square. To the right of each matrix, a ball-and-stick representation of the model is presented with colors and parameter 
numbers matching the transitions indicated in the matrix, Q. The ball-and-stick representation is organized such that internal arrows represent 
transitions from 1 to 0, and external arrows represent transitions from 0 to 1. Additionally, arrows that cross the vertical midpoint indicate 
transitions in character X, whereas transitions across the horizontal midpoint indicate transitions in character Y. (a) An independent model with 
four unique parameters, which fixes transitions within a character such that changes in X or Y do not depend on the state of the other character. 
(b) A correlated model with eight unique parameters. This model allows transitions within a character to depend on the state of the other 
character. (c) A model which removes transitions to and from an unobserved state from the independent model (a). (d) A model that removes 
transitions to and from an unobserved state from the correlated model (b). In (c) and (d), the unobserved state is based on the Unreplicated 
Burst scenario where X0Y1 is not observed.
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observed state combinations become X0Y0, X0Y1, X1Y0, 
and X1Y1. Consequently, this requires an expansion 
of Q to a 4 × 4 matrix, to account for all the possible 
transitions between state combinations. This model is 
considerably more complex than the previous one, as 
the number of transitions goes from a minimum of 2 to 
a maximum of 12. However, the model introduced by 
Pagel (1994) is constrained specifically for the purpose 
of detecting correlations between characters by examin-
ing whether the state of one variable affects the proba-
bility of change in the other. To do this, dual transitions 
(i.e., changes in both X and Y occurring in a single time 
step) are removed. As noted by Pagel (1994), setting 
dual transition rates to zero does not rule out dual tran-
sitions over long periods of time. Rather, a dual tran-
sition from X0Y0 must first pass through state X0Y1 or 
X1Y0, before finally transitioning to X1Y1. Equating the 
rates of transitions between particular pathways allows 
for the construction and testing of an independent 
model (Pagel and Meade 2006). A model of indepen-
dent evolution is nested within the correlated model 
but assumes that the transition rates between states of 
a character are equal to one another regardless of the 
state of the other character (e.g., [X0 to X1 | Y0] = [X0 to 
X1 | Y1]; Fig. 2a,b). In other words, if these two char-
acters, X and Y, are independent, the presence of one 
character will have no influence on the change of the 
other and thus model selection criteria should choose 
the simpler model..

Using this specific nested framework, we were able 
to replicate the results of Maddison and Fitzjohn (2015). 
Specifically, we generated 100 data sets for Darwin’s sce-
nario and the Unreplicated Bursts scenario. Phylogenies 
were simulated under a λ = 1 and μ = 0.5 until 100 extant 
taxa were reached, and each resulting tree was then eval-
uated for a focal monophyletic group between 40 and 
60 taxa. For Darwin’s scenario, extant species within the 
focal clade were assigned X1Y1, and species outside the 
clade were assigned X0Y0. We simulated Unreplicated 
Bursts by assigning all species outside the focal clade 
X0, and all species within the clade X1. Next, character 
Y was simulated at a rate of 100 transitions per million 
years. Outside of the focal clade, species were assigned 
Y0 whereas, within the focal clade, the simulated data 
resulted in both Y0 and Y1. We used corHMM (Beaulieu 
et al. 2013; Boyko and Beaulieu 2021) to fit and com-
pare the four-state independent model (Fig. 2a) against 
the four-state correlated model (Fig. 2b) using Akaike 
Information Criterion (AIC). In all cases, we found over-
whelming support for the correlated model for both 
Unreplicated Bursts and Darwin’s scenario data sets 
(see Supplemental Materials). The mean AIC weight 
for the correlated model under Darwin’s scenario was 
92.52% and under Unreplicated Bursts, it was 99.96%. 
As expected, an independent model was never favored 
over a correlated model in either scenario.

