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1. Introduction

Cluster algebras were introduced in 2002 by Fomin and Zelevinsky and they have

rapidly become one of the active areas in mathematics. This is due to their deep relations

to other areas of mathematics like representation theory, combinatorics, homological

algebra, algebraic geometry, Poisson geometry, Teichmiiller theory and mathematical
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physics. On the other hand, the study of partial flag varieties is significant in represen-
tation theory and algebraic geometry. The first connection between these two studies
appeared in Scott’s work on Grassmannians and cluster algebras [15] in 2003. In 2008,
Geif}, Leclerc and Schroer [6] showed that, in some simply-laced cases, namely A,, and
Dy, the localization of the (multi-homogeneous) coordinate ring of a partial flag variety
by non-minuscule minors matches the localization of some cluster structure by the same
minors. They conjectured that this is true in general, that is, when the type of G is
arbitrary. This paper proves this conjecture with respect to another localization. The
main ideas of the proof of [6] motivate our work here. Indeed, Geif}; Leclerc and Schroer
proved that the coordinate ring of a partial flag variety contains a cluster structure by
showing the following:

(1) The coordinate ring of a Schubert cell has a cluster algebra structure .A.

(2) The cluster algebra A of the previous step can be lifted to some special cluster
algebra A that lives in the coordinate ring of the partial flag variety corresponding
to the coordinate ring of the cell of the previous step.

(3) The cluster algebra A coincides with the coordinate ring of the partial flag variety
after localization with respect to some special minors.

Although the first step was only conjectured in [6], it was fully proved in [8]. Moreover,
despite the fact that we prove the second step independently, it was also generalized to
the non-simply-laced ones by Demonet in [2].

Unfortunately, some essential tools of the proof of Geifl, Leclerc and Schroer were
based on the fact that they work on the simply-laced case. In fact, they used some
categorification in their work, which works in the simply-laced case only, to show the
first and the second steps, while they treated the third step for types A, and D, case
by case. Because of that, the generalization we seek has to use some other results.

Goodearl and Yakimov [12,13] proved that the coordinate ring of any Schubert cell
admits a cluster structure. Moreover, their construction matches the one of [6] in the
simply-laced case, yet it gives an explicit cluster structure to the coordinate ring of a cell
in the non-simply-laced as well. It is worth mentioning here that in spite of the fact that
the theory of cluster algebras is a mix between combinatorics and algebra, the work of
Goodearl and Yakimov was almost purely algebraic.

The work of [12] and [13] enables us to go back to the strategy of [6], that is, the three
steps mentioned above, and follow them to prove that the coordinate ring of a partial
flag variety contains a cluster algebra, no matter if we are in the simply-laced or the
non-simply-laced case. Of course, we have to find different ways to treat steps 2 and 3,
but thanks to Goodearl and Yakimov, the first step is already there.

In particular, to get step 2, we proved the following theorem:

Theorem 1.1. Let {(x, B)} be the collection of seeds of the cluster algebra A of C[Nk].

The corresponding collection of pairs {(i, E)} constructed in Definition 5.7 forms a col-
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lection of seeds related by mutation. In other words, if (x, B) and (x', B') are two seeds
of the coordinate ring of the cell C[Nk| such that (x', B') = ux(x, B), then correspond-
ingly ()?’, B') = ux(x, B). In particular, if (x9, Bo) is an initial seed of A = C[Nk]| then

o~

(X0, Bo) is an initial seed of a cluster algebra A C C[G/Pg].
For step 3, we actually proved that:

Theorem 1.2. The localization of the homogeneous coordinate ring of the flag variety
C[G/Pg] by A, w,, where j € J, equals the localization of the cluster algebra A by the
same elements. In symbols,

CIG/PRIIAG, o lser = AIAZ 2 L.

Basically, we complete the second step of the strategy of Geif3, Leclerc and Schréer
in the first theorem and then do the third step in the second theorem. It is worth to
mention here that the localization in [6] is over the minors that are indexed by the set J
and are not minuscule, while we localize by the minors that are indexed by J and omit
the second condition.

Here is an outline of how the paper is organized: In the following section, we give
the reader an overview of the structure of cluster algebras, while in Section 3 we go
through the needed results from partial flag varieties. However, in Section 4, we focus
on the highlights of the work of Goodearl and Yakimov. Indeed, we discuss the relation
between Poisson geometry and cluster algebras and show how the cluster algebra A of
the coordinate of a Schubert cell looks based on the structure of Goodearl and Yakimov.
In fact, it is shown in Theorem 4.8 that the variables of their initial extended cluster
are nothing but restrictions of some special homogeneous elements of the corresponding
coordinate ring of a partial flag variety, called generalized minors. Also, the exchange
matrix of their work is given explicitly in the same theorem. Using the intuition from
the work of [6], we then assigned, in Definition 5.7, a pair (X, E) to each seed (x, B) of A.
In this new pair, X consists of the lifting of the same elements of x plus the generalized
minors Ay, o, for which the restriction is 1 in the coordinate ring of the cell. Also, the
matrix B is the matrix B together with some additional rows given in some special form.
After that, we show in Theorem 5.8 that these pairs are actually seeds of some cluster
algebra A sitting inside the coordinate ring of the partial flag variety. Moreover, two pairs
are related by a mutation if their corresponding original seeds of A are. This finishes
step 2 of the strategy of [6]. Subsequently, we use a minimality property in Theorem 5.13
to show that the cluster algebra A is indeed equal to the coordinate ring of the partial
flag variety, up to the aforementioned localization.

