

IMC ’22, October 25–27, 2022, Nice, France Karthika Subramani, William Melicher, Oleksii Starov, Phani Vadrevu, and Roberto Perdisci

end, we build a multi-class classifier that, for each input box, takes

the related information as input, translates it into a feature vector,

and outputs a data type label selected among a predetermined set

of common types, including name, email, password, phone number,

credit card number, etc. (a complete list of data type labels is shown

in Table 6 in appendix). To achieve this goal we take the following

steps:

(1) Feature vector computation: Given DOM nodes and node

properties related to an input box collected by the input field

identification module (Section 4.1), we first extract all strings

included in the node’s content and node property values,

as well as the labels extracted from the visual rendering

of the page via OCR. We then filter out noisy strings by

removing stop-words and possible special characters (e.g.,

non-ASCII characters), and by only keeping valid dictionary

words (including common acronyms). We then use a bag-of-

words approach to compute feature vectors.

(2) Data type labeling: Given the features related to an input

box, we pass them to a multi-class classifier based on the

SGDClassifier algorithm [6], which performed better on this

task than other common statistical classifiers (e.g., Multino-

mial Naive Bayes). The classifier then outputs the data type

label with the highest confidence score. To filter out possible

classification errors, we set a conservative threshold of 0.8

on the data type confidence score. Data type labels that have

a lower than 0.8 confidence score are rejected and the input

box is labeled as unknown.

(3) Training the classifier: Training is performed iteratively, in

an active learning setting. The classifier is initially trained

on a relatively small dataset of manually labeled input fields.

Then, the classifier is used to attribute a label to new input

fields found on new phishing websites. Input fields that are

labeled as unknown are sent to a human expert to be labeled

manually, and then fed back to the classifier for re-training.

To reduce manual effort and help experts label unknown

input fields, we developed a custom web application that

presents all the information gathered about each input field

to the user and highlights the input box on the related web

page screenshot in which it was found. This enables the

expert to visually infer the data type related to the input box

and thus to record the correct ground truth label.

Model Training and Evaluation. To train and test this model, we

used our crawler to collect text extracted (including via OCR) from

input fields found in real-world phishing sites and formed a custom

dataset made of these texts. We then manually assigned input field

categories by referring to the related webpage’s screenshots. Over-

all, we labelled 1,310 input field samples. Of these, we used 1,000

samples for training and tested the model on the remaining 310

samples. To evaluate the performance of this multi-class input field

classifier, we calculated the F1-score metric across each of the labels

and averaged all F1-score values, resulting in an average score of

90%. Table 6 (in Appendix) presents a detailed breakdown of the

F1-score, Precision and Recall per input field category.

4.3 Simulating and Submitting Input Data

Once the input boxes have been labeled, we leverage Faker [1] to

forge syntactically correct data for each input field. The data type

labels output by the input field classifier map directly into data types

available in the Faker library, making it straightforward to forge the

corresponding data. For input fields labeled as unknown the crawler

enters a predetermined default string. Finally, we need to submit the

form. However, this step is less straightforward than it may seem

at first. This is because the crawler needs to automatically identify

how to trigger the form submission, which can be complicated by

the adversarial web design patterns used by phishing websites.

We attempt to submit the forged data by trying the following

approaches:

• Enter: the crawler simulates the Enter key press while the

focus is on an input box.

• Submit button: we perform DOM analysis to check whether

the DOM contains a button. This includes checking for DOM

elements such as button and input with a type attribute

being image or submit. If such an element is found, the

crawler clicks on it. In addition, if these standard elements

are not found, we also look for hyperlinks that may be styled

as a button. To identify these, we apply a set of heuristics

for DOM analysis.

• Form action: if we cannot find a button via DOM analysis, for

instance, because the page visually renders the submit button

using HTML “tricks”, such as using canvas, SVG path, etc.,

we look for a form element in the DOM, get a JavaScript

object reference, e, that points to it (e.g., via its id or name,

or by traversing the DOM), and invoke e.submit().

• Visual detection: we also attempt to identify a button by build-

ing a deep-learning object detection module that is trained

specifically to detect buttons in web pages. To this end, we

start with a pre-trained Faster-RCNN [34], and fine-tune it

using 10,000 screenshots of automatically generated web-

pages with a variety of randomly selected logos, input boxes,

CAPTCHAs, and labeled buttons. Because the placement

of the buttons in these pages is known, it can be used for

fine-tuning the Faster-RCNN model.

After each attempt to submit the data, we check whether the

browser transitioned to a new page. Notice that the phishing site’s

main interest is to steal users’ data, and it is not easy for the attack-

ers to verify if the data is real or forged in real time, as long as it

is syntactically correct. Therefore, if the user is presented with a

different page after submission, this typically indicates that the data

has been accepted and sent to the attacker’s server. On the other

hand, if the crawler detects that no page transition occurred, it

will attempt to generate a new set of forged data and try to submit

again. This is needed because some of Faker’s data types result

in generating syntactically valid but randomly chosen data, and

we noticed that in some cases the data that is generated is not

accepted as valid by some phishing forms. To address this issue, we

attempt to submit forged data on a given page for up to three times,

before aborting the browsing session. Notice also that detecting

whether the page indeed changed is not entirely straightforward,

as it is not sufficient to check whether the URL changed. To this

594

PhishInPa�erns: Measuring Elicited User Interactions at Scale on Phishing Websites IMC ’22, October 25–27, 2022, Nice, France

end, we employ the page transition detection method described in

the following section.

4.4 Page Transitions and Termination

If no input box is found, the crawler still attempts to find a button-

like element to interact with, using the same approach described

earlier to detect a form submission button. This is motivated by the

fact that some phishing websites may present the user with a first

“click-through” button, like the one in the example in Figure 2a.

If no element is found with which to interact, the crawler stops

making progress (i.e., no new page is reached) and the browsing

session will therefore terminate. On the other hand, the crawler

will continue to interact with the website if a new page is detected,

until no more progress is made or a timeout (20 minutes, in our

experiments) is reached.

