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A B S T R A C T

Periodic boundary condition along a dislocation line is commonly used in computing activation barriers or
formation energies of kink pair of screw dislocation in BCC metals. Although the effect of periodic image
interactions on the computation results is obvious, there had been no comprehensive analysis on such effect.
In this work, we quantify it through combined nudged elastic band (NEB) simulations and theoretical analysis
based on dislocation mechanics. The NEB calculation result demonstrates a non-negligible size dependence on
the activation barrier at zero and low stresses. The theoretical analysis offers a practical approach to quantify
such size effect without the need of time-consuming NEB simulations. Notably, a simple relationship between
kink activation barrier and dislocation line length is derived at zero stress, offering a new approach to compute
kink pair formation energy based on NEB simulation results.
1. Introduction

Screw dislocation motion through kink pair activation determines
the mechanical strength and ductility of BCC metals [1]. As such, it is
important to understand the mechanism of this motion and quantify
the key parameters such as kink activation barrier [2], formation en-
ergy [3] and diffusion coefficient [4]. Extensive atomistic computation
fforts have been dedicated to the thermodynamics and kinetics of
ink pair at different time scales. For example, molecular statics has
een used to compute the Peierls stress at different crystal orientations
5,6]. Molecular dynamics has also been performed to examine the
otion of screw dislocations at finite temperatures [5,7–9], which
owever occurred in a very short time scale under an unrealistic high
tress. Alternatively, the Nudged Elastic Band (NEB) method has been
pplied to study the activation of screw dislocations. The activation
nergy barrier 𝐻𝑏 obtained from NEB can be used to estimate the
ink pair activation rate based on harmonic transition state theory,
hich can be further applied to inform experiments and higher scale
imulations. For example, previous NEB calculations [10] were carried
ut to capture the single-humped minimum energy path (MEP) with
n embedded atom method (EAM) potential named MCM2011 [11].

∗ Correspondence to: J. Mike Walker’66 Department of Mechanical Engineering, Texas A&M University, 77843, College Station, United States.
E-mail address: wei.gao@tamu.edu (W. Gao).

In this study, the nucleation, propagation and annihilation of the kink
pair and the activation barriers under different stresses were studied
and the resulting parameters were used to inform the crystal plasticity
model. It should be noted that the kink activation barrier obtained
from NEB is purely enthalphic, and the entropic contribution to the
activation rate is absorbed by the pre-factor in the rate equation.
Alternatively, the entropic contribution to the kink pair activation can
be obtained from free energy sampling. For example, a recent study
computed the Gibbs free energy barrier of kink pair activation in BCC
Nb from MD and hyperdynamics simulations, and then estimated the
contribution of entropy with an empirical fitting function [12]. In ad-
dition to empirical interatomic potentials, a machine learning potential
trained by Gaussian process regression was used to study the screw
dislocation structure and mobility in BCC Fe. The results indicated
that the Gaussian Approximation Potential (GAP) predicts more reliable
core structure and Peierls potential than previous EAM potentials [13].
On the other side, DFT has been also applied to compute kink pair
activation barrier as a function of stress in BCC metals using a line
tension model [14]. The comparison between interatomic potentials,
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Fig. 1. (a) NEB simulation set-up. (b) Saddle configurations of kink pair activation. Only defect atoms are shown. (c) The minimum energy paths when 𝜏 = 0 and 30 MPa. (d)
Length-dependent kink pair activation enthalpy barriers under different stress levels.
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DFT and experiments on kink pair activation can be found in a recent
review paper [15].

Notably, recent computational studies on BCC Fe and W demon-
strates an interesting simulation cell size-dependent kink mobility due
to image stress induced by the periodic boundary conditions imposed
on the simulation cell [16,17], raising a question of how the kink
air activation depend on the simulation cell size along dislocation
ine. Although the effect of image interactions on kink pair activation
as discussed in previous studies [18,19], a thorough and quantitative
nalysis on such effect has been missing. In this paper, NEB simulations
nd theoretical analysis based on dislocation mechanics are combined
o quantify the size effect on the kink pair activation barrier.

