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Abstract—The correlation between two characters is often interpreted as evidence that there exists a significant and
biologically important relationship between them. However, Maddison and FitzJohn (in The unsolved challenge to
phylogenetic correlation tests for categorical characters. Syst. Biol. 2015;64:127-136) recently pointed out that evidence of
correlated evolution between two categorical characters is often spurious, particularly, when the dependent relationship
stems from a single replicate deep in time. Here we will show that there may, in fact, be a statistical solution to the
problem posed by Maddison and FitzJohn naturally embedded within the expanded model space afforded by the hidden
Markov model (HMM) framework. We demonstrate that the problem of single unreplicated evolutionary events manifests
itself as rate heterogeneity within our models and that this is the source of the false correlation. Therefore, we argue that
this problem is better understood as model misspecification rather than a failure of comparative methods to account for
phylogenetic pseudoreplication. We utilize HMMs to develop a multirate independent model which, when implemented,
drastically reduces support for correlation. The problem itself extends beyond categorical character evolution, but we
believe that the practical solution presented here may lend itself to future extensions in other areas of comparative biology.

[Macroevolution; model adequacy; phylogenetic comparative methods; rate heterogeneity].

Correlated or dependent evolution on a macroevolu-
tionary scale is defined as a change in a character state
(e.g., plumage color) that is linked to the presence of a
particular state in a separate character (e.g., beak color).
In other words, the evolution of character X can be said
to be dependent on character Y if, in the presence of
a particular state of Y (e.g., Y; black plumage), shifts
within character X (e.g., X, to X ; orange beak to red
beak) occur at a different rate from when the lineage is
in an alternative state of Y (e.g., Y; white plumage). For
example, a shift from X to X, may occur more quickly
when paired with Y, than with Y resulting in a distri-
bution with many character pairs X,Y,. It is often the
case that these sorts of dependent relationships between
characters seem obvious, especially if the observations
of many species are consistent.

However, what happens when all observations of
the pair come from, for example, a single clade? In
other words, there may have been many species in
which XY, is observed, but they all came from one
peculiar clade of waterfowl. Since the strength of the
relationship is related to the number of individual
observations, their phylogenetic nonindependence
raises concerns about the validity of the proposed
correlation. This fact was well understood as early
as Darwin (1859), and the tools for dealing with the
resulting statistical nonindependence have been avail-
able to comparative biologists since the foundational
work of Felsenstein (1985). Nevertheless, this issue of
“phylogenetic pseudoreplication,” where species are
nonindependent due to their shared ancestry, served
as the basis for the concerns raised by Maddison and
FitzJohn (2015) regarding tests of dependent character
evolution.

Maddison and FitzJohn (2015) demonstrated that the
most widely used phylogenetic method for detecting cor-
related evolution between categorical characters (Pagel
1994), almost always indicates strong evidence of correla-
tion when singular events deep in time can account for
the codistribution of two characters. To demonstrate their
point, they fit correlated models to data sets generated
under their so-called, “Darwin’s” and the “Unreplicated
Burst” scenarios (Fig. 1a,b). Darwin’s scenario results
in the perfect codistribution of two characters, which
in practice, might occur when testing for correlations
between two synapomorphies (e.g., presence/absence of
middle ear bones and fur). Under the Unreplicated Burst
scenario, only one of the two characters has phylogeneti-
cally replicated change. This scenario occurs when one of
the characters is a synapomorphy for the clade, with the
other character undergoing several changes within the
focal clade. Both Darwin’s and the Unreplicated Burst
scenarios can be contrasted to data sets simulated with
a model of correlated evolution, where there are sev-
eral repeated and independent instances of the correla-
tion arising (Fig. 1d). However, the issue is that, when
applied to either Darwin’s or the Unreplicated Burst
scenario, commonly used comparative methods (Pagel
1994) will almost always indicate strong evidence of cor-
relation despite the dependent relationship arising from
little more than a single event deep in time.

There is considerable interest in understanding and,
ultimately, finding a resolution to the problem posed
by Maddison and FitzJohn (2015). Recently, Uyeda et
al. (2018) suggested that for Darwin’s scenario, the rela-
tively long periods of stasis between the two characters
(i.e., minimal trait change) are the primary cause for their
significant dependent relationship. In fact, they showed
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The two problematic scenarios from Maddison and FitzJohn (2015) for the evolution of characters X and Y. Character X is painted

on the left phylogeny using red and orange for state X and X, whereas character Y is painted on the right phylogeny using dark blue and light
blue for state Y and Y. (a) Darwin’s scenario is depicted as a single event deep in time that has led to the codistribution of XY outside of the
focal clade and XY, within the focal clade. (b) Unreplicated Bursts scenario is where a single event deep in time has led to the codistribution
of XY, outside of the focal clade and X Y, and XY, within the focal clade. (c) One realization of a data set simulated under an independent
model. (d) One realization of a data set simulated under a correlated model. Notice how in this case there is a consistent pattern of correlation
and multiple independent origins of the potential correlated characters (XY, and X Y)) throughout the phylogeny.

that the probability of selecting a character-dependent
model (i.e., a model of correlated evolution between the
two characters) over a character-independent model (i.e.,
a model where the two characters are explicitly not cor-
related) was proportional to the ratio between the length
of the branch where the shift occurred and the total
length of the tree. The nature of this ratio ensured that
a correlated model would always be supported in cases
where singular evolutionary events led to a codistribu-
tion of characters. Another study by Gardner and Organ
(2021) tested a variety of correlated models beyond
Markov models and examined the structure of data sets
which are susceptible to the problem of false dependence.
They found that all the tested comparative methods pro-
duced erroneous correlations when data sets were phy-
logenetically pseudoreplicated and suggested that this
was due to an inability to estimate parameters associated
with transitions between unobserved states.

