

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  MAY 05 2023

Trade-offs between number fluctuations and response in
nonequilibrium chemical reaction networks 
Hyun-Myung Chun   ; Jordan M. Horowitz 

J. Chem. Phys. 158, 174115 (2023)
https://doi.org/10.1063/5.0148662

Articles You May Be Interested In

Trading relations in intonation

J Acoust Soc Am (August 2005)

Binaural time/intensity trading

J Acoust Soc Am (March 1982)

The evolving structure of global trade

 27 Septem
ber 2023 19:33:36

https://pubs.aip.org/aip/jcp/article/158/17/174115/2888610/Trade-offs-between-number-fluctuations-and
https://pubs.aip.org/aip/jcp/article/158/17/174115/2888610/Trade-offs-between-number-fluctuations-and?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/158/17/174115/2888610/Trade-offs-between-number-fluctuations-and?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0001-5005-8583
javascript:;
https://orcid.org/0000-0002-9139-0811
javascript:;
https://doi.org/10.1063/5.0148662
https://pubs.aip.org/asa/jasa/article/83/S1/S85/729751/Trading-relations-in-intonation
https://pubs.aip.org/asa/jasa/article/71/3/689/648388/Binaural-time-intensity-trading
https://pubs.aip.org/physicstoday/online/2541/The-evolving-structure-of-global-trade
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2192624&setID=592934&channelID=0&CID=804063&banID=521339931&PID=0&textadID=0&tc=1&scheduleID=2115094&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1695843216858109&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0148662%2F17339109%2F174115_1_5.0148662.pdf&hc=1f70460194414c66846d18c5580d00dba9eda7f5&location=


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Trade-offs between number fluctuations
and response in nonequilibrium chemical
reaction networks

Cite as: J. Chem. Phys. 158, 174115 (2023); doi: 10.1063/5.0148662
Submitted: 2 March 2023 • Accepted: 17 April 2023 •
Published Online: 5 May 2023

Hyun-Myung Chun1,a) and Jordan M. Horowitz2 ,3 ,4,b)

AFFILIATIONS
1 School of Physics, Korea Institute for Advanced Study, Seoul 02455, South Korea
2Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
3Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48104, USA
4Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

a)Author to whom correspondence should be addressed: hmchun@kias.re.kr
b)jmhorow@umich.edu

ABSTRACT
We study the response of chemical reaction networks driven far from equilibrium to logarithmic perturbations of reaction rates. The response
of the mean number of a chemical species is observed to be quantitively limited by number fluctuations and the maximum thermodynamic
driving force. We prove these trade-offs for linear chemical reaction networks and a class of nonlinear chemical reaction networks with a
single chemical species. Numerical results for several model systems support the conclusion that these trade-offs continue to hold for a broad
class of chemical reaction networks, though their precise form appears to sensitively depend on the deficiency of the network.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0148662

I. INTRODUCTION

Driven networks of chemically reacting species display a rich
phenomenology that allows them to operate as a scaffold for an array
of functions both within engineered setups and in living organisms.
In many of these situations, a fruitful method for assessing perfor-
mance is to measure how sensitively the network responds to exter-
nal stimuli and, in particular, how the supply of energy shapes that
response. Energy transduction can amplify sensitivity in biological
signaling cascades1–5 and in gene transcription networks,6,7 improv-
ing their efficacies. It can induce a negative differential response
that enhances robustness in biochemical networks.8 Moreover, the
response can serve as an order parameter to interrogate a dynamical
nonequilibrium phase transition.9 While the nonequilibrium nature
of the driving is integral to these scenarios, most of our understand-
ing to date about the general principles that shape response is limited
to near-equilibrium situations.

Near thermodynamic equilibrium, the response is dictated
by fluctuations as encoded in the fluctuation–dissipation theorem
(FDT).10–13 In the present context, it relates the static (or

zero-frequency) response of the mean number of a chemical species
⟨n⟩ due to a change in its chemical potential μ to the number
variance Var{n},

∂⟨n⟩
∂μ
= βVar{n}, (1)

where β is the inverse temperature. Sensitive networks must also be
noisy; therefore, by driving the dynamics, we can create functional
networks that are low-noise and responsive.

The fundamental nature of the FDT suggests that the response
and fluctuations remain linked in some form even for systems
driven far from equilibrium. To date, a number of such relation-
ships have been identified that link the response to some mea-
sure of fluctuations.14–21 While the predictions offer fundamental
insights, putting them to use requires system-specific information.
For some proposals, identifying the correct measure of fluctuations
requires either knowledge of the steady-state distribution or infor-
mation about the dynamics15,22–24 (see, e.g., Ref. 21 for a review).
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Others require an appropriate choice of perturbation.25–28 An alter-
native approach is offered by relaxing the desire for equalities and
instead investigating potential trade-offs (or inequalities). For exam-
ple, it has recently been shown that the maximum response to any
perturbation is generally limited by an information-theoretic mea-
sure of dynamical fluctuations.29 The inspiration for the present
work is the recently established thermodynamic-response inequal-
ities for discrete and continuous Markov processes.30,31 Together,
these works offer hope that simple and general inequalities can be
identified that can serve as guideposts for rationalizing the response
in nonequilibrium dynamics.

In this paper, we study fluctuation–response relations for
chemical reaction networks (CRNs) in nonequilibrium steady states
driven by thermodynamic forces. Inspired by Ref. 30, we consider
specific classes of perturbations that have proven to lead to concrete
predictions in the context of small stochastic systems and analyze
potential inequalities between easily measured quantities that tradi-
tionally appear in the FDT (1): number response and fluctuations.
In particular, we have studied how the CRN responds to changes
in the rate constants k+ρ and k−ρ of a chemical reaction channel,
hypothesizing that there are simple trade-offs between the number
response, fluctuations, and the maximum thermodynamic driving
force F ,

∣k±ρ
∂⟨n⟩
∂k±ρ

∣ ≤ α1Var{n}, (2)

∣k+ρ
∂⟨n⟩
∂k+ρ

+ k−ρ
∂⟨n⟩
∂k−ρ

∣ ≤ α2Var{n}g(F), (3)

where α1,2 are system-dependent prefactors, g(F) is an increasing
function with g(0) = 0, and the shorthand notation k±ρ means “k+ρ
or k−ρ” throughout. The values of α1,2 and the form of g(F), in
general, depend on the topological structure of the CRN, the chem-
ical species of interest, and the perturbed reaction. We prove the
validity of (2) and (3) with g(F) = tanh (F/4) for linear CRNs
and for CRNs with birth–death dynamics. For CRNs with zero defi-
ciency, we further provide numerical evidence that supports the
accuracy of (2) and (3) with g(F) = tanh (F/4). Numerical stud-
ies of CRNs with nonzero deficiency also suggest trade-offs between
the number response and fluctuations, though we have not been able
to identify a functional form for g(F). Our analysis builds on a
rich literature regarding the topological structure of CRNs32,33 and
how that interfaces with nonequilibrium thermodynamics both in
the context of macroscopic deterministic dynamics34–40 and within
microscopic stochastic descriptions.41,42 These theoretical develop-
ments have already led to the identification of universal thermo-
dynamic properties, such as fluctuation theorems,43–45 as well as
information-geometric trade-offs.46,47

The fluctuation–response relations explored here are intimately
related to the inequalities predicted in Ref. 30 for the response of
nonequilibrium Markov jump processes; however, trade-offs [(2)
and (3)] are not a trivial consequence. The theory developed in
Ref. 30 applies only to a system with a finite number of microscopic
states, and when applied to rate constant perturbations in CRNs
leads to bounds that scale with system size. However, the structure
of the microscopic state space of a CRN is restricted by symmetry
due to repeated subunits, not taken into account in previous work.

Consequently, inequalities (2) and (3) can provide finite bounds on
the response even in CRNs with an infinite number of microscopic
states and in macroscopic systems. Thus, this work complements
the previous analyses, demonstrating that inequalities predicted in
Ref. 30 can be modified to a larger class of scenarios.

This paper is organized as follows. In Sec. II, we set the stage
by introducing notations. In Sec. III, we begin with a class of CRNs
with a single chemical species to illustrate how the trade-offs arise
from the topological structure of the microscopic state space. The
trade-offs for linear CRNs are proved in Sec. IV. We also derive
weaker inequalities between fluctuation and response for deficiency
zero nonlinear CRNs. In Sec. IV C, we demonstrate that the com-
pact forms (2) and (3) may also hold for deficiency zero nonlinear
CRNs by providing numerical results for various models. In Sec. V,
we numerically examine the validity of the trade-offs [(2) and (3)]
for deficiency nonzero CRNs. We close this paper in Sec. VI with a
summary of the main results and concluding remarks.

II. CHEMICAL REACTION NETWORKS
We begin by laying out the definitions and notations we will

need to analyze the response and noise in CRNs. As a guide, we
provide a concrete example of a CRN in Fig. 1.

A. Constituents and network structure
A CRN consists of NS chemical species, X = {Xi}i∈S with

S = {1, . . . ,NS}, reacting via NR reaction channels, ρ ∈R
= {1, . . . ,NR},

ν+ρ ⋅ X⇌ν−ρ ⋅ X. (4)

Here, the elements of the stoichiometric vectors ν+ρ = {ν+iρ}i∈S and
ν−ρ = {ν−iρ}i∈S are the stoichiometric coefficients that denote the num-
ber of species Xi participating in the forward and reverse chemical
reactions of each channel. Note that the designation of forward or
reverse (and reactant or product) is arbitrary, but fixed from the
onset. Within this framework, we can also include annihilation or
creation due to exchanges with the surroundings by setting either
ν+ρ = ∅ or ν−ρ = ∅, where ∅ = (0, . . . , 0)T. Finally, to ensure thermo-
dynamic consistency, we will assume that all reaction channels are
microscopically reversible, i.e., if a chemical reaction is present, then
so is its reverse.

