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1 INTRODUCTION

Data abstraction has been a cornerstone of software development methodology since the 1970s.
Yet it is surprisingly difficult to achieve in a reliable manner in modern programming languages
that permit manipulation of the global heap via dynamic allocation, shared mutable objects, and
callbacks. Aliasing can violate conventional syntactic means of encapsulation (modules, classes,
packages, access modifiers) and therefore can undercut the fundamental guarantee of abstraction:
equivalence of client behavior under change of a module’s data structure representations.

The theory of data abstraction is well-known since Hoare’s seminal paper [52]. Its main ingre-
dients are the encapsulation of effects, hidden invariants (that is, private invariants that do not
appear in a method’s interface specifications, so that clients are exempt from having to establish
them for calls to the method), and relational reasoning: coupling relations and simulations. Hoare’s
paper provides a semantic formalization of these ideas using a simple model of state and it claims
that the ideas can be extended to encompass dynamically allocated objects.

The justification of Hoare’s claim is a primary focus of this article, which is in the context of
two strands of recent work. One strand has made progress on automating proofs of conditional
equivalence and relational properties in general, based on automated theorem proving (e.g., SMT)
and techniques to decompose relational reasoning by expressing alignment of executions in terms
of “product programs.” The other strand has made progress toward formalizing Hoare’s claim in
semantic theories of representation independence (simulation and logical relations). This article
brings the strands together using the idea in Hoare’s 1969 paper [51]: a logic of programs. In this
way, we address three goals:

Modular reasoning about relational properties of object-based programs. Such proper-
ties include not just equivalence but many others such as noninterference. Conditional equivalence,
for example, is needed to justify bug fixes and refactorings (regression verification), taking into
account preconditions that capture usage context. Conditional noninterference expresses infor-
mation flow security policies with declassification; similar dependency properties express context
conditions for compiler optimizations. Modular reasoning requires procedural abstraction, i.e., rea-
soning about code under hypotheses in the form of method contracts. It requires local reasoning,
based on frame conditions. And it requires data abstraction, based on program modules and encap-
sulated data representations.

Automated reasoning. We aim to facilitate verification using what have been called auto-
active verification tools [63] like Why3 and Dafny. Users may be expected to provide source level
annotations (contracts and data invariants) and alignment hints (to decompose relational reason-
ing) but are not expected to guide proof tactics or provide full functional specifications. The latter
is a key point. It is difficult for developers to formulate full functional specs of applications and
libraries, and such specs would often need mathematical types not amenable to automated provers.
Experience shows the value of weak specs of input validity and data structure consistency. Frame
conditions are particularly useful for the developer and for the reasoning system [49].

Foundational justification. We aim for tools that yield strong evidence of correctness based
on accurate program semantics. In this article, we consider sequential programs at the source
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level, with idealizations—unbounded integers, heap, stack—that often are used to simplify specs
and facilitate automated theorem proving. We carefully model dynamic allocation at the level of
abstraction of garbage-collected languages such as Java and ML. The ultimate goal is tools for
languages used in practice, for which semantics should be machine-checked and based on the
compiler and machine model.

Summary of the state of the art with respect to these goals. To position our work, we give a quick
summary; thorough discussion with citations can be found in Section 10.

There are several mature automated verifiers for unary (non-relational) verification, including
local reasoning by separation logic and by stateful frame conditions (“dynamic frames”), based on
SMT solvers and other techniques for proof automation including inference of annotations and
decentralized invariants [14, 41] to lessen the need for induction. While abstract data types are
commonly supported in specifications, encapsulation of heap structures remains a difficult chal-
lenge. For relational reasoning, there has been good progress in automation; this has made clear
the need for both lockstep alignment of subcomputations using relational formulas and “asyn-
chronous” alignments using unary reasoning. Automated verifiers have varying degrees of foun-
dational justification, but a standard technique is well established: verification conditions are based
on a Hoare logic, which in turn is proved sound.

The semantic theory of data abstraction is well understood for a wide range of languages, mostly
focused on syntactic means of encapsulation including type polymorphism but also considering
state-based notions like ownership using specialized types or program annotations. These theories
account for heap encapsulation and simulation but have not been well connected with general
program reasoning: in brief, they say why simulation implies program equivalence but do not say
how to prove simulation. Some of this theory has been incorporated in interactive verification
tools, for example based on the Coq proof assistant. In such a setting, the powerful ambient logic
makes it possible to express all the theory, and recent work includes relational program logics that
feature local reasoning and hiding. These works focus on concurrency and higher order programs,
and have many complications needed to address those challenges—far from the simplicity of first-
order specs supported by automated provers and accessible to ordinary developers.

Our contribution, in a nutshell. This article presents a full-featured, general relational program
logic that supports modular reasoning about both unary and relational properties of object-based
programs. The logic formalizes state-based encapsulation and the hiding of invariants and cou-
pling relations, including a proof rule for equivalence of linked programs, which directly embod-
ies the theory of representation independence. The logic uses a form of product program,' called
“biprogram,” to designate alignments of subprograms to facilitate use of simple relational asser-
tions that are amenable to automated proof. The verification conditions are all first-order, without
need for inductive predicates, and amenable to SMT-based automation. A foundational justification
is provided: detailed soundness proofs with respect to standard operational semantics.

Outline and reader’s guide. Section 2 summarizes the problem, the approach taken, and the con-
tributions of this article. Section 3 presents most of the syntactic ingredients of the unary logic,
including effect expressions, unary specs, and correctness judgments. Novel syntactic elements are
explained informally via examples and an extended example illustrates encapsulation and modular
linking.

!Some authors restrict the term “product” to mean a representation that is itself a program. Our usage is looser, encom-
passing representations like pairs of programs [43] and our custom syntax.
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module MCell
class Cell
meth Cell(c: Cell) /+ constructor +/
meth cget (c: Cell) : int /+ pure +/
meth cset (c: Cell, v: int)
requires { ¢ # null }
ensures { cget(c) = v}

Fig. 1. Example interface.

Section 4 first presents the syntactic ingredients of the relational logic—biprograms, relation
formulas, relational specs and correctness judgments—and then presents a series of examples to
illustrate alignment, relations on heap structures, and relational modular linking.

After Sections 2-4, readers who are not interested in semantic details may wish to skip to
Section 6, which presents the rules of the unary logic, and then skip again to Section 8, which
presents the rules of the relational logic, including the modular linking rule and its derivation
from simpler rules.

Section 5 defines the semantics of programs and unary correctness judgments; it is based on
standard small-step semantics, but we need a number of notions concerning agreement and depen-
dency, leading to the novel and subtle semantics of encapsulation. Section 7 gives the semantics
of biprograms and relational correctness. Section 9 sketches the use of a prototype tool to evalu-
ate viability of the logic’s proof obligations for SMT-based verification. Section 10 surveys related
work and Section 11 concludes.

A lengthy Appendix provides proofs and additional details, none of which should be needed to
understand the contents of the article. Nonetheless, cross-references to the Appendix are included.
There is also a list of metavariables in Table 1 and a glossary of symbols in Table 2 in Appendix E.
The article is self-contained but includes some remarks to cater for readers who are familiar with
prior work on region logic on which we build.

2 SYNOPSIS
2.1 Modular Reasoning about Relational Properties

To introduce the problem addressed in this article, we begin by sketching Hoare’s story about
proofs of correctness of data representations. Often a software component is revised with the intent
to improve some characteristic such as performance while preserving its functional behavior. As a
minimal example, consider this program in an idealized object-based language, with integer global
variables x, y:

var ¢: Cell in ¢ := new Cell; x := x+1; cset(c,x); y := cget(c)

It is a client of the interface in Figure 1. An obvious implementation of the module? is for class Cell
to declare an integer field val that stores the value. Suppose we change the implementation: store
the negated value, in a field named f, and let cget return its negation. Client programs like the one
above should not be affected by this change, at the usual level of abstraction (e.g., ignoring timing).
To be specific, we have equivalence of the two programs obtained by linking the client with one or
the other implementation of the module. (Equivalence means equal inputs lead to equal outputs.)
This has nothing to do with the specific client. The point of data abstraction is to free the client
programmer from dependence on internal representations, and to free the library programmer
from needing to reason about specific clients.

2Classes are instantiable. For our purposes, modules are static [9, 77], like packages in Java and other languages.
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BP A Avis
¢ := new Cell c := new Cell

v Avis A M v
. . BP —both initial states satisfy P

Xx=x+1: iIx=x+1 . . L. .
o Avis A M H Avis —two states agree on client-visible locations
: . M —coupling relation on encapsulated locations

cset(c,x) i B B’ icset(c,x)
v Avis A M v B, B’ —alternate implementations of a method

y = cget(c) | Ly = cget(c)

v Avis v

Fig. 2. Two executions, with relations between aligned points.

The (relational) reasoning here is familiar in practice and in theories of representation inde-
pendence. There is a coupling relation that connects the two data representations; in this case, for
corresponding object references o, o’ of type Cell,

the value of field o’ f is the negation of o.val. (1)

This relation is maintained, by paired execution of the two implementations, for each method of
the module and for all instances of the class. The fields are encapsulated within the module, so a
client can neither falsify the relation nor behave differently from related states, since the visible
part of the relation is the identity.

Figure 2 depicts steps of two executions of the example client, linked with alternate implemen-
tations of the methods it calls. The top line indicates a relation between the initial states of the left
and right executions. The client’s precondition P holds in both (B), and the initial states agree (A)
on the part of the state that is client-visible. Unknown to the client, the module coupling relation
M is established by the constructors and can be assumed in reasoning about the calls, provided the
method’s implementations preserve the relation. A client step, like x:=x+1 here, should preserve M
for reasons of encapsulation. The bottom line indicates agreement on the final result. Each method
has alternate implementations; the ones for cset are labelled (as B, B’) for expository purposes.

In this work, we introduce a logic in which one can specify relational properties such as the
preservation of a coupling relation by the two implementations B, B, as well as equivalence of
the two linked programs for a client C. Moreover, the equivalence can be inferred directly from
the preservation property. Equivalence is expressed in local terms, referring just to the part of the
state that C acts on: In the example client program, the pre-relation is agreement on the value of
x and the post-relation is agreement on y. If C is part of a larger context, then a relational frame
rule can be applied to infer that relations on separate parts of the state are also maintained by C
as discussed later.

Encapsulation. The above reasoning depends crucially on encapsulation, and many program-
ming languages have features intended to provide encapsulation. In unary verification, encapsula-
tion serves to protect invariants on internal data structures. It is well known, and often experienced
in practice, that references and mutable state can break encapsulation in conventional languages
like Java and ML. There has been considerable research on methodologies using type annotations
and assertions to enforce disciplines including ownership for the sake of encapsulation and local
reasoning. This work focuses on heap encapsulation, without commitment to any specific disci-
pline, but provides a framework in which such disciplines can be used.

In this article, encapsulation is at the granularity of a module, not a class or object. Thus, the
implementation of a method cswap(c, d: Cell) that swaps the values of two cells can exploit that
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the cells have the same internal representation. However, it is often useful for each instance of an
abstraction, say a cell or a stack, to “own” some locations that are separate from those of other
instances, so we can do framing at the granularity of an instance. This is manifest in frame condi-
tions, as we will see for cset, and it is also manifest in invariants. For example, a module for stacks
implemented using linked lists has the invariant that distinct stacks use disjoint list nodes.