For Darwin’s scenario, setting aside the critical ana-
lytical issues regarding phylogenetic pseudoreplication, 
we had additional concerns with the structure of the 
data and how this might impact estimates of transition 

rates. Under any continuous-time Markov process, the 
estimates of the transition rates among all possible char-
acter combinations are reflective of the observed state 
frequencies and distribution at the tips. But, what if two 
of the four character combinations are not observed 
at all? Here we are referring to the two combinations, 
X0Y1 and X1Y0, not observed in any of the tips under 
Darwin’s scenario. There may be biological reasons 
for not observing intermediate state combinations. For 
example, these combinations may be at some selective 
disadvantage, resulting in rapid transitions to another, 
more viable character combination (e.g., X0Y0 or X1Y1). 
Alternatively, it could be that one or both combinations 
are never possible due to some underlying genetic or 
developmental reasons (e.g., certain fruit character com-
binations, see Beaulieu and Donoghue 2013). However, 
whatever biological meaning is attributed to the lack of 
intermediate character state observations, in this case, 
is beside the point. There are identifiability issues with 
including transitions to and from these unobserved 
state combinations in the model, calling into question 
fitting the correlated model to these types of data (also 
see Gardner and Organ, 2021). That is to say, if we never 
see intermediate state combinations at the tips, how can 
the model ever favor one pathway over the other?

To illustrate this point, we examined the likelihood 
surface of one of the data sets simulated under Darwin’s 
scenario and fit under Pagel’s correlated model (Fig. 
3). Whether starting from X0Y0 or X1Y1, transition rate 
estimates to either of the unobserved character com-
binations fall along a ridge of equal likelihood, where 
changing the rate of transition to one unobserved state 
determines the rate for the transitions to the other unob-
served state. When a lineage transitions into one of the 
states, the likelihood surface for transitions out of these 
states to either state X0Y0 or X1Y1 is completely flat, with 
all rates ranging from 0.1 to 100 transitions per unit time 
all having nearly identical likelihoods. In other words, 
at least in the case of Darwin’s scenario, they are not 
identifiable. The preferred model estimates for various 
transition rates arise simply by chance of the optimiza-
tion procedure.

One immediate solution is to simply remove the 
unobserved character combinations from the model 
completely. From a modeling perspective, removing 
unobserved states removes the parameters that fall 
along the likelihood ridge and should lead to a model 
that ends up being well estimated. This is accomplished 
by removing transition rate estimates to and from the 
unobserved character states (in the case of Darwin’s 
scenario, a dual transition between X0Y0 and X1Y1 must 
be included). Consequently, the question of whether 
independent or correlated models better explain the 
data becomes irrelevant as the two models collapse into 
one another when unobserved states are removed (Fig. 
2c,d). This is clearly seen when the collapsed model 
is applied to an Unreplicated Burst scenario. Whether 
one starts with an independent model (Fig. 2a) or a 
correlated model (Fig. 2b), once unobserved states are 
removed, comparing alternative transition pathways 
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between X0Y0 and X1Y1 are no longer possible. For 
example, take transitions between states of character X. 
Both the correlated and independent models estimate 
transitions from X0 to X1 as necessarily linked to Y0, 

since X0Y1 is not observed in the data set. The collapsed 
model is neither an independent nor correlated model 
because it no longer describes the coevolution of mul-
tiple characters, but instead transitions among states of 
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Figure 3.  An example contour plot of a correlated model when applied to 1 of the 100 Darwin’s scenario data sets. The colors indicate the 
log-likelihood surface for points that are two log-likelihood units away from the maximum likelihood (darker colors indicating support near 
the maximum likelihood). Each surface is constrained such that a particular pair of parameters is fixed but all remaining transition rates are 
free to find their MLE. We sampled 5000 pairs of points for a particular parameter pair from a Latin hypercube sampling design. (a) Transitions 
from X0Y0 to either intermediate state result in several likelihood ridges, as indicated by the linear bands of support. We highlight this “ridge” 
effect by showing two points that represent mirror images of transitions from X0Y0 to X0Y1 and X0Y0 to X1Y0. Both points produce identical log-
likelihoods, as does any pair of points that occur when sliding along that particular band. (b) Transitions from X1Y1 to an intermediate state 
result in several likelihood ridges. (c) Transitions from X0Y1 to either X0Y0 or X1Y1 result in a completely flat likelihood surface, as indicated by 
the entire search space producing strong support that is nearly indistinguishable from the maximum likelihood estimate. (d) Transitions from 
X1Y0 to either X0Y0 or X1Y1 also result in a completely flat likelihood surface.
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a single composite character. Put another way, rather 
than having two characters with two mutually exclu-
sive states (X0 or X1 and Y0 or Y1), we are left with three 
mutually exclusive states of a single character (X0Y0 
or X0Y1 or X1Y1). There is no way to make meaningful 
comparisons between possible intermediate pathways 
in which one character influences the other.