In fact, it is an important problem to understand the relationship between the cluster
structures of Demonet [2] and ours. We plan to return to this in a future publication.
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2. Cluster algebras

This section gives an overview of the construction of cluster algebras and the main
concepts. For more details about this, the reader is referred to [3], [5], [10], or [16].

Definition 2.1. In our setting, the term ambient field will be referring to a field F that
is isomorphic to C(x1, ..., Zp, ..., Tm ), where {x1, ..., Tpn, ..., Ty} is an algebraically inde-
pendent generating set.

Remark 2.2. We usually write C(z1,...,2p, ..., Ty) instead of writing C(z1, ..., 2,,) to
emphasize that there is a distinction between the first n variables and the remaining
m — n ones. This distinction will become clear in the following sequence of definitions
and remarks.

Definition 2.3. A (labeled) seed is a pair (X, B) where X is a tuple of algebraically in-
dependent variables X = (x1, ..., &y, ..., T,y ) generating an ambient field F and B is an
m X n matrix whose northwestern n x n submatrix B is skew-symmetrizable, that is, can
be transformed to a skew-symmetric matrix by multiplying each row r; by some nonzero
integer d;. The tuple X is called an extended cluster, where its first n variables are called
the cluster (or mutable) variables and the next m — n variables are called the coefficient
(or frozen) variables. The tuple x = (x1,...,x,) is called a cluster. In the same context,
the northwestern n x n submatrix B of B is called the exchange matrix, while the matrix
B is called the extended erchange matrix.

Remark 2.4. Sometimes the skew-symmetrizable matrix is replaced by a quiver @, which
is a directed graph with n mutable and m — n frozen vertices such that it has no loops,
no oriented 2-cycles and no edges between two frozen vertices. In fact, each quiver gives
rise to an m X n skew-symmetrizable matrix E(Q), where its entries are given by

#(—j), ifi>j,
bij = {0, if i = j,
—#(i < j), ifi<y;
where #(i — j) is the number of arrows from ¢ to j and #(i + j) is the number of
arrows from j to 1.

Definition 2.5. Let (X, B) be a seed. A mutation uy at k € [1,n] is a transformation to a
new seed px(X, B) = (X', B'), where the entries of the matrix B’ are given by

—bij, ifi:korj:k,

b, = b lbrs 4 bor |bys (2.1)
Y bij + [Bik| k]—; it kj|, otherwise;
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~/ o -
and X = (2, ...,z},), where a} = x; if i # k and

TpTh = H x?i’“ + H x;b"’“.
b

ik >0 bir <0

Two seeds are said to be mutation equivalent if one of them can be obtained from the
other one by a finite sequence of mutations.

Remark 2.6. It is not hard to verify that uy is an involution, that is,

pux (%, B)) = (X, B).

Remark 2.7. Let us start with an initial seed (X, B). By definition any mutable variable
can be obtained from (X, B) by some sequence of mutations at some mutable indices.

Definition 2.8. Let (X, B) be a seed. Let X be the set of all possible mutable variables, that
is, the mutable ones of the initial seed or the mutable ones generated by any sequence of
mutations applied to the initial seed. Let R be the polynomial ring R = C[zp41, ..., Tm],
where Z,11, ..., m are the frozen variables of the seed (X, B). The cluster algebra (of
geometric type) is the algebra A = RI[X], the subalgebra of the ambient field generated
by all variables (mutable or frozen). If (X, B) is an initial seed of a cluster algebra A,
then we may denote A by A(X, B).

Definition 2.9. Let (X, B) be a seed. The rank of the seed or its corresponding cluster
algebra is the number of its mutable variables, while the number of all variables of the
seed is referred to as the cardinality of the seed. Thus in our setting above, the rank of
(%, E) is n and the cardinality of it is m.

Definition 2.10. A cluster algebra A(X, E) is said to be of finite type if it has a finite
number of mutable variables. Otherwise it is said to be of infinite type.

3. Partial flag varieties

This section captures the required overview from the partial flag varieties. We need
first review the definition of a partial flag variety and look at some facts about its
coordinate ring. Other useful overviews, with probably more details about this, can be
found in [6], [7], [10], or [14].