Many of the features of the reaction dynamics will turn out
to depend on the topological structure encoded in the CRN. We
can exhibit this structure by collecting the changes caused by each
reaction channel Δνρ = ν−ρ − ν+ρ into the NS ×NR stoichiometric
matrix,

S =
⎛
⎜⎜⎜⎜
⎝

∣ ∣ ∣
Δν1 Δν2 ⋅ ⋅ ⋅ ΔνNR

∣ ∣ ∣

⎞
⎟⎟⎟⎟
⎠
. (5)

Each element Siρ = Δνiρ represents the change in the number of
species Xi when reaction ρ occurs. Denoting the kernel (or right null
space) of S as ker (S), we then have by the rank-nullity theorem that
only s = NR − dim (ker (S)) columns of S are linearly independent.
Without loss of generality, we can then reserve the first s indices for
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FIG. 1. Example of a chemical reaction network: It is characterized by three chemical species {X1 = A, X2 = B, X3 = C}, five complexes {y1 = (1, 1, 0)T,
y2 = (2, 0, 0)T, y3 = (0, 1, 1)T, y4 = (1, 0, 0)T, y5 = (0, 0, 1)T

}, and three reaction channels {ν+1 (= y1)⇌ν−1 (= y2), ν+2 (= y2)⇌ν−2 (= y3), ν+3 (= y4)⇌ν−3
(= y5)}. The total number of chemical species l ⋅ n = n1 + n2 + n3 is conserved over time.

linearly independent reactions: in other words, a vector Δνρ with
ρ > s is a linear combination of vectors Δνρ with ρ ≤ s.36

The vectors in the left and right null space of S then have phys-
ical meanings that help to characterize the reaction dynamics.36,38,42

Vectors l in the left null space, l ⋅ S = 0, represent conservation laws:
weighted combinations of chemical species that do not change when
any reaction occurs. Indeed, when reaction ρ occurs, the change
in the quantity l ⋅ X is zero, l ⋅ Δνρ = 0. We can then choose a set
of linearly independent basis vectors {lα∣α = 1, . . . , dim (ker (ST))},
representing a set of independent conservation laws. Similarly, a col-
umn vector r in the right null space, S ⋅ r = 0, represents a chemical
cycle: a series of reactions that leaves the numbers of all of the chem-
ical species unchanged. Indeed, since the elements of S are all inte-
gers, the solutions of the linear equation S ⋅ r = 0 are rational num-
bers, in general, which in turn can be rescaled to be integers. In this
way, a vector r can identify a series of reactions that do not change
the numbers of each species, where each element rρ represents the
number of occurrences of chemical reaction ρ in the cycle and
whose sign denotes the direction (see Fig. 1). Again, we can choose
a set of linearly independent basis vectors {rα∣α = 1, 2, . . . , dim
(ker (S))}.

Chemical reaction network theory has identified an alterna-
tive decomposition of the network structure that turns out to be
important for characterizing the dynamics.32,33 Instead of analyzing

the relationships between chemical species using the stoichiomet-
ric matrix, as we have done, we look at the relationships between
the complexes: the collection of chemical species on either side of a
reaction channel together with their stoichiometric coefficients. For
example, in the reaction channel 2X1 + X2 ⇌ 3X3, the complexes
are {2X1 + X2, 3X3}, while the chemical species are {X1,X2,X3}.
Each complex can then be identified with the corresponding sto-
ichiometric vector ν±ρ . For example, in the reaction 2X1 + X2
⇌ 3X3, the complexes can be represented by the column vectors
(2, 1, 0)T and (0, 0, 3)T. Now, not all ν±ρ are distinct, so the number of
complexes NC may be smaller than or equal to the number of chem-
ical reactions (2NR). To emphasize this, we introduce a separate
notation for the complexes yl with l ∈ C = {1, 2, . . . ,NC}, collecting
them into anNS ×NC matrix Ywhose elements contain information
about which chemical species constitute each complex,

Y =
⎛
⎜⎜⎜⎜
⎝

∣ ∣ ∣
y1 y2 ⋅ ⋅ ⋅ yNC

∣ ∣ ∣

⎞
⎟⎟⎟⎟
⎠
. (6)

The complexes further form a complex-reaction graph, where
the complexes are the vertices and the reaction channels are the
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edges (see Fig. 1). The topology of this graph is captured by the
NC ×NR incidence matrix C, whose elements represent which
reactions link which complexes, with signs denoting incoming or
outgoing,

Clρ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if yl = ν
−
ρ ,

−1 if yl = ν
+
ρ ,

0 otherwise.

(7)

Now, one of the central observations of the mathematical the-
ory of CRNs is that the stoichiometric matrix can be decomposed
as S = Y ⋅ C, linking how reactions change chemical species to how
they change complexes. An immediate consequence is the fact that
ker (S)may not coincide with ker (C), implying that there could be
chemical cycles that are not visible in the complex-reaction graph.
This discrepancy can be captured by introducing the deficiency of
the CRN δ = dim (ker (S)) − dim (ker (C)). Its value has profound
implications for what kinds of dynamical phenomenology the CRN
can exhibit.33 When δ = 0, the dynamics has many features similar
to equilibrium systems, whereas δ ≠ 0 has been linked to bistabil-
ity48 and oscillations49 and has been observed to affect the stochastic
thermodynamics.50 We will also see that the CRN’s deficiency has
implications for the nonequilibrium response as well. The formula
for deficiency we have introduced has a clear interpretation, but the
original definition can be more useful for determining the value of δ.
To this end, we note that a complex-reaction graph may be dissected
into ℓ isolated connected components called linkage classes. Then,
the deficiency of a CRN can be expressed as δ = NC − ℓ − s,33 which
clearly shows it is a non-negative integer. For example, the CRN in
Fig. 1 has a deficiency of δ = 5 − 2 − 2 = 1. It has no visible cycle in
the complex-reaction graph but a single chemical cycle visible in the
microscopic state space.

B. Dynamics and fluctuations
To specify the dynamics, we consider a dilute, well-stirred mix-

ture in a fixed volume Ω. In this situation, an accurate dynamical
model is provided by assuming mass-action kinetics, i.e., the rate
of a chemical reaction is proportional to the concentration of the
reactants. In other situations, distinct types of effective kinetics can
emerge. For example, Michaelis–Menten kinetics are widely used
to model enzymatic reactions.51 However, such emergent effective
kinetics may be restored by taking appropriate limits from mass
action kinetics,39,52 and thus, we do not explicitly consider them
here.

Under our assumptions, an accurate description of the fluc-
tuations is to model the chemical reactions as stochastic Poisson
processes that randomly change the population of the chemical
species n = (n1, . . . ,nNS), where ni denotes the number of speciesXi.
Then, by the law of mass action, the reaction rates are given by53,54

w±ρ(n) =
k±ρ

Ω∑i∈S ν±iρ−1
n!

(n − ν±ρ )!
, (8)

where k±ρ are the rate constants and a! is a shorthand for ∏i∈Sai!.
As a result, the time-evolution of the probability P(n, t) for the

population to be n at time t is given by the chemical master
equation,53,54

∂tP(n, t) =∑
ρ∈R

w+ρ(n − Δνρ)P(n − Δνρ, t)

+∑
ρ∈R

w−ρ(n + Δνρ)P(n + Δνρ, t)

−∑
ρ∈R
{w+ρ(n) +w−ρ(n)}P(n, t)

= L̂P(n, t). (9)

Note that conservation laws restrict the set of available states where
these dynamics can take place. Indeed, recall that any basis vec-
tor lα in the left null space of S is by definition orthogonal to
every Δνρ. Thus, chemical reactions, which change n only in incre-
ments of ±Δνρ, can only move the population through a subspace
orthogonal to the left null space of S. This subspace of accessible
states is referred to as a (non-negative) stoichiometric compatibil-
ity class and is identified by one particular set of values {Λα = lα ⋅ n∣
α = 1, 2, . . . , dim (ker (ST))}.33 Note also that a stoichiometric com-
patibility class may consist of several isolated connected compo-
nents. We can visualize this microscopic state space as a graph(s)
where the vertices are possible populations of the chemical species
n and the edges represent allowable chemical reactions that connect
accessible configurations (see Fig. 1).

We will assume that P(n, t) converges to a steady-state dis-
tribution π(n) in the long time limit, given by the solution of
L̂π(n) = 0. The total probability of the population being in an iso-
lated connected component Γ, pΓ = ∑n∈Γ P(n, 0), is conserved. This
constraint implies that the steady-state distribution segregates onto
each component, π(n) = ∑ΓpΓπΓ(n), with conditional steady-state
distribution πΓ(n) that we assume to be unique.With the knowledge
of this distribution, we can characterize steady-state fluctuations in
the species numbers n using the mean and the variance,

⟨ni⟩ =∑
n
niπ(n), (10)

Var{ni} =∑
n
(ni − ⟨ni⟩)2π(n). (11)

Now, while the chemical master equation offers an accu-
rate description of steady-state fluctuations, it can quickly become
impractical to analyze, both numerically and analytically, as the
system size grows, Ω→∞. In this macroscopic limit, the fluctua-
tions are suppressed and the limiting behavior of the populations is
determined by the evolution of the concentrations of the chemical
species, n/Ω→ [X] = ([X1], . . . , [XNS])T, where [Xi] is the num-
ber of species Xi per unit volume.55,56 In this case, the dynamics are
governed by the deterministic chemical rate equation,

d
dt
[X] =∑

ρ∈R
Δνρ(k+ρ[X]ν

+
ρ − k−ρ[X]ν

−
ρ )

= S ⋅ J([X]), (12)

where ab is a shorthand for the component-wise product ∏i∈S a
bi
i

with the convention 00 = 1. The column vector J([X]) has compo-
nents Jρ([X]) = k+ρ[X]ν

+
ρ − k−ρ[X]ν

−
ρ that represent the net reaction
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flux through each reaction channel. We note that the same rate con-
stants appear in the microscopic dynamics (9) and the macroscopic
dynamics (12) due to the inclusion of the volume-dependent scaling
factor in the microscopic kinetics (8).

Again, in the absence of intervention, the concentrations will
relax to a steady-state value [X]ss given as a solution of S ⋅ J([X]ss)
= 0. However, for a single isolated connected component of the
microscopic state space, in sharp contrast to the unique steady-
state distribution of the chemical master equation (9), the chemical
rate equation (12) may have multiple stable fixed points for cer-
tain collections of the rate constants, resulting in multiple potential
steady-state values [X]ss. Which steady-state is observed as t →∞
depends on the initial conditions. This distinction comes from the
ordering of limits: t →∞ vs Ω→∞. Choosing the order of lim-
its by taking t →∞ first, we can identify the unique steady-state
concentration that is placed at the dominant peak of the probabil-
ity distribution,57,58 which is one of the stable steady-state solutions
of the deterministic equation (12) in multistable systems.58 From
now on, this most-likely steady-state concentration will be sim-
ply denoted as [X]ss, and we will only study the response and
fluctuations around this configuration.

The chemical rate equation is a deterministic equation and
therefore does not offer information about fluctuations. However,
having identified the steady-state concentration [X]ss, we measure
small fluctuations about this configuration from the scaled variance,

Di = lim
Ω→∞

1
Ω

Var{ni}, (13)

which requires some knowledge of themicroscopic dynamics. In this
article, we will use two methods to calculate these fluctuations in the
macroscopic limit for different models. When available, we will use
the large deviation function

I([Xi]) = −limΩ→∞Ω−1 lnπ(ni = Ω[Xi])

to analytically determine the scaled variance via its curvature at
[X]ss.57 Otherwise, we will determine the fluctuations numerically
using the linear noise approximation to the chemical master equa-
tion, which results in a computationally tractable Langevin-type
stochastic equation for the Gaussian fluctuations about [X]ss.54,59
Details can be found in Appendix A.

C. Steady-state response
For a fixed CRN, the steady-state mean number of chemical

species ⟨n⟩ is a function of the values of the rate constants. Our con-
cern here is how sensitively this average responds to changes to those
rate constants. As it will turn out, focusing on (dimensionless) loga-
rithmic changes will facilitate the mathematical analysis. In this case,
the most generic perturbation is the linear combination,

∂⟨n⟩
∂λ
=∑

ρ∈R
λ+ρk+ρ

∂⟨n⟩
∂k+ρ

+ λ−ρk−ρ
∂⟨n⟩
∂k−ρ

, (14)

with expansion coefficients λ±ρ. Similarly, in the macroscopic limit,
we can address the sensitivity of the steady-state concentration
∂λ[Xss].