. Nudged elastic band simulation

The atomistic configuration employed in our NEB calculations is
hown in Fig. 1(a). The 𝑥, 𝑦 and 𝑧 axes are oriented along the [111],
1̄01] and [1̄21̄] directions, respectively. The dimensions along the 𝑥
nd 𝑦 directions are 25 nm, and the dimension along the 𝑧 direction is
aried from 12 nm to 54 nm to examine how the periodic images affect
he kink pair activation. The periodic boundary condition is adopted in
he 𝑧 direction, while free boundary conditions are used in the 𝑥 and
directions. The initial configuration of a 1/2[111] screw dislocation
s introduced at the center of the supercell by superimposing its elastic
isplacement [20], as shown in Fig. 1(a). All simulations are conducted
sing the LAMMPS [21]. The climbed image NEB method [22] is
erformed to determine the MEP of screw dislocation migration. The
inal configuration of the screw dislocation after migration is created
y the same procedure as the initial configuration but the dislocation
s shifted to the adjacent {110} Peierls valley. The intermediate images
n NEB calculation are specifically generated by introducing a kink pair
long the screw dislocation line with a linearly varied distance, which
s used to avoid the formation of multiple stack-on kink pairs in MEP
earch and accelerate the convergence of NEB calculations. At least
6 NEB images are used to guarantee accuracy in all calculations. All
EB calculations are considered to be converged when the maximum
orce of atoms is below 0.01 eV/Å. To study the effect of shear stress
n MEP, the NEB calculations are performed under different shear
tresses (𝜏). It is noted that stress-controlled NEB calculation can be
2

one using solid-state NEB methods such as G-SSNEB [23], which
as recently improved to get more accurate MEP and barrier under
inite deformation [24]. Since the solid-state NEB methods have not
een implemented in LAMMPS, we use an alternative and approximate
pproach to apply shear stress as introduced in [13]. In this approach,
quivalent forces are applied to the atoms on the top boundary of
he system along negative 𝑧 direction, while the atoms on the bottom
oundary are fixed. Both boundaries contain three layers of atoms. In
his way, the screw dislocation can be approximately considered under
constant stress since it is far away from the boundaries where the
xternal force is applied. The simulation results are visualized by the
oftware OVITO [25].
BCC Fe is used as a model material in our study and EAM poten-

ial [11] is used to describe the atomistic interactions. Fig. 1(b–d) show
the NEB results. The MEPs are plotted in Fig. 1(b) for 𝐿 = 12 nm
when 𝜏 = 0 and 30 MPa. The single-humped MEP shape is consistent
with previous study [10]. When 𝜏 = 0, the MEP is a symmetric shape,
since the initial and final states are equivalent in the current simulation
setup and the free boundary effect is negligible. The applied shear
stress promotes the migration of screw dislocation, therefore yielding
a lower barrier compared with zero stress case. Fig. 1(c) shows the
saddle configurations. The nucleated kink pair first separates into two
individual kinks (the left and right ones), which then propagate towards
opposite directions along the dislocation line. Note that there is an
attractive force between those two kinks, similar to the attractive force
between two electrical charges of opposite sign [26]. It is the spring
force in NEB and the applied shear stress drive these two kinks to
move away from each other after separation. In zero stress case, the
distance between two individual kinks at the saddle equals half of the
dislocation length 𝐿∕2 = 6 nm. When shear stress is applied, the saddle
moves closer to the initial state, leading to a smaller distance between
the kinks at the saddle.

The NEB calculations are conducted for different values of 𝐿 at
several stress levels. The calculated barriers, plotted in Fig. 1(d), display
the size dependence due to the effect of periodic image interactions,
although such size effect is depressed by the applied shear stress.
The variation of barriers can be intuitively explained as follow. Two
separated kinks shown in Fig. 1(c) are both attracted by the kinks in the
closest periodic images. Such attraction facilitates the kink separation
and migration of the screw dislocation. Therefore, it lowers the barrier
when the dimension of the simulation cell along the dislocation line
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Fig. 2. (a) Schematic of periodic kink pairs. (b) Interaction energy calculated by including 20 periodic images, compared with first order approximation. (c) Convergence of the
maximum interaction energy.
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direction decreases. On the other side, when the cell length goes to
infinity, the distance between the kinks also goes to infinity. Then, the
barrier should approach to the energy corresponding to the formation
of two non-interacting single kinks. This kink formation energy can be
computed using atomistic simulations [3]. It is shown from our NEB re-
sults that the relative difference in barriers between the smallest model
and the largest one is around 6.4%, which may result in unwanted error
if the barriers computed from nanoscale simulations are applied to the
applications in which the length of dislocation is much longer. Next, we
present a theoretical analysis to quantify the effects of periodic image
interactions on kink pair activation on a screw dislocation line.