In both of these studies, the authors have addressed
the problem by encouraging scientists to think critically
about their models and data sets before conducting a
comparative analysis. While this recommendation is
certainly admirable and correct, it is not a direct and
satisfying solution to the statistical problems presented
so far, as no amount of methodological vigilance will
ever prevent analyses from being marred by phylo-
genetic pseudoreplication. However, prior analyses
have limited model comparisons to only a few models
and have overlooked the very large set of alternative
Markov models which can also be consistent with cor-
relation or independence depending on the model’s
structure. These alternative models have been discussed

previously (Pagel 1994; Pagel and Meade 2006) and, as
we will show, the inclusion of a few examples within
the model set can play a crucial role in ensuring a fair
test of correlation. These underrepresented models, in
addition to the enormous model space provided by hid-
den Markov models (HMMs) for addressing rate het-
erogeneity across the tree (Beaulieu et al. 2013; Boyko
and Beaulieu 2021), can severely reduce the bias toward
correlation noted by Maddison and FitzJohn (2015). We
acknowledge that the problem itself extends beyond
categorical character evolution, but we believe that the
practical framework presented here may lend itself to
future extensions in other areas.

We draw on two important insights as they relate to
models of categorical character evolution. The first is
that model space is severely underexplored and that the
inclusion of more complex, character-independent mod-
els within our modeling set helps reduce evidence of
false correlation. We reiterate previous findings (Uyeda
et al. 2018; Gardner and Organ 2021) that estimates of
transition rates to and from unobserved character states
are not statistically identifiable, revealing that the canon-
ical correlated model is overparameterized in phylo-
genetically pseudoreplicated data sets like Darwin’s
scenario (Fig. 1a). When only two or three of the four
possible character state combinations are observed, we
produce models nested within the correlated and inde-
pendent models that are overwhelmingly favored over
both. Second, the issue of false dependent relationships
is not one of stasis per se, but rather, a failure to account
for rate heterogeneity. We demonstrate that an explicit
character-independent HMIM provides significant
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FIGURE 2. Representations of the different transition rate matrices, Q, with k number of parameters associated with each. Where transitions
are fixed to occur at the same rate, the squares are colored to be the same. Unique parameters are also indicated with a roman numeral in the
bottom left corner of the square. To the right of each matrix, a ball-and-stick representation of the model is presented with colors and parameter
numbers matching the transitions indicated in the matrix, Q. The ball-and-stick representation is organized such that internal arrows represent
transitions from 1 to 0, and external arrows represent transitions from 0 to 1. Additionally, arrows that cross the vertical midpoint indicate
transitions in character X, whereas transitions across the horizontal midpoint indicate transitions in character Y. (a) An independent model with
four unique parameters, which fixes transitions within a character such that changes in X or Y do not depend on the state of the other character.
(b) A correlated model with eight unique parameters. This model allows transitions within a character to depend on the state of the other
character. (c) A model which removes transitions to and from an unobserved state from the independent model (a). (d) A model that removes
transitions to and from an unobserved state from the correlated model (b). In (c) and (d), the unobserved state is based on the Unreplicated

Burst scenario where XY, is not observed.

evidence for models of independent evolution in cases
where a correlated model would have previously been
supported. This is because under the classic Pagel
(1994) framework, support for correlation comes from
both a dependent relationship between characters and
a strong signal of rate heterogeneity. By amending the
Pagel (1994) framework with a model which allows for
rate heterogeneity independent of a focal character, we
correct the bias toward correlation.

CORRELATED MODELS DEPEND ON OBSERVATIONS OF
INTERMEDIATE STATES

While much has been written about the specifics of
Pagel’s model, we briefly review aspects of it in order
to better illustrate our point—namely, that certain

transition rates are not estimable and that their inclu-
sion may be an additional cause of false correlations
uncovered by Maddison and FitzJohn (2015). The
correlated or dependent model of discrete character
evolution, introduced by Pagel (1994), uses a continu-
ous-time Markov process to estimate the rate of transi-
tions between character states (Fig. 2a,b). With a single
binary character, X, the transition rate matrix, denoted
as Q, is a simple 2 x 2 matrix that contains all the infor-
mation necessary to estimate the probability of a tran-
sition occurring between two states of character X over
a given period of time. At its most complex, Q would
contain two transition rates: from state X to state X,