Making predictions for these arbitrary perturbations can be
quite challenging. Therefore, inspired by the recent work30,31 on the

response of nonequilibrium Markov processes, we will largely focus
on two types of perturbations. The first is perturbing a single rate
constant logarithmically: ∂/∂λ = k±ρ∂/∂k±ρ. The second is a con-
certed change in the forward and reverse rate constants of a single
reaction channel, which we will compactly denote as

∂

∂Bρ
= k+ρ

∂

∂k+ρ
+ k−ρ

∂

∂k−ρ
. (15)

An example of such a perturbation is a change in the concentra-
tion of a catalyst, which increases/decreases both rates of a reaction
channel uniformly.

D. Nonequilibrium thermodynamics
Driven or nonequilibrium chemical dynamics are characterized

by the presence of nonzero reaction currents, a signal of time-
reversal symmetry breaking. This is only possible when there is an
imbalance of reaction rates around chemical cycles, motivating the
introduction of a thermodynamic force that measures the strength
of this asymmetry. Introducing a row vector f with components
fρ = ln(k+ρ/k−ρ), we define the thermodynamic force associated with
the chemical cycle r by38

Fr = f ⋅ r =∑
ρ∈R

rρ ln(
k+ρ
k−ρ
). (16)

When all the thermodynamic forces are zero, every reaction is bal-
anced by its reverse, a statistical condition known as detailed balance
true of all equilibrium systems. Turning this around, we can say that
a larger force corresponds to a system driven farther from equilib-
rium. Note that we identify the thermodynamic forces around chem-
ical cycles (defined via the stoichiometric matrix), which should be
distinguished from the loops in the microscopic state-space graph.
While these microscopic loops are used to identify thermodynamic
forces in stochastic thermodynamics via Schnakenberg’s network
theory,38,42,60 in the context of CRNs, they are actually repeated
copies of chemical cycles, and therefore, it is sufficient to consider
forces just around the chemical cycles.36,38,42

To each reaction channel, we can associate a maximum
thermodynamic force driving that current,

F = max
r∋ρ ∣Fr ∣. (17)

We will show that this quantity measures the strength of nonequi-
librium driving through the reaction channel and also constrains the
response to changing the reaction channel’s kinetic rates.

The physical meaning of thermodynamic forces becomes
explicit once we take into account that our CRNs can be open to
an environment containing other chemical species chemostatted to
fix concentrations that facilitate the observed chemical reactions. In
this respect, the rate constants k±ρ introduced above should be con-
sidered pseudo-rate constants, having absorbed the concentrations
of the chemostatted species into their definition. While we assume
that such a thermodynamically consistent model can be constructed
for the CRNs we study, we will not specify it in order to make the
theory as general as possible.

III. BIRTH–DEATH PROCESS
We begin our investigation with a class of CRNs with a sin-

gle chemical species whose evolution is described by birth–death
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(or one-step) processes, defined by the property that every chemi-
cal reaction changes the number of chemical species by one.54 This
class includes CRNs that are both nonlinear and nonzero deficiency.
Despite this complication, there is a known closed-form expres-
sion for the steady-state probability distribution for general reaction
rates, which will allow us to make concrete predictions for the limits
of response in these models.

Consider the CRN composed of a single chemical speciesX that
reacts via the set of chemical reactions,

zρX
k+ρÐÐ⇀↽ÐÐ
k−ρ
(zρ + 1)X, (18)

with ρ ∈R = {1, 2, . . . ,NR} and zρ being non-negative integers. In
turn, the reaction rates are given by

w+ρ(n) =
k+ρ
Ωzρ−1

n!
(n − zρ)!

,

w−ρ(n) =
k−ρ
Ωzρ

n!
(n − zρ − 1)!

.
(19)

The widely studied Schlögl model fits into this framework with the
choices NR = 2, z1 = 0, and z2 = 2.61 We will use this model to illus-
trate the results of this section. A depiction of its microscopic state
space and thermodynamic force can be found in Fig. 2.

Owing to the simple network structure of the microscopic state
space, exemplified in Fig. 2, we can find an exact solution to the
steady-state distribution π(n). The key observation is that for a
distribution to be stationary, the reaction flux between any pair
of neighboring states must be zero, ∑ρ∈R w+ρ(n)π(n) = ∑ρ∈R w−ρ
(n + 1)π(n + 1), which constrains the ratios of steady-state values
all along the chain of states,

π(n + 1)
π(n) = ∑ρ∈R w+ρ(n)

∑ρ∈R w−ρ(n + 1)
. (20)

FIG. 2. Microscopic state space of the Schlögl model and its thermodynamics.

Iterating this observation using a standardmethodology (see Ref. 61)
leads to the steady-state distribution,

π(n) = π(0)
n−1
∏
i=0

∑ρ∈R w+ρ(i)
∑ρ∈R w−ρ(i + 1)

, (21)

where the probability of the boundary state n = 0 is fixed by
normalization∑∞n=0 π(n) = 1.

Although we have the steady-state distribution, finding a
closed-form expression for the mean number ⟨n⟩ cannot be done in
general without specifying the reaction rates. Hence, we analyze the
steady-state response for an arbitrary perturbation directly, before
specializing to uni-directional and symmetric perturbations. Using
the identity ∑m π(m)∂λ ln π(m) = 0, which follows from probabil-
ity conservation, we can rewrite the response ∂λ⟨n⟩ = ∑n n∂λπ(n)
as

∂⟨n⟩
∂λ
= ∑

m,m′
mπ(m)π(m′) ∂

∂λ
ln

π(m)
π(m′) (22)

shifting our attention to the sensitivity of ratios of probabilities,
which will allow us to exploit the simple network structure of these
models. Indeed, taking advantage of (20), we have

∂

∂λ
ln

π(m)
π(m′) =

m−1
∑
i=m′

∂

∂λ
ln

π(i + 1)
π(i)

=
m−1
∑
i=m′

∂

∂λ
ln( ∑ρ∈R w+ρ(i)
∑ρ∈R w−ρ(i + 1)

) (23)

form > m′. The response for two arbitrarily distant states is given by
the sum of the responses for neighboring states.

Let us first consider single-rate perturbations. For two neigh-
boring states, we have that

∣k+ρ
∂

∂k+ρ
ln

π(n + 1)
π(n) ∣ =

w+ρ(n)
∑ρ′∈R w+ρ′(n)

≤ 1,

∣k−ρ
∂

∂k−ρ
ln

π(n + 1)
π(n) ∣ =

w−ρ(n + 1)
∑ρ′∈R w−ρ′(n + 1)

≤ 1
(24)

are bounded by 1. Plugging (24) into (23) and summing over i lead
to the inequality for non-neighboring states,

∣k±ρ
∂

∂k±ρ
ln

π(m)
π(m′) ∣ ≤ ∣m −m

′∣. (25)

The maximum response for the log-ratio of probabilities at two dis-
tant states is limited by the distance between them, i.e., the number
of reactions required to move between two configurations. We then
obtain a bound on (22) by first re-expressing the sum as

∣k±ρ
∂⟨n⟩
∂k±ρ

∣ =
RRRRRRRRRRR
∑
m>m′
(m −m′)π(m)π(m′)k±ρ

∂

∂k±ρ
ln

π(m)
π(m′)

RRRRRRRRRRR
≤ ∑

m>m′
(m −m′)2π(m)π(m′), (26)
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having bounded the absolute value using (25) and that the sum is
only overm > m′. We recognize the result as

∣k±ρ
∂⟨n⟩
∂k±ρ

∣ ≤ Var{n}. (27)

In words, large number fluctuations are necessary for high
sensitivity.

Next, we consider the symmetric perturbation, which we antic-
ipate will be constrained by the thermodynamic force in addition to
number fluctuations. Again, motivated by (23), we start by analyzing
the response of neighboring states. Differentiating (20), we find

∂

∂Bρ
ln

π(n + 1)
π(n) = w+ρ(n)w̄−ρ(n + 1) −w−ρ(n + 1)w̄+ρ(n)

{w+ρ(n) + w̄+ρ(n)}{w−ρ(n + 1) + w̄−ρ(n + 1)}
,

(28)

where for convenience we have introduced the notation
w̄±ρ(n) = ∑ρ′∈R/{ρ}w±ρ′(n) for the total reaction rate not including
the perturbed reaction channel. Inspired by Ref. 30, we factor the
numerator as (

√
w+ρw̄−ρ +

√
w−ρw̄+ρ)(

√
w+ρw̄−ρ −

√
w−ρw̄+ρ)

and expand the denominator (
√
w+ρw̄−ρ +

√
w−ρw̄+ρ)2

+ (√w+ρw−ρ −
√
w̄+ρw̄−ρ)2 to place the absolute-value of the

response in a form that can readily be bounded,

∣ ∂

∂Bρ
ln

π(n + 1)
π(n) ∣ =

1
1 + a2n

∣tanh(χ
4
)∣ (29)

with

an =
√
w+ρ(n)w−ρ(n + 1) −

√
w̄+ρ(n)w̄−ρ(n + 1)√

w+ρ(n)w̄−ρ(n + 1) +
√
w̄+ρ(n)w−ρ(n + 1)

(30)

and

χ = ln(∑ρ′∈R/{ρ}w+ρ(n)w−ρ′(n + 1)
∑ρ′∈R/{ρ}w+ρ′(n)w−ρ(n + 1)

). (31)

Using 1/(1 + a2n) ≤ 1 and the monotonicity of the hyperbolic
tangent, we can now bound the response as

∣ ∂

∂Bρ
ln

π(n + 1)
π(n) ∣ ≤ tanh(

∣χ∣
4
). (32)

The last step is to constrain χ by the thermodynamic forces driv-
ing the CRN out of equilibrium (17). Importantly, the only forces
that will matter are those around chemical cycles that contain the
perturbed reaction channel (that is, rρ ≠ 0), which we denote as

Fα = ln(
w+ρ(n)w−α(n + 1)
w+α(n)w−ρ(n + 1)

) = ln(k+ρk−α
k+αk−ρ

). (33)

With this definition, we can reinterpret (31) as

∣χ∣ =
RRRRRRRRRRR
ln
⎛
⎝
∑ρ′∈R/{ρ}w+ρ′(n)wρ(n + 1)eFρ′

∑ρ′∈R/{ρ}w+ρ′(n)w−ρ(n + 1)
⎞
⎠

RRRRRRRRRRR
≤ F , (34)

which is bounded by the maximum thermodynamic force
F = maxρ′{∣Fρ′ ∣} through ρ, from which we conclude that

∣ ∂

∂Bρ
ln

π(n + 1)
π(n) ∣ ≤ tanh(

F
4
). (35)

Following the same procedure carried out for single-rate per-
turbations, we can now obtain a trade-off between fluctuations,
response, and nonequilibrium driving,

∣∂⟨n⟩
∂Bρ
∣ ≤ Var{n} tanh( F

4
). (36)

Note that this bound is tighter than a simple application of the
single-rate bound, ∣∂⟨n⟩/∂Bρ∣ ≤ ∣k+ρ∂⟨n⟩/∂k+ρ∣ + ∣k−ρ∂⟨n⟩/∂k−ρ∣
≤ 2Var{n}.