Including a collapsed model as part of our model 
set drastically changes the results. We found complete 
support for a collapsed state model for both Darwin’s 
scenario and Unreplicated Bursts (see Supplemental 
Materials). The average AIC weight for the collapsed 
model is 99.7% under Darwin’s scenario and 100.0% 
under an Unreplicated Burst scenario. This suggests 
that the support for the correlated models over sim-
pler independent models is the result of parameter 
constraint. Specifically, in an independent model, tran-
sitions between observed states are constrained to be 
identical to transitions between unobserved states (e.g., 
X0Y0 to X0Y1 must be identical to X0Y1 to X1Y1, even if 
X0Y1 is never observed). In contrast, the correlated 
model is not subject to these constraints. This is, of 
course, the important distinction between the two mod-
els and what allows us to test for correlated evolution. 
However, when exclusively modeling observed state 
combinations the independent and correlated models 
become equivalent descriptions of the evolutionary 
process and are, therefore, indistinguishable from the 
given data.

Although we do so here for illustrative purposes, the 
collapsed model is typically not necessary to include 
within our modeling set even if we are interested in 
testing for evidence of correlated evolution without 
observations of intermediate states. We expect that the 
data sets in which empiricists are generally interested 
in testing for correlation do not lack observations of 
intermediate states and that the reason for Maddison 
and FitzJohn (2015) using such scenarios was to illus-
trate a consistent bias in our methods.

Rate Heterogeneity Is Necessary When Testing 
for Correlation Between Categorical Variables

Beyond not being able to directly test for charac-
ter correlation, a major issue for the collapsed model 
described above is that in Darwin’s scenario, a single 
observation of X0Y1 and X1Y0 removes the possibility of 
collapsing the model structure. As we will show, with 
only a single observation of intermediate character 
combinations, support for the correlated model over 
an independent model remains substantial. Even so, 
the results above highlight information limitations and 
that the strong evidence for correlated models may be 
due to a lack of viable alternative independent models 
rather than being irrefutable evidence of correlation 
(see also Gardner and Organ 2021).

It is worth considering again the possible explanations 
of the data under Darwin’s scenario. One possibility is 

that the characters X and Y evolve slowly and that their 
codistribution is the result of two independent events 
deep in time. The probability of this scenario has been 
explored in-depth and its implausibility is a major con-
tributor to the recurrent issues of false correlation when 
comparing correlated and independent models (Uyeda 
et al. 2018). We propose a complementary explanation 
for the correlated model’s support: the independent 
model structure fixes the transition X0 to X1 to always 
be the same rate regardless of the state of Y (Fig. 2a), 
whereas a correlated model structure allows transitions 
from X0 to X1 to vary depending on the state of Y (Fig. 
2b). Part of the support for the correlated model, there-
fore, comes from the fact that these data sets contain a 
signal of multiple transition rates for each character. The 
most likely description of the process is one in which 
the transition rates from X0 to X1 and Y0 to Y1 are high 
within the focal clade and occur low outside of the focal 
clade. The relative stasis of X0 outside the focal clade 
and the rapid transition to X1 within the clade suggests 
that changes in X are not consistent throughout the tree.

HMMs are a natural way to deal with this kind of rate 
heterogeneity across the tree. The underlying mathe-
matical framework of an HMM is no different than a 
typical Markov model. They utilize a rate matrix, Q, 
to estimate the probabilities of transitioning between 
discrete states and arrive at the likelihood of the model 
given the observed data set (Felsenstein and Churchill 
1996). However, HMMs introduce a so-called “hidden 
state,” which can represent any number of unobserved 
factors, biological or otherwise. Based on the presence or 
absence of this hidden state, changes between observed 
states are allowed to vary. In the most extreme cases, 
the absence of the hidden state may halt the evolution-
ary process and result in periods of stasis. For example, 
Marazzi et al. (2012) conceptualized the hidden state as 
a “precursor” trait and only in its presence could extra-
floral nectaries (EFNs) emerge. The precursor state was 
never directly observed and the information for its pres-
ence or absence of the hidden state came from the rate 
heterogeneity of EFNs transitions. In some parts of the 
tree, the model EFNs emerged rapidly and in others, 
there were periods of stasis. Of course, HMMs are more 
general than either halting or actuating the evolution-
ary process and are used to quantify rate heterogene-
ity without the necessity of stasis (e.g., comparing fast, 
slow, or intermediate rates as in Beaulieu et al. 2013). 
The key point here is that they allow for rate hetero-
geneity that is unlinked to another observed character.