0

and from state X, to state X. If we introduce a second

binary character, Y, the number of possible observed
state combinations is expanded—that is, the possible
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observed state combinations become X Y, XY, XY,
and X|Y,. Consequently, this requires an expansion
of Q to a 4 x 4 matrix, to account for all the possible
transitions between state combinations. This model is
considerably more complex than the previous one, as
the number of transitions goes from a minimum of 2 to
a maximum of 12. However, the model introduced by
Pagel (1994) is constrained specifically for the purpose
of detecting correlations between characters by examin-
ing whether the state of one variable affects the proba-
bility of change in the other. To do this, dual transitions
(i.e., changes in both X and Y occurring in a single time
step) are removed. As noted by Pagel (1994), setting
dual transition rates to zero does not rule out dual tran-
sitions over long periods of time. Rather, a dual tran-
sition from X Y, must first pass through state X Y, or
X,Y,, before finally transitioning to X,Y,. Equating the
rates of transitions between particular pathways allows
for the construction and testing of an independent
model (Pagel and Meade 2006). A model of indepen-
dent evolution is nested within the correlated model
but assumes that the transition rates between states of
a character are equal to one another regardless of the
state of the other character (e.g., [X,to X, | Y] = [X, to
X, | Y,]; Fig. 2a,b). In other words, if these two char-
acters, X and Y, are independent, the presence of one
character will have no influence on the change of the
other and thus model selection criteria should choose
the simpler model..

Using this specific nested framework, we were able
to replicate the results of Maddison and Fitzjohn (2015).
Specifically, we generated 100 data sets for Darwin’s sce-
nario and the Unreplicated Bursts scenario. Phylogenies
were simulated under a A =1 and p = 0.5 until 100 extant
taxa were reached, and each resulting tree was then eval-
uated for a focal monophyletic group between 40 and
60 taxa. For Darwin’s scenario, extant species within the
focal clade were assigned XY, and species outside the
clade were assigned X Y,. We simulated Unreplicated
Bursts by assigning all species outside the focal clade
X,, and all species within the clade X,. Next, character
Y was simulated at a rate of 100 transitions per million
years. Outside of the focal clade, species were assigned
Y, whereas, within the focal clade, the simulated data
resulted in both Y and Y. We used corHMM (Beaulieu
et al. 2013; Boyko and Beaulieu 2021) to fit and com-
pare the four-state independent model (Fig. 2a) against
the four-state correlated model (Fig. 2b) using Akaike
Information Criterion (AIC). In all cases, we found over-
whelming support for the correlated model for both
Unreplicated Bursts and Darwin’s scenario data sets
(see Supplemental Materials). The mean AIC weight
for the correlated model under Darwin’s scenario was
92.52% and under Unreplicated Bursts, it was 99.96%.
As expected, an independent model was never favored
over a correlated model in either scenario.

For Darwin’s scenario, setting aside the critical ana-
lytical issues regarding phylogenetic pseudoreplication,
we had additional concerns with the structure of the
data and how this might impact estimates of transition

rates. Under any continuous-time Markov process, the
estimates of the transition rates among all possible char-
acter combinations are reflective of the observed state
frequencies and distribution at the tips. But, what if two
of the four character combinations are not observed
at all? Here we are referring to the two combinations,
X,Y, and X|Y, not observed in any of the tips under
Darwin’s scenario. There may be biological reasons
for not observing intermediate state combinations. For
example, these combinations may be at some selective
disadvantage, resulting in rapid transitions to another,
more viable character combination (e.g., XY, or X\Y)).
Alternatively, it could be that one or both combinations
are never possible due to some underlying genetic or
developmental reasons (e.g., certain fruit character com-
binations, see Beaulieu and Donoghue 2013). However,
whatever biological meaning is attributed to the lack of
intermediate character state observations, in this case,
is beside the point. There are identifiability issues with
including transitions to and from these unobserved
state combinations in the model, calling into question
fitting the correlated model to these types of data (also
see Gardner and Organ, 2021). That is to say, if we never
see intermediate state combinations at the tips, how can
the model ever favor one pathway over the other?

To illustrate this point, we examined the likelihood
surface of one of the data sets simulated under Darwin’s
scenario and fit under Pagel’s correlated model (Fig.
3). Whether starting from X Y, or X|Y, transition rate
estimates to either of the unobserved character com-
binations fall along a ridge of equal likelihood, where
changing the rate of transition to one unobserved state
determines the rate for the transitions to the other unob-
served state. When a lineage transitions into one of the
states, the likelihood surface for transitions out of these
states to either state XY or X|Y| is completely flat, with
all rates ranging from 0.1 to 100 transitions per unit time
all having nearly identical likelihoods. In other words,
at least in the case of Darwin’s scenario, they are not
identifiable. The preferred model estimates for various
transition rates arise simply by chance of the optimiza-
tion procedure.