Remark 3.1. It is known that each semisimple group induces a Cartan matriz whose
information can be encoded in the corresponding Dynkin diagram. One of the significant
consequences of this is that every semisimple complex Lie algebra is fully characterized,
up to isomorphism, by its Dynkin diagram.
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Remark 3.2. From now on, the set I denotes the vertex set of the Dynkin diagram A
corresponding to G.

Definition 3.3. A parabolic subgroup P of G is a closed subgroup that lies between G
and some Borel subgroup B.

Example 3.4.

(1) Any Borel subgroup B is parabolic.

(2) Fix a nonempty subset J C I and let K = I\ J. Denote by z,;(¢t) (i € I,t € C)
the simple root subgroups of the unipotent radical N of B and denote by y;(t)
the simple root subgroups of the unipotent radical N~ of B~. The subgroup Pk
generated by B and the one-parameter subgroups yx(t) (k € K,t € C) are parabolic.
Similarly, the subgroup Py generated by B~ and the one-parameter subgroups x(t)
(k € K,t € C) is a parabolic subgroup.

Definition 3.5. A quotient G/P is called a (partial) flag variety if P is a parabolic sub-
group of G.

Remark 3.6. It is known that any parabolic subgroup is conjugate to a parabolic sub-
group of the form Pg. This reduces the study of partial flag varieties to the ones of the
form G/Pk.

Remark 3.7. The partial flag variety G/ Py can be naturally embedded as a closed subset
of the product of projective spaces

[T L)),

jeJ

where w; is a fundamental weight of G, and for a dominant weight A, the corresponding
L(\) is the finite-dimensional irreducible G-module with highest weight A\; and L(\)*
denotes the right G-module obtained by twisting the action of G. The L(w;)’s are called
the fundamental representations.

Remark 3.8. Let II; = N7 denote the monoid of dominant integral weights of the form
A =2 ,cya;wj, where a; € N. The multi-homogeneous coordinate ring C[G/Py] is a
11 ;-graded algebra. In particular,

C[G/Px] = €D L.

A€ll,;

One of the significant results is that C[G/P] can be identified with the subalgebra of
C[G/N~] generated by the homogeneous elements of degree w;, where j € J.
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Remark 3.9. For a Weyl group W of G, the longest element in this paper will always be
denoted by wy and the Coxetor generators will be denoted by s; where 4 runs in 1.

The notation of the length of some w € W will be (w). The Chevalley generators of
the Lie algebra g of G are denoted e;, f;, h;, where again ¢ € I. The e;’s here generate
Lie(N) = n. An important consequence of this is that N acts naturally from the left and
right on C[N] by the following left and right actions respectively:

(- f)(n) = f(nx), (f€C[N]andz,n € N),
(f-x)(n) = f(zn), (f€C[N]and x,n € N).

One might differentiate these two actions to get left and right actions of n on C[N],
respectively.

Notation. The right action of e; on f € C[N] will be denoted by ez (f):=1f-e.

Remark 3.10. For each simple reflection s; € W, let 5; := exp(f;) exp(e;) exp(fi). If
w = 8;,...8;, with r being the length of w, then define w = 5;,...5;, . Let Go = N~ HN be
the open set of G consisting of elements having Gaussian decomposition. Indeed, each
x € G can be uniquely represented as

z = [z]-[xo[z]+,

where [z]_ € N~ [z]o € H, [z]+ € N. Let V;" be the irreducible representation whose
highest weight is w; and highest weight vector is v;r. For any h € H one has that v;r
is an eigenvector, that is, hvj” = [h]®iv]" and [h]® € C \ {0}. This gives the following
definition introduced by Fomin and Zelevinsky in [4].

Definition 3.11. For u,v € W and i € I define the generalized minor to be the regular
function on G given by

A, v, () = [@ 205"
Remark 3.12. The distinguished elements A (), (w € W), are of degree w; (see 2.3
in [1] or section 2 and 6 in [6] for more details). They make the coordinate ring of the
cell and the coordinate ring of the corresponding flag variety related by the following:

C[Nk] = C[G/PIF]/(A

=@ =D ey

The generalized minors are nothing but a generalization of the flag minors of SL,,. Their
significance in the cluster structure of the coordinate ring of partial flag varieties will be
seen in section 5.
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4. Preliminaries from Poisson algebras

In [12] and [13], Goodear] and Yakimov made the relationship between the coordinate
ring of Schubert cells and cluster algebras clear and explicit. They proved that each such
coordinate ring admits a cluster structure. Thus, since the coordinate ring of any cell is
the quotient of the coordinate ring of some flag variety modded out by some generalized
minors, it is clear that the result of Goodearl and Yakimov should play an important role
in this paper. Their results were based on Poisson geometry and so we capture here the
main elements that we need from their work. More details about the relation between
Poisson geometry and cluster algebras can be found in [10] and [12].

Definition 4.1.

