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K
] contains a cluster algebra if G is any semisimple complex 

algebraic group. We use derivation properties and a special 
lifting map to prove that the cluster algebra structure A of 
the coordinate ring C[NK ] of a Schubert cell constructed by 
Goodearl and Yakimov can be lifted, in an explicit way, to 
a cluster structure Â living in the coordinate ring of the 
corresponding partial flag variety. Then we use a minimality 
condition to prove that the cluster algebra Â is equal to 
C[G/P −

K
] after localizing some special minors.
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1. Introduction

Cluster algebras were introduced in 2002 by Fomin and Zelevinsky and they have 

rapidly become one of the active areas in mathematics. This is due to their deep relations 

to other areas of mathematics like representation theory, combinatorics, homological 

algebra, algebraic geometry, Poisson geometry, Teichmüller theory and mathematical 
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physics. On the other hand, the study of partial flag varieties is significant in represen-

tation theory and algebraic geometry. The first connection between these two studies 

appeared in Scott’s work on Grassmannians and cluster algebras [15] in 2003. In 2008, 

Geiß, Leclerc and Schröer [6] showed that, in some simply-laced cases, namely An and 

D4, the localization of the (multi-homogeneous) coordinate ring of a partial flag variety 

by non-minuscule minors matches the localization of some cluster structure by the same 

minors. They conjectured that this is true in general, that is, when the type of G is 

arbitrary. This paper proves this conjecture with respect to another localization. The 

main ideas of the proof of [6] motivate our work here. Indeed, Geiß, Leclerc and Schröer 

proved that the coordinate ring of a partial flag variety contains a cluster structure by 

showing the following:

(1) The coordinate ring of a Schubert cell has a cluster algebra structure A.

(2) The cluster algebra A of the previous step can be lifted to some special cluster 

algebra Â that lives in the coordinate ring of the partial flag variety corresponding 

to the coordinate ring of the cell of the previous step.

(3) The cluster algebra Â coincides with the coordinate ring of the partial flag variety 

after localization with respect to some special minors.

Although the first step was only conjectured in [6], it was fully proved in [8]. Moreover, 

despite the fact that we prove the second step independently, it was also generalized to 

the non-simply-laced ones by Demonet in [2].

Unfortunately, some essential tools of the proof of Geiß, Leclerc and Schröer were 

based on the fact that they work on the simply-laced case. In fact, they used some 

categorification in their work, which works in the simply-laced case only, to show the 

first and the second steps, while they treated the third step for types An and D4 case 

by case. Because of that, the generalization we seek has to use some other results.

Goodearl and Yakimov [12,13] proved that the coordinate ring of any Schubert cell 

admits a cluster structure. Moreover, their construction matches the one of [6] in the 

simply-laced case, yet it gives an explicit cluster structure to the coordinate ring of a cell 

in the non-simply-laced as well. It is worth mentioning here that in spite of the fact that 

the theory of cluster algebras is a mix between combinatorics and algebra, the work of 

Goodearl and Yakimov was almost purely algebraic.

The work of [12] and [13] enables us to go back to the strategy of [6], that is, the three 

steps mentioned above, and follow them to prove that the coordinate ring of a partial 

flag variety contains a cluster algebra, no matter if we are in the simply-laced or the 

non-simply-laced case. Of course, we have to find different ways to treat steps 2 and 3, 

but thanks to Goodearl and Yakimov, the first step is already there.

In particular, to get step 2, we proved the following theorem:

Theorem 1.1. Let {(x, B)} be the collection of seeds of the cluster algebra A of C[NK ]. 

The corresponding collection of pairs 
{

(x̂, B̂)
}

constructed in Definition 5.7 forms a col-
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lection of seeds related by mutation. In other words, if (x, B) and (x′, B′) are two seeds 

of the coordinate ring of the cell C[NK ] such that (x′, B′) = μk(x, B), then correspond-

ingly (x̂′, ̂B′) = μk(x̂, B̂). In particular, if (x0, B0) is an initial seed of A = C[NK ] then 

(x̂0, B̂0) is an initial seed of a cluster algebra Â ⊂ C[G/P −
K ].

For step 3, we actually proved that:

Theorem 1.2. The localization of the homogeneous coordinate ring of the flag variety 

C[G/P −
K ] by Δ̟j ,̟j

, where j ∈ J , equals the localization of the cluster algebra Â by the 

same elements. In symbols,

C[G/P −
K ][Δ−1

̟j ,̟j
]j∈J = Â[Δ−1

̟j ,̟j
]j∈J .

Basically, we complete the second step of the strategy of Geiß, Leclerc and Schröer 

in the first theorem and then do the third step in the second theorem. It is worth to 

mention here that the localization in [6] is over the minors that are indexed by the set J

and are not minuscule, while we localize by the minors that are indexed by J and omit 

the second condition.

Here is an outline of how the paper is organized: In the following section, we give 

the reader an overview of the structure of cluster algebras, while in Section 3 we go 

through the needed results from partial flag varieties. However, in Section 4, we focus 

on the highlights of the work of Goodearl and Yakimov. Indeed, we discuss the relation 

between Poisson geometry and cluster algebras and show how the cluster algebra A of 

the coordinate of a Schubert cell looks based on the structure of Goodearl and Yakimov. 

In fact, it is shown in Theorem 4.8 that the variables of their initial extended cluster 

are nothing but restrictions of some special homogeneous elements of the corresponding 

coordinate ring of a partial flag variety, called generalized minors. Also, the exchange 

matrix of their work is given explicitly in the same theorem. Using the intuition from 

the work of [6], we then assigned, in Definition 5.7, a pair (x̂, B̂) to each seed (x, B) of A. 