One immediate solution is to simply remove the
unobserved character combinations from the model
completely. From a modeling perspective, removing
unobserved states removes the parameters that fall
along the likelihood ridge and should lead to a model
that ends up being well estimated. This is accomplished
by removing transition rate estimates to and from the
unobserved character states (in the case of Darwin’s
scenario, a dual transition between XY and X|Y, must
be included). Consequently, the question of whether
independent or correlated models better explain the
data becomes irrelevant as the two models collapse into
one another when unobserved states are removed (Fig.
2¢,d). This is clearly seen when the collapsed model
is applied to an Unreplicated Burst scenario. Whether
one starts with an independent model (Fig. 2a) or a
correlated model (Fig. 2b), once unobserved states are
removed, comparing alternative transition pathways
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FiGURE 3. An example contour plot of a correlated model when applied to 1 of the 100 Darwin’s scenario data sets. The colors indicate the
log-likelihood surface for points that are two log-likelihood units away from the maximum likelihood (darker colors indicating support near
the maximum likelihood). Each surface is constrained such that a particular pair of parameters is fixed but all remaining transition rates are
free to find their MLE. We sampled 5000 pairs of points for a particular parameter pair from a Latin hypercube sampling design. (a) Transitions
from X Y| to either intermediate state result in several likelihood ridges, as indicated by the linear bands of support. We highlight this “ridge”
effect by showing two points that represent mirror images of transitions from XY, to XY, and XY, to X,Y,. Both points produce identical log-
likelihoods, as does any pair of points that occur when sliding along that particular band. (b) Transitions from XY, to an intermediate state
result in several likelihood ridges. (c) Transitions from X Y| to either XY, or X Y| result in a completely flat likelihood surface, as indicated by
the entire search space producing strong support that is nearly indistinguishable from the maximum likelihood estimate. (d) Transitions from
X,Y, to either XY, or X\ Y also result in a completely flat likelihood surface.

between X Y, and XY, are no longer possible. For since X Y, is not observed in the data set. The collapsed
example, take transitions between states of character X. model is neither an independent nor correlated model
Both the correlated and independent models estimate because it no longer describes the coevolution of mul-
transitions from X to X, as necessarily linked to Y, tiple characters, but instead transitions among states of
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a single composite character. Put another way, rather
than having two characters with two mutually exclu-
sive states (X or X, and Y or Y), we are left with three
mutually exclusive states of a single character (XY,
or X Y, or X\Y)). There is no way to make meaningful
comparisons between possible intermediate pathways
in which one character influences the other.

Including a collapsed model as part of our model
set drastically changes the results. We found complete
support for a collapsed state model for both Darwin’s
scenario and Unreplicated Bursts (see Supplemental
Materials). The average AIC weight for the collapsed
model is 99.7% under Darwin’s scenario and 100.0%
under an Unreplicated Burst scenario. This suggests
that the support for the correlated models over sim-
pler independent models is the result of parameter
constraint. Specifically, in an independent model, tran-
sitions between observed states are constrained to be
identical to transitions between unobserved states (e.g.,
XY, to XY, must be identical to XY, to XY, even if
X,Y, is never observed). In contrast, the correlated
model is not subject to these constraints. This is, of
course, the important distinction between the two mod-
els and what allows us to test for correlated evolution.
However, when exclusively modeling observed state
combinations the independent and correlated models
become equivalent descriptions of the evolutionary
process and are, therefore, indistinguishable from the
given data.

Although we do so here for illustrative purposes, the
collapsed model is typically not necessary to include
within our modeling set even if we are interested in
testing for evidence of correlated evolution without
observations of intermediate states. We expect that the
data sets in which empiricists are generally interested
in testing for correlation do not lack observations of
intermediate states and that the reason for Maddison
and FitzJohn (2015) using such scenarios was to illus-
trate a consistent bias in our methods.

RATE HETEROGENEITY Is NECESSARY WHEN TESTING
FOR CORRELATION BETWEEN CATEGORICAL VARIABLES

Beyond not being able to directly test for charac-
ter correlation, a major issue for the collapsed model
described above is that in Darwin’s scenario, a single
observation of XY, and XY removes the possibility of
collapsing the model structure. As we will show, with
only a single observation of intermediate character
combinations, support for the correlated model over
an independent model remains substantial. Even so,
the results above highlight information limitations and
that the strong evidence for correlated models may be
due to a lack of viable alternative independent models
rather than being irrefutable evidence of correlation
(see also Gardner and Organ 2021).

Itis worth considering again the possible explanations
of the data under Darwin’s scenario. One possibility is

that the characters X and Y evolve slowly and that their
codistribution is the result of two independent events
deep in time. The probability of this scenario has been
explored in-depth and its implausibility is a major con-
tributor to the recurrent issues of false correlation when
comparing correlated and independent models (Uyeda
et al. 2018). We propose a complementary explanation
for the correlated model’s support: the independent
model structure fixes the transition X to X, to always
be the same rate regardless of the state of Y (Fig. 2a),
whereas a correlated model structure allows transitions
from X to X, to vary depending on the state of Y (Fig.
2b). Part of the support for the correlated model, there-
fore, comes from the fact that these data sets contain a
signal of multiple transition rates for each character. The
most likely description of the process is one in which
the transition rates from X to X, and Y, to Y, are high
within the focal clade and occur low outside of the focal
clade. The relative stasis of X outside the focal clade
and the rapid transition to X, within the clade suggests
that changes in X are not consistent throughout the tree.
HMMs are a natural way to deal with this kind of rate
heterogeneity across the tree. The underlying mathe-
matical framework of an HMM is no different than a
typical Markov model. They utilize a rate matrix, Q,
to estimate the probabilities of transitioning between
discrete states and arrive at the likelihood of the model
given the observed data set (Felsenstein and Churchill
1996). However, HMMs introduce a so-called “hidden
state,” which can represent any number of unobserved
factors, biological or otherwise. Based on the presence or
absence of this hidden state, changes between observed
states are allowed to vary. In the most extreme cases,
the absence of the hidden state may halt the evolution-
ary process and result in periods of stasis. For example,
Marazzi et al. (2012) conceptualized the hidden state as
a “precursor” trait and only in its presence could extra-
floral nectaries (EFNs) emerge. The precursor state was
never directly observed and the information for its pres-
ence or absence of the hidden state came from the rate
heterogeneity of EFNs transitions. In some parts of the
tree, the model EFNs emerged rapidly and in others,
there were periods of stasis. Of course, HMMs are more
general than either halting or actuating the evolution-
ary process and are used to quantify rate heterogene-
ity without the necessity of stasis (e.g., comparing fast,
slow, or intermediate rates as in Beaulieu et al. 2013).
The key point here is that they allow for rate hetero-
geneity that is unlinked to another observed character.
We developed and tested a hidden Markov inde-
pendent model (HMIM) which accounts for rate het-
erogeneity while maintaining the independence of
the observed focal characters X and Y (Fig. 4). In our
view, the inclusion of our model within the evaluated
set better levels the playing field between correlated
and independent models. For example, if we focus on
character X, our proposed model utilizes hidden states
to vary transition rates between X and X, based on an