(1) A Poisson bracket {—,—} is a Lie bracket that is a derivation also in each variable
for the associative products.

(2) A Poisson algebra is a commutative algebra R together with a Poisson bracket.

(3) For a € R the Hamiltonian associated with a is the derivation {a, —}.

(4) A Poisson ideal of R is an ideal I such that {R,I} C I.

Remark 4.2. The Poisson bracket of a Poisson algebra R induces a Poisson bracket on
any quotient of R by a Poisson ideal.

Definition 4.3. Define the Poisson-Ore extensions to be B[z; 0, d], where B is a Poisson

algebra, B[z;0, 0], = Blz] is a polynomial ring and o, ¢ are suitable Poisson derivations
on B such that for any b € B we have

{z,b} = o(b) + (x).
Let K be a base field of characteristic 0. For an iterated Poisson-Ore extension
R = Klz1]p[r2; 02, 02]p - -+ [T Omsy Omlp
and k € [0,m], define
Ry, =K[z1, ..., zx) = K[z1]p[xe; 02, 02]p - - - [Tk; Ok Ok]ps
where Ry = K.

Definition 4.4. A Poisson-CGL extension is an iterated Poisson-Ore extension R as above
that is endowed with a rational Poisson action of a torus H such that

(1) The elements 1, ...,y are H-eigenvectors;
(2) The map dy, is locally nilpotent on Rj_; for any k € [2,m];
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(3) For any k € [1,m] there is an hy € LieH such that o = hg|r,_, and the hy-
eigenvalue of xj nonzero and denoted by Ag.

Definition 4.5. Let R be a Noetherian Poisson domain. An element p € R is called a
Poisson-prime element if any of the following equivalent conditions hold:

(1) The ideal (p) is a prime ideal and it is a Poisson ideal.

(2) The element p is a prime element of R such that p|{p, —}, that is, p divides {p,x}
for all x € R.

(3) [In the case K = C]: The element p is a prime element of R and the zero locus V (p)
is a union of symplectic leaves of the maximal spectrum of R.

One of the great successes is due to the work of Goodearl, Yakimov when they proved
the following:

Theorem 4.6. Every symmetric Poisson-CGL extension R such that \j/\; € Q¢ for all
l,j has a canonical cluster algebra structure that coincides with its upper cluster algebra.

Remark 4.7. The cluster variables in the construction of Goodearl and Yakimov are the
unique homogeneous Poisson-prime elements of Poisson-CGL (sub)extensions not be-
longing to smaller subextensions. The mutation matrices of their seeds can be computed
using linear systems of equations that come from the Poisson structure.

A significant consequence of the work of Goodearl and Yakimov is:
Theorem 4.8. The coordinate ring C[Ng| has a canonical cluster algebra structure.

Proof. The notation of this proof follows [13]. Throughout, the kth vector of the standard
basis of Z™ is denoted by ey, the notation alj, k] is given by

alj K] = wgyug — D, /4 € 32,
and the notation S(w) is the support of w and is given by
Sw):={iel|s;<w}={iel]|i=qi for somek € [1,m]}.
Also, set

max{j < k | i; =i}, if such j exists;
p(k) := { !

—00, otherwise.

s(k) = {min{j >k |i; =i}, if such j exists;

00, otherwise.
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Let Ay, A, U, Ay(ny(w)) 4172 and Uy(n_(w))Y,,» be as in [13]. From Theorem 10.1
in [11] and Theorem 7.3 in [13] we know that the quantum Schubert cell, denoted by
Ay(ny(w)) 41/2, has the quantum cluster structure given by the equation

Ay () q1/2 = AMY, BY, ) 12 = UM, B”, 2) 412,
where the extended cluster variables are given by
M¥(e) = ¢ D iy
for all j € [1,m], where
D, w(w;) = Proj(Ac; w(w,))s

where the frozen variables are the ones indexed by j € [1,m] such that s(j) = co. The
map

proj : C[G/Py] — C[Ng]

denotes the standard projection from C[G/Pj| to C[Ng]. The exchange matrix BY is
of size m x (m — |S(w)|) and its j x k entry is given by

1, if j :p(k‘),
-1, if j = s(k),
(Ew)jk =9 i, AfJ <k <s(j) <s(k),
—ai;i,, if k<j<s(k) <s(j),

0, otherwise;

where the entry a;,;, is the same i; x i) entry of the Cartan matrix of the same type.
By [13] we have that Ag(ny (w)) 4172 = Ug(n_(w)) /.- Thus, by corollary 3.7 in [9], it
follows that

C & Ag(ny(w)) 412 = A(BY).

On the other hand, by (4.7) in [17], we know that the left-hand side is isomorphic
to the quotient of Ag(ny(w)) 412 by (¢ — 1). Consequently, we get the desired cluster
structure in the classical case whose exchange matrix is B and cluster variables are

Dwikﬂﬂgkwik' O
5. Cluster algebra structure on C[G/Pg]

In the work of Geif}, Leclerc and Schréer [6], they proved that C[G/Py] up to lo-
calization admits a cluster structure if G is simply-laced of type A, or D4. Their work
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motivates our construction here. The idea is to translate their work, which was in terms
of categorification, to another language that works in the general case.