To determine if the crawler is making progress after interacting

with a page, we devised a set of heuristics to determine whether the

page changed. For instance, after submitting data on a page such

as the one in Figure 2d, the user may be presented with a different

form, like in Figure 2e or some kind of termination page, like in

Figure 2f. In either of the these two scenario, the page changes, and

thus we determine that the crawler has made progress and repeat

the same process described earlier on the newly reached page.

Determining if the page changes is easy when the browser navi-

gates to a new URL. However, this is not always the case. In practice,

we found that it is not uncommon for the page to visually change

while the URL remain the same. This can is achieved via JavaScript

code that dynamically changes the content of the page. In this lat-

ter case, we still want to automatically detect a page change and

determine that the crawler has been making progress (i.e., we do

not want to prematurely end our crawling session). To solve this

issue, every time we load a page we compute a lightweight DOM

hash. Specifically, we traverse the DOM tree (depth-first) and keep

only input, div, span, button, and label elements, which are of-

ten sufficient to “shape” the structure of a phishing page. We then

concatenate the HTML tag of these nodes (in depth-first order) and

compute a hash of the resulting string. After the crawler interacts

with the page, it recomputes the DOM hash of the page and checks

for changes. If the hash differs, the crawler infers that the page has

visually changed (even if they URL remained the same). Other more

sophisticated approaches for page change detection are possible,

but we found the use of this approach to be efficient and effective

in practice.

4.5 Metadata Collection

Throughout the entire crawling session, the crawler collects a large

variety of information about the pages it encounters. First, it will

keep a record of all the DOM and visual analysis it performed,

including information about all input elements, buttons, etc. that

it encountered. In addition, the crawler also captures information

about all network requests made by the page, including any redi-

rections and the content of the network responses. Concurrently,

the crawler also instruments the JavaScript code running on each

page it visits to record all calls made by the page’s code to the

addEventListener API and all JavaScript events that are triggered

while a page is rendered. We use these network and JavaScript ac-

tivity logs in our post-processing analysis, for instance to measure

how many phishing pages may use a keylogger to steal users’ data

even if they happen to realize (a bit late) that they may be inter-

acting with a malicious page and decide not to press the submit

button (see Section 5.1).

4.6 Crawler Farm Setup

To automatically crawl phishing sites at scale, we leverage Docker

containers [17] to launch several parallel instances of our intelligent

crawler. To run this crawler farm, we used an Ubuntu 16.04 Linux

machine with 128 GB of memory and a total of 30 Docker sessions

in parallel at a time. We set a timeout of 20 minutes for each of the

phishing site crawling sessions. Overall, we visited 56,027 phishing

websites in a period of 43 days between March 20th, 2022 and May

1st, 2022.

Table 1: Summary of crawling results (count of unique URLs

and domains)

OpenPhish
Seed URLs

Filtered
Phishing URLs

Crawled
Phishing URLs

Crawled
Phishing SLDs

56,027 51,859 66,072 25,693

Live Phishing Feed: We obtain our seed phishing URLs from

OpenPhish [7], one of the largest commercial-grade repositories of

phishing websites (we subscribed to their premium data feed). The

feed is updated with new live phishing websites every 5 minutes. To

visit the newly reported URLs, we immediately spawn new crawler

instances and point them to the new phishing URLs.

To filter out possible noise from the URL feed, we also check the

URLs against a phishing detection product from a leading security

vendor. As shown in Table 1, we started with a total of 56,027 phish-

ing URLs, and after filtering we were left with 51,859 confirmed

phishing URLs. Using perceptual hashing, in a way similar to previ-

ous work [37], we clustered the first page of each of these phishing

websites to identify phishing campaigns; namely, we group together

phishing websites that use the same brand and UI but are hosted

under different domain names. In this way, we discovered 8,472

distinct phishing campaigns targeting over 381 brands. Of these,

3,214 campaigns consisted of less than 50 phishing sites each, and

only 11 campaigns included more than 500 phishing sites, thus

providing a widely diverse set of phishing websites and targeted

brands for analysis. The top 10 targeted brands in our dataset are

shown in Table 7 (in Appendix). Table 2 shows the top 10 business

categories that were targeted by phishing sites as obtained from the

“Industry sector” information provided by the OpenPhish premium

feed.

5 PHISHING UX AND UI ANALYSIS

In this section, we dig deeper into the approaches we used to mea-

sure each of the User Interface design and User Experience design

observed in modern phishing websites and present the results of

our analysis on UI and UX based characteristics of modern phishing

sites.

595

IMC ’22, October 25–27, 2022, Nice, France Karthika Subramani, William Melicher, Oleksii Starov, Phani Vadrevu, and Roberto Perdisci

Table 2: Top business categories targeted by phishing sites in

our dataset

Business Category Count of Phishing Sites

Online/Cloud Service 10,057

Financial 10,053

Social Networking 5,268

Logistics & Couriers 3,985

Email Provider 2,177

Cryptocurrency 2150

Telecommunications 1,408

e-Commerce 1,271

Payment Service 1,154

Gaming 657

5.1 UI Patterns

We start by analyzing characteristics of the visual layout and design

of the pages, including characteristics of the data stealing input

boxes.

5.1.1 Brand Impersonation vs. Cloning. In order to evade visual-

based phishing detectors, phishing sites that impersonate legitimate

websites do not necessarily need to clone their design, as discussed

in Section 2. To measure the number of phishing websites that

make this design choice, we leverage VisualPhishNet [11], which

provides a deep learning model trained to detect phishing sites that

closely resemble a set of legitimate sites’ visual design. We also

use the brand information provided with the phishing URL in the

OpenPhish premium feed as ground truth, and input the screenshot

of those phishing pages into VisualPhishNet’s model.