Let us sketch how encapsulation and module invariants can be formalized in a unary logic. The
linking of a client C with a method implementation B can be represented by a simple construct,
let m = B in C that binds B to method name m. (For clarity, we ignore parameters and consider
a single method rather than simultaneous linkage of several methods.) The modular linking rule
looks as follows, where we use notation C : P ~» Q instead of the usual Hoare triple {P}C{Q} (for
partial correctness)3:

Mm:R~S+C:P~Q m:(RA)~ (SAI F B:(RAI)~ (SAI)

‘ @)
Fletm=BinC:P~ Q

The first premise says C is correct under the hypothesis that m satisfies the spec R ~> S. (The
general form allows other hypotheses, which are retained in the conclusion.) The second premise
says the body B of m satisfies a different spec, R A I ~> S A I (and assumes the same, as needed
in case of recursive calls to m in B). The spec R ~> S should be understood as the interface on
which C relies—indeed, C is modularly correct in the sense that it satisfies its spec when linked
with any correct implementation of m, so C never calls m outside its specified precondition R. In
the verification of B, the internal invariant I can be assumed initially and must be reestablished.
The invariant is hidden from clients of the module.

As displayed, rule (2) is obviously unsound, because C might write a location on which I depends
and then call m in a state where I does not hold. The idea is to prevent that by encapsulation, for
which we are required to

(E1) delimit the module’s “internal locations,”

(E2) ensure that the module’s private invariant I depends only on those locations,

(E3) frame the effects of C and ensure its writes are separate from the internal locations, and
(E4) arrange that I is established initially (e.g., by module initialization and object constructors).

Relational modular linking. Encapsulation licenses more than just the hiding of invariants. Once
the requirements (E1)-(E4) are met in a way that makes Equation (2) sound, we can contemplate
the adaptation of Equation (2) to relational reasoning and in particular proving equivalence of two
linkages, let m = B in C and let m = B” in C. The labels (E1)-(E4) are used to also refer to the
requirements as adapted to relational reasoning.

The two linkages cannot be expected to behave identically: B and B’ typically have different in-
ternal state on which they act differently. What can be expected is that from initial states that are
equivalent in terms of client-visible locations, the two linkages yield final states that are equiva-
lent on visible locations, as indicated by the deliberately vague “vis” in Figure 2. We say equivalent
states, because B and B’ may do different allocations; so, the resulting heap structure should be iso-
morphic but need not be identical. (For many purposes one wants to reason at the source language
level of abstraction, ignoring differences due to timing, code size, and absolute addresses; that is
our focus.) Given that we have framing (E3), it suffices to establish “local equivalence” in the sense
that initial agreement on locations readable by C leads to final agreement on locations writable by
C—and on freshly allocated locations. Agreement on other visible locations should then follow.

3Following O’Hearn et al. [9, 77], we use the term modular for information hiding, not just procedural abstraction.
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We write (B|B’) : R ~> S, for relations R and S on states, to say that pairs of terminated
executions of programs B and B’, from states related by R, end in states related by S. For example,
(CIC) : Ax ~> Ay says two runs of C from states that agree on the value of x end in states that
agree on the value of y. The relational generalization of Equation (2) is a relational modular linking
rule of this form:

m:R~S+ C:P~Q m:... v (B|[B'): BRAAin A M =~ BS A Aout A M

3
F(letm=BinC|letm=B"inC):BP A Avis ~> BQ A Avis ®

The first premise is unary correctness of C assuming the interface spec of m as in rule (2). The
conclusion of Equation (3) expresses local equivalence of the two linkages, under precondition P.
The second premise relates the two implementations B and B’ and is meant to say that if the client-
visible “input” locations are in agreement then the resulting visible outputs are in agreement. In
addition, a relation M is conjoined to the pre- and postcondition. A coupling relation M usually
has three conjuncts: it says the left state satisfies some invariant I on the internal state used by B,
the right state satisfies invariant I’ on the internal state used by B’, and there is some connection
between the internal states. (We often use “left” and “right” in connection with two programs,
states, or executions to be related.) The hypothesis for m in the second premise is the same spec as
proved for (B|B’), following the pattern in Equation (2). We elide that hypothesis for readability:
relational reasoning involves two of everything and the notations quickly become cluttered! As
with the modular linking rule (2), the relational modular linking rule (3) is unsound unless we
satisfy requirements (E1)—(E4). For relational reasoning, (E2) and (E4) are adapted to relations, and
(E3) is strengthened to ensure separation for reads, as one would expect to avoid dependence on
internal representations.

Alignment. One technique for proving some relation on final states is to leverage functional
specs: a strong constraint on the output values, such as out = f(in) for some mathematical func-
tion f, entails that initial agreement on in leads to final agreement on out. But the need to find and
prove functional specs can often be avoided through judicious alignment of intermediate points
in execution. This technique is used to prove soundness of Equation (3). To illustrate, consider
an instantiation of the general rule in which the three methods in Figure 1 are bound simulta-
neously (cset, cget, and the Cell constructor). We show that two executions of the example client
can be aligned as in Figure 2, with the indicated relations holding at the aligned points. After the
two constructor calls, the resulting states should agree on visible locations and be related by the
coupling, according to the premise proved for the constructor. From any pair of states related by
Ax A Ac A M, two executions of x:=x+1 maintain agreement on visible variables including x, and
according to (E3) this step in the client code is not touching internal locations on which M de-
pends, so M continues to hold. From any pair of states related by Avis A M, a pair of calls to
cset results in states related, by the premise for cset. Similarly for cget. In fact, M relates the final
states in Figure 2, but we omit it there, to emphasize that it is an ingredient of proof rather than
the property of ultimate interest.

In a good alignment, most of the intermediate relations are agreements (A) that amount to simple
equalities connecting values in locations of the two states. Finding and exploiting good alignments
is essential to leverage automatic theorem provers. For cset(c,v) in Figure 1, the first implementa-
tion is c.val:= v; return c.val and the second is c.f:= —v; return —c.f. If we align their executions at the
semicolons, then we can assert the coupling relation Equation (1) at that point, by unary reasoning
about the effect of the two field updates. Again by unary reasoning about the return expressions
we get that the same values are returned, as needed for the final agreement on visible variable
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y. Alignment does not eliminate the need for unary/functional reasoning, but rather reduces it to
small program fragments for which precise semantics can be computed by a theorem prover.

Alignment can be expressed by means of a product program, that is, a program, or some kind of
automaton, whose executions correspond to paired executions of the given programs. We call this
well known technique the product principle: to prove a correctness judgment (C|C’) : R ~> S relat-
ing programs C and C’, it suffices to prove the spec for some product program whose executions
cover the executions of C and C’.

To emphasize the role of alignment, we consider another example, not about representation
independence but about secure information flow. The following program acts on a linked list of
integer values, where each node has a boolean field, pub, meant to indicate that this value is public:

sumpub : s:=0; p:=head; while p # null do if p.pub then s:=s+p.val fi; p:=p.nxt od. (4)
We want to specify and prove that this does not reveal any information about non-public values.
Suppose we can define listpub(p) to be the mathematical list of public values reached from p.
To express that the final value of s depends only on public elements of the list we use the spec
Alistpub(p) ~> As. The program satisfies the unary spec true ~» s = sum(listpub(head)), and
any program that satisfies this must also satisfy Alistpub(head) ~> As. But, we can prove the
relational spec without recourse to the unary spec. At points in execution where two runs have
passed the same number of public nodes, the relation As A Alistpub(p) holds; this suggests an
alignment where it suffices to use relational invariant As A Alistpub(p). Adding the same value
to s on both sides maintains As and there is no need to reason that s is the sum of previously
traversed public values. The same relational invariant should suffice if sum is replaced by a more
complicated function. The alignment can be described as follows: consider an iteration just on the
left (respectively, right), if the next left (respectively, right) node is not public; and simultaneous
execution of the body on both sides, if both next nodes are public.
We cannot in fact define listpub as a function of p, owing to the possibility of cycles in the heap.
Instead, we use an inductive relation when we work out the details of this example Section 4.5.

Summary of ingredients needed. To achieve the three goals in Section 1, we need:

e A unary logic of functional correctness under hypotheses (for procedure-modularity), that
supports framing (for local reasoning) and encapsulation (for hiding and abstraction). To sup-
port a wide range of programming patterns, the logic should support reasoning in terms of
encapsulation at the granularity of an object that “owns” some internal state, say represent-
ing an instance of an ADT. It should also support reasoning at the granularity of a module,
where many instances of multiple classes may share the internal representation. It should en-
compass flexible patterns of sharing in data structures and between clients and components.

e A relational logic with framing and encapsulation, in which the relation formulas in
specs and intermediate assertions are sufficiently expressive to describe data structures
with dynamically allocated objects. Agreement “modulo renaming” is needed to reason
at the level of abstraction of Java/ML, which provide reference equality and preclude
arithmetic comparisons and operations on pointers, to express local equivalence and other
relations. The logic must provide means to reason with alignments that admit simple
intermediate relations. Examples like the sumpub program in Equation (4) show the need
to use state-dependent alignments in addition to alignments of control structure.

These ingredients need to be provided in ways that facilitate verification tools that leverage auto-
mated provers especially SMT solvers. Reasoning under hypotheses is straightforward to imple-
ment, but effective expression of specs and alignment is less obvious.
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2.2 An Approach Based on Region Logic

Our relational logic is based on prior work in which ghost state is used in frame conditions to
describe sets of heap locations. This approach, dubbed dynamic frames [54], has been shown to be
amenable to SMT-based automated reasoning in verification tools [62, 81, 87, 91], and shown to
be effective in expressing relations on dynamically allocated data structures [3, 11]. In particular,
we build on a series of articles on region logic (RL); it provides a methodologically neutral basis
for heap encapsulation with sufficient generality for sequential first-order object-based programs
featuring callbacks between modules. We refer to key articles as RLI [14], RLII [9], and RLIII [12],
and summarize key ideas in the following.

Framing. In current tools, the most common form of frame condition is a “modifies clause”
that lists some expressions, meant to designate the writable locations. A reads clause is similar. In
the formalization of RL, specifications are written in the compact form pre ~» post [ frame] where
the effect expressions in the frame condition are tagged by keywords wr and rd to designate
writables and readables. We use rw to abbreviate the possibility to both read and write. In this
work, a region is a set of object references. For example, a possible spec of cset(c,v) is ¢ # null ~»
cget(c) = v [rw{c}‘any], where the postcondition refers to the mathematical interpretation of
the pure method cget (as in RLIII). The singleton region {c} is used in the frame condition. In
the image expression {c}‘any, the token any is a data group [64] that abstracts from field names.
Concrete field names can also be used in image expressions, e.g., {c}‘val. This example designates
a single location, which may as well be written c.val. But the image notation can be used for
larger sets of heap locations. For variable r of type region, r‘val designates the set of val fields of
all Cell objects in r. So rd r‘val in a frame condition allows any of these fields to be read.

