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The two main approaches to the study of irreducible representations of orders (via

traces and Poisson orders) have so far been applied in a completely independent fashion.

We define and study a natural compatibility relation between the two approaches

leading to the notion of Poisson trace orders. It is proved that all regular and

reduced traces are always compatible with any Poisson order structure. The modified

discriminant ideals of all Poisson trace orders are proved to be Poisson ideals and the

zero loci of discriminant ideals are shown to be unions of symplectic cores, under

natural assumptions (maximal orders and Cayley–Hamilton algebras). A base change

theorem for Poisson trace orders is proved. A broad range of Poisson trace orders are

constructed based on the proved theorems: quantized universal enveloping algebras,

quantum Schubert cell algebras and quantum function algebras at roots of unity,

symplectic reflection algebras, 3D and 4D Sklyanin algebras, Drinfeld doubles of pre-

Nichols algebras of diagonal type, and root of unity quantum cluster algebras.

1 Introduction

1.1 Traces versus Poisson orders

There are two main approaches to the study of irreducible representations of orders

(throughout, we will assume that they are algebras over a commutative base ring k):
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2 K. A. Brown and M. T. Yakimov

(1) The 1st approach is based on invariant theory and relies on a trace map

tr : R → C, where C is a central subalgebra;

see Definition 2.2. There are several general constructions of traces. If R is a free C-

module of finite rank, then a C-basis of R gives rise to a homomorphism from R to the

algebra of n × n matrices over C, which, in turn, produces the regular trace

trreg : R → C.

A more frequently encountered situation is when R is a maximal order, in which case

one has the reduced trace

trred : R → Z(R),

where Z(R) denotes the center of R.

A Cayley–Hamilton algebra of degree d ∈ Z+ in the sense of Procesi [38] is a

k-algebra R with trace tr : R → C for a central subalgebra C such that

χd,a(a) = 0 for all a ∈ R and tr(1) = d;

see Definition 2.9 below. Here, χd,a(t) ∈ C[t] is the d-th characteristic polynomial of

a ∈ R and one requires 1, . . . , d to be invertible in C. Every maximal order R of PI degree

d such that 1, . . . , d are invertible in R is a Cayley–Hamilton algebra of degree d over its

full center Z(R) with respect to the reduced trace trred.

Using invariant theory, for each m ∈ MaxSpec C, one constructs an R/mR-module

V
m

of dimension d, independent on m, such that V
m

is a direct sum (with multiplicities)

of all irreducible R-modules annihilated by m. For maximal orders R, this was done by

Braun [9]; here, d equals the PI degree of R. For Cayley–Hamilton algebras of degree d,

this was done by Procesi [38]. In this way, one has a uniform invariant theory model that

captures all irreducible representations of R.

(2) The 2nd approach is based on Poisson geometry and relies on the notion of

Poisson order. A Poisson order is a triple (R, C, ∂) where C is a central subalgebra of R

such that R is a finitely generated C-module and ∂ : C → Derk(R) is a k-linear map such
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Poisson Trace Orders 3

that

{a, b} := ∂a(b) ∈ C, ∀a, b ∈ C

and C is a Poisson algebra with this operation; see Definition 2.1. The notion was

axiomatized in [13] after the work of De Concini–Kac–Procesi [20] who used it in the

framework of big quantum groups at roots of unity. Poisson orders are very common

and arise whenever we can realize the algebra R as a specialization; see, for example,

[13, § 2.2] and [46, Proposition 2.7]. Their key application is [13, Theorem 4.2] stating

that the algebras

R/mR

are isomorphic to each other across the symplectic cores of MaxSpec C with respect

to the Poisson structure {., .}. This drastically simplifies the study of the irreducible

representations of R since one only needs to consider one finite-dimensional algebra of

the form R/mR for each symplectic core of C.

For many orders R, both approaches (1) and (2) were applied to obtain valuable

information about the irreducible representations of R, using invariant theory and

Poisson geometry, respectively. However, in each case, those applications were carried

out independently of each other.

1.2 Statements of the main results

The goal of this paper is to unify the two approaches on the basis of the following

compatibility condition.

Definition. A Poisson trace order is a Poisson order (R, C, ∂) equipped with a trace map

tr : R → C such that

tr ◦∂c = ∂c ◦ tr, ∀c ∈ C,

or equivalently,

tr(∂c(r)) = {c, tr(r)}, ∀c ∈ C, r ∈ R.
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4 K. A. Brown and M. T. Yakimov

Our 1st theorem provides a general way of constructing Poisson trace orders

based on regular and reduced traces.

Theorem A. Let (R, C, ∂) be a Poisson order.

(1) If R is a free C module, then the quadruple (R, C, ∂, trreg) is a Poisson trace

order.

(2) If R is a PI algebra and C = Z(R) is normal, then (R, C, ∂, trred) is a Poisson

trace order.

In fact, we prove a stronger form of the results in both parts of the theorem.

Namely,

(1) in the setting of part (1), trreg ◦δ = δ ◦ trreg for every derivation δ ∈ Derk(R)

such that δ(C) ⊆ C;

(2) in the setting of part (2), trred ◦δ = δ ◦ trred for every derivation δ ∈ Derk(R)

such that δ(Z(R)) ⊆ Z(R).

This is proved in Theorems 2.12 and 3.2.

The Poisson trace orders constructed from the 2nd part of Theorem A are usually

associated with a singular algebra Z(R). It is advantageous to have a base change

theorem that can be used for the construction of new Poisson trace orders from old

ones, thus leading to Poisson trace orders (R, C, ∂, tr) with a smooth central subalgebra

C. This is done in our 2nd theorem.

Theorem B. Assume that

(R, C, ∂, tr)

is a Poisson trace order with C an integral domain. If A is a Poisson subalgebra of C,

which is normal considered as a commutative algebra, with C finite over A, then

(R, A, ∂|A, trC/A ◦ tr)

is a Poisson trace order, where trC/A : C → A is the trace function of the finite

(commutative ring) extension C/A.

Using Theorems A and B, we construct an extensive list of Poisson trace orders.
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Poisson Trace Orders 5

(1) All big quantized universal enveloping algebras Uε(g) at roots of unity for

complex simple Lie algebras g [19] with respect to both their full centers

and their De Concini–Kac–Procesi (smooth) central Hopf subalgebras [20].

(2) All quantum Schubert cell algebras Uw
ε at roots of unity [21], where g is an

arbitrary complex simple Lie algebra and w is a Weyl group element, with

respect to both their full centers and their De Concini–Kac–Procesi (smooth)

central subalgebras [21].

(3) All quantized coordinate rings Fε[G] of connected simply connected complex

simple algebraic groups G [22], with respect to both their full centers and

their De Concini–Lyubashenko (smooth) central Hopf subalgebras [22].

(4) All 3D and 4D Skyanin algebras corresponding to a finite order automor-

phism of an elliptic curve [7, 8, 42] with respect to their full centers [6, 43].