0 1
unobserved character. This is similar to the way that the
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Ficure4. The HMIM that allows transitions within a character to have rate heterogeneity without it necessarily being linked to an observed
character. This matrix can be read as a block matrix, with 4 x 4 blocks representing transitions between observed characters following an
independent model (top left and bottom right) and transitions between hidden rate classes A and B (top right and bottom left). The independent
model is essentially duplicated in the top left (blue and green) and bottom right (red and orange) of the block matrix with transitions occurring
between these different types of independent models (purple). Here, transition rates between the hidden states are fixed to be the same
(parameter ix), but it is straightforward to allow the transition between rate class A and B to differ.

correlated model allows transition rates between X and
X, to differ based on the observed state of Y. If the cause
of false correlation was, as we suspect, not accounting
for rate heterogeneity, then both the hidden-state inde-
pendent and correlated model should be preferable to
the simple independent model and evidence of correla-
tion between X and Y should be greatly reduced.

We first removed the possibility of collapsing the
Markov model by modifying Darwin’s scenario. We
defined the focal clade as being the monophyletic group
where all observations of XY, occur and randomly add
the intermediate state observations of X Y, and XY,
within the focal clade (which refer to as “inside” here-
after), outside of the focal clade (which we refer to as
“outside” hereafter), and both within and outside the
focal clade (which refer to as “both” hereafter) (Fig. 5).
Next, we verified that this modified Darwin’s scenario
still suffers from the problems of the original Darwin’s
scenario by comparing the independent and correlated
models sensu Pagel (1994). We then added the HMIM
to the model set and evaluated two questions: (1) when
comparing independent models to one another, is there
evidence of rate heterogeneity? and (2) is support for
the correlated model reduced when compared to an

independent model with rate heterogeneity? In addi-
tion to AIC weight, we utilized evidence ratios (ERs) to
explore the relative likelihood of our models. ERs are a
simple extension of AIC weights, but as a means of eval-
uation, are important here since they allow us to focus
on evaluating the relative evidence of pairs of models
irrespective of other models in the set (Burnham and
Anderson 2002). The evidence for model i over model j
is the ratio between their AIC weights: ER = w,/w, and
it can help quantify whether the best model in our com-
parison is convincingly best. With alternative samples,
a convincingly best model is likely to be chosen again
from sample to sample. However, if evidence for a
model is low, we expect model selection uncertainty to
be high. Following Burnham and Anderson (2002), an
ER of greater than 2.7 is used as a guide to justify judg-
ing support for one model being better than another.
This also neatly corresponds to a AAIC = 2. We empha-
size that this value should not be misconstrued as a
significant test in a frequentist sense since we are not
evaluating the probability of rejecting a null hypothesis.

For all modified Darwin’s scenarios, we found sub-
stantial evidence (ER > 2.7) for a correlated model over
a single-rate class independent model (Fig. 5). The
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Ficure 5. The amount of evidence for correlation when comparing a correlated model to ether an independent model (IM) or HMIM.
The models are fit to data of the modified version of Darwin’s scenario where a single observation of XY, and XY is added outside of the
focal clade (a), inside of the focal clade (b), and both within and outside of the focal clade (c). Evidence ratios for each model comparison are
plotted as box plots to the left of the simulation scenario. In all cases, the evidence ratio of the correlated model over the independent model is
substantially greater than 2.7 (left box plot) but, the correlated model receives much less support over the hidden Markov independent model
(right box plot).
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geometric mean ER for the correlated model over the
single-rate independent model was ER ., = 59.51,
ER .. = 7816, ER, , = 11.44 (Fig. 5), thus we again
successfully recreated the conditions of Maddison and
FitzJohn (2015) under a modified Darwin’s scenario.
Next, we examined the evidence for rate heterogeneity
by comparing a single-rate independent model to the
HMIM. We found substantial evidence for rate hetero-
geneity across all scenarios, with all mean ERs of the
HMIM over the standard independent model well over
20, indicating substantial support for rate heterogeneity
(ER 4 = 2445, ER__. =24.33,ER , = 50.45). Finally,
we tested whether there is still conclusive evidence of
correlation between characters if we include the hid-
den-state independent model within our modeling set.
We found that the evidence for a correlated model over
the HMIM was greatly reduced when compared to the
single-rate class independent model (Fig. 5; ER .. =
243, ER ., =321, ER , = 0.22; Fig. 5). In fact, with
only two observations of each intermediate state combi-
nation (XY, and X,Y,), support for the HMIM over the
correlated model was substantial (evidence for HMIM
over a correlated model: ER, , = 4.41).