Following separation logic, RL features local reasoning in the form of a frame rule, but achieves
this with ordinary first-order assertions. For an example, strengthening the precondition of cset(c,v)
gives ¢ # null Ad # ¢ ~ cget(c) = v [rw {c}‘any]. The frame rule lets us add d.val = z to the pre-
and postcondition. Why? Because the condition d.val = z cannot be falsified: the writes allowed
by the frame condition are separate from what is read* by the formula d.val = z. In case of the
variables d and z, this is a matter of checking that d and z are not writable. Distinctness of field
names can be used similarly. But here, rw {c}‘any allows that c.val can be written and val also
occurs in the formula d.val = z. Separation holds, because the regions {c} and {d} are disjoint,
written {c} # {d}, which follows from precondition d # c. As in the frame rule of separation
logic [76], this reasoning is inherently state dependent; separation would not hold if variables d
and c¢ held the same reference. Our frame rule has this form:

from C:P~»> Qle] infer C:PAR~ QAR]Je],
provided that locations read by R are separate from locations writable according to ¢.

©)

In the frame rule of RL, separation is expressed by a conjunction of set disjointness formulas
derived syntactically from the frame condition ¢ and the read effects of R. In this example, the
relevant effects are wr c.val and rd d.val and there is a single disjointness formula: {c} # {d}. This
formula is obtained by applying the separator function -/. introduced later, in Figure 11.

Encapsulation. RLII features dynamic boundaries, in which the idea of dynamic frame is adapted
to encapsulation for module interfaces. The dynamic boundary of a module is simply an effect

4For a formula’s meaning to depend on a location is different from a program reading the location during execution.
However, these two notions have closely related extensional semantics based on agreement between states. So, following
the RL articles, we use the terminology and notation of read effects for both.
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Fig. 3. The pool and rep idiom.

expression that designates the locations meant to be internal to the module. Technically, it is a
read effect, in keeping with its role to cover the footprint of the module invariant. In addition to
the usual meaning of a partial correctness judgment, there is an additional obligation: the program
must not write locations within the boundary of any module other than its own module.

For the example module MCell, the dynamic boundary (omitted from Figure 1) is formulated in
terms of a ghost variable, pool, of type region. The postcondition of the Cell constructor says the
new cell is added to pool. The boundary is rd pool, rd pool‘any, so clients must not write the variable
pool or any field of an object in pool. One could as well achieve this effect using module-scoped
field names, so let us briefly consider a less degenerate example: a module for stacks.

In addition to ghost variable pool containing all instances of the stack class, that class would
have a ghost field rep of type region. In an implementation using linked lists, each stack’s list
nodes would be in its rep, and the module invariant would specify some “object invariant” for
each stack together with its nodes. This is depicted in Figure 3. In an implementation using arrays,
rep would contain the stack’s array, and the module invariant would express some condition that
holds for each stack object and its array. Of course there is a single interface for the module. Method
frame conditions will refer to pool and rep, and not expose implementation details. To facilitate
per-instance framing, an invariant like s # t = s.rep#t.rep is used, which says the representations
for distinct stacks are disjoint. A suitable dynamic boundary is rd pool, rd pool‘any, rd pool‘rep‘any.
It designates fields of the stack objects in pool and also fields of all their rep objects. (Array slots can
be viewed as fields.) The mentioned invariant enables use of the frame rule to consider updates
of a single instance, and it is suitable to be included in the module interface for use by clients.
(Either as explicit conjunct in method pre- and postconditions, or declared as a public invariant
for syntactic sugar.) For example, s.push(n) writes s.rep‘any; in states where s # t this preserves
the value of t.top(), which reads t.rep‘any—and preservation holds in virtue of frame conditions,
without recourse to postconditions that specify functional behavior.

In summary, a module interface comprises a collection of method specs, and a dynamic boundary.
A module implementation maintains an internal invariant I, the footprint of which should be
framed by the boundary. The invariant I should be such that it follows from the initial conditions
of the main program. For example, universal quantification over elements of pool holds when pool
is empty. An alternate approach is to require clients to call a module initializer.

Modular linking. Following the lead of O’Hearn et al. [77], the logic in RLII derives a modular
linking rule like Equation (2) from two simpler rules: An obviously-sound rule for the linking con-
struct (let m =B in C) and a second-order frame (SOF) rule that accounts for hiding of invariants
on encapsulated state. A minimalistic formalization of modules is used, to keep the focus on the
main ideas. The unary correctness judgment takes the form ® +j C : P ~ Q [¢] with M the name
of the module in which C is to be used. It says that, under hypotheses ¢ and precondition P, com-
mand C stays within the effects ¢ and establishes Q if it terminates—and in addition, C respects the
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boundaries of any modules in ® other than its own module M. This formalizes requirement (E3). In
RLIL, “respect of dynamic boundaries” means not writing locations inside them. In the present arti-
cle, we must strengthen respect to prohibit reading, to ensure that C has no dependency—neither
reads nor writes—on the internal representation of modules other than its own.

2.3 Relational Region Logic

Our relational specs have the form P ~> Q [¢|¢’] where P (respectively, Q) is the relational pre-
(respectively, post-)condition. There is a separate frame condition ¢ for the left execution and ¢’
for the right. Often those are the same, in which case we abbreviate as £ ~> Q [¢]. The meaning of
frame conditions and encapsulation is the same as in the unary logic. Leaving effects aside, there
are several ways one could interpret a spec (C|C’) : P = Q [¢|¢’] in regards to termination. All
ways consider a pair of initial states, say o, o’ that satisfy #. The “V3 interpretation” says that
for every execution of C from o, terminating in a state 7, there is an execution of C’ from ¢’ that
terminates in a state related to 7 by Q. The V3 interpretation asserts relative termination and caters
for nondeterminacy. The “VV interpretation” was already mentioned just before (3): every pair of
terminating runs of C and C’ from P-related states end in Q-related states. The VV form is fine for
deterministic programs, which is what we consider, and it is simpler, so we use it.

For relation formulas, we build directly on image expressions. Agreements are interpreted in
terms of a partial bijection between the dynamically allocated references of the left and right
states, as commonly used to account for bijective renaming of references at the Java/ML level of
abstraction [7, 8, 23, 27]; we call these refperms. For region expression G, the relation AG* f asserts
agreement on f-fields for objects in G that correspond according to the refperm. We do not require
every allocated reference to be in the refperm: this is important, to specify relational properties
that allow differences in allocation behavior. Examples of such differences include internal data
structures and reasoning about secure information flow (under low branch condition, allocated
locations can be added to the refperm, but not under high branch condition).

We formulate the logic in terms of an explicit representation for product programs that designate
alignments. The biprogram form (C|C’) indicates no alignment except for the initial and final
states. Other biprogram forms express, for example, that iterations of a loop are to be aligned in
lockstep, or conditionally as needed for the sumpub example (4). For the implementations of cset,
the alignment described earlier is expressed as (c.val:= v | c.f:= —v); (return c.val | return —c.f).

A judgment for (C|C’) directly entails the expected relation between unary executions of com-
mands C and C’ (as confirmed by our adequacy theorem). The choice to use a different alignment
of C with C’ is formalized by an explicit proof rule. The rule is formulated in terms of a weaving
relation that connects a biprogram with a more tightly aligned version, typically chosen, because
it admits use of simpler relational assertions. The rule says that properties of the woven program
hold also for (C|C’).

Given that we confine attention to sequential code, it seems natural to expect that programs
are deterministic, but we also aim for reasoning at the source code level abstraction—for which
determinacy is unrealistic owing to dynamic allocation! The behavior of an allocator typically
depends on things that are not visible at the source level. There is no need to make unrealistic
assumptions. Our program semantics allows that the allocator may be nondeterministic (while
not assuming that it is “maximally nondeterministic” as often done in the literature). Our program
semantics is quasi-deterministic in the sense that outcomes are unique up to bijective renaming
of references. Our relation formulas do not allow pointer arithmetic or comparisons other than
equality, so they are invariant under renaming. These design decisions entail some complications
in the technical development, but ensure that interesting programs do provably satisfy expected
VYV properties.
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As already mentioned, the unary modular linking rule (2) is derived (in RLII) from two simpler
rules: a basic linking rule, where assumed and proved specs match exactly, together with a second-
order frame rule. Our novel relational modular linking rule (3) is derived from a relational linking
rule, a relational second-order frame rule, and a third rule. The third rule lifts a unary correctness
judgment to a relational judgment that says a program is locally equivalent to itself. For this to be
proved, it is stated in a stronger form: a program can be aligned with itself in lockstep such that
local equivalence holds at each intermediate step.

As for the goal of foundational justification, our approach is to work directly with a conventional
operational semantics for unary correctness, for which we formulate a semantics of encapsulation.
The biprogram semantics is based directly on that, so that soundness for rules in the relational
logic has a direct connection—adequacy theorem—to unary semantics. One benefit from carrying
out the development in terms of this elementary semantics is that one can see that most of the
soundness proofs can be adapted easily to total correctness (both runs always terminate) and to
relative termination (right run terminates whenever left does).

2.4 Contributions

We highlight the following contributions.

A unary logic for modular reasoning about sequential object-based programs using first-order as-
sertions. The key contribution and most difficult definition to get right is the extensional semantics
of encapsulation, which is part of the meaning of correctness judgments. Small-step operational
semantics is used, so we can define what it means for a given step to be outside the boundaries
of all modules but its own. We build on the semantics in RLII but completely revamp it to handle
encapsulation of reads in addition to writes. Dynamic boundaries are taken from RLII; most of the
proof rules of RLII need little or no revision, but they must all be re-proved for the new semantics.
Owing to the need for quasi-determinacy (for VV extensional semantics of read effects), the new
semantics of hypothetical judgments quantifies over possible denotations (called context interpre-
tations) rather than a single “least refined” denotation as in RLII and in O’Hearn et al. [77]. We
present detailed soundness proofs of the key rules (Theorem 6.1).

A relational logic. The logic relies on unary judgments for reasoning about atomic commands
and for enforcing encapsulation. Relational assertions are first-order formulas. Our presentation
focuses on data abstraction, because this is the first relational logic to embody representation
independence as a proof rule using only first-order means. But the logic is general, with a full
range of rules that facilitate reasoning with convenient alignments.

We present detailed soundness proofs of the key rules (Theorem 8.1). Formally, judgments of the
relational logic give properties of biprograms; the adequacy Theorem 7.11 connects those proper-
ties with the expected properties in terms of paired unary executions in standard semantics (the
product principle).

Demonstration of suitability for automation via case studies in a prototype relational verifier. The
prototype translates biprograms and verification conditions specific to our logic, which are all first-
order, into Why3 code and lemmas, proved using SMT solvers (why3.Iri.fr). The modular linking
rules (unary and relational) are implemented by generating suitable Why3 specs for the programs
involved. The case studies include noninterference, program transformations, and representation
independence.

2.5 About the Proofs

The most difficult technical result is the lockstep alignment lemma (Lemma 8.9). It brings together
the semantics of encapsulation in the unary logic, which involves a single context interpretation,
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with the semantics of relational correctness—which involves three context interpretations, to ac-
count for un-aligned calls as well as aligned calls and relational specs.

The direct use of small-step semantics makes for lengthy soundness proofs that require, in some
cases, intricate inductive hypotheses. But transition semantics is a critical ingredient for a first-
order definition of heap encapsulation. It was quite difficult to arrive at rules for relational linking
and second-order framing that are provably sound. Several variations on the semantics of encap-
sulation turned out to be sound for the unary linking and second-order frame rules but failed to
validate a sufficiently strong lockstep alignment property on which relational linking can be based.