Our analytic predictions also have implications for the limits to
response in the macroscopic limit. Dividing (27) and (36) by Ω and
taking theΩ→∞ limit, we can transfer our trade-offs to

∣k±ρ
∂[X]ss
∂k±ρ

∣ ≤ DX , (37)

∣∂[X]ss
∂Bρ

∣ ≤ DX tanh( F
4
), (38)

where DX = limΩ→∞Var{n}/Ω is the scaled variance. Remarkably,
the response of themacroscopic steady-state concentration is limited
by microscopic fluctuations, which are completely absent from the
deterministic description. While the information about the micro-
scopic fluctuations becomes hidden in the macroscopic limit, its
influence remains. A similar observation has recently been made in
Ref. 62, where the entropy production measured from macroscopic
dynamics bounds the probability of rare fluctuations.

We validate the trade-off (38) by numerically calculating the
response and scaled variance of the Schlögl model. The steady-state
concentration of the Schlögl model satisfies the cubic equation,

k+1 − k−1x + k+2x2 − k−2x3 = 0. (39)

Depending on the rate constants, the equation has one or three pos-
itive solutions. We will focus on a regime of parameters where there
is only a single fixed point to simplify the analysis. Parameterizing
the rate constants as k+1 = 9eB1−F , k−1 = 3eB1 , k+2 = 3, and k−2 = 1,
we find that the equation has a unique solution as long as F ≤ ln 9.
The response and number fluctuations are compared in Fig. 3 for
F < ln 9 and F = ln 9. The bound disappears at the critical point
where the number fluctuation diverges.63 The ratio of the response
to the bound demonstrates that inequality (38) is saturable (insets of
Fig. 3).
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FIG. 3. The response of the steady-state concentration to a symmetric perturbation
in the Schlögl model. The rate constants are k+1 = 9eB1−F , k−1 = 3eB1 , k+2 = 3,
and k−2 = 1 with (a) F = 1 and (b) F = ln 9. The dashed lines represent DX in
(a) and DX tanh(F/4) in (b). The insets depict the ratio of the response to the
bound. The scaled variance DX is obtained from the second derivative of the large
deviation function I(x) = −limΩ→∞Ω−1 ln π(n = Ωx).57

IV. DEFICIENCY ZERO
Trade-offs between response and fluctuation can also be shown

to exist for deficiency zero CRNs. We will distinguish two types of
CRNs, linear and nonlinear, based on whether the dynamics in the
deterministic chemical rate equation is linear or nonlinear. For lin-
ear CRNs, we will be able to derive simple bounds on the response in
terms of number fluctuations, in line with (2) and (3). For nonlinear
CRNs, we will provide numerical studies that suggest that number
fluctuations constrain nonequilibrium responses in these cases as
well; however, we cannot prove them. Some analytic progress is pos-
sible though, and other trade-offs between response and fluctuations
will be demonstrated.

Deficiency zero CRNs have a special property that makes their
response to perturbations amenable to theoretical analysis. Accord-
ing to the deficiency zero theorem,33 for every choice of rate con-
stants, the fixed points of the chemical rate equation (12) of (weakly)
reversible, deficiency zero CRNs are such that the net reaction flux
between every pair of complexes perfectly balances, C ⋅ J([X]ss) = 0,
a property known as complex-balanced (cf. the general condition S ⋅
J([X]ss) = Y ⋅ C ⋅ J([X]ss) = 0). Furthermore, the complex-balanced
steady-state concentration is unique up to a given stoichiometric
compatibility class and stable. There are a number of implications
of this property that will turn out to be important for the study of
response.

The first is that the steady-state distribution of any complex-
balanced CRN has a product form.23,64 To be precise, for a state
n on an isolated connected component Γ of a stoichiometric com-
patibility class identified by a set of conservation laws {Λα = lTα ⋅ n∣
α = 1, 2, . . . , dim (ker (ST))}, the conditional steady-state probabil-
ity is given by

πΓ(n) =
1

ZΓ([X]ss)
(Ω[X]ss)n

n!
, (40)

where ZΓ([X]ss) = ∑n∈Γ (Ω[X]ss)n/n! is a normalization factor.
Now, generically, if we were to change the rates of a complex-
balanced CRN, there is no guarantee that the resulting dynamics
would be complex-balanced nor would the steady-state distribu-
tion maintain its product form. However, for deficiency zero CRNs,
all steady-states are guaranteed to be complex-balanced, and so a
perturbation only has the effect of shifting the complex-balanced
steady-state concentrations while keeping the product form of (40)
intact. As a consequence, the static response of the conditional aver-
age number of any chemical species ⟨ni⟩Γ = ∑n∈Γ niπΓ(n) can be
determined by differentiating (40),

∂⟨ni⟩Γ
∂λ

=∑
j∈S

CovΓ{ni,n j}
∂ ln [X j]ss

∂λ
, (41)

where CovΓ{ni,n j} = ⟨nin j⟩Γ − ⟨ni⟩Γ⟨n j⟩Γ. Equation (41) links the
microscopic stochastic response (∂λ⟨ni⟩Γ) with the macroscopic
deterministic response (∂λ ln [X j]ss) through the fluctuations
(CovΓ{ni,nj}).

To make further progress, we need to constrain the macro-
scopic response, and again restricting attention to deficiency zero
CRNs offers a method. It turns out that the equation for the
complex-balanced steady-state concentration C ⋅ J([X]ss) = 0 can
be cast into a form that allows for a closed-form graphical solu-
tion. To this end, we introduce the Laplacian matrix A of the
complex-reaction graph with off-diagonal elements,

Alm =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k+ρ if yl = ν
−
ρ and ym = ν

+
ρ ,

k−ρ if yl = ν
+
ρ and ym = ν

−
ρ ,

0 otherwise,

(42)

for l ≠ m and diagonal elements All = −∑m∈C/{l} Alm.32,33 We also
introduce the vectorΨ(x) = {xyl}l∈NC whose components are prod-
ucts of chemical species raised to a power determined by how often
that species appears in a given complex. Despite the additional
complication of introducing these two quantities, it can be shown
that the complex-balanced steady-state concentration now solves
the alternative equation C ⋅ J([X]ss) = A ⋅Ψ([X]ss) = 0. The virtue
of this reformulation is that the right null vectors of the Laplacian
matrix can be given by a graphical solution based on the matrix-
tree theorem,30,65,66 which will also allow us to import some of the
methodology from Ref. 30 to constrain the response.

A. Linear CRNs (δ = 0)
Every linear CRN has deficiency zero. Furthermore, in any lin-

ear CRN, each linkage class can be regarded as an independent
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system, with chemical species in separate linkage classes evolving
independently of each other (for example, A and E in Fig. 4). Thus,
without loss of generality, for linear CRNs, we need to only consider
a single linkage class.

For linear CRNs, the results of Ref. 30 allow us to directly
bound the response by recognizing that the deterministic ⟨n⟩ sat-
isfies the same equation A ⋅ ⟨n⟩ = 0 as the steady-state distribution of
a Markov jump process. For example, in a closed CRN with a single
conservation law, the authors of Ref. 30 predicted that the single-rate
perturbation is bounded by

∣k±ρ
∂⟨ni⟩
∂k±ρ

∣ ≤ ⟨ni⟩(1 −
⟨ni⟩
ntot
). (43)

Connecting this upper bound to number fluctuations is possible, but
requires information that the steady-state distribution is of prod-
uct form (40). Below, we take a different approach, building our
analysis off the fluctuation–response equality (41), which allows us
to develop in parallel response bounds for linear and nonlinear
deficiency zero networks.

To begin, we need to distinguish whether or not our linear
CRN is open to the exchange of chemical species with the surround-
ings, which would manifest as one of the complexes being the null
vector. If the null vector is a complex, e.g., as in the right link-
age class in Fig. 4, the CRN has no conservation laws. This can be
deduced by noting the number of complexes is larger than the num-
ber of species NC = NS + 1 due to the presence of the null complex.
Furthermore, the number of independent reaction channels is sim-
ply one less than the number of complexes, rank(ST) = NC − 1, as
each complex is linked to at least one reaction. Then, by the rank-
nullity theorem, there are no conservation laws: dim (ker (ST))
= NS − rank(ST) = NS − (NC − 1) = 0. In this case, the steady-state
distribution becomes a multivariate Poisson distribution64,67 over
the entire microscopic state space, in which the numbers of different
chemical species are uncorrelated, Cov{ni,nj} = Var{ni}δij. Then,
the fluctuation–response relation (41) can be written as

∂⟨ni⟩
∂λ

= Var{ni}
∂

∂λ
ln [Xi]ss. (44)

On the other hand, if a linear CRN does not include a null
vector as a complex, then NC = NS and there is a single conserva-
tion law, dim (ker (ST)) = NS − rank(ST) = NS − (NC − 1) = 1. The
one conservation law is the total number of chemical species

FIG. 4. Linear CRN with two linkage classes: Each linkage class of a linear CRN
can be regarded as an independent system.

ntot = ∑i∈S ni. In this case, the steady-state distribution becomes a
multinomial distribution over a stoichiometric compatibility class
with a single isolated connected component, whose mean and
covariance are given by ⟨ni⟩ = ntot[Xi]/∑ j∈S [X j] and Cov{ni,nj}
= ⟨ni⟩(δij − ⟨nj⟩/ntot).64,67 This allows us to separate the sum in (41)
into two parts with j = i and j ≠ i,

∑
j∈S/{i}

Cov{ni,n j}
∂ ln [X j]ss

∂λ
= −Var{ni}

∂

∂λ
ln
⎛
⎝ ∑j∈S/{i}

[X j]ss
⎞
⎠
.