In this new pair, x̂ consists of the lifting of the same elements of x plus the generalized 

minors Δ̟j ,̟j
for which the restriction is 1 in the coordinate ring of the cell. Also, the 

matrix B̂ is the matrix B together with some additional rows given in some special form. 

After that, we show in Theorem 5.8 that these pairs are actually seeds of some cluster 

algebra Â sitting inside the coordinate ring of the partial flag variety. Moreover, two pairs 

are related by a mutation if their corresponding original seeds of A are. This finishes 

step 2 of the strategy of [6]. Subsequently, we use a minimality property in Theorem 5.13

to show that the cluster algebra Â is indeed equal to the coordinate ring of the partial 

flag variety, up to the aforementioned localization.

In fact, it is an important problem to understand the relationship between the cluster 

structures of Demonet [2] and ours. We plan to return to this in a future publication.



F. Kadhem / Journal of Algebra 628 (2023) 328–349 331

2. Cluster algebras

This section gives an overview of the construction of cluster algebras and the main 

concepts. For more details about this, the reader is referred to [3], [5], [10], or [16].

Definition 2.1. In our setting, the term ambient field will be referring to a field F that 

is isomorphic to C(x1, ..., xn, ..., xm), where {x1, ..., xn, ..., xm} is an algebraically inde-

pendent generating set.

Remark 2.2. We usually write C(x1, ..., xn, ..., xm) instead of writing C(x1, ..., xm) to 

emphasize that there is a distinction between the first n variables and the remaining 

m − n ones. This distinction will become clear in the following sequence of definitions 

and remarks.

Definition 2.3. A (labeled) seed is a pair (x̃, B̃) where x̃ is a tuple of algebraically in-

dependent variables x̃ = (x1, ..., xn, ..., xm) generating an ambient field F and B̃ is an 

m × n matrix whose northwestern n × n submatrix B is skew-symmetrizable, that is, can 

be transformed to a skew-symmetric matrix by multiplying each row ri by some nonzero 

integer di. The tuple x̃ is called an extended cluster, where its first n variables are called 

the cluster (or mutable) variables and the next m − n variables are called the coefficient

(or frozen) variables. The tuple x = (x1, ..., xn) is called a cluster. In the same context, 

the northwestern n ×n submatrix B of B̃ is called the exchange matrix, while the matrix 

B̃ is called the extended exchange matrix.

Remark 2.4. Sometimes the skew-symmetrizable matrix is replaced by a quiver Q, which 

is a directed graph with n mutable and m − n frozen vertices such that it has no loops, 

no oriented 2-cycles and no edges between two frozen vertices. In fact, each quiver gives 

rise to an m × n skew-symmetrizable matrix B̃(Q), where its entries are given by

bij =

⎧
⎪⎪⎨
⎪⎪⎩

#(i → j), if i > j,

0, if i = j,

−#(i ← j), if i < j;

where #(i → j) is the number of arrows from i to j and #(i ← j) is the number of 

arrows from j to i.

Definition 2.5. Let (x̃, B̃) be a seed. A mutation μk at k ∈ [1, n] is a transformation to a 

new seed μk(x̃, B̃) = (x̃
′
, B̃′), where the entries of the matrix B̃′ are given by

b′
ij =

⎧
⎨
⎩

−bij , if i = k or j = k,

bij +
|bik|bkj + bik|bkj |

2
, otherwise;

(2.1)
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and x̃
′

= (x′
1, ..., x′

m), where x′
i = xi if i �= k and

xkx′
k =

∏

bik>0

xbik
i +

∏

bik<0

x−bik
i .

Two seeds are said to be mutation equivalent if one of them can be obtained from the 

other one by a finite sequence of mutations.

Remark 2.6. It is not hard to verify that μk is an involution, that is,

μk(μk(x̃, B̃)) = (x̃, B̃).

Remark 2.7. Let us start with an initial seed (x̃, B̃). By definition any mutable variable 

can be obtained from (x̃, B̃) by some sequence of mutations at some mutable indices.

Definition 2.8. Let (x̃, B̃) be a seed. Let χ be the set of all possible mutable variables, that 

is, the mutable ones of the initial seed or the mutable ones generated by any sequence of 

mutations applied to the initial seed. Let R be the polynomial ring R = C[xn+1, ..., xm], 

where xn+1, ..., xm are the frozen variables of the seed (x̃, B̃). The cluster algebra (of 

geometric type) is the algebra A = R[χ], the subalgebra of the ambient field generated 

by all variables (mutable or frozen). If (x̃, B̃) is an initial seed of a cluster algebra A, 

then we may denote A by A(x̃, B̃).

Definition 2.9. Let (x̃, B̃) be a seed. The rank of the seed or its corresponding cluster 

algebra is the number of its mutable variables, while the number of all variables of the 

seed is referred to as the cardinality of the seed. Thus in our setting above, the rank of 

(x̃, B̃) is n and the cardinality of it is m.

Definition 2.10. A cluster algebra A(x̃, B̃) is said to be of finite type if it has a finite 

number of mutable variables. Otherwise it is said to be of infinite type.

3. Partial flag varieties

This section captures the required overview from the partial flag varieties. We need 

first review the definition of a partial flag variety and look at some facts about its 

coordinate ring. Other useful overviews, with probably more details about this, can be 

found in [6], [7], [10], or [14].

Remark 3.1. It is known that each semisimple group induces a Cartan matrix whose 

information can be encoded in the corresponding Dynkin diagram. One of the significant 

consequences of this is that every semisimple complex Lie algebra is fully characterized, 

up to isomorphism, by its Dynkin diagram.
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Remark 3.2. From now on, the set I denotes the vertex set of the Dynkin diagram Δ

corresponding to G.