(5) The quantum doubles of the bozonizations of all distinguished pre-Nichols

algebras [4] of diagonal type with finite root systems [29] that belong to

a one-parameter family. This large family contains all contragredient big

quantum super-groups at roots of unity. The Poisson trace order is with

respect to their smooth central Hopf subalgebras constructed in [2].

(6) All symplectic reflection algebras [23] when the parameter t = 0, with

respect to their full centers.

(7) All root of unity quantum cluster algebras Uε (̃B) [25, 31, 36], with respect

to their full centers and with respect to the central subalgebras associated

with their quantum Frobenius maps.

We refer the reader to Sections 5 and 6 for the statements of these results and

the precise (mild) assumptions in each case.

Our last theorem addresses the Poisson properties of the discriminant and

modified discriminant ideals of Poisson trace orders.

Theorem C. The following hold for every Poisson trace order (R, C, ∂, tr).

(1) All modified discriminant ideals MDℓ(R/C, tr) of R are Poisson ideals of C

with respect to the underlying Poisson structure on C.

(2) If the base ring k is a field, C is a finitely generated k-algebra and

(a) R is a maximal order, C = Z(R) and tr : R → C is the reduced trace or

(b) (R, C, tr) is a Cayley–Hamilton algebra of degree d such that char k /∈

[1, d],
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6 K. A. Brown and M. T. Yakimov

(b) then the zero sets of all discriminant ideals Dℓ(R/C, tr) are unions of

symplectic cores of MaxSpec C.

1.3 Organization of the paper and notation

The paper is organized as follows. Section 2 contains background material on algebras

with traces and Poisson orders, defines Poisson trace orders, and proves Theorem C

and the compatibility property of the regular trace in part (1) of Theorem A. Section 3

contains results on the reduced trace map of PI algebras and proves the compatibility

property in part (2) of Theorem B. Section 4 proves results on Poisson orders coming

from extensions of Poisson algebras and the base change Theorem B for Poisson orders.

Section 5 contains the construction of a broad range of families of Poisson orders

with respect to the full centers of PI algebras. Section 6 contains the construction

of many families of Poisson orders of different nature with respect to proper central

subalgebras.

Notation. Throughout the paper, k will denote a base commutative ring. By an algebra,

we will mean a k-algebra, and by a Poisson algebra, a Poisson algebra over k, that is,

the Poisson bracket of the latter is k-linear. The center of a k-algebra R will be denoted

by Z(R).

2 Poisson Trace Orders and their Discriminant Ideals

In this section, we define Poisson trace orders and prove a theorem that their modified

discriminant ideals are always Poisson ideals. From this, we deduce that the zero sets

of their discriminant ideals are unions of symplectic cores. Furthermore, we prove that

the regular trace is compatible with any Poisson order structure.

2.1 Definitions

We first recall the definitions of Poisson order and trace map for a noncommutative

algebra.

Throughout the section, C ⊆ R will denote a central k-subalgebra of R over

which R is a finitely generated module. If R is an affine k-algebra and k is a Noetherian

commutative ring, then by the Artin–Tate lemma [33, Lemma 13.9.10] C is an affine k-

algebra, and so C and R are Noetherian algebras.

Definition 2.1. [13, Definition 2.1] The pair (R, C) is called a Poisson order if
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Poisson Trace Orders 7

(1) C is equipped with a Poisson algebra structure {., .};

(2) there exists a map ∂ : C −→ Der
k
(R), c �→ ∂c such that ∂c is an extension of

the Hamiltonian derivation {c, −} of C.

We will denote Poisson orders as triples (R, C, ∂) because the Poisson bracket

{., .} can be recovered from the map ∂ : C −→ Derk(R) by condition (iii). Reshetikhin,

Voronov, and Weinstein considered a related notion of a Poisson fibered algebra, see

[40,Definition 2.1], which is a Poisson order with the additional property that

∂c1c2
(r) = c2∂c1

(r) + c1∂c2
(r) for all c1, c2 ∈ C, r ∈ R.

Definition 2.2. A trace map from R to C is a map tr: R → C that has the following

properties:

(1) (C-linearity) tr(cx) = c tr(x) for x ∈ R, c ∈ C;

(2) (cyclicity) tr(xy) = tr(yx) for x, y ∈ R.

Remark 2.3. For some purposes, one needs to require that tr 	= 0, or more specifically,

that tr(1) ∈ k∗; see, for example, [15, Definition 2.1]. This will not be needed in this

paper.

Our main definition combines the above two notions.

Definition 2.4. A Poisson trace order is a Poisson order (R, C, ∂) equipped with a trace

map tr : R → C such that

tr ◦∂c = ∂c ◦ tr, ∀c ∈ C.

More explicitly, the compatibility condition states that

tr(∂c(r)) = {c, tr(r)}, ∀c ∈ C, r ∈ R.

2.2 Poisson properties of modified discriminant ideals

Our 1st result is that the modified discriminant ideals of a Poisson trace order behave

well with respect to the underlying Poisson structure. First, recall the following.
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8 K. A. Brown and M. T. Yakimov

Definition 2.5. [18, Definition 1.2(2)] For an algebra R with trace tr : R → C and ℓ ∈ Z+,

the modified ℓ-discriminant ideal of R with respect to the trace map tr is the ideal

MDℓ(R/C, tr) of C generated by

dℓ({r1, . . . , rℓ}, {s1, . . . , sℓ} : tr) := det
(

tr(risj)
ℓ
i,j=1

)

for all ℓ-tuples

{r1, . . . , rℓ}, {s1, . . . , sℓ} ∈ Rℓ.

Theorem 2.6. Let (R, C, ∂, tr) be a Poisson trace order. For all ℓ ∈ Z+, the modified

discriminant ideals MDℓ(R/C, tr) are Poisson ideals of C with respect to the underlying

Poisson structure on C.

The theorem follows from of the next more general result.

Proposition 2.7. Assume that (R, C, tr) is an algebra with trace and δ is a k-derivation

of R that preserves C and commutes with tr:

δ
(

tr(r)
)

= tr
(
δ(r)

)
, ∀r ∈ R.

Then, for all ℓ-tuples,

{r1, . . . , rℓ}, {s1, . . . , sℓ} ∈ Rℓ,

we have

δdℓ({r1, . . . , rℓ}, {s1, . . . , sℓ} : tr) =

ℓ∑

k=1

dℓ({r1, . . . , δrk, . . . rℓ}, {s1, . . . , sℓ} : tr)

+

ℓ∑

k=1

dℓ({r1, . . . , rℓ}, {s1, . . . , δsk, . . . sℓ} : tr).
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Poisson Trace Orders 9

Proof. We have

δdℓ({r1, . . . , rℓ}, {s1, . . . , sℓ} : tr) =
∑

σ∈Sℓ

(−1)signσ δ

( ℓ∏

k=1

tr(rksσ(k))

)

=

ℓ∑

k=1

∑

σ∈Sℓ

(−1)signσ tr(r1sσ(1)) . . . tr(δ(rk)sσ(k)) . . . tr(rℓsσ(ℓ))

+

ℓ∑

k=1

∑

σ∈Sℓ

(−1)signσ tr(r1sσ(1)) . . . tr(rkδ(sσ(k))) . . . tr(rℓsσ(ℓ))

=

ℓ∑

k=1

dℓ({r1, . . . , δrk, . . . rℓ}, {s1, . . . , sℓ} : tr)

+

ℓ∑

k=1

dℓ({r1, . . . , rℓ}, {s1, . . . , δsk, . . . sℓ} : tr).