3. Dislocation mechanics analysis

The schematic of a periodic kink pair array for the analytical anal-
ysis is shown in Fig. 2(a), where the kinked dislocation line is divided
into multiple horizontal and vertical segments. The change of enthalpy
due to the kink pair formation can be expressed as [26]:

𝐻(𝑠, 𝐿) = 𝐸0 +𝑊int (𝑠, 𝐿) − 𝜏𝑏ℎ𝑠, (1)

where 𝐸0 is the formation energy of the two kinks (segments D and
E in Fig. 2(a)), 𝑊int is the interaction energy between the dislocation
segments, and 𝜏𝑏ℎ𝑠 denotes the work done by the applied shear stress
(where 𝜏 is the shear stress, 𝑏 the magnitude of Burgers vector, ℎ the
kink height and 𝑠 the separation distance between two single kinks).
For a given material and applied stress, 𝑏, ℎ and 𝜏 are fixed, so the
enthalpy is only a function of 𝑠 and 𝐿. The formation energy 𝐸0 only
depends on the kink height ℎ, so the only term that controls the cell
size dependence is the interaction energy 𝑊int. As shown in our NEB
calculations, the enthalpy displays a single-humped shape as a function
of 𝑠. Therefore, the enthalpy barrier 𝐻𝑏 can be obtained by maximizing
𝐻 with respect to 𝑠, i.e.,

𝐻𝑏 = 𝐸0 + max
(

𝑊int − 𝜏𝑏ℎ𝑠
)

. (2)

Since 𝐸0 is the intrinsic property of the kink pair which is independent
of simulation box size, we can define the change of enthalpy barrier as:

𝛥𝐻𝑏(𝜏, 𝐿) = 𝐸𝑏 − 𝐸0 = max
(

𝑊int − 𝜏𝑏ℎ𝑠
)

. (3)

Next, we formulate the interaction energy 𝑊int between disloca-
3

tion segments. 𝑊int is composed of two parts: the interaction energy c
between the dislocations 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐶 ′ in the primary image
(shown in Fig. 2(a)), and the interaction energy between those primary
dislocations and the dislocations in the periodic images 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖
and 𝐶 ′

𝑖 . These two parts of interaction are respectively represented by
𝑊 0 and 𝑊 𝑖

image (𝑖 is the periodic image index), i.e.

𝑊int = 𝑊 0 +
∞
∑

𝑖=1
𝑊 𝑖
image . (4)

Further, the interaction energy can be separated into the contributions
from the vertical and horizontal dislocation segments:

𝑊 0 = 𝑊 0
v +𝑊 0

h , (5)

and

𝑊 𝑖
image = 𝑊 𝑖

v +𝑊 𝑖
h . (6)

Eqs. (5) and (6) can be written in terms of the summation of interaction
energies between parallel dislocation pairs since interaction vanishes
for orthogonal segments, therefore

𝑊 0
v = 𝑊v (𝐷,𝐸) , (7)

𝑊 0
h =

[

𝑊h (𝐴,𝐶) −𝑊h
(

𝐴,𝐶 ′) +𝑊h (𝐵,𝐶) −𝑊h
(

𝐵,𝐶 ′)] , (8)

𝑖
v = 𝑊v

(

𝐷,𝐷𝑖
)

+𝑊v
(

𝐷,𝐸𝑖
)

+𝑊v
(

𝐸,𝐷𝑖
)

+𝑊v
(

𝐸,𝐸𝑖
)

, (9)

𝑖
h = 2

[

𝑊h
(

𝐴,𝐶𝑖
)

−𝑊h
(

𝐴,𝐶 ′
𝑖
)

+𝑊h
(

𝐵,𝐶𝑖
)

−𝑊h
(

𝐵,𝐶 ′
𝑖
)]

, (10)

where Eq. (10) is simplified by the fact that some dislocation pairs are
equivalent due to symmetry.