Definition 3.3. A parabolic subgroup P of G is a closed subgroup that lies between G

and some Borel subgroup B.

Example 3.4.

(1) Any Borel subgroup B is parabolic.

(2) Fix a nonempty subset J ⊂ I and let K = I \ J . Denote by xi(t) (i ∈ I, t ∈ C)

the simple root subgroups of the unipotent radical N of B and denote by yi(t)

the simple root subgroups of the unipotent radical N− of B−. The subgroup PK

generated by B and the one-parameter subgroups yk(t) (k ∈ K, t ∈ C) are parabolic. 

Similarly, the subgroup P −
K generated by B− and the one-parameter subgroups xk(t)

(k ∈ K, t ∈ C) is a parabolic subgroup.

Definition 3.5. A quotient G/P is called a (partial) flag variety if P is a parabolic sub-

group of G.

Remark 3.6. It is known that any parabolic subgroup is conjugate to a parabolic sub-

group of the form PK . This reduces the study of partial flag varieties to the ones of the 

form G/PK .

Remark 3.7. The partial flag variety G/P −
K can be naturally embedded as a closed subset 

of the product of projective spaces

∏

j∈J

P (L(̟j)∗),

where ̟j is a fundamental weight of G, and for a dominant weight λ, the corresponding 

L(λ) is the finite-dimensional irreducible G-module with highest weight λ; and L(λ)∗

denotes the right G-module obtained by twisting the action of G. The L(̟i)’s are called 

the fundamental representations.

Remark 3.8. Let ΠJ
∼= NJ denote the monoid of dominant integral weights of the form 

λ =
∑

j∈J aj̟j , where aj ∈ N. The multi-homogeneous coordinate ring C[G/P −
K ] is a 

ΠJ -graded algebra. In particular,

C[G/P −
K ] =

⊕

λ∈ΠJ

L(λ).

One of the significant results is that C[G/P −
K ] can be identified with the subalgebra of 

C[G/N−] generated by the homogeneous elements of degree ̟j, where j ∈ J .
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Remark 3.9. For a Weyl group W of G, the longest element in this paper will always be 

denoted by w0 and the Coxetor generators will be denoted by si where i runs in I.

The notation of the length of some w ∈ W will be ℓ(w). The Chevalley generators of 

the Lie algebra g of G are denoted ei, fi, hi, where again i ∈ I. The ei’s here generate 

Lie(N) = n. An important consequence of this is that N acts naturally from the left and 

right on C[N ] by the following left and right actions respectively:

(x · f)(n) = f(nx), (f ∈ C[N ] and x, n ∈ N),

(f · x)(n) = f(xn), (f ∈ C[N ] and x, n ∈ N).

One might differentiate these two actions to get left and right actions of n on C[N ], 

respectively.

Notation. The right action of ei on f ∈ C[N ] will be denoted by e†
i (f) := f · ei.

Remark 3.10. For each simple reflection si ∈ W , let si := exp(fi) exp(ei) exp(fi). If 

w = si1
...sir

with r being the length of w, then define w = si1
...sir

. Let G0 = N−HN be 

the open set of G consisting of elements having Gaussian decomposition. Indeed, each 

x ∈ G0 can be uniquely represented as

x = [x]−[x]0[x]+,

where [x]− ∈ N−, [x]0 ∈ H, [x]+ ∈ N . Let V +
i be the irreducible representation whose 

highest weight is ̟i and highest weight vector is v+
i . For any h ∈ H one has that v+

i

is an eigenvector, that is, hv+
i = [h]̟iv+

i and [h]̟i ∈ C \ {0}. This gives the following 

definition introduced by Fomin and Zelevinsky in [4].

Definition 3.11. For u, v ∈ W and i ∈ I define the generalized minor to be the regular 

function on G given by

Δu̟i,v̟i
(x) = [u−1xv]̟i

0 .

Remark 3.12. The distinguished elements Δ̟j ,w(̟j), (w ∈ W ), are of degree ̟j (see 2.3 

in [1] or section 2 and 6 in [6] for more details). They make the coordinate ring of the 

cell and the coordinate ring of the corresponding flag variety related by the following:

C[NK ] = C[G/P −
K ]
/

(Δ̟j ,̟j
− 1)

j∈J
.

The generalized minors are nothing but a generalization of the flag minors of SLn. Their 

significance in the cluster structure of the coordinate ring of partial flag varieties will be 

seen in section 5.
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4. Preliminaries from Poisson algebras

In [12] and [13], Goodearl and Yakimov made the relationship between the coordinate 

ring of Schubert cells and cluster algebras clear and explicit. They proved that each such 

coordinate ring admits a cluster structure. Thus, since the coordinate ring of any cell is 

the quotient of the coordinate ring of some flag variety modded out by some generalized 

minors, it is clear that the result of Goodearl and Yakimov should play an important role 

in this paper. Their results were based on Poisson geometry and so we capture here the 

main elements that we need from their work. More details about the relation between 

Poisson geometry and cluster algebras can be found in [10] and [12].

Definition 4.1.

(1) A Poisson bracket {−, −} is a Lie bracket that is a derivation also in each variable 

for the associative products.

(2) A Poisson algebra is a commutative algebra R together with a Poisson bracket.

(3) For a ∈ R the Hamiltonian associated with a is the derivation {a, −}.

(4) A Poisson ideal of R is an ideal I such that {R, I} ⊂ I.

Remark 4.2. The Poisson bracket of a Poisson algebra R induces a Poisson bracket on 

any quotient of R by a Poisson ideal.

Definition 4.3. Define the Poisson-Ore extensions to be B[x; σ, δ]p where B is a Poisson 

algebra, B[x; σ, δ]p = B[x] is a polynomial ring and σ, δ are suitable Poisson derivations 

on B such that for any b ∈ B we have

{x, b} = σ(b) + δ(x).