If the model is unable to correctly identify the legitimate web-

site targeted by the phishing page, we infer that the design of the

phishing site do not closely mimic the design of the imperson-

ated legitimate site. For instance, the phishing website shown in

the example Figure 1a (Section 2) shows a phishing page that im-

personates the DHL brand. However, the page is misclassified by

VisualPhishNet as “Alibaba” rather than DHL (perhaps due to the

use of similar colors for the two brands). This is due to the fact that

the phishing page does not closely mimic the actual DHL website

(Figure 1b).

Table 3: Results showing the percentage of phishing sites

that do not clone visual design of Top 5 brands

Brand
Microsoft

OneDrive

Facebook,

Inc

DHL Airways,

Inc

Chase Personal

Banking
Netflix

% of

Sites
58% 84% 30% 12% 26%

Results. Given that the brand labels used to train VisualPhishNet

and those provided by OpenPhish are not consistent with each

other, reconciling the labels required manual effort. Therefore, we

performed an analysis on a subset of 250 phishing websites imper-

sonating 5 different popular brands that we found in our dataset. For

each brand, we randomly selected 50 screenshots related to different

phishing campaigns that targeted that specific brand (with a roughly

equal number of screenshots per campaign). Table 3 shows the per-

centage of web page screenshots that did not closely mimic their

legitimate brand counterparts. On average, 42% of the cases were

related to campaigns that do not clone the targeted brand’s visual

appearance. This further indicates the need to improve vision-based

phishing detection with additional context-based information.

5.1.2 Input Fields Distribution. Besides visual appearance, we also

measure two additional UI characteristics: (i) the distribution of

data types requested by phishing pages, and (ii) in how many cases

phishing sites use an obfuscated page design that requires the use

of OCR to be able to infer the data type associated to the input

boxes (see Section 4.1). To measure these traits, we leverage the

logs collected by our crawler regarding the type of input field it

identifies and if OCR was applied to identify these types.

Results. Figure 7 shows the distribution of input fields that were

found in real-world phishing pages. Besides categorizing the input

fields into commonly requested field types requested by phishing

pages, we further grouped the filed types into higher-level cate-

gories, or context groups, including Login, Personal, Social, and

Financial information. As it can be seen, Email and Password are the

most requested information, in 28,736 and 35,762 pages respectively.

At the same time, our analysis found evidence of several other

types of user information being commonly requested by phishing

websites as well.

��
��
��
��

�� ��
� �

�� �
	
��

��
����
����

�� �
�
��

� �
����
�����

���
�� ��

�����

���� �� ��

����

���
��

�

�

�

Figure 7: Plot displaying distribution of input field categories

and their context groups across all phishing pages

In addition, we found that our crawler had to revert to using

OCR in 27% of the cases, in which it could not identify any useful

input field information via DOM element analysis. This indicates

that some type of UI obfuscation was likely used to hinder web

security crawlers from easily identifying the inputs requested by

the page. Also, in 12% of the cases, no “standard” submit button

was found in the page, and our crawler had to submit a form or

transition to the next page by interacting with button coordinates

identified via visual object detection (see Section 5.3.2).

596

PhishInPa�erns: Measuring Elicited User Interactions at Scale on Phishing Websites IMC ’22, October 25–27, 2022, Nice, France

5.1.3 Keylogging. Typically, a legitimate web page will send sensi-

tive user data to the server only after the user explicitly submits it

(e.g., by pressing Enter, clicking on the submit button, etc.). How-

ever, phishing sites may obviously benefit from sending sensitive

information to the attacker’s server as soon as the user enters the

data into a phishing page. This enables the website to steal (partial)

information even if the user realizes midway that the site may be

unsafe to use. We measure in how many cases this design pattern

is implemented by checking how many phishing pages implement

keylogger behavior by using JS instrumentation to actively monitor

triggered keydown events.

Results. Our analysis revealed that 18,745 phishing sites were

monitoring keydown events using a listener and stored the data as

they were typed. Further, 642 of these sites made a network request

immediately after data was entered into the input element, and we

confirmed that 75 among these sites sent a request that included

the data that was entered into the input field before any sort of

explicit submit action was performed. This demonstrates how some

attackers aim to steal the data as soon as it is entered, rather than

risk losing the data by waiting until the user submits the form (e.g.,

in case the user realizes the risk and decides not to click on the

submit button).

5.2 Multi-Stage Phishing Patterns

As shown in the examples in Section 2, modern phishing websites

may include a multi-stage phishing attack that includes (i) a user

verification stage, (ii) multiple data stealing pages, and (iii) a termi-

nation page that congratulates or reassures the user that their data

has been correctly submitted and is safe. In this section we discuss

howwemeasure aspects related to the latter two characteristics and

their measurements result (user verification patterns are discussed

in Section 5.3).

5.2.1 Multi-Page Web Forms. As discussed earlier, many phishing

websites do not only focus on harvesting users’ login credentials.

Phishing sites that request additional or different information (e.g.,

financial data) tend to do so by mimicking users’ experience on

legitimate websites using multiple web forms/pages to request

different types of data. To measure how many phishing sites use

this approach, we analyze the data collected by our intelligent

crawler (Section 4) and determine how many phishing websites

required the crawler to input different types of forged data on

different web pages.

Results. Of the 51,859 sites that were crawled, we found that

23,446 (45%) of the phishing sites required the crawler to input

different types of data at different stages of the attack. More no-

tably, we observed that some phishing sites employed up to 5 steps

(i.e., 5 different pages) to steal user information. We measured the

distribution of phishing sites with a total of = pages, for = rang-

ing from 2 to 5 (see Figure 8) and found, for instance, that over

12,000 of these sites included 3 stages of phishing. Next, we also

measured the distribution of input field types across these multiple

steps. Figure 9 displays the counts associated with input field types

that were requested at different stages of the multi-phishing sites.