�

2.3 Poisson properties of discriminant ideals

The modified discriminant ideals of an algebra with trace defined in [18] are newer

versions of the much older (and now classical) notion of discriminant ideals.

Definition 2.8. [39, p. 126] For an algebra R with trace tr : R → C and ℓ ∈ Z+, the

ℓ-discriminant ideal of R with respect to tr is the ideal Dℓ(R/C, tr) of C generated by

dℓ({r1, . . . , rℓ}, {r1, . . . , rℓ} : tr) := det
(

tr(rirj)
ℓ
i,j=1

)

for all ℓ-tuples

{r1, . . . , rℓ} ∈ Rℓ.

While we cannot prove or disprove that the discriminant ideals of Poisson trace

orders are Poisson ideals, we can show that their zero loci are unions of symplectic

cores under natural assumptions that are satisfied in wide generality.

Symplectic cores are algebraic versions of symplectic leaves that can be defined

for the maximal spectra of finitely generated Poisson algebras in any characteristic

unlike symplectic leaves [16, Sect. 5], which are defined via transcendental methods

when base field is R or C. Let (C, {., .}) be a Poisson algebra over a field k, which is

finitely generated as a commutative algebra. For every ideal I of C, there exists a unique
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10 K. A. Brown and M. T. Yakimov

maximal Poisson ideal P(I) contained in I; P(I) is Poisson prime when I is prime [26,

Lemma 6.2]. Following [13, Section 3.2], the symplectic core of m ∈ MaxSpec C is the

subset of MaxSpec C given by

C(m) := {n ∈ MaxSpec C | P(n) = P(m)}.

Symplectic cores define a partition of MaxSpec C by locally closed subsets.

For our results on discriminant ideals, we need to recall Procesi’s notion of

Cayley–Hamilton algebras of degree d [38], where d is a positive integer. Consider an

algebra with trace (R, C, tr) over a field k of characteristic 0 or > d. For 1 ≤ k ≤ d,

denote by σk the k-th elementary symmetric function in the indeterminates λ1, λ2, . . . , λd

and by ψk := λk
1 + λk

2 + · · · + λk
d the k-th Newton power sum function. As is well known,

that there exists a unique set of polynomials

pi(x1, x2, . . . , xk) ∈ Z[(k! )−1][x1, x2, . . . , xk]

such that

σk = pk(ψ1, ψ2, . . . , ψk), ∀ 1 ≤ k ≤ d.

The d-th characteristic polynomial χd,a(t) ∈ C[t] of an element a ∈ R is defined by

χd,a(t) := td − c1(a)td−1 + · · · + (−1)dcd(a),

where ck(a) := pk

(
tr(a), tr(a2), . . . , tr(ak)

)
.

Definition 2.9. [38] A Cayley–Hamilton algebra of degree d ∈ Z+ is a k-algebra with

trace (R, C, tr) such that

(1) χd,a(a) = 0 for all a ∈ R and

(2) tr(1) = d.

Corollary 2.10. Let (R, C, ∂, tr) be a Poisson trace order over a field k such that C is a

finitely generated k-algebra and either

(1) R is a maximal order, C = Z(R) and tr : R → C is the reduced trace (see

Section 3) or

(2) (R, C, tr) is a Cayley–Hamilton algebra of degree d such that char k /∈ [1, d].
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Poisson Trace Orders 11

Then, for all ℓ ∈ Z+, the zero set of the discriminant ideals Dℓ(R/C, tr) is a union

of symplectic cores of MaxSpec C.

Proof. Main Theorem (a)-(b) and Theorem 4.1(b) in [15] imply that under the assumption

(1) or (2), the zero set of the discriminant ideal Dℓ(R/C, tr) coincides with that of the

modified discriminant ideal MDℓ(R/C, tr). The latter is a Poisson ideal of (C, {., .}) by

Theorem 2.6, and hence its zero locus is a union of symplectic cores of MaxSpec C. �

The conclusion of Corollary 2.10 is valid under the more general assumption

that tr : R → C is a representation theoretic trace in the sense of [15, Definition 2.1]; this

follows by applying [15, Main Theorem (a)].

2.4 Compatibility properties of the regular trace map

We finish the section with a general construction of Poisson trace orders from regular

trace maps. Assume that R is a free module of finite rank over the central subalgebra C.

The regular trace is the composition

trreg : R → EndC(R) ∼= Mn(C)
tr

−→ C. (2.1)

The 1st map is given by left multiplication, the 2nd one is the isomorphism obtained

by choosing a C-basis {v1, . . . vn} of R, and the 3rd one is the matrix trace. The map is

obviously independent on the choice of C-basis of R.

Theorem 2.11. Assume that R is an algebra and C is a central subalgebra of R such

that R is a finite rank free C-module. Then every structure of Poisson order (R, C, ∂) is a

Poisson trace order with respect to the regular trace trreg : R → C.

In other words, the required compatibility between a Poisson order map

∂ : C → Derk(R) and a trace map tr : R → C is always satisfied for regular trace maps.

The theorem follows immediately from the following theorem.

Theorem 2.12. If, in the setting of Theorem 2.11,

δ ∈ Der
k
(R) is such that δ(C) ⊆ C,
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12 K. A. Brown and M. T. Yakimov

then

trreg ◦δ = δ ◦ trreg .

A proof of this fact was given in [37, Proposition 2.2] using deformation theory.

We next give a direct proof.

Proof. Fix a C-basis {v1, . . . vn} of R. Let r ∈ R. Denote

rvi =
∑

j

bijvj

and

δ(vj) =
∑

k

cjkvk

for some bij, cjk ∈ C. We have

δ(r)vi = δ(rvi) − rδ(vi)

=
∑

j

δ(bij)vj +
∑

j

bijδ(vj) − rδ(vi)

=
∑

j

δ(bij)vj +
∑

j

bijδ(vj) −
∑

k

cikrvk

=
∑

j

δ(bij)vj +
∑

j,k

bijcjkvk −
∑

k,ℓ

cikbkℓvℓ.

Therefore,

trreg

(
δ(r)

)
=

∑

i

δ(bii) +
∑

i,j

bijcji −
∑

k,i

cikbki =

=
∑

i

δ(bii) = δ
(

trreg(r)
)
.

�

3 Poisson Trace Orders for Maximal Orders

In this section, we prove that the reduced trace on a prime PI algebra whose center is

normal is compatible with any Poisson order structure.
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Poisson Trace Orders 13

3.1 Reduced traces of PI algebras

We first recall the definition of reduced trace for PI algebras. Let R be a prime PI ring;

see [11, Definition I.13.1]. Denote by Q the fraction field of its center Z(R). The ring of

fractions of R is isomorphic to the tensor product

R ⊗Z(R) Q.