Let K be a base field of characteristic 0. For an iterated Poisson-Ore extension

R = K[x1]p[x2; σ2, δ2]p · · · [xm; σm, δm]p

and k ∈ [0, m], define

Rk = K[x1, ..., xk] = K[x1]p[x2; σ2, δ2]p · · · [xk; σk, δk]p,

where R0 = K.

Definition 4.4. A Poisson-CGL extension is an iterated Poisson-Ore extension R as above 

that is endowed with a rational Poisson action of a torus H such that

(1) The elements x1, ..., xk are H-eigenvectors;

(2) The map δk is locally nilpotent on Rk−1 for any k ∈ [2, m];
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(3) For any k ∈ [1, m] there is an hk ∈ LieH such that σk = hk|Rk−1
and the hk-

eigenvalue of xk nonzero and denoted by λk.

Definition 4.5. Let R be a Noetherian Poisson domain. An element p ∈ R is called a 

Poisson-prime element if any of the following equivalent conditions hold:

(1) The ideal (p) is a prime ideal and it is a Poisson ideal.

(2) The element p is a prime element of R such that p|{p, −}, that is, p divides {p, x}

for all x ∈ R.

(3) [In the case K = C]: The element p is a prime element of R and the zero locus V (p)

is a union of symplectic leaves of the maximal spectrum of R.

One of the great successes is due to the work of Goodearl, Yakimov when they proved 

the following:

Theorem 4.6. Every symmetric Poisson-CGL extension R such that λl/λj ∈ Q>0 for all 

l, j has a canonical cluster algebra structure that coincides with its upper cluster algebra.

Remark 4.7. The cluster variables in the construction of Goodearl and Yakimov are the 

unique homogeneous Poisson-prime elements of Poisson-CGL (sub)extensions not be-

longing to smaller subextensions. The mutation matrices of their seeds can be computed 

using linear systems of equations that come from the Poisson structure.

A significant consequence of the work of Goodearl and Yakimov is:

Theorem 4.8. The coordinate ring C[NK ] has a canonical cluster algebra structure.

Proof. The notation of this proof follows [13]. Throughout, the kth vector of the standard 

basis of Zm is denoted by ek, the notation a[j, k] is given by

a[j, k] := ‖(w[j,k] − 1)̟ik
‖2/4 ∈

1

2
Z,

and the notation S(w) is the support of w and is given by

S(w) := {i ∈ I | si ≤ w} = {i ∈ I | i = ik for some k ∈ [1, m]}.

Also, set

p(k) :=

{
max{j < k | ij = ik}, if such j exists;

−∞, otherwise.

s(k) :=

{
min{j > k | ij = ik}, if such j exists;

∞, otherwise.
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Let Aq, A, U, Aq(n+(w))A1/2 and Uq(n−(w))∨
A1/2 be as in [13]. From Theorem 10.1 

in [11] and Theorem 7.3 in [13] we know that the quantum Schubert cell, denoted by 

Aq(n+(w))A1/2 , has the quantum cluster structure given by the equation

Aq(n+(w))A1/2 = A(Mw, B̃w,∅)A1/2 = U(Mw, B̃w,∅)A1/2 ,

where the extended cluster variables are given by

Mw(ej) = qa[1,j]D̟ij
,w≤j̟ij

,

for all j ∈ [1, m], where

D̟j ,w(̟j) = proj(Δ̟j ,w(̟j)),

where the frozen variables are the ones indexed by j ∈ [1, m] such that s(j) = ∞. The 

map

proj : C[G/P −
K ] → C[NK ]

denotes the standard projection from C[G/P −
K ] to C[NK ]. The exchange matrix B̃w is 

of size m × (m − |S(w)|) and its j × k entry is given by

(B̃w)jk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if j = p(k),

−1, if j = s(k),

aijik
, if j < k < s(j) < s(k),

−aijik
, if k < j < s(k) < s(j),

0, otherwise;

where the entry aijik
is the same ij × ik entry of the Cartan matrix of the same type. 

By [13] we have that Aq(n+(w))A1/2
∼= Uq(n−(w))∨

A1/2 . Thus, by corollary 3.7 in [9], it 

follows that

C ⊗ Aq(n+(w))A1/2
∼= A(B̃w).

On the other hand, by (4.7) in [17], we know that the left-hand side is isomorphic 

to the quotient of Aq(n+(w))A1/2 by (q − 1). Consequently, we get the desired cluster 

structure in the classical case whose exchange matrix is B̃w and cluster variables are 

D̟ik
,w≤k̟ik

. �

5. Cluster algebra structure on C[G/P −

K
]

In the work of Geiß, Leclerc and Schröer [6], they proved that C[G/P −
K ] up to lo-

calization admits a cluster structure if G is simply-laced of type An or D4. Their work 
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motivates our construction here. The idea is to translate their work, which was in terms 

of categorification, to another language that works in the general case.

Notation. The cluster structure on C[NK ] constructed by the work of Goodearl and 

Yakimov will be denoted by AJ , where J and K are as defined before. We may write A

instead of AJ if the context is clear.

Lemma 5.1. For every f ∈ C[NK ] there exists a unique homogeneous element f̃ ∈

C[G/P −
K ] such that its projection to C[NK ] is f and whose multi-degree is minimal 

with respect to the usual partial ordering obtained by the usual ordering of weights, that 

is, μ � λ iff λ − μ is an N-linear combination of weights ̟j (j ∈ J).

Proof. This is Lemma 2.4 in [6]. Despite the fact that the main results of that paper are 

for the simply-laced case, this one is general and works for any type. �

Remark 5.2. The proof of the preceding lemma in [6] involves the following important 

points:

(1) Set

aj(f) = max
{

s | (e†
j)sf �= 0

}
.