However, for both the inside and outside scenar-
ios (as well as the original Darwin’s and Unreplicated
Bursts scenarios), support for a correlated model was
still greater than the HMIM (Table 1). Specifically, we
found that the difference in support for a correlated
model over an HMIM is between 1 and 2 AIC units for
all but Darwin’s scenario, where AAIC = 8.8. We will
address Darwin’s scenario in detail below, but for the
other scenarios, it is interesting to note the near identi-
cal likelihoods of the HMIM and correlated model. For
reference, a AAIC of 2 corresponds to exactly the pen-
alty of adding one additional parameter, and this is the
number of parameters that differs between the HMIM
and correlated model. Like our findings when examin-
ing the collapsed model, this suggests that the HMIM
and correlated model explain the data equally well

and there may not be enough information to determine
whether there is a dependent relationship between the
focal characters.

In summary, our findings thus far highlight three
important insights: 1) There is indeed substantial evi-
dence of rate heterogeneity, and that this is leading to a
biased signal of false correlation, 2) including an HMIM
will, at least, muddle evidence for correlation, and 3) for
data sets similar to Unreplicated Bursts and Darwin’s
scenario, there may be a lack of information in to dis-
tinguish between the signals of correlated and indepen-
dent evolution.

ExPLORING MODEL SPACE USING THE FLEXIBLE HIDDEN
MARKOV MODEL FRAMEWORK

It still concerns us that for the original and two of the
modified Darwin’s scenarios (specifically the “outside”
and “inside” sets; see Fig. 5), support for the correlated
model was often greater than the hidden-state inde-
pendent model. Specifically, the difference in support
between the correlated model and the HMIM was AAIC
= 8.8 under a strict Darwin’s scenario corresponding to
substantial evidence of correlation. To further examine
this issue, we rely on the inherit flexibility of Markov
and HMMs to structure a model specifically to address
Darwin’s scenario. We apply what we have learned
thus far, with regards to the over-parameterization and
the necessity of rate heterogeneity, and add a new set
of simplified models. Although these simplified mod-
els can have some utility in empirical settings, they are
primarily used here to demonstrate the flexibility and
necessity of the HMM approach in creating a robust
model set.

Model space has been underexplored and there are
many nested model structures that are consistent with
either independence or correlation depending on their
constraints (see also Pagel and Meade 2006). Here we

TaBLE 1. Average AAIC values for 100 data sets with standard deviations shown in brackets.

Scenario Darwin’s Unreplicated Modified Modified Modified
bursts Darwin’s Darwin’s Darwin’s
(outside) (inside) (both)
Collapsed 0.0 (+0.0) 0.0 (x0.0) NA NA NA
Independent 17.9 (x12.3) 36.8 (£9.0) 14.3 (+3.6) 14.8 (x4.0) 15.6 (x4.7)
Simplified independent 13.9 (+2.3) 67.3 (x15.8) 10.3 (£3.6) 10.8 (+4.0) 11.6 (+4.7)
Correlated 12.0 (x0.2) 8.0 (x0.1) 6.1 (+0.5) 6.1(0.7) 10.8 (+2.6)
Simplified correlated 13.9 (+2.3) 30.0 (8.2) 9.8 (+3.6) 10.4 (x4.1) 11.6 (+4.7)
Hidden Markov independent 20.8 (+6.8) 9.2 (x0.4) 7.9 (£1.2) 8.4 (£3.3) 7.8 (£2.2)
Simplified hidden Markov independent 5.5 (x0.1) 36.3 (£9.1) 0.0 (0.0 0.0 (x0.0) 0.0 (x0.0)
Correlated hidden Markov 29.7 (£0.3) 24.9 (+0.8) 22.9 (x0.7) 23.5 (+0.8) 23.2 (x14)
Simplified correlated hidden Markov 18.8 (£2.1) 34.3 (£7.7) 14.2 (£3.3) 14.3 (£2.8) 15.7 (£3.5)

Notes: Each column represents a scenario described in the main text and each row represents a different Markov model structure which may
be consistent with independence or correlation. For each scenario, eight or nine models were fit to the data sets. The collapsed model is fit only
when not all potential state combinations are directly observed and therefore are not fit in modified scenarios. A AAIC of 0 indicates the best
model and models within two AIC units of each other are generally considered good fits to the data (Burnham and Anderson 2002).

Bold indicates the model with the lowest AIC.
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FIGURE 6. (a) A simplified independent model. In this model, transitions from 0 to 1 all occur at the same rate and transitions from 1 to 0

all occur at the same rate. (b) A simplified correlated model. Under this model, transitions between states of character X and Y depend on the
background state of the other character. (c) A simplified hidden Markov independent model, where the simple independent model of (a) is used
in the hidden Markov framework which allows for rate heterogeneity independent of focal characters. The same can be done for the simple

correlated model (not shown).

describe two constrained versions of the independent
and correlated models that achieve an efficient descrip-
tion of the data. One simplified version of the correlated
model suggests thatwhen either character X or Yisinstate
0, rates of change are slower or faster than when either
characterisin state 1 (Fig. 6b). We refer to this as the “sim-
plified correlated” model and it represents the simplest
way to model a dependent relationship between two
binary characters. Next, we created a “simplified inde-
pendent” model of equal parameterization to the simpli-
fied correlated model, which equates all changes from
0 to 1 regardless of the character and the same is done for
changes from 1 to 0 (Pagel and Meade 2006; Fig. 6a).