(45)
As a result, the fluctuation–response relation (41) becomes

∂⟨ni⟩
∂λ

= Var{ni}
∂

∂λ
ln( [Xi]ss
∑ j∈S/{i} [X j]ss

). (46)

To proceed, we recognize that for linear CRNs, there is a
one-to-one correspondence between chemical species and com-
plexes. Thus, we can always choose a basis for the complexes
such that Ψi([X]ss) = [Xi]ss, and the last complex is the null vec-
tor Ψ∅([X]ss) = ([X]ss)0 = 1 when it is present. In this way, the
condition for the complex-balanced steady-state concentrations
becomes A ⋅ [X]ss = 0, where with a slight abuse of notation we write
[XNS+1] = 1 for the null vector. In this way, steady-state concentra-
tions [X]ss have a graphical representation based on the matrix-tree
theorem since [X]ss lies in the right null space of the Laplacian
matrix A.30,65,66 Such a graphical representation has been exploited
recently to study the response of nonequilibriumMarkov jump pro-
cesses,30 whose master equation has the same structure. The theory
developed in Ref. 30 is directly applicable to the present setup.
Equation (F1) of Ref. 30 can be translated into

∣k±ρ
∂

∂k±ρ
ln
[Xi]ss
[X j]ss

∣ ≤ 1 (47)

and

∣k±ρ
∂

∂k±ρ
ln( [Xi]ss
∑ j∈S/{i} [X j]ss

)∣ ≤ 1. (48)

Although the counterpart of the former inequality does not appear
in Ref. 30 explicitly, it is straightforwardly obtainable by applying the
same logic to prove (F1) of Ref. 30. Similarly, Eqs. (C12) and (C13)
of Ref. 30 can be translated, respectively, into

∣ ∂

∂Bρ
ln
[Xi]ss
[X j]ss

∣ ≤ tanh( F
4
) (49)

and

∣ ∂

∂Bρ
ln( [Xi]ss
∑ j∈S/{i} [X j]ss

)∣ ≤ tanh( F
4
). (50)

Note that only chemical cycles visible in the complex-reaction graph
are taken into account for defining F since the matrix-tree theorem
only uses information encoded in A, i.e., the connectivity between
complexes. The zero deficiency then ensures that all chemical cycles
are visible in the complex-reaction graph.
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To complete our analysis, we apply inequalities (47)–(50) to
(44) and (46) to derive trade-offs for linear CRNs,

∣k±ρ
∂⟨ni⟩
∂k±ρ

∣ ≤ Var{ni} (51)

and

∣∂⟨ni⟩
∂Bρ

∣ ≤ Var{ni} tanh(
F
4
), (52)

which hold regardless of the conservation law.
This analysis complements a derivation directly based on the

results of Ref. 30.

B. Nonlinear deficiency zero (δ = 0): Theory
The explicit form of the mean and covariance is generally

unavailable for nonlinear CRNs. In addition, different linkage classes
are generally not independent. These facts significantly complicate
the analysis, requiring us to investigate the response of the full
steady-state distribution.

While we are not able to prove that the response is bounded by
number fluctuations, we are able to show that it is limited by another
measure of fluctuations in chemical space that we now introduce.
Details can be found in Appendix B. To this end, we define a matrix
formed by keeping only the linearly independent columns of the
stoichiometric matrix,

S′ =
⎛
⎜⎜⎜⎜
⎝

∣ ∣ ∣
Δν1 Δν2 ⋅ ⋅ ⋅ Δνs

∣ ∣ ∣

⎞
⎟⎟⎟⎟
⎠
. (53)

Since all the columns are linearly independent, S′ has a left inverse
matrix (S′)−1 satisfying (S′)−1S′ = I. It is worth mentioning that
S′ is not unique in that we could have chosen a different subset of
linearly independent reactions to form S′.

Applying the matrix tree theorem to the response of the log-
ratio of steady-state probabilities of two states, we obtain the bounds

∣k±ρ
∂⟨ni⟩Γ
∂k±ρ

∣ ≤ ∑
σ∈R ′

RRRRRRRRRRR
∑
j∈S
(S′)−1σ jCovΓ{ni,n j}

RRRRRRRRRRR
(54)

and

∣∂⟨ni⟩Γ
∂Bρ

∣ ≤ ∑
σ∈R ′

RRRRRRRRRRR
∑
j∈S
(S′)−1σ jCovΓ{ni,n j}

RRRRRRRRRRR
tanh( F

4
), (55)

where R ′ = {1, 2, . . . , s}. These weighted covariances depend on
tangible observable number fluctuations though these are coupled
through the network topology. Further insights into the nature of
these fluctuations are offered by considering another representation
of the population vectors n, detailed in Appendix B. Any state vector
n′ can be reached from any other state vector n through a unique
series of the s independent reactions in the columns of S′ (53). If
we denote μσ(n,n

′) as the number of times reaction σ occurs along

the reaction path from n to n′, then the weighted covariances can be
re-expressed as

∑
j∈S
(S′)−1σ jCovΓ{ni,n j} = ∑

n,n′∈Γ
niμσ(n,n′)πΓ(n)πΓ(n′) (56)

in terms of a correlation depending on the distance between the
states n and n′ measured in reactions. In this way, the response
can be viewed as bounded by number fluctuations or fluctuations
in reaction distance.

Although we were not able to derive the compact forms of
trade-offs [(2) and (3)], numerical evidence presented in Subsec-
tion IV C suggests they may be valid for a broad class of nonlinear
CRNs as well.

C. Nonlinear deficiency zero (δ = 0): Numerics
We provide numerical results for several nonlinear, deficiency

zero CRNs to demonstrate the potential validity of the trade-
offs in (2) and (3), allowing for multiple conservation laws and
multiple chemical cycles. Without loss of generality, we consider
here only one isolated connected component. This follows because
the total response ∂⟨ni⟩/∂λ is a linear combination of the partial
responses ∂⟨ni⟩Γ/∂λ. If the trade-offs [(2) and (3)] hold for each
partial response, then the total response is also bounded by number
fluctuations

∣∂⟨ni⟩
∂λ
∣ ≤∑

Γ
pΓVarΓ{ni} ≤ Var{ni} (57)

due to the convexity of the variance. We find in each case stud-
ied here that trade-offs [(2) and (3)] hold with common properties
α1 = α2 and g(F) = tanh (F/4). The values of α1 = α2 depend on
the chemical species of interest and the perturbed chemical reaction
but not on the size of the stoichiometric compatibility class. Details
of the numerical methods can be found in Appendix A.

In our numerical analysis, we will distinguish two method-
ologies for numerically determining the response and fluctuations
based on system size. When the size of the stoichiometric compati-
bility class is small enough, say, due to the existence of conservation
laws, such that the chemical master equation (9) is practically solv-
able, we will use it to directly calculate the steady-state distribution
and the steady-state response. Then, to examine the trade-offs [(2)
and (3)], we will plot two quality factors,

K(±ρ,Xi) =
1

Var{ni}
∣k±ρ

∂⟨ni⟩
∂k±ρ

∣, (58)

B(ρ,Xi) =
1

Var{ni}
∣∂⟨ni⟩
∂Bρ

∣. (59)

Other times, it will be more feasible to determine the response and
fluctuations in the macroscopic limit using the chemical rate equa-
tion (12) to determine the steady-state concentration and the linear
noise approximation to estimate fluctuations. To distinguish this
case, we introduce a modified notation for quality factors,
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KM(±ρ,Xi) =
1
Di
∣k±ρ

∂[Xi]ss
∂k±ρ

∣, (60)

BM(ρ,Xi) =
1
Di
∣∂[Xi]ss

∂Bρ
∣, (61)

where the superscript “M” signifies macroscopic. Recalling that the
chemical rate equation can have multiple stable fixed points, we
avoid this complication by only considering the macroscopic limit
in situations where there is a unique stable solution.

1. Single chemical cycle and single
conservation law (δ = 0)

We first consider a deficiency zero, nonlinear CRN with
a single chemical cycle and a single conservation law, with a
complex-reaction graph

(62)

This CRN is constructed from a slight modification of the exam-
ple depicted in Fig. 1 to make it deficiency zero, but with the
same stoichiometric matrix and conservation law. The total num-
ber of chemical species Λ = nA + nB + nC is conserved, and the only
chemical cycle is visible in the complex-reaction graph. For fixed
Λ, the stoichiometric compatibility class consists of a large iso-
lated connected component and three isolated states, (nA,nB,nC)
∈ {(0,Λ, 0), (0, 0,Λ), (1, 0,Λ − 1)}. The case of Λ = 3 is depicted
in Fig. 5. The steady-state probabilities of the three isolated states
are fixed by the initial distribution and do not change when the
dynamics are perturbed. Accordingly, it is sufficient to consider only
the large isolated connected component to examine the trade-offs
since the isolated states do not contribute to response and number
fluctuations.

FIG. 5. Stoichiometric compatibility class of chemical reaction network (62) with
total number Λ = nA + nB + nC = 3. It consists of four isolated connected compo-
nents, including three isolated states (0,3,0), (0,0,3), and (1,0,2). The shaded area
highlights the largest isolated connected component.

By choosing a basis where {X1 = A,X2 = B,X3 = C} and the
two independent chemical reactions {A + B⇌ 2A, 2A⇌ B + C}, we
have the reduced stoichiometric matrix

S′ =
⎛
⎜⎜⎜⎜
⎝

1 −2
−1 1

0 1

⎞
⎟⎟⎟⎟
⎠

(63)

and its left inverse

(S′)−1 =
⎛
⎜
⎝

0 −1 1

−1/3 −1/3 2/3

⎞
⎟
⎠
. (64)

Plugging the components of (S′)−1 into (54) and (55) and using
Cov{nX ,Λ} = 0, we have inequalities

∣k±ρ
∂⟨nX⟩
∂k±ρ

∣ ≤ ∣Cov{nX ,nB − nC}∣ + ∣Cov{nX ,nC}∣ (65)

and

∣∂⟨nX⟩
∂Bρ

∣ ≤ (∣Cov{nX ,nB − nC}∣

+ ∣Cov{nX ,nC}∣) tanh(
F
4
), (66)

where X ∈ {A,B,C} and F is the absolute value of the thermody-
namic force associated with the sole chemical cycle (17).

We numerically calculated the two quality factors K(±ρ,X)
and B(ρ,X) for each species X and reaction channel ρ for random
sets of system parameters (Λ,{k±ρ}3ρ=1,Ω). Then, for each random
set of system parameters, we plot in Fig. 6 the maximum quality
factors for each species X, maximized over perturbed reaction chan-
nels, depicted as open symbols. Figure 6 suggests the existence of
upper bounds on the response that do not appear to depend on Λ.
To confirm this observation and determine the shape of the upper
bound, we numerically optimized the quality factors using simulated
annealing.68 The results from the optimization are drawn as filled
symbols in Fig. 6, which align with the trade-offs [(2) and (3)] with
g(F) = tanh (F/4) regardless of (ρ,X). A closer investigation fur-
ther reveals that the two prefactors α1 and α2 coincide for each pair
(ρ,X) (see Table I).