By Posner’s theorem, [11, § I.13.3], it is a central simple Q-algebra. Denote by n the PI

degree of R, that is, dimQ(R ⊗Z(R) Q) = n2, [11, § I.13.3]. Since R is a finitely generated

torsion-free Z(R)-module, it is, in the terminology of [39, § 8], a Z(R)-order in R⊗Z(R) Q.

Denote the embedding

ι : R →֒ R ⊗Z(R) Q.

There exists a finite field extension F of Q which splits R ⊗Z(R) Q, that is,

R ⊗Z(R) F ∼= Mn(F);

see [39, §7b]. The field embedding μ : Q →֒ F gives rise to the ring homomorphism

φ := idR ⊗ μ : R ⊗Z(R) Q → R ⊗Z(R) F. (3.1)

Consider the composition

R
ι

→֒ R ⊗Z(R) Q
φ

−→ R ⊗Z(R) F ∼= Mn(F)
tr

−→ F,

where the last map is the matrix trace. This composition takes values in Q ⊂ F,

trred : R → Q

and is called the reduced trace map of R. If Z(R) is normal, the reduced trace map takes

values in Z(R) ⊂ Q; see [39, Theorem 10.1]:

trred : R → Z(R).
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14 K. A. Brown and M. T. Yakimov

Since R is prime, its center Z(R) is an integral domain. If char R ∤ n, then

trred(1) = n 	= 0;

cf. Remark 2.3.

3.2 Compatibility properties of the reduced trace map

Our next result is a general compatibility theorem between reduced traces and Poisson

orders.

Theorem 3.1. Let R be a k-algebra over a commutative ring k such that

(1) R is a prime algebra and

(2) the center Z(R) is normal.

Then every structure of Poisson order (R,Z(R), ∂) is a Poisson trace order with

respect to the reduced trace trred : R → Z(R).

The point of the theorem is that the needed compatibility between the Poisson

order map ∂ : Z(R) → Der
k
(R) and the trace map tr : R → Z(R) is automatically satisfied

for a reduced trace map.

We have an important special case of Theorem 3.1: if R is a maximal order, then

condition (2) is satisfied, by [33, Proposition 5.1.10(b)].

The theorem follows from the next more general result on the commutation of

the reduced trace with any derivation of the algebra R that preserves (but does not

necessarily fix) its center Z(R).

Theorem 3.2. Assume the setting of Theorem 3.1. Let δ ∈ Der(R) be such that δ(Z(R)) ⊆

Z(R). Then

trred ◦δ = δ ◦ trred

Proof. Recall from the beginning of the section that Q denotes the field of fractions

of Z(R). The derivation δ of R uniquely extends to a derivation of the quotient ring

R ⊗Z(R) Q,

δ′ ∈ Der(R ⊗Z(R) Q),
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Poisson Trace Orders 15

that is,

δ′ ◦ ι = ι ◦ δ. (3.2)

Furthermore, since δ(Z(R)) ⊆ Z(R), we have δ′(Q) ⊆ Q. Because the field extension F/Q

can be chosen to be finite and separable [39, Theorem 7.10], δ′ extends to a derivation δ′′
0

of F [32, Theorem VIII.5.1], which in turn extends to a derivation δ′′ of

R ⊗Z(R) F ∼= Mn(F) by δ′′(r ⊗ f ) := δ(r) ⊗ f + r ⊗ δ′′
0(f ), ∀r ∈ R, f ∈ F.

This derivation satisfies δ′′(F) ⊆ F and, keeping the notation (3.1),

δ′′ ◦ φ = φ ◦ δ′. (3.3)

Obviously the map

δ
′′

: Mn(F) → Mn(F), given by δ
′′
(fEij) := δ′′(f )Eij, ∀1, ≤ i, j ≤ n, ∀f ∈ F

is a derivation of Mn(F) and δ′′ − δ
′′

is an F-linear derivation of Mn(F):

δ′′ − δ
′′

∈ DerF(Mn(F)).

It is a corollary of the Skolem–Noether theorem that every F-linear derivation of a

central simple F-algebra is inner; see [39, Theorem 7.21], also [1, Proposition 1]. Thus,

δ′′ − δ
′′

is an inner derivation of Mn(F). So there exists X ∈ Mn(F) such that

δ′′ = δ
′′

+ [X, −].

Therefore,

δ′′(fEij) := δ′′(f )Eij + [X, fEij], ∀1 ≤ i, j ≤ n, f ∈ F.

Let δij denote the Kronecker delta. For the matrix trace tr : Mn(F) → F, we have

tr
(
δ′′(fEij)

)
= tr

(
δ′′(f )Eij

)
+ tr

(
[X, fEij]

)
= δijδ

′′(f )

and

δ′′
(

tr(fEij)
)

= δ′′(δijf ) = δijδ
′′(f )
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16 K. A. Brown and M. T. Yakimov

for all 1 ≤ i, j ≤ n, f ∈ F. Therefore,

tr ◦δ′′ = δ′′ ◦ tr . (3.4)

Now Z(R) is a subring of Q via ι and Q is a subfield of F via φ, so ι|Z(R) = idZ(R),

φ|Q = idQ. It follows from (3.2) and (3.3) that for all r ∈ R,

δ′′ ◦ φ ◦ ι(r) = φ ◦ δ′ ◦ ι(r) = φ ◦ ι ◦ δ(r).

In particular,

δ′′(z) = δ(z), ∀z ∈ Z(R).

Combining the last two identities, eq. (3.4), and the definition of the reduced trace trred :

R → Z(R), gives that for all r ∈ R,

trred

(
δ(r)

)
= tr ◦φ ◦ ι ◦ δ(r)

= tr ◦δ′′ ◦ φ ◦ ι(r)

= δ′′ ◦ tr ◦φ ◦ ι(r)

= δ′′
(

trred(r)
)

= δ
(

trred(r)
)
.

Therefore, trred ◦δ = δ ◦ trred. �

4 Base Change for Poisson Trace Orders

In this section, we prove a base change theorem on Poisson trace orders.

4.1 A setting for base change for Poisson trace orders

In applications to the representation theory of PI algebras R, it is advantageous to

work with Poisson orders (R, C, ∂) for nonsingular algebras C because one has to deal

with the Poisson geometry of its spectrum [13, 20, 21, 46, 47]. The Poisson trace orders

(R, Z(R), ∂, tr) arising from Theorem 3.1 often involve singular centers Z(R). This raises

the problem of analyzing how to relate a Poisson trace order (R, C, ∂, tr) with an order

(R, A, ∂|A, tr′), where A is a Poisson subalgebra of C such that C is finite over A (i.e., C is

a finitely generated A-module). That is, symbolically, we examine the change

(R, C, ∂, tr) � (R, A, ∂|A, tr′). (4.1)
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Poisson Trace Orders 17

In this situation, (R, A, ∂|A) is necessarily a Poisson order. If trC/A : C → A is a trace map

of commutative algebras, then we have the composition trace map

tr′ := trC/A ◦ tr : R → A,

which is the map that is used in the base change in (4.1). The question addressed in this

section is

Under what conditions is (R, A, ∂|A, tr′) again a Poisson trace order?