We developed and tested a hidden Markov inde-
pendent model (HMIM) which accounts for rate het-
erogeneity while maintaining the independence of 
the observed focal characters X and Y (Fig. 4). In our 
view, the inclusion of our model within the evaluated 
set better levels the playing field between correlated 
and independent models. For example, if we focus on 
character X, our proposed model utilizes hidden states 
to vary transition rates between X0 and X1 based on an 
unobserved character. This is similar to the way that the 
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correlated model allows transition rates between X0 and 
X1 to differ based on the observed state of Y. If the cause 
of false correlation was, as we suspect, not accounting 
for rate heterogeneity, then both the hidden-state inde-
pendent and correlated model should be preferable to 
the simple independent model and evidence of correla-
tion between X and Y should be greatly reduced.

We first removed the possibility of collapsing the 
Markov model by modifying Darwin’s scenario. We 
defined the focal clade as being the monophyletic group 
where all observations of X1Y1 occur and randomly add 
the intermediate state observations of X0Y1 and X1Y0 
within the focal clade (which refer to as “inside” here-
after), outside of the focal clade (which we refer to as 
“outside” hereafter), and both within and outside the 
focal clade (which refer to as “both” hereafter) (Fig. 5). 
Next, we verified that this modified Darwin’s scenario 
still suffers from the problems of the original Darwin’s 
scenario by comparing the independent and correlated 
models sensu Pagel (1994). We then added the HMIM 
to the model set and evaluated two questions: (1) when 
comparing independent models to one another, is there 
evidence of rate heterogeneity? and (2) is support for 
the correlated model reduced when compared to an 

independent model with rate heterogeneity? In addi-
tion to AIC weight, we utilized evidence ratios (ERs) to 
explore the relative likelihood of our models. ERs are a 
simple extension of AIC weights, but as a means of eval-
uation, are important here since they allow us to focus 
on evaluating the relative evidence of pairs of models 
irrespective of other models in the set (Burnham and 
Anderson 2002). The evidence for model i over model j 
is the ratio between their AIC weights: ER = wi/wj and 
it can help quantify whether the best model in our com-
parison is convincingly best. With alternative samples, 
a convincingly best model is likely to be chosen again 
from sample to sample. However, if evidence for a 
model is low, we expect model selection uncertainty to 
be high. Following Burnham and Anderson (2002), an 
ER of greater than 2.7 is used as a guide to justify judg-
ing support for one model being better than another. 
This also neatly corresponds to a ΔAIC = 2. We empha-
size that this value should not be misconstrued as a 
significant test in a frequentist sense since we are not 
evaluating the probability of rejecting a null hypothesis.

For all modified Darwin’s scenarios, we found sub-
stantial evidence (ER > 2.7) for a correlated model over 
a single-rate class independent model (Fig. 5). The 

Figure 4.  The HMIM that allows transitions within a character to have rate heterogeneity without it necessarily being linked to an observed 
character. This matrix can be read as a block matrix, with 4 × 4 blocks representing transitions between observed characters following an 
independent model (top left and bottom right) and transitions between hidden rate classes A and B (top right and bottom left). The independent 
model is essentially duplicated in the top left (blue and green) and bottom right (red and orange) of the block matrix with transitions occurring 
between these different types of independent models (purple). Here, transition rates between the hidden states are fixed to be the same 
(parameter ix), but it is straightforward to allow the transition between rate class A and B to differ.
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a) Modified Darwin's scenario (outside)
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b) Modified Darwin's scenario (inside)
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c) Modified Darwin's scenario (both)