(2) Set

λ(f) =
∑

j∈J

aj(f)̟j .

(3) The minimality in the previous lemma means that λ(f) is minimal in the following 

sense: if ˜̃f ∈ L(λ) and proj( ˜̃f) = f then λ(f) � λ. On the other hand, the projection 

of each piece L(λ) to C[NK ] is injective and so if there is an element there whose 

projection is f , then it is unique in L(λ). These two pieces of information together 

are the main ingredients in proving the existence and uniqueness of λ(f).

Remark 5.3. The endomorphisms e†
j are derivations of C[NK ]. Thus, for all f, g ∈ C[NK ]

we have the following:

(1) The image of fg under e†
j is

e†
j(fg) = e†

j(f)g + fe†
j(g);

(2) By Leibniz formula,

(e†
j)aj(f)+aj(g)(fg) = (e†

j)aj(f)(e†
j)aj(g)(g) �= 0;
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(3) For any integer k ≥ 1,

(e†
j)aj(f)+aj(g)+k(fg) = 0;

(4) Consequently,

aj(fg) = aj(f) + aj(g).

Lemma 5.4. For any two elements f, g ∈ C[NK ], we have f̃ · g = f̃ · g̃. If for any j ∈ J

we have aj(f + g) = max{aj(f), aj(g)}, then there are some relatively prime monomials 

μ, ν in the generalized minors Δ̟j ,̟j
such that

f̃ + g = μf̃ + νg̃.

Proof. Lemma 2.5 in [6]. �

Remark 5.5. Let (x̃, B̃) be a seed of the cluster algebra A = C[NK ]. Then the mutation 

formula tells us that

xkx′
k = M(k) + L(k),

where M(k), L(k) are monomials in the variables x1, ..., xk−1, xk+1, ..., xn. As a conse-

quence of the previous lemma (cf. [6]) we get that

x̃kx̃′
k = μ(k)M̃(k) + ν(k)L̃(k),

where μ(k) and ν(k) are relatively prime monomials in Δ̟j ,̟j
(j ∈ J). This means that 

we can write μ(k) and ν(k) as

μ(k) =
∏

j∈J

Δαj
̟j ,̟j

and ν(k) =
∏

j∈J

Δβj
̟j ,̟j

.

Consequently, it is reasonable to expect that the variables x̃i form the cluster variables 

of some cluster algebra contained in C[G/P −
K ]. This was proved in type An and D4 by 

Geiß, Leclerc and Schröer.

Definition 5.6. A lift of a cluster algebra A is a cluster algebra Ã such that A is a 

quotient algebra of it. Alternatively, we may say that A can be lifted to Ã .

Definition 5.7. For any seed (x, B) of the cluster algebra AJ = C[NK ] constructed in 

[12] define a new pair (x̂, B̂) of C[G/P −
K ] by raising each variable x of (x, B) to the 

variable x̃ (see Lemma 5.4) preserving the same type (mutable or frozen) and by adding 

the generalized minors Δ̟j ,̟j
modded out in C[NK ] as frozen variables. The matrix B̂
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of this lift is obtained as follows: Extend the matrix B of the construction of Goodearl 

and Yakimov [12] by |J | rows labeled by the elements of J such that the entries are

b̂jk =

{
βj , if βj �= 0;

−αj , else,

where αj and βj are as in Remark 5.5. This process is called the (seed) homogenization.

Theorem 5.8. Let {(x, B)} be the collection of seeds of the cluster algebra AJ of C[NK ]. 

The corresponding collection 
{

(x̂, B̂)
}

constructed above forms a valid collection of seeds. 

In other words, if (x, B) and (x′, B′) are two seeds of the coordinate ring of the cell C[NK ]

such that (x′, B′) = μk(x, B), then correspondingly (x̂′, ̂B′) = μk(x̂, B̂).

Proof. First, we start with a proof overview. Let (x, B) and (x′, B′) be two seeds of the 

cluster algebra AJ = C[NK ] such that (x′, B′) = μk(x, B). Since {(x, B)} is a collection of 

seeds, it suffices to show that (x̂′, ̂B′) = μk(x̂, B̂) to get that the corresponding collection {
(x̂, B̂)

}
is indeed a collection of seeds. In other words, the aim is to show that the 

homogenization of the mutation, at some index of a seed, is the same as the mutation, at 

the same index, of the homogenization of the same seed. In symbols, to reach our goal, 

it is enough to show that

μ̂k(B) = μk(B̂),

where on the left-hand side we mutate and then homogenize, while we do the reverse 

on the right-hand side. In homogenization, one needs to mutate to get all the needed 

entries. Thus, since the equation we seek to get involves homogenization and mutation, 

we will need to deal with two steps of mutation, one follows the other. As the variables 

of the tuple x̂ live in C[G/P −
K ], the success of proving the aimed result will prove that 

C[G/P −
K ] contains a cluster algebra.

Second, we begin the actual proof. Let k be a mutable index in the construction of 

[12]. We need to show that μk(B̂) = B̂′. In other words, we need to show that the matrix 

entries of the mutation of B̂ match the ones coming from the homogenization of B′. 

Note that the entries of the homogenization of B′ are the same as B′ together with 

additional rows whose entries are extracted from the mutation equations of the mutated 

seed (x′, B′). Fixing a mutable index t, these equations are of the form

x̃′(t)x̃′′(t) = μ′(t)M̃ ′(t) + ν′(t)L̃′(t),

where x′(t) = x′
t denotes the tth variable in the mutated extended cluster in a direction 

k and x′′(t) = x′′
t denotes the tth variable coming from a second mutation in a direction 

t. Let b̂′
st denote the entry of position s × t in μk(B̂). Obviously, if s /∈ J then b̂′

st equals 

the s × t entry of μk(B), as the entries of B̂ and B match when s /∈ J . Consequently, 
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the entries of the mutation of both coincide again when s /∈ J . Assume now that s ∈ J . 