To investigate the relationship between our covariance bounds
(65) and compact trade-offs (2), we compare the tightness of the
bounds in Fig. 7 by plotting the ratios of the response to fluc-
tuations for single rate perturbations; similar conclusions would
be reached by considering force-dependent symmetric perturba-
tions bounded in (66) and (3). The numerical results validate
both inequalities as all samples are confined to the unit square.
Moreover, we see that one bound is generally not tighter than
the other as samples fall above and below the diagonal, imply-
ing that the covariance bounds (65) and (66) we have derived
are not sufficiently tight in this case to prove the compact trade-
offs [(2) and (3)]. Nevertheless, the enveloping guidelines shown
in red based on the inequalities (α1/2)Var{nX} ≤ ∣Cov{nX ,nB
− nC}∣ + ∣Cov{nX ,nC}∣ ≤ 3α1 Var{nX} imply that the bounds are
not completely independent.
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FIG. 6. The maximum quality factors among different choices of ρ for the model in
(62) at a fixed (X ,Λ,{k±ρ}3

ρ=1,Ω). Each open symbol is obtained from a set of

randomly sampled rate constants {k±ρ}3
ρ=1 and system size Ω, the logs of which

are uniformly sampled from the range [−5, 5], with Λ sampled from {3, 4, 5, 6, 7}.
The number of open symbols at a fixed (X ,Λ) in each panel is 200. The filled
symbols are the maximum values at a fixed F and chemical species, which are
numerically optimized using simulated annealing. The perturbed edges used for
the optimization are A + B⇀ 2A for (a) and A + BÐ⇀↽Ð 2A for (b), andΛ is fixed by

3. The dashed lines represent 1 and 2 in (a) and tanh (F/4) and 2 tanh (F/4)
in (b).

2. Multiple conservation laws (δ = 0)
To see whether and how the number of conservation laws

affects the trade-offs, we consider a CRN with multiple conservation
laws, but a single chemical cycle. Our model is composed of a sub-
strate that can exist in an unmodified S andmodified form P. In cells,
this modification is often the addition of a phosphate group, but we
will not make that specification here. The modification and demod-
ification are carried out by a single enzyme E through two distinct
intermediate species ES1 and ES2, resulting in the complex-reaction
graph

TABLE I. Numerically estimated values of (α1, α2) for each pair (ρ, X) in (62).

Chemical reaction (ρ)

Chemical species (X) ±1 ±2 ±3

A (1,1) (1,1) (1,1)
B (2,2) (1,1) (2,2)
C (2,2) (1,1) (2,2)

FIG. 7. Comparison of the tightness of the proven bound (65) and conjectured
bound (2) for the model in (62). The covariance bound in the vertical axis refers to
the right-hand side of (65). Each symbol is obtained from a set of randomly sam-
pled rate constants {k±ρ}3

ρ=1 and system size Ω, the logs of which are uniformly
sampled from the range [−5, 5], with Λ = 3. The coefficient α1 is used as the
estimated values in Table I. The number of symbols for a fixed pair of (X ,±ρ) is
500. The red guidelines have slopes of 1/3, 1, and 2.

(67)

This CRN was inspired by the Goldbeter–Koshland model for
the phosphorylation–dephosphorylation cycle (PdPC), which is a
known mechanism for ultra-sensitivity. The model was modified to
make it reversible and deficiency zero. Later, in Sec. V B, we will
analyze the full (reversible) Goldbeter–Koshland model.

The modification–demodification cycle in (67) has two inde-
pendent conservation laws: the total numbers of enzymes ΛE = nE
+ nES1 + nES2 and substrates ΛS = nS + nP + nES1 + nES2 . By choos-
ing a basis where {X1 = E,X2 = S,X3 = P,X4 = ES1,X5 = ES2} and
three independent reaction channels {E + S ⇌ ES1,ES1 ⇌ E + P,
E + P⇌ ES2}, we have the reduced stoichiometric matrix

S′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 −1
−1 0 0

0 1 −1
1 −1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(68)
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and its left inverse

(S′)−1 =
⎛
⎜⎜⎜⎜
⎝

−1/4 −5/8 3/8 1/8 1/8
0 −1/2 1/2 −1/2 1/2
−1/4 −1/8 −1/8 −3/8 5/8

⎞
⎟⎟⎟⎟
⎠
. (69)

Plugging the components of (S′)−1 into (54) and (55) and using
Cov{nX ,ΛE} = Cov{nX ,ΛS} = 0, we have the inequalities

∣k±ρ
∂⟨nX⟩
∂k±ρ

∣ ≤ ∣Cov{nX ,nS}∣ + ∣Cov{nX ,nES2}∣

+ ∣Cov{nX ,nP + nES2}∣ (70)

and

∣∂⟨nX⟩
∂Bρ

∣ ≤ (∣Cov{nX ,nS}∣ + ∣Cov{nX ,nES2}∣

+ ∣Cov{nX ,nP + nES2}∣) tanh(
F
4
), (71)

where X ∈ {E, S,P,ES1,ES2} and F is the absolute value of the
thermodynamic force associated with the only chemical cycle (17).

We numerically calculated the maximum values K(±ρ,X) and
B(ρ,X) among different pairs of (ρ, X) at fixed system parameters
(ΛE,ΛS,{k±ρ}4ρ=1,Ω). Rate constants {k±ρ}4ρ=1 and system size Ω
are randomly chosen. The total numbers of enzymes and substrates
are selected from (ΛE,ΛS) ∈ {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}. The
results are shown in Fig. 8, which demonstrate that the max-
imum quality factors are bounded from above by K ≤ 1 and
B ≤ tanh (F/4). A detailed investigation further shows that the
model (67) obeys trade-offs ∣k±∂⟨nX⟩/∂k±ρ∣ ≤ 1 and ∣∂⟨nX⟩/∂Bρ∣
≤ tanh (F/4) no matter the choice of pair (ρ,X).

In Fig. 9, we numerically compare the covariance bound (70)
with the compact trade-offs (2) for a single rate perturbation by plot-
ting the ratio of response to the fluctuations. The validity of both
bonds is apparent as all samples fall inside the unit square. Here,
however, all samples fall below the diagonal, implying that covari-
ance bound (70) is tighter than the compact trade-off (2) in contrast
to what was observed for the model in (62). Together, the results in
Figs. 7 and 9 suggest that the relative tightness of the two types of
bounds depends on the model.

3. Multiple chemical cycles (δ = 0)
We further alter the modification–demodification cycle to

include the effect of multiple chemical cycles,

(72)

The enzyme E can now also be reversibly converted into a waste
form W, and both the enzyme and the waste species are in con-
tact with chemical reservoirs. Two chemical cycles are visible in

FIG. 8. The maximum quality factors among different choices of (ρ, X ) for the
model in (67) at a fixed (ΛE ,ΛS,{k±ρ}4

ρ=1,Ω). Each symbol is obtained from a

set of randomly sampled rate constants {k±ρ}4
ρ=1 and system size Ω, the logs of

which are uniformly sampled from [−5, 5]. The total number of enzymes and sub-
strates, (ΛE ,ΛS), take values from {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}. The
number of symbols at a fixed (ΛE ,ΛS) in each panel is 200. The thick lines
represent 1 in (a) and tanh (F/4) in (b).

FIG. 9. Comparison of the tightness of the proven bound (70) and conjectured
bound (2) for the model in (67). The covariance bound in the vertical axis refers to
the right-hand side of (70). Each symbol is obtained from a set of randomly sam-
pled rate constants {k±ρ}4

ρ=1 and system size Ω, the logs of which are uniformly
sampled from the range [−5, 5], with (ΛE ,ΛS) = (3, 3). The coefficient α1 is set
to 1 for all pairs of (X ,±ρ). The number of symbols for a fixed pair of (X ,±ρ) is
200. The guidelines have slopes of 1/3 and 1.
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the complex-reaction graph. We denote the associated thermody-
namic forces in the left and right linkage classes as Fl and Fr .
The maximum thermodynamic force F (17) is equal to ∣Fl∣ (∣Fr ∣)
if the perturbed reaction is in the left (right, respectively) linkage
class. The total number of enzymes is no longer conserved, while the
conservation law for substrates, ΛS = nS + nP + nES1 + nES2 , remains.
Since the numbers of E and W are not limited, the stoichiometric
compatibility class is infinitely large even if ΛS is small. At the same
time, the zero deficiency of the CRN ensures that the steady-state
(positive) solution of the chemical rate equations is unique.33 Instead
of solving the chemical master equation with small ΛS, we examine
the validity of the macroscopic version of trade-offs by considering
quality factors KM(±ρ,X) and BM(ρ,X). For macroscopic concen-
trations, we denote the conserved total concentration of substrates
by ST = [S] + [P] + [ES1] + [ES2].

We numerically calculated the maximum values ofKM(±ρ,X)
and BM(ρ,X) for different pairs (ρ,X) for randomly sampled
combinations of system parameters (ST ,{k±ρ}7ρ=1). The numerical
results are represented in Fig. 10 in which the cases X =W and
X ≠W are treated separately. The maximum quality factor of the
wasted form of enzymeW is bounded from above by 1/2, while those
of other chemical species are bounded by 1. Figure 10 and Table II
suggest that the model in (72) obeys the macroscopic version of
trade-offsKM ≤ α1 and BM ≤ α2 tanh (F/4) with α1 = α2 = 1/2 for
X =W and α1 = α2 = 1 for X ≠W.

FIG. 10. The maximum quality factors among different choices of [ρ, X(≠ W)] for
the model in (72) at fixed (ST ,{k±ρ}7

ρ=1) (circles). The maximum quality factors
for X = W are calculated separately (squares). Each symbol is obtained from a
set of randomly sampled rate constants {k±ρ}7

ρ=1 and the total concentration of
substrates ST , the logs of which are uniformly sampled within the range [−5, 5].
The number of each symbol in each panel is 103. The thick lines represent 1/2
and 1 in (a) and (1/2) tanh (F/4) and tanh (F/4) in (b).

TABLE II. Numerically estimated values of (α1, α2) to each given pair (ρ, X) for the
model in (72).

Chemical reaction (ρ)

X ±1 ±2 ±3 ±4 ±5 ±6 ±7

E (0,0) (0,0) (0,0) (0,0) (1,1) (1,1) (1,1)
S (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
P (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
ES1 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
ES2 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
W (0,0) (0,0) (0,0) (0,0) ( 12 ,

1
2 ) ( 12 ,

1
2 ) ( 12 ,

1
2 )

The suppressed response of W is a nonlinear effect. Since
the steady-state distribution is a product form but no conserva-
tion law constrains nW , the fluctuations of nW are decoupled from
other chemical species, and thus, CovΓ{nW ,nj} = VarΓ{nW}δWj. As
a result, the fluctuation–response relation (41) forW simplifies to

∂⟨nW⟩Γ
∂λ

= 1
2
VarΓ{nW}

∂

∂λ
ln [W], (73)

which in turn leads to trade-offs with α1 = α2 = 1/2. Since a com-
patibility class is composed of a single connected component in
this model, applying the matrix tree theorem, we can actually prove
trade-offs for E and W, whose numbers are not conserved for
any ΛS.

The above statements can be generalized. For a defi-
ciency zero CRN, if the number of a chemical species A is
not conserved and a complex zA with a positive integer z is
included in the CRN, the fluctuation–response relation (41) for A
can be written as ∂λ⟨nA⟩Γ = (1/z)VarΓ{nA}∂λ ln [A]z . By noting
ΨzA([X]ss) = [A]z and Ψ∅([X]ss) = 1 and applying the matrix-tree
theorem, we can derive trade-offs ∣k±ρ∂⟨nA⟩Γ/∂k±ρ∣ ≤ VarΓ{nA}/z
and ∣∂⟨nA⟩Γ/∂Bρ∣ ≤ (VarΓ{nA}/z) tanh (F/4), provided that the
complexes ∅ and zA are in the same linkage class.

V. DEFICIENCY NONZERO CHEMICAL REACTION
NETWORKS

Analytical approaches are further limited for deficiency
nonzero CRNs since the general form of the steady-state distribu-
tion is unknown. Hence, we exclusively rely on numerical methods
here. The validity of trade-offs [(2) and (3)] is examined by calcu-
lating the quality factors defined in Sec. IV C for two models with
different features.