Figure 5.  The amount of evidence for correlation when comparing a correlated model to ether an independent model (IM) or HMIM. 
The models are fit to data of the modified version of Darwin’s scenario where a single observation of X0Y1 and X1Y0 is added outside of the 
focal clade (a), inside of the focal clade (b), and both within and outside of the focal clade (c). Evidence ratios for each model comparison are 
plotted as box plots to the left of the simulation scenario. In all cases, the evidence ratio of the correlated model over the independent model is 
substantially greater than 2.7 (left box plot) but, the correlated model receives much less support over the hidden Markov independent model 
(right box plot).
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geometric mean ER for the correlated model over the 
single-rate independent model was ERoutside = 59.51, 
ERinside = 78.16, ERboth = 11.44 (Fig. 5), thus we again 
successfully recreated the conditions of Maddison and 
FitzJohn (2015) under a modified Darwin’s scenario. 
Next, we examined the evidence for rate heterogeneity 
by comparing a single-rate independent model to the 
HMIM. We found substantial evidence for rate hetero-
geneity across all scenarios, with all mean ERs of the 
HMIM over the standard independent model well over 
20, indicating substantial support for rate heterogeneity 
(ERoutside = 24.45, ERinside = 24.33, ERboth = 50.45). Finally, 
we tested whether there is still conclusive evidence of 
correlation between characters if we include the hid-
den-state independent model within our modeling set. 
We found that the evidence for a correlated model over 
the HMIM was greatly reduced when compared to the 
single-rate class independent model (Fig. 5; ERoutside = 
2.43, ERinside = 3.21, ERboth = 0.22; Fig. 5). In fact, with 
only two observations of each intermediate state combi-
nation (X0Y1 and X1Y0), support for the HMIM over the 
correlated model was substantial (evidence for HMIM 
over a correlated model: ERboth = 4.41).

However, for both the inside and outside scenar-
ios (as well as the original Darwin’s and Unreplicated 
Bursts scenarios), support for a correlated model was 
still greater than the HMIM (Table 1). Specifically, we 
found that the difference in support for a correlated 
model over an HMIM is between 1 and 2 AIC units for 
all but Darwin’s scenario, where ΔAIC = 8.8. We will 
address Darwin’s scenario in detail below, but for the 
other scenarios, it is interesting to note the near identi-
cal likelihoods of the HMIM and correlated model. For 
reference, a ΔAIC of 2 corresponds to exactly the pen-
alty of adding one additional parameter, and this is the 
number of parameters that differs between the HMIM 
and correlated model. Like our findings when examin-
ing the collapsed model, this suggests that the HMIM 
and correlated model explain the data equally well 

and there may not be enough information to determine 
whether there is a dependent relationship between the 
focal characters.

In summary, our findings thus far highlight three 
important insights: 1) There is indeed substantial evi-
dence of rate heterogeneity, and that this is leading to a 
biased signal of false correlation, 2) including an HMIM 
will, at least, muddle evidence for correlation, and 3) for 
data sets similar to Unreplicated Bursts and Darwin’s 
scenario, there may be a lack of information in to dis-
tinguish between the signals of correlated and indepen-
dent evolution.

Exploring Model Space Using the Flexible Hidden 
Markov Model Framework

It still concerns us that for the original and two of the 
modified Darwin’s scenarios (specifically the “outside” 
and “inside” sets; see Fig. 5), support for the correlated 
model was often greater than the hidden-state inde-
pendent model. Specifically, the difference in support 
between the correlated model and the HMIM was ΔAIC 
= 8.8 under a strict Darwin’s scenario corresponding to 
substantial evidence of correlation. To further examine 
this issue, we rely on the inherit flexibility of Markov 
and HMMs to structure a model specifically to address 
Darwin’s scenario. We apply what we have learned 
thus far, with regards to the over-parameterization and 
the necessity of rate heterogeneity, and add a new set 
of simplified models. Although these simplified mod-
els can have some utility in empirical settings, they are 
primarily used here to demonstrate the flexibility and 
necessity of the HMM approach in creating a robust 
model set.

Model space has been underexplored and there are 
many nested model structures that are consistent with 
either independence or correlation depending on their 
constraints (see also Pagel and Meade 2006). Here we 

Table 1.  Average ΔAIC values for 100 data sets with standard deviations shown in brackets. 