The structures of these simplified models have cer-
tain qualities that may make them apt descriptions of
data like Darwin’s scenario. Primarily, these models
suggest that changes between states 0 and 1 do not
necessarily depend on the specific identity of char-
acter X or Y since they are constrained to be equal.
Considering the redundancy of a data set composed
of two synapomorphies, it is obvious that there is lit-
tle to no information that distinguishes the two char-
acters—that is, it makes no difference whether one
analyzes character X or character Y since their dis-
tributions are identical. The simplified models make
that assumption explicit. It is also important to note
that the simplified independent model and simplified
correlated model maintain independence and depen-
dence sensu Pagel (1994). The background state of the
unchanging character does not influence changes in
the case of the simplified independent model, whereas
the background state of the unchanging character will
influence rates of change in the case of the simplified

correlated model (Pagel and Meade 2006). Finally, we
can introduce rate heterogeneity by modeling the sim-
plified independent and correlated models as two rate
class HMMs (Fig. 6¢).

Returning to the modified Darwin’s scenario data
sets, consistent and overwhelming support for the sim-
plified HMIM was found across all scenarios (Table 1).
The average AIC weight of the simplified HMIM when
fit to modified Darwin’s scenarios are w_ . ., = 89.6%,
W, e = 90.2%, and w,_, = 93.5%. The set of models
applied to this data included all models discussed thus
far as well as more complicated versions of those pre-
viously described (such as a standard correlated model
with multiple rate classes). Additionally, to ensure that
these models are not biased towards being favored
across all data sets, we simulated data under a simpli-
fied correlated, simplified independent, and simplified
HMIM s. We then fit each model to these data sets and
found that the generating model is consistently chosen
as the best fitting model (see Supplemental Materials).

Support for a simplified HMIM over alternative cor-
related models was also found when we consider the
unmodified Darwin’s scenario (Table 1). This is because
there is no information to detect whether transitioning
between X Y and X|Y, happens more rapidly through
an intermediate state of X Y, or X Y. This distinction
is necessary for correlated models, but these two path-
ways are equivalent in the simplified HMIM. The hid-
den state in Darwin’s scenario, then, represents the
presence of some character that changes the dynamics
of how the state X|Y, accumulates - that is, the hid-
den state may represent the “trait” of “being a mam-
mal.” The subsequent simultaneous evolution of fur
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and inner ear bones are then represented by higher
transition rates from XY, to X|Y, in the mammalian
rate class. However, there is no information present in
Darwin’s scenario to tell us whether fur or inner ear
bones evolved as a consequence of one another. They
simply shared the evolutionary dynamics and conse-
quences of being a mammal.

With regards to the parameter estimates, there is no
way to directly assess how exactly accurate they are,
because the generating parameters are unknown given
the contrived nature of Darwin’s scenario. Nevertheless,
we can make a back-of-the-envelope calculation to
determine whether our estimates are at least reasonable
and consistent with our expectations. The estimate for a
transition to “being a mammal” (i.e., a transition in hid-
den rate class) was, on average, 0.0113 transitions per
million years, which corresponds to an expected tran-
sition occurring, on average, every 88.5 Myr. With the
average total branch length being 133.9 Myr across our
100 taxon trees that corresponds to an expectation of
roughly one transition. We also found a relatively low
standard deviation (+0.002), indicating this did not vary
dramatically among data sets.

Finally, it is important to emphasize that our model
set is also incomplete. We have examined only a hand-
ful of structures from a very large model space, and it is
possible that there are equally good explanations of the
data within the expanded model space. Nonetheless,
these findings suggest that a model set without char-
acter-independent rate heterogeneity will consistently
produce a statistical bias toward correlation noted by
Maddison and Fitzjohn (2015). However, this bias can
be greatly reduced by empiricists by accounting for, and
expecting the presence of, rate heterogeneity through
the use of HMMs.

A BROADLY APPLICABLE FRAMEWORK

The issue discussed herein is recognized as being
broadly applicable to several comparative methods that
test for associations between variables (FitzJohn 2010;
Rabosky and Goldberg 2015; Uyeda et al. 2018; Nakov
et al. 2019; Gardner and Organ 2021). It is concerning
that such a significant issue has seemingly gone unre-
solved for so long given comparative methods are of
critical importance for understanding macroevolution-
ary patterns. However, in our view, the prevalence of
the problems identified over the past few years is due to
a singular overarching cause, namely, model misspeci-
fication, which occurs when a model, or set of models,
is incomplete. Within the context of their model sets,
authors of previous studies have correctly portrayed
and analyzed the correlation bias of modeling depen-
dence between discrete characters (Maddison and
FitzJohn 2015; Uyeda et al. 2018; Gardner and Organ
2021). However, the danger of model misspecification
is that the inferences drawn from an incomplete set are
highly susceptible to unforeseen biases—a fact that will
hold true in both theoretical and empirical contexts.