4.2 Poisson algebra extensions

To deal with base changes, we first investigate Poisson trace orders arising from Poisson

algebra extensions. Let A be a Poisson subalgebra of a Poisson algebra (C, {., .}) such that

C is finite over A. Then we have an induced Poisson order structure on the pair (C, A)

with the map ∂res given by

∂res
a := {a, .}, ∀a ∈ A. (4.2)

Assume that C is an integral domain, and denote by F(C) and F(A) the fields of fractions

of C and A, respectively. Then F(C)/F(A) is a finite field extension and we have the

regular trace function

trF(C)/F(A) : F(C) → F(A). (4.3)

If A is normal as a commutative algebra, then its restriction to C takes values in A

trC/A := trF(C)/F(A) |C : C → A. (4.4)

This is so because for all c ∈ C, trF(C)/F(A)(a) is integral over A and belongs to F(A), so

by the normality assumption on A, it belongs to A.

Proposition 4.1. Assume that (C, {., .}) is a Poisson algebra and an integral domain. Let

A be a Poisson subalgebra, which is normal considered as a commutative algebra, with

C finite over A. Then

(C, A, ∂res, trC/A)

is a Poisson trace order.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
d
0
8
6
/7

1
5
2
3
2
2
 b

y
 N

o
rth

e
a
s
te

rn
 U

n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 2

7
 S

e
p
te

m
b
e
r 2

0
2
3



18 K. A. Brown and M. T. Yakimov

Proof. The Poisson structure {., .} on C uniquely extends to a Poisson (field) structure

on F(C) and F(A) is a Poisson subfield of F(C). By abuse of notation, this extension will

be denoted by the same symbol. We obtain a Poisson order structure

(F(C),F(A), ∂
res

)

by setting

∂
res
f := {f , .}, ∀f ∈ F(A).

Clearly, we have

∂res = ∂
res

|A. (4.5)

The trace function (4.3) is the regular trace of the pair (F(C),F(A)) given by (2.1). The

standard definition of trace function of the field extension F(C)/F(A) is given by a sum

over the field embeddings of F(C) into the algebraic closure of F(A) [32, Chap. VI, Sec.

5], and this is equivalent to the regular trace by [32, Proposition VI.5.6]. Now we can

apply Theorem 2.11 to obtain that

(
F(C),F(A), ∂

res
, trF(C)/F(C)

)

is a Poisson trace order. This shows that

trF(C)/F(A)

(
∂

res
f (g)

)
= {f , trF(C)/F(A)(g)}, ∀f ∈ F(A), g ∈ F(C).

Applying this for f ∈ A and g ∈ C, and combining it with (4.4) and (4.5), gives

trC/A

(
∂res

a (c)
)

= {a, trC/A(c)}, ∀a ∈ A, c ∈ C.
�

4.3 Statement of base change theorem

The following is our base change theorem for Poisson trace orders.

Theorem 4.2. Let

(R, C, ∂, tr)

be a Poisson trace order with C an integral domain. Assume that A is a Poisson

subalgebra of C, which is normal considered as a commutative algebra, with C finite
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Poisson Trace Orders 19

over A. Then

(R, A, ∂|A, trC/A ◦ tr)

is a Poisson trace order.

Proof. The 1st assumption gives that

tr(∂a(r)) = {a, tr(r)}, ∀a ∈ A, r ∈ R.

Applying Proposition 4.1 and using the definition (4.2) of ∂res gives

trC/A{a, c} = {a, trC/A(c)}, ∀a ∈ A, c ∈ C.

Therefore,

trC/A

(
tr(∂a(r))

)
= trC/A

(
{a, tr(r)}

)
= {a, trC/A(tr(r))}

for all a ∈ A, r ∈ R, which completes the proof of the theorem. �

5 Construction of Poisson Trace Orders: Full Centers

In this section we use Theorem 3.1 to construct large classes of Poisson trace orders

with respect to their full centers from the areas of quantum groups, noncommutative

projective algebraic geometry, cluster algebras, and Lie theory (symplectic reflection

algebras).

5.1 Specializations plus maximal orders

Theorem 3.1 implies that we have the following very general construction of Poisson

trace orders.

Proposition 5.1. Assume that R is a prime affine k-algebra that is finitely generated

over its center.

(1) If R is obtained as a specialization as in [13, § 2.2] or, more generally, a

higher-order specialization as in [46, Definitions 2.3 and 2.5], then by [46,

Proposition 2.7], (R,Z(R)) has a canonical structure of Poisson order ∂sp.
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20 K. A. Brown and M. T. Yakimov

(2) If Z(R) is normal, then we can consider the reduced trace map

trred : R → Z(R).

Under the assumptions (1)–(2), (R,Z(R), ∂sp, trred) is a Poisson trace order.

Condition (2) is satisfied if R is a maximal order [33, Proposition 5.1.10(b)(i)].

5.2 Quantized enveloping algebras, quantum functions algebras, and quantum Schubert cell

algebras at roots of unity

Let g be a complex simple Lie algebra, G be the corresponding connected simply

connected complex simple algebraic group, and w be an element of the Weyl group

of g. Let ε ∈ C be a primitive root of unity of odd order ℓ such that 3 ∤ ℓ if g is of type G2.

We have the following three affine Q(ε)-algebras.

(1) The big quantized universal enveloping algebra of g at root of unity, denoted

by Uε(g) and constructed in [19].

(2) The quantized coordinate ring of G at root of unity, denoted Fε[G] and

constructed in [22].

(3) The quantum Schubert cell algebra at root of unity associated to g and w,

denoted by Uw
ε and constructed in [21].

The three families of algebras are obtained by specialization as shown in [20],

[22], and [21], respectively. This gives rise to the Poisson order structures

(Uε(g),Z(Uε(g)), ∂sp), (Fε[G],Z(Fε[G]), ∂sp), (Uw
ε ,Z(Uw

ε ), ∂sp). (5.1)

The three Poisson orders were shown to be nontrivial, and the Poisson structures on

their centers were described in terms of Poisson–Lie groups and Poisson structures on

Schubert cells in [19–22].

The algebras in (1)–(3) are also maximal orders by [19, Theorem 1.8], [22, Theorem

7.4], and [21, Theorem 1.5], respectively. Thus, we have a reduced trace map trred : R →

Z(R) for each algebra R in the three families.

Proposition 5.1 now implies the following.

Proposition 5.2. For all complex simple Lie algebras g, connected simply connected

complex simple algebraic groups G, Weyl group elements w and primitive roots of unity
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Poisson Trace Orders 21

ε ∈ C of odd order ℓ such that 3 ∤ ℓ if g is of type G2, the quadruples

(Uε(g),Z(Uε(g)), ∂sp, trred), (Fε[G],Z(Fε[G]), ∂sp, trred) and (Uw
ε ,Z(Uw

ε ), ∂sp, trred).

are Poisson trace orders.