It is straightforward to derive the expressions of 𝑊v and 𝑊h in
Eqs. (7)–(10) based on the general form of the interaction energy
etween two parallel dislocations segments [26]. The detailed process
s presented in Appendix A. Although the final formula of 𝑊int is in
lengthy form, its value can be calculated with a selected number
f periodic images included in the summation of Eq. (4). Taking the
irst 20 periodic images, we compute 𝑊int as a function of 𝜆 with 𝐿
12 nm and the material parameters of BCC Fe (𝜇 = 115.99 GPa,
= 2.4885 Å, ℎ = 2.293 Å, 𝜈 = 0.29). As shown in Fig. 2(b), the result
isplays a single-humped shape, similar to the MEP obtained from NEB

alculation. To check the effects of image number on the summation in
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Fig. 3. Comparison between NEB and first order approximation.

Eq. (4), the peak values of 𝑊int are plotted in Fig. 2(c) as a function of
image number included in the summation. It is found that max(𝑊int)
onverges rapidly and varies less than 0.002 meV when the number of
he images under consideration reaches 20, although the previous study
laimed a long-range interaction between two kinks [18].
To gain more insights, we simplify the lengthy expression of 𝑊int us-

ng a first-order approximation. As shown in Appendix B, the simplified
ormula can be derived as

int = −
𝜇𝑏2ℎ2

8𝜋𝐿
1 + 𝑣
1 − 𝑣

[

1
𝜆
+

∞
∑

𝑖=1

( 1
𝑖 + 𝜆

+ 1
𝑖 − 𝜆

− 2
𝑖

)

]

, (11)

where 𝜆 = 𝑠∕𝐿 and the summation of the infinite series is convergent
since
1

𝑖 + 𝜆
+ 1

𝑖 − 𝜆
− 2

𝑖
= 

(

1
𝑖3

)

, (12)

nd 1∕𝑖3 is a rapidly converged 𝑝 series. Then, we compute 𝑊int with
q. (11) using the first 20 terms of the series and the materials param-
ters of Fe. The result is plotted in Fig. 2(b), which shows that the first
rder approximation produces indistinguishable result, suggesting the
irst order approximation is accurate enough to compute the interaction
nergy. It is noted that 𝑊int(𝑠) = 𝑊int(𝐿− 𝑠) in Eq. (11), so that 𝑊int is
ymmetric about 𝜆 = 1∕2, at which 𝑊int reaches maximum. Although
t is non-trivial to obtain the exact summation of the infinite series in
q. (11), the summation can be numerically evaluated up to a given
recision. For example, when 𝜆 = 1∕2, the series summation is 0.77 to
he second decimal of accuracy, so the approximation of max(𝑊int) or
𝐻𝑏 when 𝜏 = 0 is:

𝐻𝑏(𝜏 = 0) = max(𝑊int) ≈ −2.77
𝜇𝑏2ℎ2

8𝜋𝐿
1 + 𝑣
1 − 𝑣

. (13)

pply materials properties of BCC Fe, max(𝑊int) ≈ −39.38 meV.
ig. 2(c) shows that the curve obtained from direct summation con-
erges to this value, suggesting the convergence of the summation in
q. (4), which was not rigorously proved though. Combine Eqs. (2) and
13), the length dependent activation barrier of periodic kink pairs can
e finally written as

𝑏(𝜏 = 0) ≈ 𝐸0 − 2.77
𝜇𝑏2ℎ2

8𝜋𝐿
1 + 𝑣
1 − 𝑣

, (14)

hen 𝐿 → ∞, there is no interaction between the kinks moving
owards left and right at the saddle point, so the barrier equals to
he formation energy of two individual kinks 𝐸0 which is an intrinsic
aterial property.
Next, the analytical results are compared with NEB simulations. The

irst order approximation shows that the barrier change is inversely
roportional to the dislocation line length 𝐿. Therefore, we fit the
ctivation barriers 𝐻 calculated from NEB as a function of 𝐿−1 with
4