Notation. The cluster structure on C[Ng] constructed by the work of Goodearl and
Yakimov will be denoted by A;, where J and K are as defined before. We may write A
instead of Aj if the context is clear.

Lemma 5.1. For every f € C[Nk] there exists a unique homogeneous element f €
C[G/Py] such that its projection to C[Nk| is f and whose multi-degree is minimal
with respect to the usual partial ordering obtained by the usual ordering of weights, that
is, p 2 XN iff X — p is an N-linear combination of weights w; (j € J).

Proof. This is Lemma 2.4 in [6]. Despite the fact that the main results of that paper are
for the simply-laced case, this one is general and works for any type. O

Remark 5.2. The proof of the preceding lemma in [6] involves the following important
points:

(1) Set

a;(f) =max {s| (e))f £0}.
(2) Set
Af) =S a;(m;.
JjeJ

(3) The minimality in the previous lemma means that A(f) is minimal in the following
sense: if f € L(A) and proj(f) = f then A(f) < . On the other hand, the projection
of each piece L(\) to C[Ng] is injective and so if there is an element there whose
projection is f, then it is unique in L()). These two pieces of information together
are the main ingredients in proving the existence and uniqueness of A(f).

Remark 5.3. The endomorphisms e; are derivations of C[Nk]. Thus, for all f,g € C[Ng]

we have the following:
(1) The image of fg under e} is

e;f-(fg) = e}(f)g+f€}(9);

(2) By Leibniz formula,

(e})aj(f)wj(g)(fg) — (e;)aj(f)(e;)aj(g)(g) £0;
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(3) For any integer k > 1,

(e 0 () =,
(4) Consequently,

a;(fg) = a;(f) + a;(9)-

Lemma 5.4. For any two elements f,g € C[Nk], we have fvg = f g. If for any j € J
we have a;(f +g) = max{a;(f),a;(g)}, then there are some relatively prime monomials
w, v in the generalized minors Ay, o, such that

f+g=nf+vg.
Proof. Lemma 2.5 in [6]. O

Remark 5.5. Let (X, B) be a seed of the cluster algebra A = C[Ng]. Then the mutation
formula tells us that

zk), = M(k) + L(k),

where M (k), L(k) are monomials in the variables x1,...,Zx_1, Zk41, ..., Tn. As a conse-
quence of the previous lemma (cf. [6]) we get that

—_—~— -~

Tl = p(k)M (k) + v(k)L(k),

where (k) and v (k) are relatively prime monomials in Ag; o, (j € J). This means that
we can write u(k) and v(k) as

/’[’(k> = H A%]J,WJ and V(k) = Aﬂwjj,w]"
Jje€J JjEJ

Consequently, it is reasonable to expect that the variables x; form the cluster variables
of some cluster algebra contained in C[G/Pj;]. This was proved in type A, and Dy by
Geif3, Leclerc and Schroer.

Definition 5.6. A [ift of a cluster algebra </ is a cluster algebra o such that o is a
quotient algebra of it. Alternatively, we may say that <7 can be lifted to <.

Definition 5.7. For any seed (x, B) of the cluster algebra A; = C[Ng] constructed in
[12] define a new pair (X, B) of C[G/Pg] by raising each variable z of (x, B) to the
variable Z (see Lemma 5.4) preserving the same type (mutable or frozen) and by adding
the generalized minors Ay -, modded out in C[N] as frozen variables. The matrix B
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of this lift is obtained as follows: Extend the matrix B of the construction of Goodearl
and Yakimov [12] by |J| rows labeled by the elements of J such that the entries are
5 _{@, if 8; # 0;
ik —

—ay, else,
where ¢; and f5; are as in Remark 5.5. This process is called the (seed) homogenization.

Theorem 5.8. Let {(x, B)} be the collection of seeds of the cluster algebra A; of C[Nk].
The corresponding collection 4 (X, E) constructed above forms a valid collection of seeds.

In other words, if (x, B) and (x', B") are two seeds of the coordinate ring of the cell C[Nk]
such that (x', B') = ur(x, B), then correspondingly (x', B') = ux(X, B).