5.3 Noncommutative projective spaces

Sklyanin algebras are (affine) quadratic algebras that play a major role in Skyanin’s

work on quantum integrable systems [41], the Artin–Schelter–Tate–van den Bergh

classification of noncommutative projective spaces [5, 7, 8], and the Feigin–Odeskii

study of elliptic algebras [24].

The 3D Sklyanin algebras are the C-algebras in three generators x, y, z subject to

relations

ayz + bzy + cx2 = azx + bxz + cy2 = axy + byx + cz2 = 0

for parameters a, b, c ∈ C such that

abc 	= 0 and (3abc)3 	= (a3 + b3 + c3)3.

The 4D Sklyanin algebras are the C-algebras in four generators x0, x1, x2, x3,

subject to the following relations:

x0x1 − x1x0 = α(x2x3 + x3x2), x0x1 + x1x0 = x2x3 − x3x2,

x0x2 − x2x0 = β(x3x1 + x1x3), x0x2 + x2x0 = x3x1 − x1x3,

x0x3 − x3x0 = γ (x1x2 + x2x1), x0x3 + x3x0 = x1x2 − x2x1,

for parameters α, β, γ ∈ C such that

α + β + γ + αβγ = 0 and (α, β), (β, γ ), (γ , α) 	= (−1, 1).

The following properties were proved in [5, 7, 8, 42] for each Sklyanin algebra S

of dimensions 3 and 4.

(1) S is Noetherian of global dimension 3 or 4, respectively.

(2) To each S one can associate an elliptic curve E, an automorphism σ of E and

an invertible sheaf L on E.
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22 K. A. Brown and M. T. Yakimov

(3) The following are equivalent:

• S is a PI algebra;

• S is module finite over its center Z(S);

• the automorphism σ of E has finite order.

The centers of the 3D and 4D PI Sklyanin algebras S were explicitly described in

[6, 43]. Each such algebra S was proved to be a maximal order in [44, Theorem 2.10 and

Introduction]. Thus, we have a reduced trace map

trred : S → Z(S). (5.2)

It was proved in [46, 47] that each 3D and 4D PI Sklyanin algebra S can be

obtained as a higher order specialization, which gives rise to a Poisson order structure

(S,Z(S), ∂sp). (5.3)

In [46, Theorem 1.1] and [47, Theorem 1.2], it was proved that all of these Poisson order

structures are nontrivial and the symplectic foliations of the spectrum of Z(S) were

explicitly described.

Applying Proposition 5.1, we obtain the following.

Proposition 5.3. For each 3D and 4D Sklyanin algebra S corresponding to a finite order

automorphism σ of an elliptic curve E, the trace map (5.2) and the Poisson order (5.3)

are packaged into a Poisson trace order structure

(S,Z(S), ∂sp, trred).

5.4 Cluster algebras

Cluster algebras were defined by Fomin and Zelevinsky in [25]. For the past 20

years, they have played a prominent role in a number of areas of mathematics and

mathematical physics. Next, we show that their root of unity quantum counterparts

have Poisson trace order structures under natural assumptions.

To define them, choose a positive integer N, a set of exchangeable indices

ex ⊆ [1, N] and an exchange matrix B̃, which is an integer matrix of size |ex| × N with

skew-symmetrizable principal part. Fix a positive integer ℓ and a primitive ℓ-th root of
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Poisson Trace Orders 23

unity ε1/2 ∈ C. For a skew-symmetric matrix

� ∈ MN×N(Z/ℓ)

define the mixed quantum torus/quantum affine space algebra

Tε(�)≥ :=
C〈x±1

k , xi; i ∈ ex, k ∈ [1, N]\ex〉

(xixj − ε�ijxjxi)
·

(This algebra is a domain, and thus so are the rest of the algebras discussed in this

subsection and Section 6.4, because they are constructed as subalgebras of Tε(�)≥.) The

matrices B̃ and � are called ℓ-compatible if

B̃
⊤
� =

[
D 0

]
, (5.4)

where D is a diagonal integer matrix with positive diagonal entries, which skew-

symmetrizes the principal part B̃. Here, C denotes the reduction modulo ℓ of an integer

matrix C. In this setting, one defines the root of unity quantum cluster algebra Aε (̃B)

and the upper root of unity quantum cluster algebra Uε (̃B), which satisfy

Aε (̃B) ⊆ Uε (̃B).

The former algebra is the complex algebra generated by the cluster variables in all seeds

obtained from the initial one by iterative mutations in all directions indexed by ex and

the latter is the intersection of the mixed quantum torus/quantum affine space algebras

obtained from Tε(�) by mutation; see [36, Sect. 3]. (In the notation for Aε (̃B) and Uε (̃B)

one usually includes an initial toric frame and in the construction one can allow for a

subset of frozen variables to be inverted.)

Uε (̃B) is always a PI algebra because it is a subalgebra of Tε(�)≥. If it is a finitely

generated algebra, then it is a maximal order, see [31, Theorem A(1)], so we have the

reduced trace map

trred : Uε (̃B) → Z(Uε (̃B)). (5.5)
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24 K. A. Brown and M. T. Yakimov

The root of unity upper quantum cluster algebra Uε (̃B) is called strict if there

exists a skew-symmetric matrix

� ∈ MN×N(Z)

such that � = � and the pair (̃B, �) is compatible in the sense that the analog of (5.4)

holds over Z:

B̃⊤� =
[

D 0
]
.

If

(i) Uε (̃B) is a strict root of unity upper quantum cluster algebra;

(ii) ℓ is an odd positive integer that is coprime to the diagonal entries of the

skew-symmetrizing matrix D; and

(iii) Aε (̃B) = Uε (̃B),

then by the proof of [36, Theorem 5.2], Uε (̃B) is a specialization of the corre-

sponding upper quantum cluster algebra. This gives rise to the Poisson order structure

(Uε (̃B),Z(Uε (̃B)), ∂sp). (5.6)

By [31, Theorem B(4)], if

(iv) Uε (̃B) is a finitely generated algebra over C,

then Uε (̃B) is a finitely generated module over Z(Uε (̃B)).

Proposition 5.1 now implies the following.

Proposition 5.4. For every root of unity upper quantum cluster algebra Uε (̃B) satisfying

assumptions (i)–(iv), the trace map (5.5) and the Poisson order structure (5.6) give rise to

the Poisson trace order

(Uε (̃B),Z(Uε (̃B)), ∂sp, trred).

The assumptions (i)–(iv) are satisfied in wide generality. All important root of

unity quantum cluster algebras are strict and finitely generated; (ii) is a standard

assumption on ℓ analogous to the one in Section 5.2. There are a number of recent papers
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Poisson Trace Orders 25

showing that cluster algebras equal the corresponding upper cluster algebras in many

important situations on the classical and quantum levels [17, 27, 28, 35].