𝑏

q. (14) using least square method, where the slope of the linear
itting is fixed and the kink formation energy 𝐸0 is taken as the fitting
arameter. In addition to the results of BCC Fe, the activation barriers
f BCC W are also calculated with NEB at zero shear stress. The material
roperties of W are 𝜇 = 148.02 GPa, 𝑏 = 0.27478 nm, ℎ = 0.2532 nm,
= 0.28. The fittings, plotted in Fig. 3, are closely aligned with the
EB results. The slope of the fitting line is dependent on a material
oefficient 𝐾 = 𝜇𝑏2ℎ2(1+ 𝜈)∕(1− 𝜈). Since 𝐾(Fe) < 𝐾(W), the activation
arrier of Fe converges faster than that of W, which is similar to the
onvergence of the diffusion coefficient of these two metals reported
n [16]. From the fitting, the kink formation energies 𝐸0 of BCC Fe and
are respectively 621 meV and 786 meV. In a previous study [3], 𝐸0 of
e was computed to be 650 meV by molecular statics simulation, which
s greater than the fitted value. The difference may come from three
ources. First, a different empirical potential was used in the previous
tudy. Second, since periodic boundary condition was used in the
revious study, the calculation was influenced by the similar effects of
eriodic image interactions as discussed in the present study. Although
convergence test with respect to the length of periodic box was
onducted in the previous study, the convergence of 𝐸0 did not achieve
he accuracy of meV. In fact, following the convergence trend reported
n that study, a slightly lower value of 𝐸0 should be expected for large
imulation boxes. Third, a sharp kink is used in our NEB and analytical
odel as an approximation, however a finite kink width was reported
n [3]. For BCC W, the fitted formation energy 786 meV is greater than
he previously reported value of 750 meV [27]. Although the reference
sed the same empirical potential as our study, the effect of periodic
mage interaction was not discussed in the reference, which may impact
he result. Due to the limitation of previous calculations of formation
nergy, we suggest an alternative approach to obtain the formation
nergy using NEB calculations along with the result from first order
pproximation. On the other side, the first order approximation can be
sed to predict the activation barrier of kink pair in a large periodic
ox based on the NEB calculation conducted on a small periodic box.
his is particularity useful when NEB calculation is computationally
xpensive. For example, Eq. (14) can be used to calculate the activation
arrier of kink pair at the scale of micrometers for dislocation dynamics
r kinetic Monte Carlo simulations. Moreover, when the formation
nergy 𝐸0 is known, Eq. (14) can be applied to estimate activation
barrier for a given periodic box without the need of NEB calculations.

Finally, when subjected to shear stress, the theoretical analysis
explains the suppressed size effect on the barrier as observed in NEB
calculations. In Fig. 4(a), the single-humped enthalpy profile computed
for BCC Fe is positively skewed due to the contribution from the work
done by stress. Using the same 𝐸0 obtained above, the theoretical
predictions of 𝛥𝐻𝑏 as a function of periodic simulation cell size are
compared with NEB results in Fig. 4(b) and show good agreement.
Apparently, the size effect is a result of competition between the size-
dependent interaction energy and external work done by stress. In
the case of BCC Fe, the latter term dominates even at small stresses,
therefore, a suppressed size effect is shown at 5 MPa. To quantify the
combined effect of shear stress and the length of a dislocation line,
we introduce (𝜏, 𝐿) to measure the barrier variation resulting from
periodic image interactions, which is defined by

(𝜏, 𝐿) = −𝛥𝐻𝑏(𝜏, 𝐿) + 𝛥𝐻𝑏(𝜏,∞). (15)

Since it is computationally infeasible to directly evaluate 𝛥𝐻𝑏(𝜏,∞),
we approximate this term using 𝐿 = 1000 nm, where periodic image
interactions can be disregarded. A contour plot of (𝜏, 𝐿) for BCC Fe is
shown in Fig. 5(a), illustrating non-negligible effects of periodic image
interactions even at non-zero stresses at small 𝐿 values around 10 nm.
Additionally, in Fig. 5(b), the contour line corresponding to  = 5
meV is plotted for several BCC metals, showing that W exhibits the
most pronounced effects of periodic image interactions, while Nb and

V display the least impact.



Computational Materials Science 228 (2023) 112369F. Shuang et al.
Fig. 4. (a) Theoretical results of enthalpy change for different box size when 𝜏 = 5 MPa. (b) Comparison of length-dependent barrier change when 𝜏 = 5 MPa.
Fig. 5. (a) Contour of the barrier variation (𝜏, 𝐿) defined in Eq. (15) for BCC Iron (unit: meV). (b) Comparison of the contour line corresponding to 5 meV for different BCC
metals.
Fig. A.6. Coordinates for the interaction between two parallel dislocations 1 and 2.

4. Discussion

It is shown from our study that the size dependence on kink acti-
vation barrier is important for zero stress and low stress regime, when
kink interaction energy dominates over external work done by stress.
Notably, the low stress regime is unavoidable in experiments. The
pioneering experiments [28–30] on characterizing the kink-controlled
dislocation mobility in BCC Fe were all performed in low stress regime
(less than 30 MPa). An interpretation of the results from such experi-
ments necessitates the simulations in low stress regime.