Aside from lockstep alignment, the soundness proofs for linking rely on denotational semantics,
which in turn relies on quasi-determinacy. This property is also used to establish embedding/pro-
jection results on which the adequacy theorem is based.

The semantics of correctness judgments is extensional in the sense that it refers only to behavior
in a standard transition semantics—no instrumentation artifacts. Like in RLII, it does rely on use of
transition semantics to express that control is currently within a specific module and outside the
boundaries of other modules in scope. This affects which program transformations are correctness-
preserving; more on this in Section 8.6.

Once the right definitions, lemmas, and induction hypotheses have been determined, the sound-
ness proofs go by induction on traces, with many details to check. We relegate them to appendices.

2.6 Current Limitations

The formal development omits some features that were handled in the prior works on which we
build: parameters, private methods, constructor methods, pure methods for abstraction in specs.
These are all compatible with the formal development; all are implemented in the prototype and
used in exposition. The theory is compatible with standard forms of encapsulation based on scop-
ing mechanisms (e.g., module scoped variables), which for practical purposes should be leveraged
as much as possible; for simplicity, we refrain from formalizing such mechanisms.’ The prototype
also supports public invariants; as noted in connection with the stack example, these are important
for client reasoning about boundaries using patterns like ownership. Public invariants need not be
formalized in the theory, as they can be explicitly included in method specs.

The simplicity of our semantic framework (e.g., standard semantics of formulas and programs)
may facilitate foundational justification of a verifier, but we have not formally proved the correct-
ness of our prototype.

There are two technical limitations. First, the semantics of encapsulation and the proved rules
handle collections of modules with both import hierarchy and callbacks. But the key rules for re-
lational linking and relational second-order framing (RSOF) only handle simultaneous linking
of a collection of modules. This is enough to model linking as implemented in a verifier. However,
one may hope for a theory that accounts for distinct inference steps that successively link different
layers of hierarchy, as in our unary logic. To achieve this, the lockstep alignment lemma needs to
be strengthened to ensure agreements for already-linked methods. This requires to further com-
plicate an already intricate theory. In this article, we just sketch the issue (Section 8.5).

Second, the current formulation has a technical condition (boundary monotonicity) that pre-
vents release of encapsulated locations, in the sense of reasoning with specs that describe outward
ownership transfer. (Inward transfer is fine.) Modules can create new objects for clients, as in the
shared handle objects for priority queues, one of our running examples. But a location that has

SSpecs involving explicit footprints are more verbose than those based on separation logic, and our minimalist formalization
of modules increases verbosity. This article does not propose concrete syntax for practical use, but the issue is addressed
in some related work (Section 10).
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class Pnode { val: int; key: int; sibling: Pnode; child: Pnode; prev: Pnode; }
class Pqueue { head: Pnode; size: int; ghost rep: rgn; }

meth Pqueue (self:Pqueue) =
self.rep := {null}; pool := pool U {self};

meth insert (self:Pqueue, val:int, key:int): Pnode =
result := new Pnode(val, key);
self.rep := self.rep U {result};
if self.head = null then self.head := result;
else self.head := link(self, self.head, result) fi;

Fig. 4. Excerpts of priority queue (PQ) implementation (in the syntax of our prototype).

been within the boundary must stay there. Overcoming this restriction, or finding idiomatic speci-
fication patterns that dodge it, is left to future work. Both inward and outward transfer are possible
in RLII (an example is in Section 2.2 of that article).

Addressing the limitations is the subject of ongoing and future work.

3 PROGRAMS: THEIR SYNTAX AND SPECIFICATIONS

This section defines the syntax of programs and their unary specifications and correctness judg-
ments. Sections 3.1-3.4 collect together almost all the syntactic forms and definitions concerning
syntax, using a few examples to explain unusual things. Section 3.5 gives more holistic examples
to illustrate how the syntax is used and why we need various syntactic elements, focusing on how
requirements (E1)—(E4) for encapsulation in Section 2.1 are expressed and checked.

3.1 Programs and Typing

A running example is introduced in Figure 4. We consider the priority queue module PQ, which
exposes a class whose instances represent priority queues that store integer values and priorities,
referred to as “keys” (smaller key means higher priority) [98]. Our implementations (based on Ref-
erence [98]) use pairing heaps, where each queue contains a head field that points to a Pnode object
and each Pnode contains sibling, prev, and child fields that point to other Pnodes. The rep field of
a queue is used to hold references to the objects notionally owned by the queue.

The syntax of programs in our formal development is in Figure 5. The grammar includes bipro-
grams, to which we return in Section 4. Field read and write commands are written with derefer-
encing implicit, as in Java (though using the symbol :=), and are desugared to have a single heap
access that simplifies proof rules. The let construct, featured in the modular linking rule (2), repre-
sents scoped method declarations.® Some examples, like Figure 4, use the syntax of our prototype,
in which keyword meth corresponds to the let construct. Examples use some syntax sugars imple-
mented in our prototype, e.g., invocation of method link in an update of field self.head (Figure 4).
A method named after a class (e.g., Pqueue) is meant to be used as a constructor, i.e., invoked on
a newly allocated object, the fields of which are initialized with default values (null for classes, @
for regions).

To lessen the need for uninteresting transitions in program semantics, we equate certain
syntactic forms. For example, there is no transition from (skip; C) to C, because we consider them
to be the same syntactic object, see Figure 6. Working with syntax trees up to (i.e., quotiented by)

®We use the short term “method” for what should properly be called procedure. The term “method” usually implies dynamic
dispatch, which is beyond the scope of this article.
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m € MethName x,y,r € VarName f., g € FieldName K € DeclaredClassName

(Classes) u= class K {f_T} (overline indicates finite lists)
(Types) T int | bool | rgn | K (and math types, in specs and ghost code)
(Prog. expr) E x|n|null [ EQE wherenisinZand ® isin {=,+,—, %, >,A,...}
(Regionexpr) G :=x | @ |{E} |G'f|G/K|G®G where®isin{U,N,\}
(Expressions) F ==E|G
(
(
(

Atomic com.) A ==skip |m() |x:=F |x:=newK |x=x.f|x.f:=x
Commands) C =:=A|letm()=CinC | if Ethen Celse C | while EdoC|C;C |varx:TinC
Biprograms) CC ::= (C|C) | LA] | let m() = (C|C) in CC | var x:T|x:T in CC | CC ;CC
| if E|E then CC else CC | while EIE - P|P do CC
Syntax sugar: while E[E’ do CC abbreviates while E|E” - false|false do CC.
Identifiers: B, C, D for commands, BB, CC, DD for biprograms.

Fig. 5. Programs and biprograms. For relation formulas # see Figure 14.

(skip;C) = C  (C;skip) =C  (Cp;C1);C2 = Co; (C1;C2)
(skip|skip) = |skip] |skip];CC =CC CC;|skip] = CC (CCy;CCq);CCy = CCy; (CCy1;CCy)

Fig. 6. Syntactic equivalence = of programs and biprogams.

syntactic equivalence is done in the previous RL articles and elsewhere.” We sometimes use the
symbol = for equality of other syntactic forms, like variables, just to emphasize that they are
syntactic.

Programs and specs are typed in a conventional way. A typing context I maps variable names
to data types and method names to the token meth, written as usual as lists, e.g., x:T, y:T, m:meth.
(In the formalization, we omit method parameters and results.) Various definitions refer to a typing
context typically meant to be the global variables, including ghost variables, which may be of type
rgn (region). We do not formalize ghost variables as such [14, 42].

The idea of ghost code is to instrument a program with extra state for the sake of reasoning, in
such a way that the termination and behavior of the original program is not affected. This can be
formalized in terms of a rule for elimination of ghost state [14, 42, 78]. We refrain from doing so
in this article; the additions would not be illuminating.

A class is just a named record type. In the formal development we assume an ambient class
table that declares some class types and the types of their fields. For simplicity this has global
scope. We assume that field names in different class declarations are distinct, so any declared field
f determines a unique class, DecIClass(f), that declares it, and also a type, which we write f : T.

Section 2.2 introduced the region expressions used in frame conditions. In addition to (mutable)
variables of type region, there are set operations like union, singleton, subtraction (\), and image
expressions. The expression {x} denotes the singleton set containing the value of x. For G a region
expression, the image expression G*f is the empty region if f : int. If f is of some class type, then
G'f is the set of current values of f-fields of objects (i.e., object references) in G. For f of type rgn
the image is the union of the field values. For example, in the idiom using global variable pool : rgn
containing some objects with field rep : rgn, the image pool‘rep is the union of their rep fields. The
type restriction expression G/K denotes the elements of G of type K (which excludes null).

As usual in program logics, field access and update is limited to the primitive forms x := y.f
and x.f := y. In specs and ghost code, a dereference chain like x. f.g.h (for reference type fields)
can be expressed by the region expression {x}‘f‘g‘h; if x is null the value is the empty set.

7See, e.g., Reference [6]. We use the symbol = because it is used for structural congruences in process algebra, which have
the same purpose of streamlining the transition system.
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T'+tE:K F'rG:rgn
T+{E}:rgn T+Gf:rgn

Fig. 7. Region expression typing (selected).

Owing to the simple model of classes, the notation G‘any can be defined as shorthand for Gf

where f is the list of all field names. An implementation can support user-defined data groups,
which can be used to abstract from specific sets of fields [64].

The typing rules for expressions and commands are straightforward and omitted, with the ex-
ception of those in Figure 7. We highlight those, because we allow f in an image expression G*f
to have any type; as noted above, its value is empty unless f has region or class type.

Program variables are partitioned into two sets, ordinary variables and spec-only variables.’
The distinguished variable alloc : rgn is an ordinary variable, but it is treated specially: It is present
in all states, and is automatically updated in the transition semantics by the transition for new, so
in every state its value is exactly the set of allocated references. Spec-only variables are used in
specs to “snapshot” initial values for reference in the postcondition. Spec-only variables do not
occur in code, even ghost code, or in effects.!’ In our prototype, “old” expressions are used to
abbreviate the use of snapshot variables [60].

Commands are typed in a context I. We omit the straightforward rules for typing of commands,
except to note that a call T' + m() is well formed only if m : meth is in I'. To streamline the formal
development, we omit parameters for methods; by-value parameters can be handled straightfor-
wardly as in RLIT and RLIIL!!

Program expressions E are heap independent. For expressions of reference type, the only con-
stant is null and the only operation is equality test, written =. Region expressions can depend on
the heap but are always defined. Null dereference faults only occur in the primitive load and store
commands x := y.f and x. f := y. By contrast, if x is null then {x}‘f is defined to be empty.

3.2 Modules

Assume given a set ModName of module names, and map mdl : MethName — ModName that as-
sociates each method with its module. Usually, we use letters M, N, L for module names, but there
is a distinguished module name, ., that serves both as main program and as default module in the
proof rules for atomic commands. Assume given a preorder < (read “imports”) on ModName, which
models the reflexive transitive closure of the import relation of a complete program. We write <
for the irreflexive part. Cycles are allowed, as needed for interdependent modules that respect each
other’s encapsulation boundaries. A module interface includes a spec for each method. The func-
tion bnd from ModName to effect expressions associates each module with its dynamic boundary,
which is thus part of its interface along with its method specs. This lightweight formalization of
modules is adapted from RLII (its Section 6.1).