It can be observed that login information was vastly requested in

the first two stages as compared to personal information, which

Figure 8: Plots displaying a histogram of total page count for

multi-step phishing sites

was instead requested more often in the later stages of phishing,

compared to the initial page. Similar trends can be observed for

social and financial data, which are frequently requested in the

middle stages of multi-stage phishing attacks. Note that the reason

for a relatively high occurrence of social and financial information

also in the first stage of the attacks may be due in part to our live

phishing feed pointing our crawler to start from an “internal” URL

of a multi-step phishing site, rather than its initial true page.

Figure 9: Plots displaying the Count of Field Categories found

at different pages of the Phishing sites with multi-step phish-

ing. The percentage of URLs is calculated per field type to

indicate the distribution of that field across multiple steps

and not compared to other field types.

5.2.2 Double Login. Some phishing pages use a design pattern

referred to as “Double Login,” wherein once a user enters the login

credentials for the first time, the site requests the user to enter the

credentials again by pretending that the entered information was

incorrect. This happens regardless of the validity of the information

the user enters in the first page and appears to be used by phishing

sites to verify the information given by the users [5] and also to

597

IMC ’22, October 25–27, 2022, Nice, France Karthika Subramani, William Melicher, Oleksii Starov, Phani Vadrevu, and Roberto Perdisci

remove any suspicion from the user in case she intentionally entered

wrong information the first time (and it may also thwart security

crawlers). This “feature” is also advertised as a major selling point

in a number of phishing kits (e.g., see example in Figure 12, in

Appendix). In our measurements, we identify such cases of “Double

Login” by starting from the phishing sites that were found to use a

multi-page data stealing pattern. Then, we check if any of these sites

presented the crawler with two consecutive pages that both asked

for the same login credentials (e.g., data types such as username,

email, password, phone number, etc.).

Results. By applying a set of heuristics, such as finding two con-

secutive pages that asked for the same set of login-related informa-

tion, we discovered a total of 400 phishing sites that used a Double

Login pattern.

5.2.3 UX Termination Pa�erns. Another aspect of phishing that

needs more attention is how the experience typically ends for the

victims. Interestingly, many modern phishing websites are designed

to present the user with a final reassuring message. Presumably,

this is done to prevent the user from realizing her information was

stolen and take immediate steps to change her credentials, block

credit cards, freeze her account, etc. Also, this may be a way to

prevent the phishing URL from being reported to security vendors.

To measure what type of phishing terminal page users may en-

counter, we first manually analyze a set randomly sampled terminal

pages collected by our crawler. Specifically, we consider only phish-

ing websites that exhibit a multi-page phishing pattern (as defined

earlier) and whose last page visited by our intelligent crawler did

not contain any input box (i.e., the terminal page did not request

and additional data from the user). Finally, we consider only the

last page visited by the crawler under the same domain name as

the domain of the initial phishing URL the crawler started from.

Among the remaining pages, we manually label 300 randomly cho-

sen pages under four different categories: Success Message, Custom

Error Message, HTTP Error, and Phishing Awareness. Given this la-

beled dataset, we then train a bag-of-words text classifier that can

automatically parse a web page, extract its text, and categorize it

among one of the four categories listed above. Our analysis led to

the following observations.

Results. While some phishing sites opt to terminate the UX by

showing again the same (e.g., last visited) page again to the user,

we observed two unique termination patterns. In the first of these

patterns, the site would redirect the user to a legitimate website,

which often coincides with the legitimate brand website targeted

by the phishing attack or with another popular websites such as

google.com. Table 4 displays the top legitimate effective second-

level domains that users would be redirected to at the end of the

attack. Overall, 7,258 distinct phishing sites were found to navigate

to a total of 680 distinct legitimate domains.

In the second pattern, a number of sites were found to display a

custom message to the user at the end of the attack. To measure at

scale the type of terminal messages displayed by phishing sites, we

first manually labeled 200 randomly selected samples and divided

them into 4 categories: success message, custom error message, HTTP

error, and phishing awareness. We then trained a machine learning

classifier on these 200 labeled samples and tested it on a separate set

Table 4: Top Benign Effective SLDs that were found in Termi-

nal Navigation Pattern

Second-level Domain Count Second-level Domain Count

microsoftonline.com 459 google.com 133

dhl.com 297 godaddy.com 118

glacierbank.com 249 citi.com 109

office.com 219 bt.com 96

microsoft.com 218 americafirst.com 92

example.org 197 youtube.com 85

example.net 189 chase.com 76

mtb.com 188 yahoo.com 70

example.com 184 alaskausa.org 61

live.com 180 netflix.com 47

of 100 manually labeled samples. The test results showed that our

multi-class classifier achieved 97% accuracy (we also implemented

a reject option, whereby test samples that fell below a detection

threshold on the maximum class confidence score of less than 0.65

were discarded). Overall, 5,403 of the multi-stage phishing sites

were found to display a final page with no input fields present.

Among those, 966 were related to success messages, 125 to error

messages, 1,599 resulted in HTTP errors and 176 to fake phishing

awareness/training messages, as shown in the example in Figure 4.

Considering the sites that displayed phishing awareness/training

messages, we found that they could be grouped into 41 unique

campaigns displaying different messages related to phishing attack

simulations. These messages appear to be designed to reassure the

users that they were almost phished, their data is safe and they

need not worry. Unfortunately, based on our crawler logs we could

observe that the data entered by the crawler in the previous steps

of the attack was indeed sent to the attacker’s server.

5.3 User Verification Patterns

In this section, we focus on measuring user verification patterns,

namely cases in which a phishing website presents the user with

some kind of simple challenge, before giving them access to the

pages containing the data stealing forms. As discussed earlier, this

design pattern can provide two benefits to the attackers: i) lend

a sense of legitimacy to the phishing website by mimicking user

verification patterns also used on legitimate sites, and ii) thwarting

web security crawlers.

Obviously, our intelligent crawler is also hindered by some of

these user verification patterns, such as CAPTCHAs. For instance,

given the large variety of possible different CAPTCHA types that

may be used by phishing sites, it would be very difficult to build a

generic system that automatically identifies their presence, type,

and also then automatically solve the identified CAPTCHA type.