Scenario Darwin’s Unreplicated 
bursts 

Modified 
Darwin’s  
(outside) 

Modified 
Darwin’s  
(inside) 

Modified  
Darwin’s  
(both) 

Collapsed 0.0 (±0.0) 0.0 (±0.0) NA NA NA

Independent 17.9 (±12.3) 36.8 (±9.0) 14.3 (±3.6) 14.8 (±4.0) 15.6 (±4.7)

Simplified independent 13.9 (±2.3) 67.3 (±15.8) 10.3 (±3.6) 10.8 (±4.0) 11.6 (±4.7)

Correlated 12.0 (±0.2) 8.0 (±0.1) 6.1 (±0.5) 6.1 (±0.7) 10.8 (±2.6)

Simplified correlated 13.9 (±2.3) 30.0 (±8.2) 9.8 (±3.6) 10.4 (±4.1) 11.6 (±4.7)

Hidden Markov independent 20.8 (±6.8) 9.2 (±0.4) 7.9 (±1.2) 8.4 (±3.3) 7.8 (±2.2)

Simplified hidden Markov independent 5.5 (±0.1) 36.3 (±9.1) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)

Correlated hidden Markov 29.7 (±0.3) 24.9 (±0.8) 22.9 (±0.7) 23.5 (±0.8) 23.2 (±1.4)

Simplified correlated hidden Markov 18.8 (±2.1) 34.3 (±7.7) 14.2 (±3.3) 14.3 (±2.8) 15.7 (±3.5)

Notes: Each column represents a scenario described in the main text and each row represents a different Markov model structure which may 
be consistent with independence or correlation. For each scenario, eight or nine models were fit to the data sets. The collapsed model is fit only 
when not all potential state combinations are directly observed and therefore are not fit in modified scenarios. A ΔAIC of 0 indicates the best 
model and models within two AIC units of each other are generally considered good fits to the data (Burnham and Anderson 2002).

Bold indicates the model with the lowest AIC.
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describe two constrained versions of the independent 
and correlated models that achieve an efficient descrip-
tion of the data. One simplified version of the correlated 
model suggests that when either character X or Y is in state 
0, rates of change are slower or faster than when either 
character is in state 1 (Fig. 6b). We refer to this as the “sim-
plified correlated” model and it represents the simplest 
way to model a dependent relationship between two 
binary characters. Next, we created a “simplified inde-
pendent” model of equal parameterization to the simpli-
fied correlated model, which equates all changes from 
0 to 1 regardless of the character and the same is done for 
changes from 1 to 0 (Pagel and Meade 2006; Fig. 6a).

The structures of these simplified models have cer-
tain qualities that may make them apt descriptions of 
data like Darwin’s scenario. Primarily, these models 
suggest that changes between states 0 and 1 do not 
necessarily depend on the specific identity of char-
acter X or Y since they are constrained to be equal. 
Considering the redundancy of a data set composed 
of two synapomorphies, it is obvious that there is lit-
tle to no information that distinguishes the two char-
acters—that is, it makes no difference whether one 
analyzes character X or character Y since their dis-
tributions are identical. The simplified models make 
that assumption explicit. It is also important to note 
that the simplified independent model and simplified 
correlated model maintain independence and depen-
dence sensu Pagel (1994). The background state of the 
unchanging character does not influence changes in 
the case of the simplified independent model, whereas 
the background state of the unchanging character will 
influence rates of change in the case of the simplified 

correlated model (Pagel and Meade 2006). Finally, we 
can introduce rate heterogeneity by modeling the sim-
plified independent and correlated models as two rate 
class HMMs (Fig. 6c).

Returning to the modified Darwin’s scenario data 
sets, consistent and overwhelming support for the sim-
plified HMIM was found across all scenarios (Table 1). 
The average AIC weight of the simplified HMIM when 
fit to modified Darwin’s scenarios are woutisde = 89.6%, 
winside = 90.2%, and wboth = 93.5%. The set of models 
applied to this data included all models discussed thus 
far as well as more complicated versions of those pre-
viously described (such as a standard correlated model 
with multiple rate classes). Additionally, to ensure that 
these models are not biased towards being favored 
across all data sets, we simulated data under a simpli-
fied correlated, simplified independent, and simplified 
HMIM s. We then fit each model to these data sets and 
found that the generating model is consistently chosen 
as the best fitting model (see Supplemental Materials).