8Typing in RLLRLII is slightly more restrictive.

%As in RLIL, we rely on a partition of ordinary variables into locals, which are bound by var (and in RLIT also method
parameters), and globals; but we ignore the distinction where possible. Also, typing rules impose the hygiene property
that variable and method names are not re-declared; this facilitates modeling of states and environments as maps.
19Spec-only variables are also used in RLIL But here, we also disallow the use of alloc in ghost code, which was not necessary
in RLII, so we have additional need to snapshot alloc.

11 As in those works, we also disallow let-commands inside let-bound commands and biprograms: in let m = B in C there
must be no let in B. (By modeling only top-level method declarations, we simplify the semantics.) We also disallow free
occurrences of local variables in B; thus in var x:T in let m = B in C the module code B can’t refer to x. In practice, let is
only used outermost.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 4, Article 25. Pub. date: December 2022.



A Relational Program Logic with Data Abstraction and Dynamic Framing 25:17

module PQ =
public pool: rgn
boundary { pool, pool‘any, pool‘rep‘any }
meth Pqueue (self: Pqueue) /+ constructor +/

meth isEmpty (self: Pqueue) : bool
meth findMin (self: Pqueue) : Pnode

meth insert (self: Pqueue, val: int, key: int) : Pnode
requires { self # null A self € pool }
ensures { = (isEmpty(self)) A result € self.rep A result.val = val A result.key = key }

writes { {self}‘any, self.rep‘any, alloc } reads { {self}‘any, self.rep‘any, alloc }
meth deleteMin (self: Pqueue)

meth decreaseKey (self: Pqueue, handle: Pnode, key: int)
end

Fig. 8. Priority queue interface PQ, eliding private methods and most specs.

For the PQ interface in Figure 8, mdl(insert) = PQ. In one of our case studies, the main pro-
gram implements Dijkstra’s single-source shortest-paths (SSSP) algorithm, as a client of PQ
and another module Graph. The import relations are then « < PQ and « < Graph.

A module M specifies a dynamic boundary bnd(M). The boundary can be expressed using re-
gions and data groups for abstraction, to cater for implementations that have differing internals.
This is why there is a single type, rgn, for sets of references of any type. Well-formedness condi-
tions for boundaries are defined in Section 3.3.

A proper module system would include module-scoped variables and fields that need not be
part of the interface and need not be the same in different implementations of a module N. Our
simplified formulation streamlines the formal development, because we do not need syntax, typing
contexts, and so on, for a full-fledged module calculus, nor correctness judgments for modules. But
this comes at a price: some well-formedness conditions on correctness judgments (in the following
subsections) and side conditions (in proof rules) merely serve to express lexical scoping that could
be handled more neatly using a proper module system.

3.3 Unary Specifications

We assume a first-order signature providing primitive type, function, and predicate symbols for use
in specs and in ghost code. Predicate formulas are in Figure 9. The points-to relation x. f = E says
that x is non-null and the value of field f equals the value of E. For examples, see the postcondition
of insert in Figure 8. The predicate type(G, K) says that every non-null reference in G has one of
the class types in the list K.

Typing of unary predicate formulas P is straightforward. For example, the points-to formula
x.f = E is well formed (wf) in I’ provided I'(x) is some type K that declares f : T and E has type
T. An expression E counts as an atomic formula if it has type bool; this includes equality tests. The
signature may include equality at other math types, with standard interpretation.

Quantifiers at a class type K range over allocated references of type K. The logic does not require
quantification at type rgn, but we include it to simplify the grammar. It is often useful to bound
the range of quantification at reference type to a specific region, in the form Vx : K.x € G = P,
to facilitate framing. (This is explored in RLIL) In sugared form: Vx : K € G. P.

Effect expressions. A spec P ~> Q [¢] comprises precondition P, postcondition Q, and frame
condition ¢. Frame conditions are effect expressions ¢, defined by
(Left-expression) LE == x|G'f,

(Effect expression) ¢ == rdLE|wrLE |¢&¢|oe. ©)
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P = E|xf=E|GCG]|type(GK)|R(F) (atomicformulas, where R is in the signature)
|PAP|P=P|(Vx:T.P)

Syntax sugar: G#H = GNH C {null} and x € G = {x} C G and standard defs of -, v, and (3x : T. P).

Precedence: A binds more tightly than = and less tightly than relations like =, C.

Associativity: P = Q = Rmeans P = (Q = R).

Fig. 9. State predicates. For expression forms E, F and G see Figure 5.

Left-expressions, LE, are a subset of expressions (category F in Figure 5). They have l-values, as
discussed below, and are used in effects and in agreement formulas.'? An effect ¢ is wfin T provided
each of its left-expressions is.

Notation: Besides ¢, we often use identifiers  and § for effect expressions. We use the short
term effect for effect expressions, including compound ones like rd x, wr x, wr {x}* f. The singleton
image wr {x}f can be abbreviated as wr x. f. We use the abbreviation rw to mean rd and wr. The
empty effect is given explicit notation « for clarity in certain parts of the development, but we omit
it when confusion seems unlikely. We often treat compound effects as sets of atomic reads and
writes. We also omit repeated tags, e.g., rd x, y abbreviates rd x, rd y; and then reads are separated
from writes by semicolon, e.g., rd x, y; wr z, w.

l-value and r-value. In common usage, the term r-value refers to the meaning of an expression
in contexts like the right side of an assignment. For those expressions allowed on the left of an
assignment, the l-value is the location to be assigned and the r-value is the current contents of
that location [95]. In our language there are two forms of mutable location: variables and heap
locations. A heap location is a pair (o, /) where o is an object reference and f a field name; we
write the pair as o. f.

We identify a subset of expressions, called left-expressions (6), which have an l-value—in addi-
tion to the r-values described in Section 3.1 (and formalized in Figure 21). In general, the l-value of
a left-expression designates a set of locations. In frame conditions, left-expressions are interpreted
for their l-values as is common in spec languages. (Note that our left-expression form G*f is not
an assignment target.)

In the write effect wrx, the l-value of expression x is a single location, the variable x itself,
independent of the current state. For the left-expression {x}‘f, the -value is again a single location,
namely, o. f, where o is the r-value of x in the current state—unless that value is null, in which case
the l-value is the empty set.

Consider a variable r : rgn. The l-value of r‘f is the set of o.f where o is a non-null reference
that is an element of the current value of r. (We may say “object in r” to be casual.)

What about the I-value of r‘f‘g? It is the set of 0.g where 0 is a non-null reference in the region
r‘f—that is, o is an element of the r-value of ‘f. In case f has type int, that region is empty. In
case f has some class type K, the region rf is the set of contents of f fields of objects in r. So, for
0.g to be in the I-value of r‘f‘g means o is the value in p. f for some non-null reference p in r.

Suppose instead that f has type rgn. Then the r-value of r‘f is defined to be the union of the
values of the f-fields of objects in r. (We use the union to avoid sets of sets.) So, for 0.g to be in
the l-value of r‘f‘g means o is an element of the set p. f for some non-null p in r.

In general, the I-value of a left-expression is dependent on the state, for the values of vari-
ables and for the values of fields of allocated objects. For example, consider the private method,
link, used internally by insert (Figure 4). The ascribed effect of method link is rw {self}‘rep‘child,

12For readers familiar with prior RL articles: Effect expressions are exactly the same as in previous articles; we have changed
the grammar for clarity.
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fipt(x) rd x

Jipt(2) .

fipt({E}) ftpt(E)
Jipt(G/K) Jipt(G)
fipt(G°f) rd G*f, fipt(G)

ftpt(F1 © Fz)
ftrt(Go € Gy)
fipt(x.f = F)
fipt(E = E’)

fipt(Fy), ftpt(F2)  foroin{U,Nn,\,+,-}
Jipt(Go), fipt(Gr)

rd x, rd {x}‘f,ftpt(F)

Jipt(E), fipt(E")

Fig. 10. Footprints of expressions and atomic formulas.

LR 1 o | e  E | | T 1

{self}‘rep‘sibling, {self}‘rep‘prev. Here, {self}‘rep is used for its r-value, which is a set of objects
in the rep field (the same as self.rep), and the left-expression {self}‘rep‘child is used in the effect
to refer to the locations of the child fields of all the Pnodes in self‘rep.

Dynamic boundary and operations on effects. For expressions and atomic formulas, read ef-
fects can be computed syntactically by the footprint function, fipt, defined in Figure 10. For
example, the private invariant for the PQ module (Figure 8) includes q.rep‘prev C q.rep. Its
footprint, computed by fipt, is rd g, rd {q}‘rep,rd {q}‘rep‘prev, which can be abbreviated as
rd q, {q}‘rep, g.rep‘prev. It has a closure property, framed reads, that will play a role in reason-
ing about encapsulation.

Definition 3.1 (Framed Reads; Candidate Dynamic Boundary). An effect ¢ has framed reads pro-
vided that for every rd G'f in ¢, its footprint fipt(G) is in €. A candidate dynamic boundary is
an effect that has framed reads, has no write effects, and has no spec-only or local variables.

In addition to the well-formedness assumption that the module import relation, <, is a preorder,
we also assume that every declared boundary, bnd(M), is a candidate dynamic boundary. The dis-
tinguished default module name « has empty boundary: bnd(s) = ». For a finite set X € ModName,
we use the abbreviation (+N € X. bnd(N)) for the catenation (union) of the boundaries. Note that
such combined boundaries are themselves candidate dynamic boundaries. For PQ, the dynamic
boundary, bnd(PQ), is rd pool, pool‘any, pool‘rep‘any.

The syntactic operation of effect subtraction, &\n, is used to formulate local equivalence
specs; in particular, we subtract a dynamic boundary from a method’s frame condition. Subtrac-
tion is defined as follows. First, put ¢ and 7 into the following normal form!*: No field occurs
outermost in more than one field read or more than one field write. This can be achieved by merg-
ing rd G f,rd H' f into rd (G U H)f and likewise for write. (Occurrences of field images within G
and H, not being outermost, are untouched.) Assuming ¢, 5 are in normal form, define ¢\ to be
(50, 51, 52, 53) where

So={rdx|rdx € eand rd x ¢ 1} @)
8, ={rdG'f | rdG'f € e and p has no f read} U {rd (G\H)‘f | rdG‘f € eand rd H'f € n}

and d,, 5 are defined the same way for writes. For example, let r and s be region variables. Then
(rdr,rd s, rd (r U s)nxt, rd r'val)\(rd r, rd {x}‘nxt) is rd s, rd ((r U s)\{x})‘nxt, rd r‘val.

13 After replacing the data group any with the fields it stands for.
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rdG,‘f /. wrGy'g = if f=gorf=anyorg=anythen G, # G, else true
rdy /. wrx = if x = y then false else true

b/ ¢ = true for all other pairs of atomic effects

§+.¢ = true incased or ¢ is empty

(6,0) 1.1 = (el.p)A(5-1.1n)

§+1.(&m) = (5:1.e)n(5+1.1)

Fig. 11. The separator function /. is defined by recursion on effects.