5.5 Symplectic reflection algebras

Symplectic reflection algebras were defined and studied as a generalization of rational

Cherednik algebras in [23]. We briefly recall the definition. Let (V, ω) be a complex

symplectic vector space with basis {xi : 1 ≤ i ≤ 2n}, and let G be a finite subgroup

of Sp(V). Define an element s of G to be a symplectic reflection if rank(1 − s) = 2. The

set S of symplectic reflections in G is closed under conjugation. Choose t ∈ C and a

G-invariant function

c : S −→ C : c �→ cs.

For g ∈ G, there is a decomposition of V as C〈g〉-module,

V = im(1 − g) ⊕ ker(1 − g),

which is easily confirmed to be ω-orthogonal. For later use, note that this implies that

ifg 	= 1thendimC(ker(1 − g)) ≤ 2n − 2. (5.7)

For s ∈ S denote by ωs the skew-symmetric form on V that has ker(1 − s) as its radical

and coincides with ω on im(1 − s). Now define the symplectic reflection algebra Ht,c to

be the C-algebra with generators {xi, g : 1 ≤ i ≤ 2n, g ∈ G} and relations those for G,

together with

gxig
−1 = g(xi), andxixj − xjxi = tω(xi, xj)1G +

∑

s∈S

csωs(xi, xj)s

for i, j = 1, 2, . . . , 2n and g ∈ G. It is easy to see that, for λ ∈ C×, Ht,c
∼= Hλt,λc, so that, as

c varies, one need only study the algebras H0,c and H1,c.

It is clear from the defining relations that H0,0 is simply the skew group algebra

S(V) ∗ G. It is also obvious that an N-filtration F can be defined on Ht,c by declaring the

elements of G to have degree 0 and the nonzero elements of V to have degree 1. It is then

a fundamental theorem of Etingof and Ginzburg [23, Theorem 1.3] that

grFHt,c
∼= H0,0 = S(V) ∗ G. (5.8)
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26 K. A. Brown and M. T. Yakimov

At the level of algebras, the dichotomy between the cases t = 0 and t = 1 is

stark. First, when t = 0, H0,c is a finite module over its affine center that we denote

by Zc, and Zc is a deformation of the algebra of invariants S(V)G, so that Maxspec(Zc)

is a deformation of V/G; these results are due to [23, Theorem 3.1]. But when t = 1,

Z(H1,c)
∼= C by [13, Proposition 7.2(2)]. For all values of the parameters (t, c), it follows

routinely from filtered-graded technology that Ht,c is a prime Noetherian algebra with

good homological properties.

By means of the specialization mechanism of Proposition 5.1(1), H0,c is a Poisson

Zc-order; the details are explained in [13, § 2.2]. Moreover, it is shown in [13, Theorem

7.8] that MaxSpec(Zc) has only finitely many symplectic leaves and that these coincide

with the irreducible components of the rank stratification of the Poisson bracket.

To see that H0,c is a Poisson trace order with respect to the reduced trace, we

need the following result from [10, Theorem 4.4]. For the convenience of the reader, we

give the proof here.

Proposition 5.5. Retain the notation and hypotheses introduced above. Then H0,c is a

maximal order, and hence its center Zc is an integrally closed domain.

Proof. Thanks to (5.7), if 1 	= g ∈ G then the ideal 〈v − vg : v ∈ V〉 of the polynomial

algebra S(V) is not contained in any height one prime of S(V). The skew group algebra

H0,0 = S(V) ∗ G is therefore a maximal order by [35, Theorem 4.6]. In view of (5.8), it

follows from [45, Theorem 5] that we can lift the maximal order property to H0,c as

required. The 2nd claim follows since the center of a prime Noetherian maximal order

is an integrally closed domain by [33, Proposition 5.1.10(b)(i)]. �

The following result is now immediate from Propositions 5.1 and 5.5.

Proposition 5.6. For any choice of data (V, ω), G and c as explained above,

(H0,c, Zc, ∂sp, trred) is a Poisson trace order.

6 Construction of Poisson Trace Orders: Partial Centers

In this section, we use Theorems 2.11 and 4.2 to construct large classes of Poisson trace

orders with respect to proper central subalgebras from the areas of quantum groups,

Nichols algebras, and cluster algebras.
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Poisson Trace Orders 27

6.1 Quantized enveloping algebras and quantum Schubert cell algebras at roots of unity

Consider the families (1) and (3) in Section 5.2. De Concini, Kac, and Procesi constructed

central subalgebras of the quantized universal enveloping algebras Uε(g) and the

quantum Schubert cell algebras Uw
ε . The central subalgebra

Z0(Uε(g))

of Uε(g) was constructed in [19, Corollary 3.1] as the subalgebra generated by the ℓ-th

powers of the root vectors Eα, Fα and Chevalley generators K±1
i of Uε(g). Recall that ℓ

denotes the order of the root of unity ε ∈ C. The central subalgebra

Z0(Uw
ε )

of Uw
ε was constructed in [21, Proposition 3.1] as the subalgebra generated by the ℓ-th

powers of the root vectors Eα of Uw
ε .

In [20, 21], it was proved that Z0(Uε(g)) and Z0(Uw
ε ) are Poisson subalgebras

of the full centers Z(Uε(g)) and Z(Uw
ε ) with respect to the underlying Poisson algebra

structures of the 1st and 3rd Poisson orders in (5.1). Therefore, those two Poisson orders

restrict to the Poisson orders

(Uε(g), Z0(Uε(g)), ∂sp|Z0(Uε(g))) and (Uw
ε , Z0(Uw

ε ), ∂sp|Z0(Uw
ε )). (6.1)

Furthermore, because of PBW bases, Uε(g) is a free module over Z0(Uε(g)) of rank ℓdimg

and Uw
ε is a free module over Z0(Uw

ε ) of rank ℓl(w), where l(w) is the length of w. Thus,

we have the regular trace maps

trreg : Uε(g) → Z0(Uε(g)) and trreg : Uw
ε → Z0(Uw

ε ). (6.2)

Theorem 2.11 in combination with (6.1) and (6.2) implies the following.

Proposition 6.1. For all complex simple Lie algebras g, Weyl group elements w and

primitive roots of unity ε ∈ C of odd order ℓ such that 3 ∤ ℓ if g is of type G2, the

quadruples

(Uε(g), Z0(Uε(g)), ∂sp|Z0(Uε(g)), trreg) and (Uw
ε , Z0(Uw

ε ), ∂sp|Z0(Uw
ε ), trreg).

are Poisson trace orders.
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28 K. A. Brown and M. T. Yakimov

This result also follows by applying Theorem 2.11 and then doing a base change

via Theorem 4.2 because the regular trace map trreg : Uε(g) → Z0(Uε(g)) equals the

composition of

trred : Uε(g) → Z(Uε(g)) and trZ(Uε(g))/Z0(Uε(g)) : Z(Uε(g)) → Z0(Uε(g))

and the regular trace map trreg : Uw
ε → Z0(Uw

ε ) equals the composition of

trred : Uw
ε → Z(Uw

ε ) and trZ(Uw
ε )/Z0(Uw

ε ) : Z(Uw
ε ) → Z0(Uw

ε ).