Support for a simplified HMIM over alternative cor-
related models was also found when we consider the 
unmodified Darwin’s scenario (Table 1). This is because 
there is no information to detect whether transitioning 
between X0Y0 and X1Y1 happens more rapidly through 
an intermediate state of X1Y0 or X0Y1. This distinction 
is necessary for correlated models, but these two path-
ways are equivalent in the simplified HMIM. The hid-
den state in Darwin’s scenario, then, represents the 
presence of some character that changes the dynamics 
of how the state X1Y1 accumulates – that is, the hid-
den state may represent the “trait” of “being a mam-
mal.” The subsequent simultaneous evolution of fur 

Figure 6.  (a) A simplified independent model. In this model, transitions from 0 to 1 all occur at the same rate and transitions from 1 to 0 
all occur at the same rate. (b) A simplified correlated model. Under this model, transitions between states of character X and Y depend on the 
background state of the other character. (c) A simplified hidden Markov independent model, where the simple independent model of (a) is used 
in the hidden Markov framework which allows for rate heterogeneity independent of focal characters. The same can be done for the simple 
correlated model (not shown).
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and inner ear bones are then represented by higher 
transition rates from X0Y0 to X1Y1 in the mammalian 
rate class. However, there is no information present in 
Darwin’s scenario to tell us whether fur or inner ear 
bones evolved as a consequence of one another. They 
simply shared the evolutionary dynamics and conse-
quences of being a mammal.

With regards to the parameter estimates, there is no 
way to directly assess how exactly accurate they are, 
because the generating parameters are unknown given 
the contrived nature of Darwin’s scenario. Nevertheless, 
we can make a back-of-the-envelope calculation to 
determine whether our estimates are at least reasonable 
and consistent with our expectations. The estimate for a 
transition to “being a mammal” (i.e., a transition in hid-
den rate class) was, on average, 0.0113 transitions per 
million years, which corresponds to an expected tran-
sition occurring, on average, every 88.5 Myr. With the 
average total branch length being 133.9 Myr across our 
100 taxon trees that corresponds to an expectation of 
roughly one transition. We also found a relatively low 
standard deviation (±0.002), indicating this did not vary 
dramatically among data sets.

Finally, it is important to emphasize that our model 
set is also incomplete. We have examined only a hand-
ful of structures from a very large model space, and it is 
possible that there are equally good explanations of the 
data within the expanded model space. Nonetheless, 
these findings suggest that a model set without char-
acter-independent rate heterogeneity will consistently 
produce a statistical bias toward correlation noted by 
Maddison and Fitzjohn (2015). However, this bias can 
be greatly reduced by empiricists by accounting for, and 
expecting the presence of, rate heterogeneity through 
the use of HMMs.

A Broadly Applicable Framework

The issue discussed herein is recognized as being 
broadly applicable to several comparative methods that 
test for associations between variables (FitzJohn 2010; 
Rabosky and Goldberg 2015; Uyeda et al. 2018; Nakov 
et al. 2019; Gardner and Organ 2021). It is concerning 
that such a significant issue has seemingly gone unre-
solved for so long given comparative methods are of 
critical importance for understanding macroevolution-
ary patterns. However, in our view, the prevalence of 
the problems identified over the past few years is due to 
a singular overarching cause, namely, model misspeci-
fication, which occurs when a model, or set of models, 
is incomplete. Within the context of their model sets, 
authors of previous studies have correctly portrayed 
and analyzed the correlation bias of modeling depen-
dence between discrete characters (Maddison and 
FitzJohn 2015; Uyeda et al. 2018; Gardner and Organ 
2021). However, the danger of model misspecification 
is that the inferences drawn from an incomplete set are 
highly susceptible to unforeseen biases—a fact that will 
hold true in both theoretical and empirical contexts.

Here, we are arguing that the model set is incomplete 
without the inclusion of models that allow for rate het-
erogeneity that is independent of the focal characters. 
The canonical character-independent model of Pagel 
(1994) has no way to account for multiple rates of evolu-
tion, whereas support for a correlated model can come 
from both evidence of correlation and evidence of rate 
heterogeneity. Additional support for correlation as a 
consequence of hidden rate heterogeneity is not exclu-
sive to Pagel’s model and has been seen in other phylo-
genetic comparative methods. This stems from the fact 
that PCMs often test for correlation by comparing rates 
in the presence and absence of focal characters. Not 
being able to account for character-independent rate 
heterogeneity has led to consistently biased evidence 
towards correlation within state-dependent speciation 
extinction models (Beaulieu and O’Meara 2016). In that 
case, the biased association was between diversification 
rates and phenotype (Rabosky and Goldberg 2015), but 
the cause is the same. Models in which there are no dif-
ferences in diversification rates are compared to models 
which tested for the presence of a correlation between 
character and diversification rate (which necessarily 
allows for multiple rates of diversification). Whether it 
be speciation or phenotypic evolution or both, if rates 
vary as a rule of macroevolution (Simpson 1944), then 
the inclusion of models which allow rate heterogeneity 
independent of focal characters is necessary within any 
model set.