The separator function -/. , mentioned in connection with the frame rule (5) is defined by struc-
tural recursion on effects (Figure 11)."* Given effects ¢, 7 it generates a formula ¢ /. 5 that implies
the read effects in ¢ are disjoint locations from the writes in 5. Please note that -/. is not syntax in
the logic; it’s a function in the metalanguage that is used to obtain formulas, dubbed separator
formulas, from effects. For example, rd r‘nxt /. wr r‘val is the formula true and rd r‘nxt /. wr s‘nxt
is the disjointness formula'® r # s. Note that ¢ -/. 1 is identical to rds(¢) -/. wrs(n) where rds keeps
just the read effects and wrs the writes. The separator function can be used to obtain disjointness
conditions for two read effects, say ¢ and 7, by using the function we call r2w, which discards
write effects and changes reads to writes, as in ¢ -/. r2w(n). Function w2r does the opposite. The
upcoming Example 3.5 shows a use of -/. and the frame rule.

3.4 Unary Correctness Judgments

On the way to formalizing correctness judgments, we first consider specs. Spec-only variables are
implicitly scoped over the spec but not explicitly declared.

Definition 3.2 (WF Spec). A spec P ~» Q [¢] is well formed (wf) in context I' if

e I' has no spec-only variables, and ¢ is wfin T

e Pand Q are wfin T, T, for some I' that declares only spec-only variables.'®

e In P, every occurrence of a spec-only variable s is in an equation s = F that is a top-level
conjunct of P, where F has no spec-only variables; and every spec-only variable in Q occurs
in P.

The last item says spec-only variables are used as “snapshot” variables.!” In this article, the ’
symbol is often used for identifiers on the right side of a pair, so we avoid it for other decorative
purposes, instead using hats and dots.

A hypothesis context ® (context, for short) maps some procedure names to specs and is written
as a comma-separated list of entries m : P ~» Q [¢].

A correctness judgment has the form @ "11;/1 C: P~ Q[e] where @ is a hypothesis context

and M is a module name. The judgment is for code of the current module M. We distinguish two
kinds of method calls in C: environment calls are those where a called method is bound by let

“This is unchanged from prior work (RLLRLII). The data group “any” can be expanded to all the field names. Computing
rd G‘f f.wr H‘any yields the formula G # H.

>Note that r # s allows r and/or s to contain null; this is okay, because there are no heap locations based on null.

1%Here is what is needed to formalize method parameters. They can be referenced in the pre- and postcondition. The frame
must not allow write of a parameter, for the usual reason in Hoare logic that the postcondition should refer to the initial
value. The frame should not allow read of a parameter: The call rule reflects that what is read is the argument expression
in the call. The linking rule allows the body of a method to read its parameters (see RLIII).

7In Definition 3.2, I' is uniquely determined from the other conditions. This is why we can leave types of spec-only variables
implicit. Their scope is also not explicit, but in the semantics they are scoped over the pre- and poststates. We can refer to
“the spec-only variables of P” as a succinct way to refer to those used in the spec.
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within C; the others, context calls, are those where a called method is specified in ®. Informally,
the correctness judgment says executions of C from P-states read and write only as allowed by ¢,
and Q holds in the final state if execution terminates. A context call to m in ® may involve reading
and writing encapsulated state for the module, mdl(m), of m, and these effects must be allowed
by ¢. Commands are given small step semantics, with bodies of let-bound methods kept in an
environment. The judgment also says that, aside from context calls, steps of C must neither read nor
write locations encapsulated by any module in ® except its own module M. These conditions must
hold for any correct implementation of ®, so the judgment expresses “modular correctness” [61].
Typically, in a judgment ® +y C : ... we will have M < N for each N in ® (i.e., each N for
which some m in ® has mdi(m) = N). However, we do not want to say ® must contain every N
with M < N, because we use “small axioms” [76] to specify atomic commands, which are stated
in terms of the minimum relevant context. Additional hypotheses can be added using “context
introduction” rules with side conditions that enforce encapsulation, as discussed in Sections 3.5
and 6.3. At the point in a proof where a client C is linked with implementations of its context ®,
the judgment for C will include all methods of the modules in @, and all transitive imports.
Because we are not formalizing a separate calculus of modules and module judgments, some
module-related scoping and typing conditions are associated with correctness judgments for com-
mands. The lack of an explicit binder for the spec-only variables of a spec also requires some care.

Definition 3.3 (WF Correctness Judgment). A correctness judgment ® "1er C: P~ Qle]iswfif

e @ is wf, i.e.,, each spec in ® is wf in T and they have disjoint spec-only variables.'®

e No spec-only variables, nor alloc, occur in C.

e No methods occur in T, and C is wf'” in the typing context that extends T to declare the
methods in .

e for all N with N € ® or N = M, the candidate dynamic boundary bnd(N) is wf in T

e P~» Q[e]is wfin T, and its spec-only variables are distinct from those in ®.

For example,

x:int, y:int

m:true ~ x > 0 [rwx] +, x:=0m):x <0~ x>0[rwx]

is a wf judgment; in particular, we have the typing x:int, y:int, m:meth  x := 0; m().

Example 3.4. This example illustrates boundaries and specs. To specify the priority queue ADT
(Figure 8), we use an ownership idiom mentioned earlier (Section 2.2). A ghost variable pool : rgn
is used to keep track of queue instances and each queue’s rep field contains objects it notionally
owns. For a particular implementation, the private invariant includes conditions that imply all
allocated queues have valid representations.

In one of our case studies, we verify two implementations of the PQ module using pairing
heaps [98], both using objects of class Pnode. The private invariant of both versions includes the
condition that for each q € pool, q.repsibling U q.rep‘prev U q.rep‘child C q.rep. This says the
rep of q is closed under these field images. An interesting feature of this example is that clients
manipulate Pnode references, as “handles” returned by insert, but must respect encapsulation by
not reading or writing the fields.

8The latter condition loses no generality, since spec-only variables have scope over a single spec, and distinctness helps
streamline notation in some soundness proofs.

VStrictly speaking, we assume that for any subprogram of the form if E then C else D, we have C # D. This loses no
generality: it can be enforced using labels, or through the addition of dummy assignments. This is needed to express, in
the definitions for encapsulation (Definition 5.10), that two executions follow exactly the same control path.
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The leaves of the pairing heap are represented using null for the child in one implementation
and using references to a sentinel Pnode in the other. One benefit of using sentinels is that certain
checks for null can be avoided; our motivation is simply to exemplify two different but similar data
structures.

As per Figure 8 the dynamic boundary, bnd(PQ), is rd pool, pool‘any, pool‘rep‘any. To reason
that operations on one priority queue have no effect on others, the public invariant expresses
disjointness following the idiom mentioned in Section 2.2:

Vp,q € pool.p +q = p.rep#q.rep ANp ¢ q.rep. (8)

While it is convenient for a module to declare a public invariant, there is no subtle semantics: A
public invariant simply abbreviates a predicate that is conjoined to the pre- and postconditions
of the module’s method specs. That invariant is typically framed by the boundary, in which case
clients easily maintain the invariant (and use it in their loop invariants).

As an example spec, consider the one for PQ’s insert (Figure 8). Abbreviating the parameters as
q,v, k, a call insert(q, v, k) adds to a given queue g, a Pnode with value v and key k. Its spec is

g #nullAgepool ~» —isEmpty(q) Ares € q.rep Ares.val =v Ares.key =k
[rw {q}‘any, g.rep‘any, alloc],

where res is the return value, which references the inserted Pnode. This pointer to an internal object
serves as handle for a client to increase the priority, for which purpose it calls decreaseKey(q, n, k)
with spec

q # null A q € pool A —isEmpty(q) An # null Ak < nkey An e q.rep
~ n.key = k [rw {q}‘any, q.rep‘any].

Clients see these pre- and postconditions conjoined with the public invariant.

Example 3.5. The separator function (-/.) is used in the frame rule (5) (formalized in Figure 23). To
illustrate, consider a program with variables p : Pqueue and q : Pqueue. In accord with Example 3.4,
the proof rule for method call gives a judgment like this (eliding hypothesis context):

n := insert(q, v, k) : R ~ S [rd q,v, k; wr n; rw {q}‘any, q.rep‘any, alloc],

where R, S are the pre- and postcondition of insert’s spec. Note that the call reads the arguments,
and writes the result, in addition to the effects of the method spec (Figure 8).

Consider the formula p # q. It depends only on p and g, which are not written by the displayed
call to insert; so the frame rule lets us infer

n:=insert(q,v,k) : RAp # g~ SAp # q[rdq,v, k;wrn;rw {q}‘any, g.rep‘any, alloc].

To be precise, the rule requires a framing judgment confirming that rd p, g covers the footprint
of formula p # q. (This is formalized in Section 6.1 and used in rule FRamE, which appears
in Figure 23.) That is, p # q is “framed by rdp,q” The rule also requires to compute a sep-
arator for the reads of the formula (rd p, q) and the writes of the command, namely, rdp,q -/.
wr {gq}‘any, g.rep‘any, alloc (see Figure 11) and show it follows from the precondition. In this case
the separator formula is simply true; the only locations read are the variables p and g, and the only
variable written is alloc.

Now consider the formula isEmpty(p). The spec of isEmpty has frame condition rd {self}‘size,
so the formula isEmpty(p) is framed by rd p, p.size, which abbreviates rd p, rd {p}‘size. The FRAME
rule lets us add the formula before and after the call n := insert(q, v, k):

RAp#qAisEmpty(p) ~ S Ap # q AisEmpty(p) [rd g, v, k, rw {q}‘any, q.rep‘any, alloc].
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module UnionFind
class Ufind {id: IntArray; part: partition; rep: rgn;}

public pool : rgn

boundary { pool, pool‘any, pool‘rep‘any }

meth Ufind(self:Ufind, k:int) : unit

meth find(self:Ufind, k:int) : int

meth union(self:Ufind, x:int, y:int) : unit
end.

Fig. 12. Excerpts of union-find interface, eliding private methods and specs.

Here the separator is rd p, rd {p}‘size -/. wr {q}‘any, q.rep‘any, alloc. Unfolding the definition of
/., and using that the data group, any, covers every field including size, we get the formula {p} #
{q} A {p} # {q}‘rep. Rule FRAME requires that the separator follows from the precondition. The
first conjunct, {p} # {q}, follows from precondition p # g. The second conjunct follows using
Equation (8), which implies both p ¢ g.rep and q ¢ p.rep.

Summary. So far, we introduced the syntax of commands, unary specs and unary correctness
judgments. The symbol = is sometimes used for equality of syntactic objects like variable names,
and especially in the case of commands and biprograms, which we identify up to the equivalences
in Figure 6.

There are also a number of meta-operators on syntax that are used pervasively and should not be
confused with the syntax: effect subtraction (¢\n), separator (¢ -/. 1), footprint (ftpt(n)), converting
write effects to reads (w2r), and so on. There is no concrete syntax for modules; instead there are
meta-operators for the boundary bnd(M) of the module named M, the import relation < on module
names, and the module name mdl(m) associated with method m.

Appendix E has a table of notations and a table of metavariables.

3.5 Encapsulation in Unary Reasoning about Modules and Clients

In this subsection, we consider how the requirements (E1)—(E4) for encapsulation in Section 2.1,
are met in the unary logic. Figure 12 shows the interface of a module that provides a class whose
instances are union-find structures. The first requirement for encapsulation, (E1), is to delimit
some locations internal to the module. That is the purpose of the dynamic boundary, which
in the logic would be written rd pool, rd pool‘any, rd pool‘rep‘any (in accord with Definition 3.1)
and abbreviated as rd pool, pool‘any, pool‘rep‘any. An equivalent formulation of the boundary is
rd pool, (pool U pool‘rep)‘any.