Theorem 4.2 is applicable because Z0(Uε(g)) and Z0(Uw
ε ) are normal (since they are tensor

products of polynomial and Laurent polynomial algebras) and Z(Uε(g)) and Z(Uw
ε ) are

finitely generated modules over them as submodules of the finitely generated modules

Uε(g) and Uw
ε .

6.2 Quantized function algebras at roots of unity

Consider the family (2) in Section 5.2 of the quantized coordinate ring at root of unity

Fε[G] of a connected, simply connected complex simple algebraic group G. De Concini

and Lyubashenko constructed in [22, Proposition 6.4] a central subalgebra F0[G] of Fε[G]

such that

F0[G] ∼= Q(ε)[G].

It was proved in [12, Proposition 2.2] and [14, Theorem on p. 1] that Fε[G] is a free module

over F0[G] of rank ℓdim G. This gives rise to the regular trace maps

trreg : Fε[G] → F0[G]. (6.3)

In addition, in [22, Section 8], it was proved that F0[G] is a Poisson subalgebra

of Z(Fε[G]) with respect to the underlying Poisson algebra structure of the 2nd Poisson

order in (5.1) and that it is isomorphic to the standard Poisson algebra structure on the

coordinate ring of G over Q(ε). Hence, by restriction, we get the Poisson order

(Fε[G], F0[G], ∂sp|F0[G]). (6.4)

Applying Theorem 2.11, we obtain the following.
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Poisson Trace Orders 29

Proposition 6.2. For all connected simply connected complex simple algebraic groups

G, and primitive roots of unity ε ∈ C of odd order ℓ such that 3 ∤ ℓ if g is of type G2, the

trace map (6.3) and Poisson order structure (6.4) give rise to the Poisson trace order

(Fε[G], F0[G], ∂sp|F0[G], trreg).

This result can be also derived by first applying Theorem 2.11 and then doing a

base change via Theorem 4.2 because the regular trace map trreg : Fε[G] → F0[G] equals

the composition of

trred : Fε[G] → Z(F0[G]) and trZ(Fε [G])/F0[G] : Z(Fε[G]) → F0[G].

Theorem 4.2 is applicable because F0[G] is normal (since it is isomorphic to the

coordinate ring of G over Q(ε)) and Z(Fε[G]) is a finitely generated module over it, being

a submodule of the finitely generated module Fε[G].

6.3 Nichols algebras of diagonal type

In [2], Poisson order structures were constructed on the quantum doubles of the

bozonizations of all distinguished pre-Nichols algebras of diagonal type [4] with finite

root systems that belong to a one-parameter family. These algebras play an important

role in the Andruskiewitsch–Schneider program [5] on classifying finite dimensional

pointed Hopf algebras; in the diagonal case such are classified via Heckenberger’s Weyl

groupoid [30]. The algebras in this family are over C and are denoted by

U
q
, where q = (qij) ∈ Mr×r(C) is a braiding matrix.

All contragredient quantum super groups at roots of unity arise as special members

in this family. Each algebra U
q

contains a central subalgebra Z
q

constructed in [2,Sect.

4.5]. In [2, Theorem A(a)], a Poisson order structure

(U
q
, Z

q
, ∂sp) (6.5)

was constructed using specialization and Hopf theoretic methods. This structure was

shown to be nontrivial and the underlying Poisson algebra Z
q

was proved to be

isomorphic to the coordinate ring of the dual Poisson Lie group to an associated complex

reductive Lie group [2, Theorem A(b)]. The algebra U
q

is a free Z
q
-module of finite rank
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30 K. A. Brown and M. T. Yakimov

[2, Sect. 1.3.3], so we have the regular trace map

trreg : U
q

→ Z
q
. (6.6)

Theorem 2.11 now implies the following.

Proposition 6.3. For the quantum doubles U
q

of the bozonizations of all distinguished

pre-Nichols algebras of diagonal type with finite root systems that belong to a one-

parameter family, the Poisson order structure (6.5) and the trace map (6.6) give rise to

the Poisson trace orders

(U
q
, Z

q
, ∂sp, trreg).

Poisson trace orders for the underlying Nichols algebras U+
q

and their bosoniza-

tions U≥
q can be similarly constructed using Theorem 2.11 and [2, Theorems B and D].

6.4 Cluster algebras

Assume the setting of Section 5.4. We have the central subalgebra

Lε(�)≥ := C[(x1)±ℓ, xℓ
i ; k ∈ ex, i ∈ [1, N]\ex] ⊂ Z(Tε(�)≥)

giving rise to the central subalgebra CUε (̃B) of Uε (̃B) obtained by intersecting the

analogs of Lε(�)≥ over all seeds obtained from the initial one by mutation; see [31,

Section 3.1]. By [31, Proposition 3.1], if

ℓ is odd and coprime to the diagonal entries of D, (6.7)

cf. (5.4), then

CUε (̃B) ∼= U(̃B),

where U(̃B) is the upper cluster algebra associated with the exchange matrix B̃.

The algebra Tε(�)≥ is a free module over Lε(�)≥ of rank ℓN , so we have the

regular trace map

trreg : Tε(�)≥ → Lε(�)≥.
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By [31, Theorem B(1)–(3)], if (6.7) holds, then trreg restricts to a trace map

trreg |Uε (̃B) : Uε (̃B) → CUε (̃B) (6.8)

making the triple (Uε (̃B),CUε (̃B), trreg |Uε (̃B)) a Cayley–Hamilton algebra of degree ℓN . We

note that Uε (̃B) is very rarely a free CUε (̃B)-module, so here, (6.8) is not a regular trace

for the pair (Uε (̃B),CUε (̃B)) and Theorem 2.11 is not applicable.

If conditions (i)–(iv) in Sectwith 5.4 are satisfied then the trace map (6.8) equals

the composition of

trred : Uε (̃B) → Z(Uε (̃B)) and trZ(Uε (̃B))/CUε (̃B) : Z(Uε (̃B)) → CUε (̃B).

The last trace is defined because CUε (̃B) ∼= U(̃B) is a normal algebra since the latter

algebra is an intersection of a collection of algebras that are tensor products of

polynomial and Laurent polynomial algebras; see [31, Section 3.1].

By [36, Theorem 5.2], under the assumptions (i)–(iii), CUε (̃B) is a Poisson

subalgebra of Z(Uε (̃B)) under the underlying Poisson algebra structure of the Poisson

order in (5.6). This gives rise to the Poisson order structure

(Uε (̃B),CUε (̃B), ∂sp|CUε (̃B)).

Theorem 4.2 implies that

Proposition 6.4. For every root of unity quantum cluster algebra Uε (̃B) satisfying

assumptions (i)–(iv) in Section 5.4, the quadruple

(Uε (̃B),CUε (̃B), ∂sp|CUε (̃B), trreg |Uε (̃B))

is a Poisson trace order.
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