A. Multiple chemical cycles (δ ≠ 0)
The Schögl model illustrated in Sec. III is a deficiency nonzero

model with a single chemical cycle, for which the trade-offs between
fluctuation and response are proven. In order to see the effect ofmul-
tiple thermodynamic forces, we consider a deficiency nonzeromodel
with two independent chemical cycles, whose complex-reaction
graph is given by
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(74)

Apart from the cycle visible in the complex-reaction graphwith ther-
modynamic force F1 = ln((k+1k+2k+3)/(k−1k−2k−3)), an indepen-
dent cycle with thermodynamic force F2 = ln((k−1k+2)/(k+1k−2))
is further identified by analysis of the stoichiometric matrix.
Along with F1 and F2, two more cycles characterized by ther-
modynamics forces F1 − F2 = ln ((k2+1k+3)/(k2−1k−3)) and F1 + F2
= ln ((k2+2k+3)/(k2−2k−3)) constitute the entire set of cycles that
reside in the microscopic state space. The maximum thermody-
namic force F depends on the perturbed edge (17). For exam-
ple, if the chemical reaction ∅ÐÐ⇀↽ÐÐ X is perturbed, F = max
{∣F1∣, ∣F2∣, ∣F1 − F2∣}.

The number of chemical species X is not conserved with no
upper bound. Thus, the only stoichiometric compatibility class is
infinitely large. We examine the validity of the macroscopic version
of the trade-offs [(2) and (3)]. The steady-state concentration [X]ss
is the unique positive solution of the quadratic equation

(k+1 + 2k−3) + (−k−1 + k+2)x − (k−2 + 2k+3)x2 = 0. (75)

We numerically calculate the quality factors KM(±ρ,X) and
BM(ρ,X) for a fixed set of rate constants {k±ρ}3ρ=1. The logs of
the rate constants are randomly sampled from a uniform distri-
bution over the range [−10, 10]. From these 106 data points, the
maximum response is singled out from each interval F ∈ [x, x + 0.5]
with x ∈ {0, 0.5, 1, . . . , 19.5} and plotted in Fig. 11. Numerical results
are consistent with the macroscopic version of the trade-offs. The
prefactors and the function g(F) vary for different choices of the
perturbed chemical reaction. For example, when the chemical reac-
tion 2X ÐÐ⇀↽ÐÐ ∅ is perturbed, the quality factors do not exceed 2/3 and
g(F) differs from tanh (F/4). Unlike in the deficiency zero CRNs
without a conservation law (see Sec. IV C 3), the effect of nonlin-
earity is not to simply reduce the response function by an integer
factor.

B. Multiple conservation laws (δ ≠ 0)
Our inspiration here is the Goldbeter–Koshland model for the

PdPC. In its original formulation, a substrate can exist in an unmod-
ified S form and a modified or phosphorylated form P. Phospho-
rylation is catalyzed by a kinase enzyme E1, whereas a phosphatase
enzyme E2 catalyzes dephosphorylation. By introducing two inter-
mediate species E1S and E2P, Goldbeter and Koshland considered
two chains of irreversible chemical reactions1

E1 + SÐÐ⇀↽ÐÐE1S⇀ E1 + P,

E2 + PÐÐ⇀↽ÐÐE2P ⇀ E2 + S
(76)

as a mechanism to explain switch-like behavior observed in some
biological scenarios. The high sensitivity, called zero-order ultrasen-
sitivity,69 is observed in a regime where the total numbers of both

FIG. 11. Quality factors for the model in (74). Raw data are calculated from 106

sets of randomly sampled rate constants, the logs of which are uniformly sam-
pled over the range [−10, 10]. The symbols represent the maximum values of
quality factors selected from the sampled data within range F ∈ [x, x + 0.5],
where x ∈ {0, 0.5, 1, . . . , 19.5}. The thick lines represent {1/2, 2/3, 1} in (a) and
{(2/3) tanh (F/4), tanh (F/4)} in (b).

enzymes are much lower than that of the substrates and the chem-
ical cycle is highly irreversible.2 We will examine the emergence of
this high sensitivity from the point of view of the trade-offs.

The irreversible chemical reactions of the model imply infinite
entropy production and are thermodynamically implausible. In line
with Ref. 2, we consider a reversible version with a complex-reaction
graph

E1 + S
k+1ÐÐ⇀↽ÐÐ
k−1

E1S
k+2ÐÐ⇀↽ÐÐ
k−2

E1 + P,

E2 + P
k+3ÐÐ⇀↽ÐÐ
k−3

E2P
k+4ÐÐ⇀↽ÐÐ
k−4

E2 + S.
(77)

The deficiency of the model is one. The stoichiometric compatibility
class is specified by three conservation laws: the total numbers of the
respective enzymes, ΛE1 = nE1 + nE1S and ΛE2 = nE2 + nE2P, as well as
the total number of substrates, ΛS = nS + nP + nE1S + nE2P. The ther-
modynamic force associated with the only chemical cycle invisible in
the complex-reaction graph is F = ln (∏4

i=1(k+i/k−i)), which is the
chemical potential difference between ATP and ADP+Pi in the unit
of kBT.

In order to examine the validity of the trade-offs [(2) and (3)],
we numerically calculate the quality factors K(±ρ,X) and B(ρ,X)
at 106 fixed values of ({k±ρ}4ρ=1,Ω). The logs of the rate constants
{k±ρ}4ρ=1 and system volume Ω are randomly sampled from a uni-
form distribution over the range [−5, 5], from which eachK(±ρ,X)
and B(ρ,X) are determined for all pairs (ρ,X). For each value of
system parameters, we then select the maximum of K(±ρ,X) and
B(ρ,X) over all pairs (ρ,X) to obtain one sample of the max-
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quality factors. Plotted in Fig. 12 is then the maximum quality factor
within each interval F ∈ [x, x + 0.5] for x ∈ {0, 0.5, 1, . . . , 19.5}. The
response depends on the total numbers of enzymes and substrates,
(ΛE1 ,ΛE2 ,ΛS) ∈ {(1, 1, 3), (1, 1, 5), (3, 3, 3), (1, 1, 7)}, which also
determine the respective size of the stoichiometric compatibility
classes, {12, 20, 20, 28}. Two features distinct from deficiency zero
CRNs can be observed in Fig. 12.

We first compare the cases (ΛE1 ,ΛE2 ,ΛS) = (1, 1, 5) and (3,3,3)
(orange and green), which have the same numbers of microscopic
states in the stoichiometric compatibility class, 20. Although the
numbers of microscopic states are the same, the structural differ-
ences in the microscopic state space lead to a different quantitative
relationship between response and fluctuations. While the maxi-
mum values of the quality factors are slightly greater than 1 when
the number of enzymes is comparable with that of the substrates,
they appear to grow to a much larger value with thermodynamic
force when the enzymes are scarce. This high response in Fig. 12
observed when the enzymes are scarce is reminiscent of zero-order
ultrasensitivity; however, in the biochemical literature, ultrasensitiv-
ity is defined by the response to a change in the total numbers of
enzymes ΛE1 and/or ΛE2 ,69 which is different from what we con-
sider here. With that caveat in mind, a recent theoretical study has
shown that in the limit that substrate concentration goes to infinity
(infinitely scarce enzymes), the log-sensitivity to changes in the total
enzyme concentration can actually grow as fast as exponential with
thermodynamic driving.5 This prediction appears consistent with
our observation that our quality factors grow over a wider range of
thermodynamic forces when there are less enzymes.

FIG. 12. The maximum quality factors among different choices of (ρ, X ) for the
model in (77) with (ΛE1

,ΛE2
,ΛS) ∈ {(1, 1, 3), (1, 1, 5), (3, 3, 3), (1, 1, 7)} at

a fixed ({k±ρ}4
ρ=1,Ω). Raw data are calculated from 106 sets of randomly sam-

pled rate constants {k±ρ}4
ρ=1 and system size Ω, the logs of which are uniformly

sampled within the range [−5, 5]. The symbols represent the maximum values
of quality factors selected out of raw data within range F ∈ [x, x + 0.5], where
x ∈ {0, 0.5, 1, . . . , 19.5} The thick lines represent 1 in (a) and tanh (F/4) in (b).

Next, we compare the cases (ΛE1 ,ΛE2 ,ΛS) = (1, 1, 3), (1, 1, 5),
and (1,1,7). On the one hand, the quality factors appear to obey the
trade-offs [(2) and (3)] for a fixed ΛS. On the other hand, as the total
number of substrates increases, the maximum values of the quality
factors increase as well. This suggests that the prefactors α1,2 in the
trade-offs depend on system details, such as the ratio between the
numbers of substrates and enzymes, which deform the structure of
the stoichiometric compatibility class.

VI. CONCLUDING REMARKS
In this work, we investigated fluctuation–response trade-offs

for CRNs in nonequilibrium steady-states. We proved the trade-
offs, (2) and (3), for linear CRNs (Sec. IV) and a class of nonlinear
CRNs with a single chemical species (Sec. III). For deficiency zero
nonlinear CRNs, the response is still bounded by fluctuations and
thermodynamic forces via inequalities (54) and (55), though we have
not been able to connect them to the compact trade-offs, (2) and (3).
Nevertheless, numerical calculations for nonlinear models suggest
that the trade-offs [(2) and (3)] may continue to hold. To support
this observation, we have analyzed various models with differing
aspects, such as whether there are conservation laws, the num-
ber of independent thermodynamic forces, the number of chemical
species, and the deficiency of the CRN. Regardless of different
aspects, deficiency zero CRNs appear to share the following proper-
ties: (i) α1 = α2, (ii) g(F) = tanh (F/4), and (iii) the prefactors do
not depend on the size of the stoichiometric compatibility class. In
contrast, numerical results for deficiency-nonzero CRNs show that
the prefactors depend on system details that affect the structure of
the stoichiometric compatibility class (Sec. V).

Trade-offs between number fluctuations and response suggest
limits to the accuracy and sensitivity of biochemical systems. Thus,
our results pave the way for identifying fundamental limitations to
nonequilibrium biochemical processes. Moving forward, new ana-
lytic techniques may be required, especially for nonlinear CRNs
where the general form of the steady-state distribution is unknown.
Such advances would allow us to discern how characteristics of
CRNs, such as conservation laws or deficiency, restrict the topo-
logical structure of the microscopic state space and thus affect the
response.
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APPENDIX A: NUMERICAL METHODS

When the size of the isolated connected component of a stoi-
chiometric compatibility class is sufficiently small, we first numeri-
cally solve the chemical master equation (9) for the steady-state dis-
tribution, L̂πΓ(n) = 0 with normalization condition∑n∈Γ πΓ(n) = 1,
which is a system of linear equations. To determine the steady-state
response ∂λπΓ(n), we differentiate the chemical master equation
with respect to the perturbation parameter λ ∈ {ln k+ρ, ln k−ρ,Bρ},
which leads to a system of inhomogeneous linear equations for the
response

L̂∂πΓ(n)
∂λ

+ ∂L̂
∂λ

πΓ(n) = 0, (A1)

which are solved numerically together with the condition
∑n∈Γ ∂λπΓ(n) = 0 that is required by normalization of the
steady-state distribution.