The size dependence of the kink activation barrier becomes insignif-
icant at high stresses, which allows for the calculation of barriers within
a relatively small computational cell. As such, an alternative approach
for estimating the barriers at low stresses is to directly extrapolate
𝐻 (𝜏) from high stresses to zero and low stresses, using an empirical
5

𝑏

fit of the Kocks law [31]. To ensure the accuracy of this fit, it is
necessary to conduct a sufficient number of barrier calculations at
high stress levels. However, certain concerns may arise: At what stress
level, the size effect could be confidently neglected, particularly if
the material has not been thoroughly studied? What range of stresses
needs to be taken into account to ensure a reasonable fit? While both
approaches have their respective merits, the present study delivers a
comprehensive analysis of the size dependence of activation barrier
at zero and low stresses, which is not captured through fitting the
overdriven simulation data into the Kocks law.

This study focuses on the impacts of periodic image interactions
along a screw dislocation line, while the remaining two directions
of the simulation box are considerably large and subjected to free
boundary conditions, as depicted in Fig. 2. Notably, the image force
resulting from the free boundary along the 𝑥-direction contributes to
the activation barrier as it does work during kink pair activation.
Interestingly, this work is proportional to the length of dislocation line.
The competing size effects arising from the free and periodic bound-
aries warrants further exploration. In some studies, periodic boundary
condition has also been applied along 𝑥-direction. In these cases, the
size effect can be evaluated along both periodic directions employing
the theoretical framework developed in this study.

5. Summary

In summary, the effect of periodic image interactions on the kink
pair activation of screw dislocation in BCC metals are investigated by
NEB simulations and theoretical analysis. NEB simulations show that
the activation barrier of the kink pair increases with the simulation
box size along the dislocation line direction. Such size effect is analyzed

using a dislocation mechanics model based on the elastic interaction of
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the periodic kink pairs. Under zero shear stress condition, the relation-
ship between activation barrier and periodic box length is derived using
first order approximation. The application of this work is twofold. First,
the theory can be used to predict the activation barrier of kink pair in a
large periodic box based on the NEB calculation conducted on a small
simulation cell. Second, it is noted that the effect of periodic image
interaction on kink pair formation energy was not thoroughly examined
in previous atomistic simulations, so a new approach is proposed to
compute kink pair formation energy using NEB calculated activation
barriers.
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Appendix A. Interaction energy between two parallel dislocations

The general form of the interaction energy between two parallel
dislocations segments (shown in Fig. A.6) is presented in the classical
textbook [26], which can be written as

𝑊12 =
𝜇
4𝜋

(

𝐛1 ⋅ 𝝃1
) (

𝐛2 ⋅ 𝝃2
)

𝐼
(

𝑥𝛼 , 𝑦𝛽
)

+
𝜇

4𝜋(1 − 𝜈)
{(

𝐛1 ⋅ 𝐞3
) (

𝐛2 ⋅ 𝐞3
)

+
[(

𝐛1 × 𝝃1
)

⋅ 𝐞3
] [

𝐞3 ⋅
(

𝐛2 × 𝝃2
)]})

𝐼
(

𝑥𝛼 , 𝑦𝛽
)

+
𝜇

4𝜋(1 − 𝜈)
(

𝐛1 ⋅ 𝐞3
) (

𝐛2 ⋅ 𝐞3
)

𝑅
(

𝑥𝛼 , 𝑦𝛽
)

,

(A.1)

where 𝜇 is the shear modulus, 𝜈 is the Poisson’s ratio, 𝐛 is the Burgers
vector and 𝝃 is the line direction of a dislocation. 𝐞2 points from
dislocation 1 to 2, and 𝐞3 is perpendicular to the paper. The term
𝐼 comes from an integration along the dislocation lines and can be
written as

𝐼(𝑥, 𝑦) = 𝑅 − (𝑦 − 𝑥) ln 𝑠 − 1
2
(𝑥 − 𝑦) ln 𝑡, (A.2)

where the distance 𝑅 is expressed in terms of the local coordinates (𝑥, 𝑦)
and the distance 𝜂