If t = k, then by the fact that the construction of [12] is indeed a cluster algebra, we get 

that M ′(k) = L(k) and L′(k) = M(k). This clearly makes α′
j = βj and β′

j = αj . Since 

μ′(t) and ν′(t) are relatively prime, we see easily from the construction that the entry 

we get is −b̂st which equals b̂′
st by the mutation formula.

Assume now that t is a mutable index other than k. It suffices to show that in

x̃′(t)x̃′′(t) = μ′(t)M̃ ′(t) + ν′(t)L̃′(t),

the exponents of the minors of the monomials μ′(t) and ν′(t) match the formula of the 

matrix mutation. Equivalently, we may assume that μ′(t) and ν′(t) are as we desire and 

then show that μ′(t)M̃ ′(t) + ν′(t)L̃′(t), is an element whose proj is M ′(t) + L′(t) and 

whose order is minimal with respect to �. The first property is straightforward. Now,

λ
(
M ′(t) + L′(t)

)
=
∑

j∈J

aj

(
M ′(t) + L′(t)

)
̟j =

∑

j∈J

aj̟j (5.1)

where 

aj = aj

(
M ′(t) + L′(t)

)

= max{s | (e†
j)s
(
M ′(t) + L′(t)

)
�= 0}

= max

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s

∣∣∣∣∣ (e†
j)s

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∏

bit+
|bik|bkt+bik|bkt|

2
>0

x′bit+
|bik|bkt+bik|bkt|

2

i

+
∏

bit+
|bik|bkt+bik|bkt|

2
<0

x′
−
(

bit+
|bik|bkt+bik|bkt|

2

)

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�= 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= max

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑

bit+
|bik|bkt+bik|bkt|

2
>0

aj

(
x′bit+

|bik|bkt+bik|bkt|

2

i

)
,

∑

bit+
|bik|bkt+bik|bkt|

2
<0

aj

(
x′

−
(

bit+
|bik|bkt+bik|bkt|

2

)

i

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Note here that the last equality is obtained by the fact that aj(fg) = aj(f) + aj(g). 

Using the same fact once again, we clearly get that

aj =
∑

i

∣∣∣∣bit +
|bik|bkt + bik|bkt|

2

∣∣∣∣aj

(
x′

i

)
,

where, depending on j, the range of the sum is either the set of indices satisfying the 

inequality

bit +
|bik|bkt + bik|bkt|

2
> 0
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or the set of indices satisfying the inequality

bit +
|bik|bkt + bik|bkt|

2
< 0.

Recall also that x′
i = xi for i /∈ {k, t}. So,

aj =
∑

i

∣∣∣∣bit +
|bik|bkt + bik|bkt|

2

∣∣∣∣aj

(
xi

)
.

But by equation (5.1), it follows that

λ
(
M ′(t) + L′(t)

)
=
∑

j∈J

aj̟j

=
∑

j∈J

∑

i

(∣∣∣∣bit +
|bik|bkt + bjk|bkt|

2

∣∣∣∣aj

(
xi

))
̟j .

Now, since C[G/P −
K ] is graded by the lattice spanned by the ̟i’s, the last equation 

implies that

L
(
λ
(
M ′(t) + L′(t)

))
= L

⎛
⎝∑

j∈J

∑

i

(∣∣∣∣bit +
|bik|bkt + bjk|bkt|

2

∣∣∣∣aj

(
xi

))
̟j

⎞
⎠

⊃
∏

j∈J

∏

i

L

(∣∣∣∣bit +
|bik|bkt + bik|bkt|

2

∣∣∣∣aj

(
xi

)
̟j

)

=
∏

j∈J

∏

i

L (diaj(xi)̟j) ,

where

di :=

∣∣∣∣bit +
|bik|bkt + bik|bkt|

2

∣∣∣∣.

So, we get that

L
(
λ
(
M ′(t) + L′(t)

))
⊃
∏

j∈J

∏

i

L (aj(xi)̟j) · · · L (aj(xi)̟j)︸ ︷︷ ︸
di times

. (5.2)

Note here that the sum over i is the sum over the di’s where the absolute value is 

taken over the positive values only or the negative values only. A similar work with 

L 
(
λ
(
M(k) + L(k)

))
shows that
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L
(
λ
(
M(k) + L(k)

))
= L

⎛
⎝∑

j∈J

∑

i

(
|bik|aj

(
xi

))
̟j

⎞
⎠

⊃
∏

j∈J

∏

i

L
(
|bik|aj

(
xi

)
̟j

)
.

This implies that

L
(
λ
(
M(k) + L(k)

))
⊃
∏

j∈J

∏

i

L (̟j) · · · L (̟j)︸ ︷︷ ︸
|bik|aj(xi) times

.

But since Δ̟j ,̟j
is of degree ̟j , it follows that the possible occurrences of the exponents 

of Δ̟j ,̟j
are the integers

0, 1, 2, ...,
∑

i

aj(xi)|bik|.

However, the minimality of

aj(λ(M(k) + L(k))) =
∑

j∈J

∑

i

|bik|aj(xi)

shows that the only possibility is 
∑

i aj(xi)|bik|, because the rest are still available in 

some L(λ)’s in which λ is less than λ(M(k) + L(k)). Consequently, the only possibilities 

for αj and βj are 0 or 
∑

i aj(xi)|bik|. But, thank to the homogeneity of the construction 

of [12], there exists a unique j in which aj(xi) �= 0. Hence, one of αjk and βjk is aj(xi)|bik|

and the other is 0.