Here, we are arguing that the model set is incomplete
without the inclusion of models that allow for rate het-
erogeneity that is independent of the focal characters.
The canonical character-independent model of Pagel
(1994) has no way to account for multiple rates of evolu-
tion, whereas support for a correlated model can come
from both evidence of correlation and evidence of rate
heterogeneity. Additional support for correlation as a
consequence of hidden rate heterogeneity is not exclu-
sive to Pagel’s model and has been seen in other phylo-
genetic comparative methods. This stems from the fact
that PCMs often test for correlation by comparing rates
in the presence and absence of focal characters. Not
being able to account for character-independent rate
heterogeneity has led to consistently biased evidence
towards correlation within state-dependent speciation
extinction models (Beaulieu and O’'Meara 2016). In that
case, the biased association was between diversification
rates and phenotype (Rabosky and Goldberg 2015), but
the cause is the same. Models in which there are no dif-
ferences in diversification rates are compared to models
which tested for the presence of a correlation between
character and diversification rate (which necessarily
allows for multiple rates of diversification). Whether it
be speciation or phenotypic evolution or both, if rates
vary as a rule of macroevolution (Simpson 1944), then
the inclusion of models which allow rate heterogeneity
independent of focal characters is necessary within any
model set.

One difference between the problem of false correla-
tion in SSE models and the problems within simpler
Markov models is the narrative surrounding them. In
the case of SSE models, the problem was viewed as a
high false positive rate (Rabosky and Goldberg 2015),
whereas in the case of discrete character evolution,
we are led toward viewing rate heterogeneity through
the lens of single unreplicated evolutionary events
(Maddison and FitzJohn 2015). However, both points
contribute to the same problem and if we view single
evolutionary events as examples of where evolution
has changed in tempo or mode, then the inclusion of
HMMs as a way forward arises naturally from the
problem.

Since we as comparative biologists are involved in
historical science, we will inevitably encounter single
evolutionary events of large importance. However,
it must be recognized that data sets that are suscepti-
ble to biases from singular events are not amenable to
most phylogenetic comparative tests. Although here
we have reduced the statistical biases associated with
false correlations, there is no amount of methodological
massaging that will allow for a satisfying test of macro-
evolutionary correlation between two synapomorphies.
This is because comparative methods rely on several
independent replicates of correlation such that the
associations found between the variables may be con-
sidered robust even when extended beyond the data set
used for the analysis. If there is only one example of the
correlation arising in the entire data set, we should not
have confidence in extending our inferences beyond the
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clade and should be wary of the correlation even within
the focal clade. However, that is not to say there is no
mechanistic reason for an association between synapo-
morphies. It is entirely possible that two characters that
share identical evolutionary histories have an underly-
ing biological link. Nonetheless, conclusions about the
potential links between these characters cannot come
from studies conducted on a macroevolutionary scale,
and they should instead be investigated on a smaller
scale (Beaulieu and O’Meara 2018, 2019; Donoghue and
Edwards 2019). Additional lines of evidence and a more
mechanistic explanation will be necessary in order for a
conclusion of correlation to be satisfying (Gardner and
Organ 2021). In a sense, the hidden rate classes of our
proposed framework may represent lineage-specific
factors that, once present, readily allow for a shift in the
tempo and mode of a lineage’s evolution (Maddison
and FitzJohn 2015; Ogburn and Edwards 2015).

CONCLUDING REMARKS

Sparked by an appreciation of the limitations of
PCMs, several commonly used phylogenetic compar-
ative methods have seen critical challenges recently,
which have led to advancements useful for both devel-
opers and users (Boettiger et al. 2012; Maddison and
FitzJohn 2015; Rabosky and Goldberg 2015; Louca and
Pennell 2020). Here, too, the critiques of classic tests of
correlation (Pagel 1994) are not wrong, and the recom-
mendations of past studies remain useful (Maddison
and FitzJohn 2015; Uyeda et al. 2018; Gardner and
Organ 2021). There will be data sets where distinguish-
ing between correlation and independence is simply
not possible without lines of evidence outside of com-
parative biology (Uyeda et al. 2018; Gardner and Organ
2021). What we have demonstrated here is that the sta-
tistical bias toward correlation is primarily due to a mis-
specification of the model set and a failure to account
for character-independent rate heterogeneity. We have
highlighted that the inclusion of less frequently used
Markov model structures in the model set can be crit-
ical for the quality of the inferences being made. We
acknowledge that choosing a diverse set of models a
priori is not always straightforward, but both likelihood
and Bayesian methods will only be as effective as the
plausibility of the models set being analyzed (Burnham
and Anderson 2002). We know that a homogeneous
process over millions of years and across thousands
of lineages is incorrect (Eldredge and Gould 1972) and
that the individual parts of an organism do not evolve
independently (Levins and Lewontin 1985). While we
may not be able to always specify each of these individ-
ual processes, we must try to incorporate them in our
modeling. Accounting for rate heterogeneity through
HMMs is a simplified way that we can bring realism to
our modeling while also making statistically consistent
and unbiased estimates of evolutionary parameters.
From there, undoubtedly more work will be necessary

(e.g., Goldberg and Foo 2020). But comparative analy-
ses must at the very least attempt to account for what
we know about macroevolution while making us aware
of the wonderful idiosyncrasies of evolutionary history.
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