One difference between the problem of false correla-
tion in SSE models and the problems within simpler 
Markov models is the narrative surrounding them. In 
the case of SSE models, the problem was viewed as a 
high false positive rate (Rabosky and Goldberg 2015), 
whereas in the case of discrete character evolution, 
we are led toward viewing rate heterogeneity through 
the lens of single unreplicated evolutionary events 
(Maddison and FitzJohn 2015). However, both points 
contribute to the same problem and if we view single 
evolutionary events as examples of where evolution 
has changed in tempo or mode, then the inclusion of 
HMMs as a way forward arises naturally from the 
problem.

Since we as comparative biologists are involved in 
historical science, we will inevitably encounter single 
evolutionary events of large importance. However, 
it must be recognized that data sets that are suscepti-
ble to biases from singular events are not amenable to 
most phylogenetic comparative tests. Although here 
we have reduced the statistical biases associated with 
false correlations, there is no amount of methodological 
massaging that will allow for a satisfying test of macro-
evolutionary correlation between two synapomorphies. 
This is because comparative methods rely on several 
independent replicates of correlation such that the 
associations found between the variables may be con-
sidered robust even when extended beyond the data set 
used for the analysis. If there is only one example of the 
correlation arising in the entire data set, we should not 
have confidence in extending our inferences beyond the 
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clade and should be wary of the correlation even within 
the focal clade. However, that is not to say there is no 
mechanistic reason for an association between synapo-
morphies. It is entirely possible that two characters that 
share identical evolutionary histories have an underly-
ing biological link. Nonetheless, conclusions about the 
potential links between these characters cannot come 
from studies conducted on a macroevolutionary scale, 
and they should instead be investigated on a smaller 
scale (Beaulieu and O’Meara 2018, 2019; Donoghue and 
Edwards 2019). Additional lines of evidence and a more 
mechanistic explanation will be necessary in order for a 
conclusion of correlation to be satisfying (Gardner and 
Organ 2021). In a sense, the hidden rate classes of our 
proposed framework may represent lineage-specific 
factors that, once present, readily allow for a shift in the 
tempo and mode of a lineage’s evolution (Maddison 
and FitzJohn 2015; Ogburn and Edwards 2015).

Concluding Remarks

Sparked by an appreciation of the limitations of 
PCMs, several commonly used phylogenetic compar-
ative methods have seen critical challenges recently, 
which have led to advancements useful for both devel-
opers and users (Boettiger et al. 2012; Maddison and 
FitzJohn 2015; Rabosky and Goldberg 2015; Louca and 
Pennell 2020). Here, too, the critiques of classic tests of 
correlation (Pagel 1994) are not wrong, and the recom-
mendations of past studies remain useful (Maddison 
and FitzJohn 2015; Uyeda et al. 2018; Gardner and 
Organ 2021). There will be data sets where distinguish-
ing between correlation and independence is simply 
not possible without lines of evidence outside of com-
parative biology (Uyeda et al. 2018; Gardner and Organ 
2021). What we have demonstrated here is that the sta-
tistical bias toward correlation is primarily due to a mis-
specification of the model set and a failure to account 
for character-independent rate heterogeneity. We have 
highlighted that the inclusion of less frequently used 
Markov model structures in the model set can be crit-
ical for the quality of the inferences being made. We 
acknowledge that choosing a diverse set of models a 
priori is not always straightforward, but both likelihood 
and Bayesian methods will only be as effective as the 
plausibility of the models set being analyzed (Burnham 
and Anderson 2002). We know that a homogeneous 
process over millions of years and across thousands 
of lineages is incorrect (Eldredge and Gould 1972) and 
that the individual parts of an organism do not evolve 
independently (Levins and Lewontin 1985). While we 
may not be able to always specify each of these individ-
ual processes, we must try to incorporate them in our 
modeling. Accounting for rate heterogeneity through 
HMMs is a simplified way that we can bring realism to 
our modeling while also making statistically consistent 
and unbiased estimates of evolutionary parameters. 
From there, undoubtedly more work will be necessary 

(e.g., Goldberg and Foo 2020). But comparative analy-
ses must at the very least attempt to account for what 
we know about macroevolution while making us aware 
of the wonderful idiosyncrasies of evolutionary history.
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