Proof. First, we start with a proof overview. Let (x, B) and (x/, B’) be two seeds of the
cluster algebra A; = C[Ng] such that (x’, B') = pu(x, B). Since {(x, B)} is a collection of
seeds, it suffices to show that (x/, B\’) = (X, B) to get that the corresponding collection
{(i7 E)} is indeed a collection of seeds. In other words, the aim is to show that the
homogenization of the mutation, at some index of a seed, is the same as the mutation, at
the same index, of the homogenization of the same seed. In symbols, to reach our goal,
it is enough to show that

—

1x(B) = i (B),

where on the left-hand side we mutate and then homogenize, while we do the reverse
on the right-hand side. In homogenization, one needs to mutate to get all the needed
entries. Thus, since the equation we seek to get involves homogenization and mutation,
we will need to deal with two steps of mutation, one follows the other. As the variables
of the tuple X live in C[G/Py], the success of proving the aimed result will prove that
C[G/Py] contains a cluster algebra.

Second, we begin the actual proof. Let £ be a mutable index in the construction of
[12]. We need to show that uz(B) = B’. In other words, we need to show that the matrix
entries of the mutation of B match the ones coming from the homogenization of B’.
Note that the entries of the homogenization of B’ are the same as B’ together with
additional rows whose entries are extracted from the mutation equations of the mutated
seed (x/, B’). Fixing a mutable index ¢, these equations are of the form

e~~~

2/ ()2 () = ' ()M () + v/ (1)L (2),

where 2/ (t) = x} denotes the tth variable in the mutated extended cluster in a direction
k and z”(t) = «} denotes the tth variable coming from a second mutation in a direction
t. Let b/ 5, denote the entry of position s x t in uk(é). Obviously, if s ¢ J then V. equals
the s x t entry of uy(B), as the entries of B and B match when s ¢ J. Consequently,
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the entries of the mutation of both coincide again when s ¢ J. Assume now that s € J.
If t = k, then by the fact that the construction of [12] is indeed a cluster algebra, we get
that M'(k) = L(k) and L'(k) = M(k). This clearly makes o/, = 3; and 3} = «;. Since
' (t) and v/(t) are relatively prime, we see easily from the construction that the entry
we get is —35,5 which equals 1% st by the mutation formula.

Assume now that ¢ is a mutable index other than k. It suffices to show that in

e~ —~— —_— P

2 (Oa(0) = W (OM(D) + v () (D),

the exponents of the minors of the monomials p/(t) and v/(t) match the formula of the
matrix mutation. Equivalently, we may assume that p/(t) and v/(t) are as we desire and

then show that p/(¢)M’(t) + v/ (t)L/(t), is an element whose proj is M'(t) + L’'(t) and
whose order is minimal with respect to <. The first property is straightforward. Now,

)\(M/(t) + L/(t)) = Zaj (M/(t) + L/(t))wj = Zajwj (51)

jeJ jeJ
a; =a;(M'(t)+ L'(t))
=max{s | (e])*(M'(t) + L'(t)) # 0}
[big gt +big|bpel
H .Z‘/l-er#

2

bk |bre+biklb
b”_,'_\ ikl kt;r iklbetl o

T\s +
e 0
( ) ,(bitJr\bik\bm;rbmlbm\) 7&

A
x' .
where H @

big by +bis b
by it i F0ik Ok | ; bkt <

Jbin+ ‘bik|bkt;bik‘bkt‘
E aj (a: i ),

b |b b |b
b“+umm_7w>o

— max S

= max

~(bee+ b;’)_,~bkt,;bikblj-1|)>

/
a; <JJZ
bit*wdj

Note here that the last equality is obtained by the fact that a;(fg) = a;(f) + a;(9).
Using the same fact once again, we clearly get that

0 =3

%

bir|b bir|b
+| k|Okt + bik|bre

bt 5

0 (o).

where, depending on j, the range of the sum is either the set of indices satisfying the
inequality

bir|b bir|b
+\ k| bkt + bik| kt\>

bit 5

0
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or the set of indices satisfying the inequality

|bik |brt + ik |brct]

bit + 9

< 0.

Recall also that o} = x; for i ¢ {k,t}. So,

|Dik |brt + bike|bret |
2 a; (xl)

a=3

i

bit +

But by equation (5.1), it follows that

AM'(t) + L'(t) Za]wj
jeJ
_ ZZ < i [Dret 42- bik|brt] o (:cz)> ;.
jedJ 1

Now, since C[G/Pg] is graded by the lattice spanned by the w;’s, the last equation

aj (l‘i)> wj

aj (f”i)wj)

implies that

|bik|bkt + bk |bre
2

OO+ @) =2 [ X5 o+

jeJ 1

DHHL(b

jeJ i

=[] T1 2 (dia;(z:)=;),

JjeJ i

bik|brt + bik|b
Z_H_| k\th k|brt |

where

|Dik |brt + bik |bret |
5 )

di =

bir +

So, we get that

LM )+ L' )2 [[T] L (ai@im;) - L(a;(z:)e;) . (5.2)

jeJ i

d; times

Note here that the sum over ¢ is the sum over the d;’s where the absolute value is
taken over the positive values only or the negative values only. A similar work with
L (MM (k) + L(k))) shows that
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LAM®E)+ L)) =L | Y (Ibirla;(2:)) =,

jeJs i
D) HHL (\bik|aj(a:i)wj).
jeJ i

This implies that

L(AM(k)+ LK) D [T TI L (=) L ().