Therefore, for every i there is a unique j in which one of the following must be true:

aj(xi)bit = ±αjt, aj(xi)bik = ±αjk and aj(xi)|bik| = αjk,

or

aj(xi)bit = ±βjt, aj(xi)bik = ±βjk and aj(xi)|bik| = βjk.

Now,

(
Δaj(xi)

̟j ,̟j
x̃i

)di

∈ L (diaj(xi)̟j)

(
Δaj(xi)

̟j ,̟j
x̃i

)∣∣∣bit+
|bik|bkt+bik|bkt|

2

∣∣∣
∈ L (diaj(xi)̟j)

It is not hard now to see that 
(

Δ
aj(xi)
̟j ,̟j x̃i

)di

forms one factor of the monomial μ′(t)M̃ ′
t

or the monomial ν′(t)L̃′
t. The rest is similarly there. Since L 

(
λ
(
M ′(t) + L′(t)

))
and 

L 
(
λ
(
M(k) + L(k)

))
are homogeneous ideals and since
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x̃kx′
k = x̃kx̃′

k = μ(k)M̃(k) + ν(k)L̃(k) ∈ L
(
λ
(
M(k) + L(k)

))
,

it is again not difficult to combine these pieces of information to see that

x̃′
tx

′′
t = x̃′

tx̃′′
t = μ′(t)M̃ ′(t) + ν′(t)L̃′(t) ∈ L

(
λ
(
M ′(t) + L′(t)

))
.

This completes the proof. �

Notation. The cluster algebra contained in C[G/P −
K ] and obtained from the preceding 

theorem will be denoted by ÂJ or simply Â if the context is clear.

Corollary 5.9. Let B be the matrix B̃w of Theorem 4.8. The pair

({
D̟̃ik

,w≤k̟ik

}
⊔ {Δ̟j ,̟j

| j ∈ J}, B̂

)

is an initial seed of the cluster algebra Â ⊂ C[G/P −
K ].

Proof. Apply the construction of Theorem 5.8 to the initial seed (D̟ik
,w≤k̟ik

, B̃w) of 

C[NK ] (see Theorem 4.8). The mutable and frozen variables are described in Defini-

tion 5.7. �

Remark 5.10. One might think naively that the lift D̟̃ik
,w≤k̟ik

is equal to a generalized 

minor. But this is not the case in general; see Example 10.3 of [6].

Remark 5.11. In the simply-laced case, it is obvious that the construction of ÂJ matches 

the one of [6].

Remark 5.12. By construction, it is clear that the extended clusters of A and Â are in 

one-to-one correspondence. So, A and Â must be of the same type (either both finite or 

both infinite).

Theorem 5.13. The localization of the homogeneous coordinate ring of the flag variety 

C[G/P −
K ] by Δ̟j ,̟j

, (j ∈ J) equals the localization of the cluster algebra Â by the same 

elements. Namely,

C[G/P −
K ][Δ−1

̟j ,̟j
]j∈J = Â[Δ−1

̟j ,̟j
]j∈J .

Proof. Throughout the proof, for any element in C[G/P −
I\{j}] the term degree will be 

used to refer to its homogeneous degree (see Remark 3.8). Take J ′ ⊂ J and K ′ = I \ J ′. 

This gives us a reduced word w0 of the form i = (i′, i′′, i′′′), with i′ and (i′′, i′′′) being 

reduced words for wK
0 and wK′

0 respectively. Therefore, the initial seed for the cluster 

algebra ÂJ associated with i contains the one of ÂJ ′ associated with i′. This means that 

the latter is a subalgebra of the first, that is, ÂJ ′ ⊂ ÂJ . Consequently, Â{j} ⊂ ÂJ for 
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any j ∈ J . Recall that C[G/P −
K ] =

⊕
λ∈ΠJ

L(λ) is generated as a ring by the subspaces 

L(̟j) ⊂ C[G/P −
I\{j}]. Thus, it is generated by C[G/P −

I\{j}], where j ∈ J . Therefore, the 

result follows if the localization of C[G/P −
I\{j}] by Δ̟j ,̟j

is contained in the localization 

of Â{j}, by the same element.

We proceed by contradiction. Let f ∈ C[G/P −
I\{j}] such that f /∈ Â{j} and its degree 

is minimal. Let g = proj(f) ∈ C[NI\{j}]. Then proj(g̃ −f) = 0. Thus, we have that g̃ −f

belongs to the principal ideal (Δ̟j ,̟j
− 1), since

C[NI\{j}] = C[G/P −
I\{j}]

/
(Δ̟j ,̟j

− 1) .

Consequently, there is some h ∈ C[G/P −
I\{j}] such that

g̃ − f = h
(
Δ̟j ,̟j

− 1
)

g̃ − f = hΔ̟j ,̟j
− h.

But note that the definition of g̃ and the choice of f imply that the degree of the whole 

left-hand side is less than or equal to degree of f . On the other hand, it is obvious that 

the degree of the right-hand side is the degree of h plus ̟j . It follows that the degree of 

h is less than the one of f . Therefore, by minimality, we get that h ∈ Â{j}. Also, since 

Δ̟j ,̟j
∈ Â{j}, it follows that hΔ̟j ,̟j

∈ Â{j}. Now, if the lifting g̃ ∈ Â{j}, we have

f = g̃︸︷︷︸
∈ Â{j}

− hΔ̟j ,̟j︸ ︷︷ ︸
∈ Â{j}

+ h︸︷︷︸
∈ Â{j}

∈ Â{j} ⊂ Â{j}[Δ−1
̟j ,̟j

], (5.3)

which is a contradiction to f being outside Â{j}. Therefore, g̃ /∈ Â{j}. Now, write 

g ∈ C[NI\{j}] as g =
∑r

i=1 cimi, where each mi is a product of cluster variables (might 

not be from the same seed) and each ci is a scalar. We may do this in such a way that 

the mi’s are distinct. Recall that C[NK ] can be identified with

C[NK ] =

⎧
⎨
⎩

f∏
j∈J Δ

aj
̟j ,̟j

| f ∈ L

(∑

j∈J

aj̟j

)⎫⎬
⎭ .