Although there exist previous works that focus on solving specific

types of CAPTCHAs, to our knowledge no universal solver that

can break arbitrary CAPTCHA types has been proposed. Rather

than attempting to break CAPTCHAs or other user verification

techniques, we instead focus on measuring how many phishing

sites implement user verification and what type of verification

patterns they deploy, as described below.

5.3.1 Click-Through. To measure the occurrence of click-through

pages, we start by considering only those phishing websites that

598

IMC ’22, October 25–27, 2022, Nice, France Karthika Subramani, William Melicher, Oleksii Starov, Phani Vadrevu, and Roberto Perdisci

that our model missed few cases of captchas that are significantly

dissimilar to ones that were seen during training. However, to

improve this, the model could be retrained to detect new forms of

CAPTCHA.

Results. Based on the information collected by our crawler, we

can measure the prevalence of both known and custom CAPTCHAs

on phishing websites. We distinguish between three common types

of CAPTCHAs: text-based, visual-based or invisible (i.e., behavior-

based). Considering all 51,859 phishing websites we crawled, we

found evidence of CAPTCHA deployment in 2,608 of them. Among

these, we found that 2,496 phishing sites contained JavaScript code

related to known CAPTCHAs, such as Google Recaptcha (1,856

sites) and hCaptcha (640 sites). Interestingly, phishing sites that

include third-party CAPTCHA libraries may expose themselves to

being indexed and crawled by the library’s provider (e.g., Google),

and thus risk early detection by web security companies.

We also noticed that in most cases in which known CAPTCHA

libraries were used, they provided visual-based or behavior-based

CAPTCHAs. At the same time, text-based CAPTCHAs appeared

to be mostly custom CAPTCHA schemes. Therefore, to more accu-

rately identify custom CAPTCHAs, we used our object detection

model. Overall, our object detector identified 34 text-based custom

CAPTCHAs and 78 visual-based custom CAPTCHAs.

5.3.3 Multi-Factor Authentication. Recently, some phishing web-

sites have started to request users to enter a two-factor authenti-

cation (2FA) code sent via email or text message. This strategy is

used for instance by MITM phishing toolkits [23]. In this study,

we do not attempt to study how MTIM phishing works, as done in

previous work [23]. Rather, we are concerned only with measuring

how many phishing websites request a form of 2FA. To find such

cases, we focus our attention on phishing pages that, according to

our intelligent crawler, ask for a code data type. Then, perform a

post-processing analysis on the logs collected by the crawler from

those pages and search for pages whose input box labels include

a keyword related to 2FA (we compile a set of common keywords

based on manual analysis of sample 2FA pages).

Figure 2 shows an example of modern phishing website that

request a 2FA code. After our intelligent crawler navigated correctly

through the first few pages (including two click-through pages and

different data-stealing pages) it is presented with a request for a

“one-time code.” It turns out that this was a fake 2FA. In fact, our

crawler identified in real time that the input box was requesting

a code, and simply generated and submitted a random sequence

of numbers (using the Faker library), and it was redirected to the

terminal “success” page.

Results. To measure if this trait is used in any of the analyzed

sites, we first filter those pages containing “Code” input fields. Next,

we analyze those fields and select those that contains keywords

related to two-factor authentication, such as ‘OTP’, ‘SMS’, ‘2FA’, etc.

As it can be seen from Figure 7, there were 8,893 sites that contained

one or more input fields identified as “Code.” Among those, we

found 1,032 of them that requested a one-time authentication code

(via SMS). A few examples are shown in Figure 14 (in appendix).

6 DISCUSSION OF LIMITATIONS

As noted in [26], simply using features such as visual similarity

to a legitimate web page or brand logo detection may not be suffi-

cient for accurate phishing website detection. Instead, the authors

propose to combine brand similarity with automatic identification

of credential-taking (or stealing) intentions. However, login cre-

dentials are not the only input types that phishing sites request

from users, as shown in our measurement results. In general, the

ability to inspect a web page and automatically understand what

it is asking for, as done by our intelligent crawler, may represent

an additional powerful feature to further boost the accuracy of

phishing detection systems such as [26].

Another possibility is to embed a system similar to our crawler

in the browser, to “test” suspected phishing pages in real time. For

instance, assume a user visits a web page that is classified (e.g.,

using a system such as VisualPhishNet [11] or Phishpedia [24]) as

suspicious; namely, a possible phishing attack. Rather than imme-

diately raising a potentially false alert, the browser could allow the

user to interact with the page. However, if the page includes input

fields and the user starts entering data into the form, the browser

could temporarily buffer this data without immediately passing it

to the page. At the same time, in the background the browser could

use a system similar to our intelligent crawler to interact with the

page, investigate the UI/UX, and determine whether this is actually

a phishing website. If yes, the user will be alerted, and since the data

was buffered by the browser and not passed to the page, the user’s

information will be safe. If not (i.e., the page is determined to be be-

nign), the browser could reload the original page the user started to

interact with and transparently enter the previously buffered user

data. Obviously, such a system would need to minimize latency in

obtaining the final classification result, to avoid impacting usability.

However, users are relatively slow to enter data, and the detection

system could operate in the background while the user is allowed

to interact with a buffered page. While potentially promising, these

ideas would require significant browser engineering efforts and

therefore, we leave them to future research.