jed 1
J |bir|a;(xz;) times

But since A, o, is of degree wj, it follows that the possible occurrences of the exponents
of Ay, ; are the integers

07 ]-a 2, cey Zaj(xi)‘blﬂ

However, the minimality of

aj(A(M (k) + L(k) = Y > [birla;(x:)

jeJ i

shows that the only possibility is ), a;(x;)|bix|, because the rest are still available in
some L(A)’s in which A is less than A(M (k) + L(k)). Consequently, the only possibilities
for aj and B; are 0 or ), a;j(z;)|bix|. But, thank to the homogeneity of the construction
of [12], there exists a unique j in which a;(z;) # 0. Hence, one of o, and B, is a;(x;) |bi|
and the other is 0.

Therefore, for every ¢ there is a unique j in which one of the following must be true:

aj(aci)bit = :l:O[jt, aj(mi)bik = :I:ajk and aj(xl)|blk| = Oéjk,
or
aj(wi)biy = +Bje,  aj(xi)bix = B and  a;(zq)|bin| = B

Now,
()5 )"
aj(x;) o2
(A‘lﬂjj,‘l%jmi> €L (dzaj(ml)wj)
‘bitJr Lbige bkt +bik Lbie | ‘

eL (diaj (mz)wj)

(Aawjfﬁ')y EZ)
; aj(z) ~ & ; Ny
It is not hard now to see that (Aﬁjj,w}j xz) forms one factor of the monomial p'(t) M’;

or the monomial v/()L/;. The rest is similarly there. Since L (AM(M'(t)+ L'(t))) and
L (A(M (k) 4+ L(k))) are homogeneous ideals and since
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—~ — e~ o~

oy, = Tpa'y = p(k)M (k) + v(k)L(k) € L (A(M(K) + L(k))) ,

it is again not difficult to combine these pieces of information to see that

e —_~ e~

s =y = W (OME) + v (OD0) € LM (0) + (1)
This completes the proof. 0O

Notation. The cluster algebra contained in C[G/P] and obtained from the preceding
theorem will be denoted by A; or simply A if the context is clear.

Corollary 5.9. Let B be the matriz Bv of Theorem 4.8. The pair
({ﬁw,k ,U)Skwik} I—l {Aw]',w]' | .7 6 J}? B>

is an initial seed of the cluster algebra A C C[G/Pg].

Proof. Apply the construction of Theorem 5.8 to the initial seed (De,;, weyw, » E“’) of
C[Nk] (see Theorem 4.8). The mutable and frozen variables are described in Defini-
tion 5.7. O

Remark 5.10. One might think naively that the lift sz'k <y, 1S equal to a generalized
minor. But this is not the case in general; see Example 10.3 of [6].

Remark 5.11. In the simply-laced case, it is obvious that the construction of .:G matches
the one of [6].

Remark 5.12. By construction, it is clear that the extended clusters of A and A are in
one-to-one correspondence. So, A and A must be of the same type (either both finite or
both infinite).

Theorem 5.13. The localization of the homogeneous coordinate ring of the flag variety
ClG/Pg] by Aw, w,, (j € J) equals the localization of the cluster algebra A by the same
elements. Namely,

CIG/PIIAG, o )ser = AIAZ! 2 Ljes

Proof. Throughout the proof, for any element in C[G/ Pr {j}] the term degree will be
used to refer to its homogeneous degree (see Remark 3.8). Take J' C J and K/ =T\ J".
-1/ ///) belng
reduced words for wlS and wl respectively. Therefore, the initial seed for the cluster

This gives us a reduced word wq of the form ¢ = (¢,4",4""), with ¢’ and (",

algebra A, 7 associated with i contains the one of A 7 associated with 7’. Thlb means that
the latter is a subalgebra of the first, that is, AJ/ C .AJ Consequently, A{]} C .AJ for
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any j € J. Recall that C[G//Py]| = @,cr, L(A) is generated as a ring by the subspaces
L(w;) C C[G/P;\{j}}. Thus, it is generated by (C[G/P;\{j}]7 where j € J. Therefore, the
result follows if the localization of C[G/ Pr {j}} by Ag, ; is contained in the localization
of E]\} , by the same element.

We proceed by contradiction. Let f € (C[G/P;\{j}] such that f ¢ .Z{j\} and its degree
is minimal. Let g = proj(f) € C[Np (;1]. Then proj(g— f) = 0. Thus, we have that g — f
belongs to the principal ideal (A, o, — 1), since

CINn ) = CIO/PR) [ (A, ) — 1)-

Consequently, there is some h € C[G/ P ;] such that

g_ f =h (Aw]-,w]' - 1)
g_ f = hAWj,Wj — h.