By the uniqueness and minimality of the tilde map in Lemma 5.1, this can be refined to

C[NK ] =

⎧
⎨
⎩

f∏
j∈J Δ

aj
̟j ,̟j

| f ∈ L

(∑

j∈J

aj̟j

)
and the aj ’s are minimal

⎫
⎬
⎭ .

As J = {j}, we can use the second identification to write each mi as 
fi

Δ
ai,j
̟j ,̟j

, where 

fi ∈ L(ai,j̟j) and ai,j is minimal with this property. Clearly, the degree di of m̃i is 
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ai,j̟j . It is not hard to see that m̃i = fi for all i = 1, ..., r. As distinct elements lift 

by the tilde map to distinct elements by Lemma 5.1, we get that the m̃i’s are distinct. 

Consequently, the fi’s are distinct. Let aj := max {ai,j | i = 1, ..., r}. Now, if

r∑

i=1

(
ciΔ

aj−ai,j
̟j ,̟j

fi

)
(5.4)

is a lift of g =
∑r

i=1 cimi in the minimal way, then we get that g̃ ∈ Â{j}, which is a 

contradiction. Otherwise, there is an element of lower degree in which g̃ is equal to that 

element. Note that the multiplication of g̃ by Δ
sj
̟j ,̟j for some positive integer sj gives an 

element whose degree is equal to the degree of the element in (5.4) and whose projection 

is equal to g. Since the projection of each homogeneous piece L(λ) to C[NK ] is injective, 

we get that

g̃ =

∑r

i=1

(
ciΔ

aj−ai,j
̟j ,̟j fi

)

Δ
sj
̟j ,̟j

.

Clearly, by (5.3) this implies again that f ∈ Â{j}[Δ−1
̟j ,̟j

]. Consequently, the result 

follows, that is,

C[G/P −
K ][Δ−1

̟j ,̟j
]j∈J = Â[Δ−1

̟j ,̟j
]j∈J . �

Conjecture 5.14. The homogeneous coordinate ring of the flag variety C[G/P −
K ] equals 

the cluster algebra Â. In particular, C[G/P −
K ] is a cluster algebra whose initial seed is

({
D̟̃ik

,w≤k̟ik

}
⊔ {Δ̟j ,̟j

| j ∈ J}, B̂

)
.

Remark 5.15. Using the proof of the previous theorem, the conjecture is equivalent to 

proving that if g =
∑r

i=1 cimi is written where the number of terms is minimal, then

g̃ =

r∑

i=1

(
ciΔ

aj−ai,j
̟j ,̟j

m̃i

)
.

Example 5.16. Let G be a semisimple algebraic group of type B3, say G = SO2(3)+1 =

SO7, J = {3} and K = I \ J = {1, 2}. Consider the longest word

w0 = s1s2s1s3s2s1s3s2s3.

The subword w = s3s2s1s3s2s3 generates NK . Since s(3) = s(5) = s(6) = ∞ and 

s(k) �= ∞ for k ∈ {1, 2, 4}, we get that the mutable variables are indexed by 1, 2, 4 and 

the frozen ones are indexed by 3, 5, 6 using the function s of Theorem 4.8. Therefore, by 

the same theorem, the exchange matrix of the cluster algebra structure of C[NK ] is
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1 2 4
⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

0 ai1i2
1 1

−ai2i1
0 ai2i4

2

−1 −ai4i2
0 4

−ai3i1
−ai3i2

0 3

0 −1 −ai5i4
5

0 0 −1 6

=

1 2 4
⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

0 −2 1 1

1 0 −1 2

−1 2 0 4

0 1 0 3

0 −1 1 5

0 0 −1 6

where the column labels denote the cluster variables and the row labels denote the 

extended cluster variables, as usual. Also, the extended cluster variables D̟ij
,w≤j̟ij

are

j = 1 =⇒ D̟3,s3̟3
; (mutable)

j = 2 =⇒ D̟2,s3s2̟2
; (mutable)

j = 3 =⇒ D̟1,s3s2s1̟1
; (frozen)

j = 4 =⇒ D̟3,s3s2s1s3̟3
; (mutable)

j = 5 =⇒ D̟2,s3s2s1s3s2̟2
; (frozen)

j = 6 =⇒ D̟3,s3s2s1s3s2s3̟3
. (frozen)

Therefore, by Theorem 5.8, the following list of variables forms an initial extended cluster 

of Â ⊂ C[G/P −
K ]

D̟̃3,s3̟3
; (mutable)

D̟̃2,s3s2̟2
; (mutable)

D̟̃3,s3s2s1s3̟3
; (mutable)

D̟̃1,s3s2s1̟1
; (frozen)

D̟̃2,s3s2s1s3s2̟2
; (frozen)

D̟̃3,s3s2s1s3s2s3̟3
; (frozen)

Δ̟3,̟3
. (frozen)
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Consequently, the extended exchange matrix B̂ of Â attached to this extended cluster is

B̂ =

1 2 4
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 −2 1 1

1 0 −1 2

−1 2 0 4

0 1 0 3

0 −1 1 5

0 0 −1 6

−1 0 0 j ∈ J

.
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