When the system size is large, numerical solutions to the
chemical master equation (9) are infeasible. In these scenarios, we
first numerically solve the chemical rate equation for the steady-
state concentration [X]ss. To determine the steady-state response
∂λ[X]ss, we develop a nonlinear equation for it by differentiating the
chemical rate equation,

∑
ρ∈R

Δνρ(
∂k+ρ
∂λ
[X]ν

+
ρ
ss −

∂k−ρ
∂λ
[X]ν

−
ρ
ss )

+∑
ρ∈R

Δνρ
⎛
⎜
⎝
k+ρ

∂[X]ν
+
ρ
ss

∂λ
− k−ρ

∂[X]ν
−
ρ
ss

∂λ

⎞
⎟
⎠
= 0, (A2)

which allows us to numerically determine the response. However,
the chemical rate equation does not encode any information about
fluctuations.

To ascertain the scaled variance Di, we use Van Kampen’s sys-
tem size expansion, also known as the linear noise approximation,54
to approximate the chemical master equation as a diffusion process,
which we review here. In this approximation, the numbers of chem-
ical species are assumed to be split as n = Ω[X] +Ω1/2δn in terms
of the deterministic solution [X] of the chemical rate equation (12)
and Gaussian fluctuations δn. Such a decomposition of n allows us
to approximate the mean scaled chemical reaction rates as

⟨w±ρ(n)⟩
Ω

= ⟨w±ρ(Ω[X] +Ω
1/2δn)⟩

Ω

≈ w±ρ(Ω[X])
Ω

+ ⟨δn⟩ ⋅ ∇nw±ρ(n)
Ω1/2 ∣

n=Ω[X]

≈ k±ρ[X]ν
±
ρ +Ω−1/2⟨δn⟩ ⋅∇[X]k±ρ[X]ν

±
ρ . (A3)

As a result, we can approximate the time-evolution of the mean and
covariance of δn as

d⟨δnt⟩
dt

= Ω1/2( 1
Ω

d⟨nt⟩
dt
− d[X]t

dt
)

= Ω1/2∑
ρ∈R

Δνρ(
⟨w+ρ(nt)⟩ − ⟨w−ρ(nt)⟩

Ω
)

−Ω1/2∑
ρ∈R

Δνρ(k+ρ[X]
ν+ρ
t − k−ρ[X]

ν−ρ
t )

≈ ⟨δnt⟩ ⋅∇[Xt]∑
ρ∈R

Δνρ(k+ρ[X]
ν+ρ
t − k−ρ[X]

ν−ρ
t )

≡ L ⋅ ⟨δnt⟩ (A4)

and

dCovt{δni, δnj}
dt

= 1
Ω

dCovt{ni,n j}
dt

= 1
Ω∑ρ∈R

SiρS jρ{w+ρ(nt) +w−ρ(nt)}

≈∑
ρ∈R

SiρS jρ(k+ρ[X]
ν+ρ
t + k−ρ[X]

ν−ρ
t ) ≡ Ni j. (A5)

The last equalities define the relaxation matrix L and noise
matrix N. Together, these equations imply that the Gaussian
dynamics of δn can be captured with the linear Langevin equation,

d(δnt)
dt

= L ⋅ δnt + ζ t , (A6)

where ζ t is a multivariate zero-mean Gaussian white noise
with covariance N. As a result, the steady-state covariance V ij
= Cov{ni,nj} of a linear Langevin equation can be obtained as the
solution of the algebraic equation,70

L ⋅ V + V ⋅ LT +N = 0, (A7)

which we solve numerically. The scaled variance is then obtained as
Di = Var{ni}/Ω = Var{δni}.

APPENDIX B: TRADE-OFFS FOR GENERAL
DEFICIENCY ZERO CRNs

The structure of the equation A ⋅Ψ([X]ss) = 0 that determines
[X]ss allows us to find restrictions on the response functions for
deterministic concentrations. The vector Ψ([X]ss) lies in the right
null space of the LaplacianmatrixA. One useful basis of the right null
space of the Laplacian matrix is provided by the matrix-tree theorem
(MTT).30,65,66

To exploit this connection, a few graph-theoretical notions are
needed. A complex-reaction graph may consist of multiple linkage
classes, which we denote as gp with p ∈ {1, 2, . . . , ℓ}. The MTT is
then built out of rooted spanning trees of each gp, which are con-
nected subgraphs that contain no cycles, include all vertices, and
have each edge oriented toward a specific vertex, yl. A weight is then
assigned to each tree by noting that each directed edge is endowed
with a rate constant from the corresponding chemical reaction: the
weight of the subgraph is then a product of the associated rate con-
stants. We denote the sum of the weights of every spanning tree
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rooted at vertex yl by T l. The MTT then states that the vectors T(p)

with components

T(p)l =
⎧⎪⎪⎨⎪⎪⎩

Tl if yl ∈ gp,
0 otherwise

(B1)

lie in the right null space of the Laplacian matrix, i.e., A ⋅ T(p) = 0
for all p ∈ {1, 2, . . . , ℓ}.30,65,66 Since T(p) with different p are linearly
independent of each other, the collection of T(p) for p ∈ {1, 2, . . . , ℓ}
can serve as a basis of the right null space of A. Consequently,
Ψl([X]ss)/Ψm([X]ss) = T l/Tm if yl and ym are in the same link-
age class. The ratios for two vertices belonging to different linkage
classes are determined by constraints imposed by conservation laws.

Now, due to the product form of the steady-state distribution
(40), the static response of the log-ratio of steady-state probabilities
to a perturbation is given by

∂

∂λ
ln

πΓ(n)
πΓ(n′)

=∑
i∈S
(ni − n′i)

∂

∂λ
ln [Xi]ss. (B2)

In order to take advantage of the graph-theoretic tools, (B2) needs
to be rearranged to a form involving the Ψi([X]ss), which can be
replaced with spanning trees. To this end, we change the basis from
number and instead identify each microscopic state by the number
of (independent) reactions required to arrive at it. We accomplish
this by noting the matrix S′, defined in (53), converts the differ-
ence of state vectors as n − n′ = S′ ⋅ μ(n,n′) into μ(n,n′) vector
whose components are the number of each reaction required to
move from n′ to n. Note that the decomposition of independent
and dependent reactions used to construct S′ is not unique. Sub-
stituting this change of basis into (B2), coupled with the identity

∑ j∈S S
′
jρ ln [X j] = ln [X]Δνρss = ln ([X]

ν−ρ
ss /[X]

ν+ρ
ss ), leads to

∂

∂λ
ln

πΓ(n)
πΓ(n′)

= ∑
ρ∈R ′

μρ(n,n′)
∂

∂λ
ln
[X]ν

−
ρ
ss

[X]ν
+
ρ
ss

= ∑
ρ∈R ′

μρ(n,n′)
∂

∂λ
ln

Ψν−ρ ([Xss])
Ψν+ρ ([Xss])

= ∑
ρ∈R ′

μρ(n,n′)
∂

∂λ
ln

Tν−ρ

Tν+ρ
, (B3)

where sum runs over independent reactions, R ′ = {1, 2, . . . , s}.
Note that the complexes ν−ρ and ν+ρ are always in the same linkage
class since they are connected via the ρth chemical reaction.

As a result, the analysis reduces to bounding the sensitivity of
ratios of spanning tree weights. The bounds to the specific pertur-
bations ∂/∂λ = k±ρ∂/∂k±ρ and ∂/∂λ = ∂/∂Bρ now follow directly
from the methods developed in Ref. 30, with the results

∣k±ρ
∂

∂k±ρ
ln

Tνσ−

Tνσ+
∣ ≤ 1, (B4)

∣ ∂

∂Bρ
ln

Tνσ−

Tνσ+
∣ ≤ tanh( F

4
). (B5)

Applying inequalities (B4) and (B5) to (B3), we obtain the bounds

∣k±ρ
∂

∂k±ρ
ln

πΓ(n)
πΓ(n′)

∣ ≤ ∑
ρ∈R ′
∣μρ(n,n′)∣, (B6)

∣ ∂

∂Bρ
ln

πΓ(n)
πΓ(n′)

∣ ≤ ∑
ρ∈R ′
∣μρ(n,n′)∣ tanh(

F
4
). (B7)

Bound (B6) is reminiscent of (25) since μρ(n,n
′) is a measure of

the distance between two states n and n′. If the dynamics are a
birth–death process, then the chemical reaction changes the num-
ber of chemical species by one, and bound (B6) coincides with
(25). Nevertheless, the derivations are independent. The class of
CRNs considered in Sec. III may have a nonzero deficiency (e.g., the
Schlögl model has a deficiency of one), whereas (B6) applies only to
deficiency zero CRNs.

Finally, we derive trade-offs between the response of the mean
number of a chemical species and fluctuations. The response of
the conditional mean number ⟨ni⟩Γ = ∑n∈Γ niπΓ(n) on an isolated
connected component Γ is given by multiplying niπΓ(n)πΓ(n′) by
both sides of (B3) and summing over n,n′ ∈ Γ. Using the identity
∑n′πΓ(n′)∂ ln πΓ(n′)/∂λ = 0, we have

∂⟨ni⟩Γ
∂λ

= ∑
ρ∈R ′
⟨niμρ(n,n′)⟩Γ

∂

∂λ
ln

Tν−ρ

Tν+ρ
(B8)

with

⟨niμρ(n,n′)⟩Γ = ∑
n,n′∈Γ

niμρ(n,n′)πΓ(n)πΓ(n′). (B9)

The correlation function ⟨niμρ(n,n′)⟩Γ measures the fluctuations in
the numbers of chemical species through the definition of μρ(n,n

′).
Since all the columns are linearly independent, the matrix S′ has
a left inverse matrix (S′)−1 satisfying (S′)−1S′ = I. The correlation
function ⟨niμρ(n,n′)⟩Γ can be written as

⟨niμρ(n,n′)⟩Γ =∑
j∈S
(S′)−1ρ j CovΓ{ni,n j}. (B10)

Note that the fluctuation–response relation in (41) can be restored
by noting

∑
ρ∈R ′
(S)−1ρ j ln

[X]ν
−
ρ
ss

[X]ν
+
ρ
ss

= ln [X j]ss. (B11)

Applying inequalities (B4) and (B5) to (B8) together with (B10),
we obtain trade-offs between the response and fluctuations,

∣k±ρ
∂⟨ni⟩Γ
∂k±ρ

∣ ≤ ∑
σ∈R ′

RRRRRRRRRRR
∑
j∈S
(S′)−1σ jCovΓ{ni,n j}

RRRRRRRRRRR
(B12)

and

∣∂⟨ni⟩Γ
∂Bρ

∣ ≤ ∑
σ∈R ′

RRRRRRRRRRR
∑
j∈S
(S′)−1σ jCovΓ{ni,n j}

RRRRRRRRRRR
tanh( F

4
). (B13)
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