𝑅(𝑥, 𝑦) =
√

(𝑥 − 𝑦)2 + 𝜂2,
(A.3)
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𝑡 = 𝑅 + 𝑥 − 𝑦, 𝑠 = 𝑅 + 𝑦 − 𝑥.
Then, Eq. (A.1) can be applied to compute the interaction energy
between the parallel dislocations in the periodic system shown in Fig. 2.
The interaction energy between the vertical and horizontal dislocations
in the primary image can be derived respectively as

𝑊 0
v = −

𝜇𝑏2

2𝜋(1 − 𝑣)

[

𝑠 −
(

𝑠2 + ℎ2
)1∕2 + ℎ ln

ℎ +
(

𝑠2 + ℎ2
)1∕2

𝑠

]

, (A.4)

nd

𝑊 0
h =

𝜇𝑏2

2𝜋

{

(

𝑠2 + ℎ2
)1∕2 +

(

𝑚2 + ℎ2
)1∕2 −

[

(𝑠 + 𝑚)2 + ℎ2
]1∕2

+𝑠 ln

[

(𝑠 + 𝑚)2 + ℎ2
]1∕2 + 𝑠 + 𝑚

(

𝑠2 + ℎ2
)1∕2 + 𝑠

+𝑚 ln

[

(𝑠 + 𝑚)2 + ℎ2
]1∕2 + 𝑠 + 𝑚

(

𝑚2 + ℎ2
)1∕2 + 𝑚

− 𝑠 ln
(

1 + 𝑚
𝑠

)

− 𝑚 ln
(

1 + 𝑠
𝑚

)

}

,

(A.5)

here the length parameters 𝑠 and 𝑚 are defined Fig. 2, 𝑏 is the
magnitude of Burgers vector and ℎ is the kink height.

The interaction energy between two vertical dislocations from the
primary and periodic images can be written as

𝑊v(𝑝, 𝑞) = 𝝃𝑝𝝃𝑞
𝜇𝑏2

2𝜋(1 − 𝑣)

[

𝑑 −
(

𝑑2 + ℎ2
)1∕2 + ℎ ln

ℎ +
(

𝑑2 + ℎ2
)1∕2

𝑑

]

,

(A.6)

where 𝑝 and 𝑞 denote two vertical dislocation segments, and 𝑑 is the
distance between them which can be written in terms of 𝑖, 𝐿 and 𝑠. All
four terms in Eq. (9) are derived using Eq. (A.6). For 𝑊v

(

𝐷,𝐷𝑖
)

and
𝑊v

(

𝐸,𝐸𝑖
)

, 𝝃𝑝𝝃𝑞 = 1, indicating the positive interaction energy and re-
ulsive force between two dislocations. For 𝑊v

(

𝐷,𝐸𝑖
)

and 𝑊v
(

𝐸,𝐷𝑖
)

,
𝑝𝝃𝑞 = −1, indicating the negative interaction energy and attractive
orce between two dislocations.
The interaction energy between two horizontal dislocations from

he primary and periodic images can be written as

h =
𝜇𝑏2

4𝜋
[

𝐼
(

𝑥1, 𝑦1
)

+ 𝐼
(

𝑥2, 𝑦2
)

− 𝐼
(

𝑥1, 𝑦2
)

− 𝐼
(

𝑥2, 𝑦1
)]

, (A.7)

where the term 𝐼 , defined in Eq. (A.2), is a function of local coordinates.
All four terms in Eq. (10) can be written using Eq. (A.7). For the
segment pair (𝐴, 𝐶𝑖) and (𝐴, 𝐶 ′

𝑖 ), 𝑥1 = 0, 𝑥2 = 𝑠, 𝑦1 = 𝑠 + 𝑖 and
𝑦2 = 𝑠 + 𝑖𝐿 + 𝑚. For the segment pair (𝐵, 𝐶𝑖) and (𝐵, 𝐶 ′

𝑖 ), 𝑥1 = 0,
𝑥2 = 𝑠, 𝑦1 = 𝑠 + 𝑚 + (𝑖 − 1)𝐿 and 𝑦2 = 𝑠 + 2𝑚 + (𝑖 − 1)𝐿.