Perfectlymimicking the behavior of a real user that interacts with

a phishingwebsite is obviously a very challenging task. In particular,

it is very difficult for an automated system to interpret what a web

page may be asking the user to do, especially when the system

can encounter an unbounded variety of websites and be faced

with adversarial web design patterns. Nonetheless, our intelligent

crawler and data analysis approximate user interpretation of, and

interaction with, web pages by using a combination of page DOM

analysis, visual analysis (e.g., OCR), deep learning-based computer

vision and heuristics informed by in-depth domain knowledge of

how phishing pages are constructed. Obviously, our classifiers and

heuristics are not perfect, and thus they can make mistake that

impact the exact measurement results. For instance, we noticed that

our CAPTCHA object detection model failed to identify a number

of visual-based CAPTCHA instances generated by the hCaptcha

library. After analyzing the misclassified cases, we found that the

missed CAPTCHAs looked all alike and contained a dark variant of

hCaptcha that was not encountered during training data collection

and labeling. This points to the fact that additional effort is needed

to collect and label training data for the crawler’s machine learning

600

PhishInPa�erns: Measuring Elicited User Interactions at Scale on Phishing Websites IMC ’22, October 25–27, 2022, Nice, France

components. However, it is important to notice that, as shown in

our evaluation, the classifiers we built are sufficiently accurate to

be used in practice. And while our measurements cannot be 100%

accurate, we are confident that they accurately capture the “big

picture” trends and characteristics of modern phishing websites.

Ultimately, we believe that the findings from our study can be used

to significantly strengthen future defenses, including state-of-the-

art phishing detectors such as [26].

Another limitation of our measurement framework is due to the

fact that we currently focus only on phishing websites that use

the English language. However, with more engineering effort our

tools can be extended to support different languages. For instance,

this would include training the input field classifier with input

text labels from languages other than English. We plan to explore

this extension of our current framework in future work. Also, our

crawler may further benefit from directly learning how real users

interact with web pages. For instance, it may be possible to perform

a user study in which users are asked to browse both legitimate

and phishing-like websites, to record the set of behaviors (mouse

movements, web page components they interact with, etc.) they

exhibit. This dataset of user behaviors could then be used to train

more advanced models that can imitate human actions in a more

comprehensive way.

One important obstacle for our crawler is represented by phish-

ing websites that use man-in-the-middle (MITM) phishing kits [23].

In this case, the user (and thus the crawler) would be presented

with content fetched from the legitimate website targeted by the

phishing attack. Therefore, the crawler would need to use valid

login credentials to move forward. In addition, the crawler may

also need to bypass a multi-factor authentication code, such as a

one-time password (OTP) sent via SMS. These transparent phishing

attacks and attacks that require OTPs are outside the scope of our

crawler, as more specialized measurement and defense systems

would be needed in such cases [23].

7 ETHICAL CONSIDERATIONS

To perform our study, we automatically interacted with tens of

thousands of malicious websites, including submitting forged data.

Thesewebsites are all reported as phishing byOpenPhish (openphish.

com), a commercial-grade phishing URL feed. In addition, to remove

potential noise from the URL feed we leveraged a commercial-grade

phishing detection system provided by a leading cybersecurity com-

pany. In addition, although a small amount of noisy (legitimate)

URLs in our feed may be unavoidable, our crawler does not cause

any harm to the websites it interacts with, besides submitting syn-

tactically correct but invalid user information.

8 RELATEDWORK

The problem of phishing has been researched for more than two

decades. Over the years, several of the works have been focused on

detecting phishing attacks with different techniques such as visual

similarity [11, 13, 20, 46] and machine learning [25, 27, 44]. More

recently, multiple works [14, 15, 26, 38, 39, 41, 43] have focused on

using deep learning to classify phishing pages with higher accuracy.

In terms of practical client-based defenses against phishing, block-

listing [2, 35] remains the de-facto front line defense. Blocklists, as

well as the aforementioned detectors, typically rely upon on web se-

curity crawlers to gather data, thus prompting security researchers

to evaluate them for attacks [12, 28, 30, 31]. The intelligent crawler

system we developed in this paper can help improve the coverage

of these security crawlers by enabling them to interact with the

phishing sites like a potential victim would.

Some recent works have also begun to look at measuring and

understanding in-the-wild phishing attacks from different perspec-

tives such as phishing kits [16, 19, 29], man-in-the-middle phishing

techniques [23], client-side cloaking techniques [45], credential

stealing mechanisms [33]. In this paper, we analyzed in-the-wild

phishing pages from a different vantage point by capturing the

end-to-end experience of victims on a large number of real world

phishing sites. It is to be noted that [33] also attempted to automat-

ically interact with phishing sites with the help of some heurisitcs

and OCR techniques to automatically supply credentials. However,

their work was limited to analyzing the data transfer of only the

login credentials which is only a small part of the experience that a

phishing victim can be potentially subject to. On the other hand,

our work is focused on automatically recreating the complete vir-

tual experience of a victim for each site, thereby gaining a deep

understanding of all information they attempt to steal from victims

as well as the UI experiences that the victims are subject to. Besides

serving as a measurement tool, this system can also be useful in en-

abling new kinds of mitigation measures by enhancing prior works

such as [32]. For example, the loading of a third-party’s HTTP re-

sources (such as a bank) on the UX termination page of a phishing

site can be used as an alarm signal for our proposed crawler to

visit it. If our crawler observes that the site steals social security

numbers, the third-party organization can immediately forward the

victim’s IP address to government agencies for pursuing mitigation

measures.

9 CONCLUSION

In this paper, we proposed a novel methodology to study phishing

at scale by combining browser automation withmachine learning to

simulate user interactions with phishing pages and explore their UX

and UI characteristics. Using our intelligent crawler, we were able

to explore over 50,000 phishing websites and automatically identify

a number of visual and UX trends used by modern phishing sites

to lend their site an air of legitimacy. Accordingly, we found that

many phishing sites take users through multiple phishing stages to

steal more than just their login credentials, and leverage a number

of mechanisms to evade security crawlers while making the site

believable to the end users. The measurement results we presented

can further aid in the development of more accurate and robust

phishing detectors.

ACKNOWLEDGMENTS

Wewould like to thank the anonymous reviewers and our shepherd,

for their constructive comments and suggestions on how to improve

this paper. This material is based in part upon work supported

by the National Science Foundation (NSF) under grants No. CNS-

2126641 and CNS-2126655. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the NSF.