In this example, we follow the idiom, and even the naming convention, sketched in Section 2.2
for a module providing stacks. Aside from rep, the boundary does not mention specific fields but
rather uses the data group any for the sake of abstraction.

Because rd pool is in the boundary of UnionFind, client programs may neither read nor write
this variable. It serves in specs to designate references to, at least, the Ufind instances managed by
the module; so the constructor method Ufind, which should be invoked on newly allocated Ufind
objects, adds the new object to pool. The boundary includes rd pool‘any, which says fields of these
objects may neither be read nor written by client programs. In specs and reasoning about clients,
the rep field of a Ufind is important: it is used to delimit the locations modified by method calls
on that instance, and a public invariant of the module says distinct Ufind instances have disjoint
rep. This enables reasoning that performing an operation on one Ufind does not affect the state of
another Ufind—which is locality, not encapsulation. Fields of objects in rep are encapsulated by the
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module, as expressed by rd pool‘rep‘any. Here pool‘rep is the union of the rep fields of all allocated
Ufinds.

We consider an implementation based on the quick-find data structure [88]. Math type partition
represents a partition on a set of numbers 0...n — 1. It is used in ghost code and specs, in par-
ticular, the private invariant, which says each queue p satisfies a predicate defined on its internal
representation, which is an array referenced by field id.

predicate uflnv (p: Ufind) =
p.id # null A
let n = p.id.len in
size(p.part) =n A p.orep ={p.id} A
(Vx:int.0 < x <n=0 < p.id[x] < n A p.id[p.id[x]] = p.id[x]) A
(V x:iint, y:int. 0 < x <n A0 <y < n = (y € pfind(x,p.part) & p.id[x] = p.id[y]) )
private invariant Io¢ = ¥ p: Ufind € pool. uflnv(p)

The union-find implementation uses a representative element for each block of the partition,
with id[x] being the representative of x, for each x in 0...n — 1. If x is a representative, then
id[x] = x. The private invariant says that for any x, id[x] is a representative: p.id[p.id[x]] =
p.id[x]. The last conjunct says x and y have the same representative in p.id just if they are in the
same block of the abstract partition. The ghost field rep has nothing to do with representatives;
as in our usual idiom it holds references to the internal representation objects, in this case just
the id.

Requirement (E2) for encapsulation is that a private invariant depends only on locations within
the boundary. This is formalized in the logic by a framing judgment, which in our example is
written [= (rd pool, rd (pool U pool‘rep)‘any) frm Ig¢. As formalized later, its meaning is that if
I4¢ holds in some state, then it holds in any other state that agrees on the values in the locations
designated by the read effect. Looking at its definition, I;r depends on only one variable, pool. The
heap locations on which it depends are in expressions p.id and index expressions p.id[x]. As we
have p.id € p.rep, by the invariant, and the slots of the array are effectively fields of id, these heap
locations are indeed covered by rd (pool U pool‘rep)‘any. The meaning of the framing judgment
can be encoded as a universally quantified formula; this and other framing judgments in our case
studies are easily validated by SMT solvers.

Here, we consider the quick-find implementation, which for the find method is

meth find (self: Ufind, k: int) : int

= result := self.id[k]
A key postcondition of the spec of find is that result € pfind(k, self .part), where pfind is the
function that returns the block of the abstract partition that contains k. The postcondition holds
in virtue of conditions in the private invariant, including that id[k] is a representative, for any k,
and the connection between self .part and self .id.

Encapsulation of a client. As a case study, we have verified Kruskal’s minimum spanning tree

algorithm as client, but for present purposes we consider a very simple client:
uf:=new Ufind(100); x:=new Thing; x.f:=y; z := find(uf,1)

To verify the client code, its hypothesis context needs to include the module specs, in particular for
find. So UnionFind is in scope and its boundary must be respected by the client. The logic enforces
encapsulation of clients, i.e., requirement (E3), using separation checks similar to those for frame-
based reasoning as in Example 3.5.

To explain the checks, let us write dy¢ for the boundary of UnionFind. The command x :=
new Thing has frame wr x, rw alloc. Respect of d, by this command is formulated in terms of

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 4, Article 25. Pub. date: December 2022.



A Relational Program Logic with Data Abstraction and Dynamic Framing 25:25

the separator function, in this case ¢ -/. wr x, alloc. Unfolding the definition (Figure 11) yields
the formula true A true. The only variable designated by &y is pool, and this is distinct from x
and from alloc. The proof obligation here also rules out client code that assigns or reads pool. In
general, it is untenable to include rd alloc in a boundary, or even an image expression mentioning
alloc, because clients typically do allocation.

The command x. f := y has frame condition rd x, rd y, wr {x}*f. For the write to be outside the
boundary, the obligation can be written 8¢ +/. wr {x}‘f. Unfolding by definition of the separator
function, and expanding the abbreviation any to be all field names in scope, we get a conjunction of
trues (because the read and written variables are distinct) and two nontrivial conjuncts: pool # {x}
and pool‘rep#{x}. That is, the assigned object must be in neither pool nor any rep fields of objects in
pool. One way this obligation can be proved is via freshness: neither pool nor rep have been updated
since x was assigned a fresh object. A related idiom used in some method specs is a postcondition
that says all fresh objects are in self.rep, which a client can use to reason that its own regions
remain disjoint. In a postcondition, the fresh references are denoted by alloc\old(alloc). In the
formal logic state predicates only refer to a single state, so a postcondition must be expressed in
the same way that tools desugar “old” expressions. That is, a fresh spec-only variable, say r, is used
to snapshot the initial value: the precondition includes r = alloc and the idiomatic postcondition
is now alloc\r C self .rep.

We are not finished with x. f := y. In addition to its writes, its reads must be outside the bound-
ary, specifically, x and y must be outside ;. This can be written &y -/. wrx, wry. Why wr ? Just
so we can use the separator function -/. unchanged from prior work, though it is defined to sepa-
rate read effects from writes. (The proof rule for field update uses another metafunction, r2w, to
convert the reads to writes.)

As an example of how encapsulation checks can fail, consider a bad client of the PQ interface
(Figure 8) that calls insert and assigns the returned Pnode to variable nd, and then writes the key
field of nd—potentially invalidating a private invariant. The boundary of PQ is similar to the one
for UnionFind, so the separator formula is pool # {nd} A pool‘rep # {nd}. This is not valid, since the
value of nd is in pool‘rep.

So far, we saw how the frame conditions of atomic commands give rise to proof obligations that
ensure the client reads and writes are to locations disjoint from the locations designated by the
boundary. Please note that the interpretation of the boundary is at the point in execution where
the atomic command has its effects. This does not make a difference for variables, in the sense that
a separator rd x -/. wry is just true or false depending on whether the variable names are distinct.
It does make a difference for heap locations, designated by expressions like pool‘any and {x}‘f;
in this case the obligation pool # {x} discussed above must hold in the pre-state of the assignment
command x.f :=y.

Loops and conditionals also incur an encapsulation obligation that their test expressions read
outside the boundary. In our desugared syntax (Figure 5) these expressions are heap independent.
In the example the check is simply that variable pool does not occur in a test expression, since the
other locations in the boundary are heap locations. Here is an example where a test crosses the
boundary of PQ:

q := new Pqueue(); nd := insert(q,0,0); if nd.prev # null then q := null fi; nd := insert(q,1,1)

This client works fine with the first implementation of PQ, since nd.prev will be null. But for
the implementation with sentinels, the second call to insert will fault due to null dereference.
The client is not representation independent and the read of nd.prev will fail the encapsulation
check.
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In our prototype, WhyRel, encapsulation checks like this are straightforward. At points where
the encapsulation check is state dependent, like x. f := y, WhyRel generates an assert statement
that encodes the disjointness obligation (Section 9). In the logic, encapsulation checks are disen-
tangled from other reasoning considerations by the context introduction proof rules. The modules
whose boundary must be respected are those of the methods in the hypothesis context, given using
the mdl function defined in Section 3.2. The technical details are not conceptually important, and
are explained in Section 6.3.

In summary, encapsulation requirement (E3) is achieved by checking separation from the rele-
vant boundaries, for each part of the client command. Separation is checked the same way as it is
for the ordinary FRAME rule, using formulas generated from the effects using the separator func-
tion (-/.). For effects on variables it is true or false depending on whether the requisite variables are
distinct, but for effects on heap locations (load and store commmands, method calls) the separation
checks are region disjointness formulas that must hold at the relevant points in control flow.

Modular linking. Suppose we verify the client, using the public specs, and discharge the proof
obligations, just discussed, for encapsulation. We verify the implementation of find, union, etc us-
ing the private invariant I,¢, i.e., assuming it as precondition and establishing it as post, in accord
with the modular linking rule sketched as Equation (2) in Section 2.1. Having verified the client
and the implementations of module methods, we would like to conclude that the linked program is
correct, i.e., satisfies the client spec as per rule (2). The private invariant is hidden from the client,
in the sense that the method bodies are verified for specs that include it, but it is omitted from the
hypotheses used to verify the client. There is one more requirement for this to be sound, namely,
(E4): the client precondition implies the private invariant of the module. An appropriate such pre-
condition is pool = @, the default value for regions, which implies I, owing to its quantification
over pool.

The intuition that justifies Equation (2) is that, given the client’s respect for the boundary, any
judgment D : P ~> Q[¢] about a client subprogram D yields D : PAI ~» QAI[e] by an application of
the frame rule (because the encapsulation obligation ensured the footprint of the private invariant
I is disjoint from the effects in ¢). In particular, at a point where the client has established public
precondition R of a method that has been verified using precondition RA I, we do in fact have RA L
For example, having proved the judgment find : R ~ S+ C : P ~» Q (omitting frame condition)
together with the encapsulation obligations for client C, we have

find : RAIgp ~> SAIgr v C: P AIgr ~ Q Algyr.

This is formalized as the second-order frame rule, SOF in Figure 23. The modular linking rule (2)
is a consequence of SOF together with the obvious linking rule that requires the method bodies to
satisfy exactly the specs assumed by the client. Please note that all formulas involved in the specs
are first-order; the SOF rule is called second order only in the sense that the framed formula is
conjoined to specs in the hypothesis context as well as to the consequent of the judgment.

On dynamic boundaries. In this article, we repeatedly use the idiom with pool and rep, but this
is merely one convenient way to write specs that support module-based encapsulation and per-
instance local reasoning. Ghost variables and fields can just as well be used to express hierarchical
ownership or cooperating clusters of objects as in design patterns like subject-observer. Such ex-
amples can be found in RLI-IIL

A key point is that the dynamic boundary is part of a module interface, and should be expressed
in such a way that different module implementations can have different internal data structures.
Thus, the same dynamic boundary may denote different locations for different implementations.
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€I = c

4] = A

if E|E” then BB else CC % if E then BB else CC
while EIE- P|$" doCC 2 while E do CC
BB.CC = BB;CC
m 2 varx:TinCC
m 2 letm=CinCC

Symmetrically, (C|C") = C, m Z A, etc.

Fig. 13. Syntactic projections “~ and ~ of biprograms.

This can be achieved using ghost state, data groups, and pure methods. In this article, we only
formalize a single data group, any, and we omit pure methods (see Section 2.6).