But note that the definition of g and the choice of f imply that the degree of the whole
left-hand side is less than or equal to degree of f. On the other hand, it is obvious that
the degree of the right-hand side is the degree of h plus w;. It follows that the degree of
h is less than the one of f. Therefore, by minimality, we get that h € Z{j\} . Also, since

Agw; € @, it follows that hA, &, € .Zi]\} Now, if the lifting g € @, we have

_ —~ —_— —_— 71
f= 9 - hij,wj + i\ € A{j} C A{j}[ij,wj]a (53)
€Ay e Ay € Ay

which is a contradiction to f being outside .Zi]\} Therefore, g ¢ @ Now, write
g € C[Npyjy] as g = D7, cim,, where each m; is a product of cluster variables (might
not be from the same seed) and each ¢; is a scalar. We may do this in such a way that
the m;’s are distinct. Recall that C[Ng] can be identified with

C[NK]: H%feL(Zajwj)
jeJ —w;,w;

JjeJ

By the uniqueness and minimality of the tilde map in Lemma 5.1, this can be refined to

C[Nk] = # | fe L<Z ajwj) and the a,’s are minimal
jeJ 2w;w; jeJ
As J = {j}, we can use the second identification to write each m; as Aafil], where
w;,Wj

fi € L(aijw;) and a;; is minimal with this property. Clearly, the degree d; of m; is
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a; jooj. It is not hard to see that m; = f; for all ¢ = 1,...,7. As distinct elements lift
by the tilde map to distinct elements by Lemma 5.1, we get that the m;’s are distinct.
Consequently, the f;’s are distinct. Let a; := max {a;; | i = 1,...,7}. Now, if

T

> (ciny iz fi) (5.4)

i=1

is a lift of g = >._, ¢;m; in the minimal way, then we get that g € JT{J\} , which is a
contradiction. Otherwise, there is an element of lower degree in which g is equal to that
element. Note that the multiplication of g by Afvjj .=, for some positive integer s; gives an
element whose degree is equal to the degree of the element in (5.4) and whose projection
is equal to g. Since the projection of each homogeneous piece L(\) to C[N] is injective,
we get that

iy (CzAan;;J] f z)

2]
A‘Zﬂj,ﬁj

g:

Clearly, by (5.3) this implies again that f € Za [A;iwj]. Consequently, the result
follows, that is,

ClG/PEIAZ L lies = AIAZ) L ljes. O

Wi Wy

Conjecture 5.14. The homogeneous coordinate ring of the flag variety C|G/Py] equals
the cluster algebra A. In particular, C[G/Pg] is a cluster algebra whose initial seed is

({Ewik,mmk} U{Am, o, | j € J},E).

Remark 5.15. Using the proof of the previous theorem, the conjecture is equivalent to
proving that if g = Y"7_, ¢;m; is written where the number of terms is minimal, then

T

_ Z 05—y~
9= (CiAw]jva']mz) '

i=1

Example 5.16. Let G be a semisimple algebraic group of type Bs, say G = SOy(3y41 =
SO+, J={3} and K =1\ J = {1,2}. Consider the longest word

W = 8152518382818382S83.

The subword w = s38281835283 generates Nk. Since s(3) = s(5) = s(6) = oo and
s(k) # oo for k € {1,2,4}, we get that the mutable variables are indexed by 1,2,4 and
the frozen ones are indexed by 3, 5,6 using the function s of Theorem 4.8. Therefore, by
the same theorem, the exchange matrix of the cluster algebra structure of C[Ng] is
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1 2 4
0 Qiyig 1 1
—Qiyiy 0 Qiniy | 2
1 —ay, 0 |4
—Qigiy Qg 0 3
0 1 —an |5
0 0 -1 6
1 2
0 -2 1 1
1 0 —112
-1 2 0|4
0 1 0|3
0O -1 1715
0 0 -1/6

where the column labels denote the cluster variables and the row labels denote the
extended cluster variables, as usual. Also, the extended cluster variables ij e @i

are

J=1 = Dg; s30s; (mutable)
] =2 = D, s550ms3 (mutable)
J =3 = Do, sysosimn; (frozen)
J=4 = Dgy sys0s185w35 (mutable)
J =5 = Dg, sys0s1558200; (frozen)
J=6 = Dy sysps1s5598305- (frozen)

Therefore, by Theorem 5.8, the following list of variables forms an initial extended cluster

of A C C[G/Pg]

5w3,s3ws ; (mutable
BW2,S332wz; (mutable
BW3,Sgsgslsgw3; (mutable
51?1 4838281 W1 ;

o

wW2,5352515352W2)

w3,5352518358283W3)

P

(
(
D (
(

w3, w3
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Consequently, the extended exchange matrix B of A attached to this extended cluster is

12
2 1 1
0 -1| 2
-1 2 0 4
B=lo0o 1 o0 3
0 -1 1 5
0 0 -1| 6

-1 0 o0/ jeJ
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