601

IMC ’22, October 25–27, 2022, Nice, France Karthika Subramani, William Melicher, Oleksii Starov, Phani Vadrevu, and Roberto Perdisci

REFERENCES
[1] 2014. Faker: Library docuemntation. https://faker.readthedocs.io/en/master/.
[2] 2020. Google Safe Browsing : Blocklisting Platform. https://safebrowsing.google.

com/.
[3] 2021. CISCO :2021 Cyber Security Trends. https://learn-umbrella.cisco.com/

ebook-library/2021-cyber-security-threat-trends-phishing-crypto-top-the-
list. (Last accessed Sep 19, 2022).

[4] 2021. Detectron2. https://github.com/facebookresearch/detectron2.
[5] 2021. Don’t Get CAPTCHA’d By This New Phishing Technique!

https://firstcallhelp.tamu.edu/2021/09/dont-get-captchad-by-this-new-
phishing-technique/. (Last accessed Sep 19, 2022).

[6] 2021. SKlearn: SGDClassifier. https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.SGDClassifier.html.

[7] 2022. OpenPhish: Phishing Intelligence. https://openphish.com/.
[8] 2022. Pytesseract Package. https://pypi.org/project/pytesseract/.
[9] 2022. What is hCaptcha? https://www.hcaptcha.com/what-is-hcaptcha-about.
[10] 2022. What is ReCaptcha? https://developers.google.com/recaptcha.
[11] Sahar Abdelnabi, Katharina Krombholz, and Mario Fritz. 2020. VisualPhishNet:

Zero-Day Phishing Website Detection by Visual Similarity. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security (Virtual
Event, USA) (CCS ’20). Association for Computing Machinery, New York, NY,
USA, 1681–1698. https://doi.org/10.1145/3372297.3417233

[12] Bhupendra Acharya and Phani Vadrevu. 2021. PhishPrint: Evading Phishing
Detection Crawlers by Prior Profiling. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 3775–3792. https://www.usenix.
org/conference/usenixsecurity21/presentation/acharya

[13] Sadia Afroz and Rachel Greenstadt. 2011. PhishZoo: Detecting Phishing Websites
by Looking at Them. In Proceedings of the 2011 IEEE Fifth International Conference
on Semantic Computing (ICSC ’11). IEEE Computer Society, USA, 368–375. https:
//doi.org/10.1109/ICSC.2011.52

[14] S. Bagui, D. Nandi, S. Bagui, and R. J. White. 2019. Classifying Phishing Email
Using Machine Learning and Deep Learning. In 2019 International Conference on
Cyber Security and Protection of Digital Services (Cyber Security). 1–2.

[15] Eduardo Benavides, Walter Fuertes, Sandra Sanchez, and Manuel Sanchez. 2020.
Classification of Phishing Attack Solutions by Employing Deep Learning Tech-
niques: A Systematic Literature Review. In Developments and Advances in Defense
and Security. Springer, 51–64.

[16] Hugo Bijmans, Tim Booij, Anneke Schwedersky, Aria Nedgabat, and Rolf van
Wegberg. 2021. Catching Phishers By Their Bait: Investigating the Dutch Phishing
Landscape through Phishing Kit Detection. In Proceedings of the 30th USENIX
Security Symposium. USENIX Association, 3757–3774.

[17] Docker. 2019. Docker: Enterprise Container Platform. https://www.docker.com/.
(Last accessed Nov.1, 2019).

[18] Google. 2019. Puppeteer: Chormium Browser Automation Tool. http://liwc.
wpengine.com/compare-dictionaries/. (Last accessed Nov.11, 2019).

[19] Xiao Han, Nizar Kheir, and Davide Balzarotti. 2016. PhishEye: Live Monitoring of
Sandboxed Phishing Kits. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (Vienna, Austria) (CCS ’16). Association
for Computing Machinery, New York, NY, USA, 1402–1413. https://doi.org/10.
1145/2976749.2978330

[20] M. Hara, A. Yamada, and Y. Miyake. 2009. Visual similarity-based phishing detec-
tion without victim site information. In 2009 IEEE Symposium on Computational
Intelligence in Cyber Security. 30–36.

[21] Imran Hossen, Yazhou Tu, Md Fazle Rabby, Nazmul Islam, Hui Cao, and Xiali
Hei. 2020. An Object Detection based Solver for Google’s Image reCAPTCHA v2.
In RAID.

[22] M. Khonji, Y. Iraqi, and A. Jones. 2013. Phishing Detection: A Literature Survey.
IEEE Communications Surveys Tutorials 15, 4 (2013), 2091–2121.

[23] Brian Kondracki, Babak Amin Azad, Oleksii Starov, and Nick Nikiforakis. 2021.
Catching Transparent Phish: Analyzing and Detecting MITM Phishing Toolkits
(CCS ’21). Association for Computing Machinery, New York, NY, USA, 36–50.
https://doi.org/10.1145/3460120.3484765

[24] Yun Lin, Ruofan Liu, Dinil Mon Divakaran, Jun Yang Ng, Qing Zhou Chan, Yiwen
Lu, Yuxuan Si, Fan Zhang, and Jin Song Dong. 2021. Phishpedia: A Hybrid
Deep Learning Based Approach to Visually Identify Phishing Webpages. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, 3793–
3810. https://www.usenix.org/conference/usenixsecurity21/presentation/lin

[25] Gang Liu, Bite Qiu, and LiuWenyin. 2010. Automatic Detection of Phishing Target
from Phishing Webpage. In Proceedings of the 2010 20th International Conference
on Pattern Recognition (ICPR ’10). IEEE Computer Society, USA, 4153–4156. https:
//doi.org/10.1109/ICPR.2010.1010

[26] Ruofan Liu, Yun Lin, Xianglin Yang, SiangHweeNg, Dinil Divakaran, and Jin Song
Dong. 2022. Inferring Phishing Intention via Webpage Appearance and Dynam-
ics: A Deep Vision Based Approach. In 30th {USENIX} Security Symposium
({USENIX} Security 21).