Appendix B. First order approximation

In this section, we apply first order approximation to the interac-
tions energies. For dislocation segments in the primary image, their
interaction energies written in Eqs. (A.4) and (A.5) can be simplified
s

0
v = −

𝜇𝑏2ℎ2

4𝜋(1 − 𝑣)
1
𝑠
, (B.1)

and

𝑊 0
h =

𝜇𝑏2ℎ2

8𝜋

( 1
𝑠
+ 1

𝑚
− 1

𝑠 + 𝑚

)

, (B.2)

Add them together, the total interaction energy in primary image is:

𝑊 0 = −
𝜇𝑏2ℎ2

8𝜋
1 + 𝑣
1 − 𝑣

1
𝑠
+

𝜇𝑏2ℎ2

8𝜋

( 1
𝑚

− 1
𝑠 + 𝑚

)

. (B.3)

It is noted that when 𝑚 → ∞, Eq. (B.3) simplifies to:

𝑊 0 = −
𝜇𝑏2ℎ2

8𝜋𝑠
1 + 𝜈
1 − 𝜈

, (B.4)

which was introduced in [26] to compute interactions of kink pair on
a infinitely long dislocation line, and certainly cannot be applied to the
system with periodic boundary conditions.
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𝑊

The interaction energy between primary dislocations and their im-
age 𝑖, Eqs. (9) and (10) can be simplified as:

𝑊 𝑖
h =

𝜇𝑏2ℎ2

8𝜋

( 1
𝑖𝐿 + 𝑠

+ 1
𝑖𝐿 − 𝑠

− 2
𝑖𝐿

+ 1
𝑖𝐿 + 𝑚

+ 1
𝑖𝐿 − 𝑚

− 1
𝑖𝐿 + 𝑠 + 𝑚

− 1
𝑖𝐿 − 𝑠 − 𝑚

)

, (B.5)

and

𝑊 𝑖
v = −

𝜇𝑏2ℎ2

4𝜋(1 − 𝑣)

( 1
𝑖𝐿 + 𝑠

+ 1
𝑖𝐿 − 𝑠

− 2
𝑖𝐿

)

. (B.6)

Consider the contribution from all periodic images, the total interaction
energy can be written in terms of the summation of infinite series:

𝑊int = −
𝜇𝑏2ℎ2

8𝜋
1 + 𝑣
1 − 𝑣

1
𝑠
+

𝜇𝑏2ℎ2

8𝜋

( 1
𝑚

− 1
𝑠 + 𝑚

)

+
∞
∑

𝑖=1

[

−
𝜇𝑏2ℎ2

8𝜋
1 + 𝑣
1 − 𝑣

( 1
𝑖𝐿 + 𝑠

+ 1
𝑖𝐿 − 𝑠

− 2
𝑖𝐿

)

+
𝜇𝑏2ℎ2

8𝜋

( 1
𝑖𝐿 + 𝑚

+ 1
𝑖𝐿 − 𝑚

− 1
𝑖𝐿 + 𝑠 + 𝑚

− 1
𝑖𝐿 − 𝑠 − 𝑚

)

]

.

(B.7)

Let 𝜆 = 𝑠∕𝐿, 𝜁 = 𝑚∕𝐿 and rearrange Eq. (B.7), we get

int = −
𝜇𝑏2ℎ2

8𝜋𝐿
1 + 𝑣
1 − 𝑣

𝐴 +
𝜇𝑏2ℎ2

8𝜋𝐿
𝐵, (B.8)

where

𝐴 = 1
𝜆
+

∞
∑

𝑖=1

( 1
𝑖 + 𝜆

+ 1
𝑖 − 𝜆

− 2
𝑖

)

, (B.9)

and

𝐵 = 1
𝜁
− 1

𝜆 + 𝜁
+

∞
∑

𝑖=1

(

1
𝑖 + 𝜁

+ 1
𝑖 − 𝜁

− 1
𝑖 + 𝜆 + 𝜁

− 1
𝑖 − 𝜆 − 𝜁

)

. (B.10)

In Eq. (B.10), notice that 𝑖+ 𝜆+ 𝜁 = (𝑖+1) − 𝜁 and 𝑖− 𝜆− 𝜁 = (𝑖−1) + 𝜁 .
Therefore, all terms in Eq. (B.10) cancel each other, leading to 𝐵 = 0.
Finally, Eq. (B.8) is reduced to

𝑊int = −
𝜇𝑏2ℎ2

8𝜋𝐿
1 + 𝑣
1 − 𝑣

[

1
𝜆
+

∞
∑

𝑖=1

( 1
𝑖 + 𝜆

+ 1
𝑖 − 𝜆

− 2
𝑖

)

]

. (B.11)
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