[27] S. Marchal, K. Saari, N. Singh, and N. Asokan. 2016. Know Your Phish: Novel
Techniques for Detecting Phishing Sites and Their Targets. In 2016 IEEE 36th

International Conference on Distributed Computing Systems (ICDCS). 323–333.
[28] Sourena Maroofi, Maciej Korczyński, and Andrzej Duda. 2020. Are You Human?

Resilience of Phishing Detection to Evasion Techniques Based on Human Ver-
ification. In Proceedings of the ACM Internet Measurement Conference (Virtual
Event, USA) (IMC ’20). Association for Computing Machinery, New York, NY,
USA, 78–86. https://doi.org/10.1145/3419394.3423632

[29] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Gary Warner. 2018. Inside a phisher’s mind: Understanding the anti-phishing
ecosystem through phishing kit analysis. 2018 APWG Symposium on Electronic
Crime Research (eCrime) (2018), 1–12.

[30] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Kevin Tyers. 2019. PhishFarm: A Scalable Framework for Measuring the Effec-
tiveness of Evasion Techniques against Browser Phishing Blacklists. In 2019 IEEE
Symposium on Security and Privacy (SP). 1344–1361. https://doi.org/10.1109/SP.
2019.00049

[31] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad Wardman, Kevin Tyers, Yan
Shoshitaishvili, and Adam Doupé. 2020. PhishTime: Continuous Longitudinal
Measurement of the Effectiveness of Anti-phishing Blacklists. In USENIX Security
Symposium.

[32] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub Burgis, Ali Zand,
Kurt Thomas, Adam Doupé, and Gail-Joon Ahn. 2020. Sunrise to Sunset: Analyz-
ing the End-to-end Life Cycle and Effectiveness of Phishing Attacks at Scale. In
USENIX Security Symposium.

[33] Peng Peng, Chao Xu, Luke Quinn, Hang Hu, Bimal Viswanath, and Gang Wang.
2019. What Happens After You Leak Your Password: Understanding Credential
Sharing on Phishing Sites. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security (Auckland, New Zealand) (Asia CCS ’19).
Association for Computing Machinery, New York, NY, USA, 181–192. https:
//doi.org/10.1145/3321705.3329818

[34] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015).

[35] Steve Sheng, Brad Wardman, Gary Warner, Lorrie Cranor, Jason Hong, and
Chengshan Zhang. 2009. An empirical analysis of phishing blacklists. (2009).

[36] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik
Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, Daniel Margolis,
Vern Paxson, and Elie Bursztein. 2017. Data Breaches, Phishing, or Malware?
Understanding the Risks of Stolen Credentials. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (Dallas, Texas,
USA) (CCS ’17). Association for Computing Machinery, New York, NY, USA,
1421–1434. https://doi.org/10.1145/3133956.3134067

[37] Phani Vadrevu and Roberto Perdisci. 2019. What You See is NOT What You Get:
Discovering and Tracking Social Engineering Attack Campaigns. In Proceedings
of the Internet Measurement Conference (Amsterdam, Netherlands) (IMC ’19).
Association for Computing Machinery, New York, NY, USA, 308–321. https:
//doi.org/10.1145/3355369.3355600

[38] Grega Vrbančič, Iztok Fister, and Vili Podgorelec. 2018. Swarm Intelligence Ap-
proaches for Parameter Setting of Deep Learning Neural Network: Case Study
on Phishing Websites Classification. In Proceedings of the 8th International Con-
ference on Web Intelligence, Mining and Semantics (Novi Sad, Serbia) (WIMS ’18).
Association for Computing Machinery, New York, NY, USA, Article 9, 8 pages.
https://doi.org/10.1145/3227609.3227655

[39] Bo Wei, Rebeen Ali Hamad, Longzhi Yang, Xuan He, Hao Wang, Bin Gao, and
Wai Lok Woo. 2019. A Deep-Learning-Driven Light-Weight Phishing Detection
Sensor. Sensors 19, 19 (2019), 4258.

[40] Rodrigo Wilhelmy and Horacio Rosas. 2013. captcha dataset.
[41] P. Yang, G. Zhao, and P. Zeng. 2019. Phishing Website Detection Based on

Multidimensional Features Driven by Deep Learning. IEEE Access 7 (2019), 15196–
15209.

[42] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong Feng, Pengfei
Xu, Xiaojiang Chen, and Zheng Wang. 2018. Yet Another Text Captcha Solver:
A Generative Adversarial Network Based Approach. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (Toronto,
Canada) (CCS ’18). Association for Computing Machinery, New York, NY, USA,
332–348. https://doi.org/10.1145/3243734.3243754

[43] Ping Yi, Yuxiang Guan, Futai Zou, Yao Yao, Wei Wang, and Ting Zhu. 2018. Web
phishing detection using a deep learning framework. Wireless Communications
and Mobile Computing 2018 (2018).

[44] Haijun Zhang, Gang Liu, TommyW. S. Chow, and Wenyin Liu. 2011. Textual and
Visual Content-Based Anti-Phishing: A Bayesian Approach. Trans. Neur. Netw.
22, 10 (Oct. 2011), 1532–1546. https://doi.org/10.1109/TNN.2011.2161999

[45] Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo Sun, RC Johnson, Brad Ward-
man, Shaown Sarker, Alexandros Kapravelos, Tiffany Bao, Ruoyu Wang, Yan
Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. 2021. CrawlPhish: Large-scale
Analysis of Client-side Cloaking Techniques in Phishing. 2021 IEEE Symposium
on Security and Privacy (SP) (2021), 1109–1124.

[46] Yu Zhou, Yongzheng Zhang, Jun Xiao, Yipeng Wang, and Weiyao Lin. 2014.
Visual Similarity Based Anti-Phishing with the Combination of Local and Global

602