To prove the disjointnesses needed for client code to be outside a boundary, one can rely on
invariants that constrain the relevant ghost state. For this purpose it is convenient for a module
interface to include public invariants such as Equation (8) in Example 3.4.

4 BIPROGRAMS: SYNTAX AND RELATIONAL REASONING

This section formalizes biprograms (Section 4.1), relation formulas (Section 4.2), relational specs
and correctness judgments (Section 4.3). Section 4.4 uses an example to illustrate how regions are
used in relation formulas and how biprograms express convenient alignments. Section 4.5 defines
the weaving relation and explains its use to account for helpful alignments. Section 4.6 sketches
example of relational modular linking.

In this section, as in Section 3, we use the syntax of our prototype for program code, together
with the math notations of the formal logic. We use syntax sugar and also some features that are
not formalized in the logic, namely, parameters and return values (see Section 2.6), for the sake of
readable examples. More about the prototype can be found in Section 9.

4.1 Biprograms

Figure 5 gives the grammar of biprograms. A biprogram CC represents a pair of commands,
which are given by syntactic projections defined in Figure 13. For example, the left projection

(skip|x := 0); (y := 0]z := 1) is y := 0, taking into account that we identify skip;y := 0 with y := 0
(see Figure 6). The symbol | is used throughout the article, in program and spec syntax and also
as alternate notation for pairing in the metalanguage, when the pair represents a pair of states or
similar.?

Biprograms are given small-step semantics. The bi-com form (C|D) represents executions of
commands C and D, which are meant to be aligned on their initial state and, if they terminate,
final state. Their execution steps are interleaved (i.e., dovetailed, in the terminology of automata
theory), to ensure that the traces of (C|D) cover all traces of C and D by making progress on both
sides even if one diverges. The parentheses of bi-coms are obligatory and the operator binds less
tightly than others: (A; B|C; D) is the same as ((4; B)|(C; D)). In Section 4.5 we consider how the
other biprogram forms are introduced for a verification problem specified using a bi-com. For now,
we briefly explain the other forms.

The sync form | A] represents two executions of the atomic command A, aligned as a single step.
This is mainly of interest for allocations and method calls. For a call, | m() ] indicates that a relational

20 A small version of the symbol is used, interchangeably, for clarity in some contexts such as grammar rules.
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FF == (F{| DF)  Value in left (resp. right) state

P .= R(FF) Primitive R in signature
| F=F Equal expressions, mod refperm
| ALE Agreement mod refperm
| OP Possibly (in some extended refperm)

| (P{ | DP) In the left (resp. right) state
| PAP|P =P |VxTIx:T.P
Syntax sugar: BP = (P{ A pP)
ap = =o-P
false = Bfalse true = Btrue
Ax.f 2 Alx}f
A(rdLE) = ALE A(wr ...) = true Alen) = A(e) ANA(n)
Precedence: (tightest) A, ¢, =, A, = (loosest).

Fig. 14. Relation formulas. See Figure 9 for unary formulas P and Equation (6) for left-expressions LE.

spec should be used to reason about the two calls. For an allocation, the form |x := new K| has
a proof rule in which the two new references are considered in agreement, i.e., “added to the
refperm.” In the grammar (Figure 5), the bi-var form allows different names and types but one also
wants to allow multiple variables on each side; this is implemented in our prototype. The bi-if form,
if EIE” then CC else DD, asserts that the two initial states agree on the value of the test expressions
E and E’. The bi-while form while E[E’-P P’ do CC incorporates relation formulas # and £’, which
serve as alignment guards. These serve as directives to indicate how to align iterations of the
loop, catering for situations like the sumpub program in Equation (4). This is explained in more
detail in Section 4.5; see the aligned sumpub in Equation (15).

Typing of biprograms can be defined in terms of syntactic projection, roughly as T'|I"” + CC iff
I+ CCandI” + CC. But the alignment guard formulas in a bi-while should also be typechecked
inT'|T”, and are required to be free of agreement formulas, i.e., those of the form AG* fand F = F';
this ensures that the formula is refperm-independent as explained later. Although the two sides of
a biprogram may have different typing contexts, for simplicity a single class table is assumed. It
is straightforward to generalize this to allow different field declarations for a given class (and it is
implemented in our prototype).

4.2 Relation Formulas

Relation formulas are interpreted over a pair of states, meant to be at aligned points in two execu-
tions. What is important is to express not only conditions relating integers and other mathematical
values but also conditions relating structures between the two heaps. There are many ways to for-
malize such formulas; it is only in the treatment of heap relations that the design choices made
here have significant impact on the later development.

The relation formulas are defined in Figure 14. Quantifiers range over allocated references; the
relational form binds a variable on each side. The form {P{ (respectively, ) P}) says unary predicate
P holds in the left state (respectively, right). Left and right embedded expressions are written {F{
and pF) and have nothing to do with left-expressions LE. They may be used as arguments to
atomic predicates in the ambient mathematical theories: {(F{ (respectively, jF}) evaluates F in the
left (respectively, right) state.?!

'Written (1)F and (2) F in works following Benton [25]. Our notations { F{ and {P{ are meant to point leftward.
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™1 =P

m = true

P = P

F=F 2 (F=F)
ALE 2 (LE = LE)
W 2V T. P
Iﬁ = true
W[ELS'] = 15«»5[5]

Fig. 15. Syntactic projection “~ of relation formulas and specs; right projection — is symmetric.

The forms A LE and F = F’ are called agreement formulas. For E and E’ of some reference
type K, the form E = E’ (pronounced “E bi-equals E’”) says the value of E in the left is the same as
E’ on the right, modulo refperm in the case of reference values. Similarly with G = G’ for regions.
The form AG‘f says for each reference 0 € G, with corresponding value o’ in the other state,
the value of 0. f is the same as the value of 0’. f, modulo refperm if the value is of reference type.
For example, Ar‘rep‘val means the val fields agree, for all objects in the rep field of all objects
inr.

The form Ax is equivalent to x = x. But the form AG'f is not equivalent to G f = G'f. The for-
mer means pointwise field agreement (modulo refperm) and the latter means equal values (modulo
refperm), the two values being reference sets.

The modal form OP, read possibly P (for lack of a better word), says # holds in a refperm
possibly extended from the current one. More on these points later.

Relation formulas and relational correctness judgments are typed in a context of the form I'|T"’
comprises contexts I and I'” for the left and right sides.?? Leaving aside left/right embedded expres-
sions, typing can be reduced to typing of unary formulas: I'|I” + # iff T r P and T’ + P. This
refers to syntactic projections defined in Figure 15. This does not work for left/right embedded
expressions; we gloss over those for clarity, in the following sections as well, but handle them in
our prototype.

In accord with the definition of projections, we have the formula typing I'|T” + Ax just if x €
dom(T') N dom(I"”). We have T'|T” + AG‘f justif '+ G : rgn and I + G : rgn, with f of any type.
Similarly, T|T” + F = F’ provided T+ F: Tand I'" + F' : T. Also T'|T” + {P{if T + P and T'|T” + P}
if T7 + P.

4.3 Relational Specifications and Correctness Judgment
A relational spec P ~> Q [¢|¢’] has relational pre- and postconditions and a pair of frame condi-
tions. We write P ~> Q [¢] to abbreviate the frame condition [¢|¢]. A spec P = Q [¢|¢’] is wf in

[|T’ provided P = Q [¢|¢’] is wl in T (respectively, P =~ Q [¢|¢’] inT”), as per Definition 3.2. See
Figure 15 for syntactic projections. The precondition # of a wf relational spec has spec-only vari-
ables only as snapshot equations in top level conjuncts of # (inside the left and right embedding
operators { — {, p — }). Any spec-only variables in postcondition Q must occur in P.

22This enables reasoning about two versions of a program acting on the same variables, by contrast with other works
where related programs are assumed to have been renamed to have no identifiers in common. Logics should account for
renaming.
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Recall from Section 2.1 that one important relational property is local equivalence. Later, we
define a general construction, locEq, that applies to a unary spec P ~ Q [¢] and yields a relational
spec (Example 4.3 and Section 8.1). The general form takes into account that encapsulated locations
are not expected to be in agreement; that is formalized by means of effect subtraction.

For local equivalence and other purposes, we often want postconditions that assert agreements
on fresh locations. These agreements are modulo refperm, so a relational correctness judgment
should say there is some refperm for which the final states are related. This can be expressed using
the ¢ modality. Many specs of interest have the form P ~> OQ[n|n’] where P, Q are O-free. Such
specs are said to be in standard form. We gloss over this in some examples. In our prototype, the
encoding maintains a “current refperm” in ghost state to interpret agreement formulas, and does
not use the ¢ modality explicitly in specs. The dual, O, is used in a couple of proof rules.

A relational hypothesis context for T'|T"” is a triple & = (0, ;, $;) comprising unary hypoth-
esis contexts @, for I' and @, for I, together with a mapping ®, of method names to relational
specs that are wf.

Definition 4.1 (WF Relational Hypothesis Context). A relational hypothesis context for I'|T"” is wf
in T'|I'” provided that @, &, ®; specify the same methods,®® @, and &>—2 are wfin T, ®; and sz are
wf in T, the specs in @, are wf in T'|I’, and the distinct methods have distinct spec-only variables
in @, (just as in @y and ®;). Moreover, for every m, the formula

pre(®2(m)) = (pre(Po(m)){ A hpre(®1(m)))

is valid (where metafunction pre extracts the precondition), and the effects of ®,(m) project to
those of ®y(m) and ®;(m).>*

The constraint on preconditions ensures a compatibility condition needed to connect relational
with unary context models, see Definition 7.9. Definition 4.1 allows left and right to have different
global variables. It also allows that some spec-only variables on the left may also occur on the right.
However, well formedness is in the context of a single module structure (module names and their
association with methods and dynamic boundaries; import relation).

Definition 4.2. A relational correctness judgment has the form @ I—ﬁr, CC:P ~ Qele'] . It
is wf provided

e @ is wfin I'|T” (see above).

e No spec-only variables, nor alloc, occur in CC. Moreover, alignment guard assertions in bi-
whiles contain no agreement formulas.

e No methods occur in I'|I”, and CC is wf in the typing context that extends I'|I"" to declare
the methods in .

e bnd(N)is wfinT and wf in I, for all N with N € ® or N = M.

e P = Q|e|e’] is wfin T'|I”’, and its spec-only variables are distinct from those in ®.

Example 4.3 (Coupling and Local Equivalence for PQ). The coupling relation expresses that for
any two corresponding queues in the left and right states’ pool, all the Pnodes in their reps are in
the refperm. The sentinel is in pool, not in a rep, and each pair of corresponding Pnodes have the
same value and priority. Moreover, null appears in the left state where the sentinel appears in the

230ne can allow different methods in context, provided that left (respectively, right; respectively, sync’d) context calls have
left (respectively, right; respectively, relational) spec’s, and this is implemented in our prototype.

24In detail: Suppose ®5(m) is R 2> S [57|n’], and the unary specs ®o(m) and ®;(m) are Ry ~> Sq [170] and Ry ~ S; [11],
respectively. Then, 7 = ng and ’ = 1.
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right. As a relation formula:

Vq : Pqueue € pool | q : Pqueue € pool
Aqg = (A(q.head) Vv ({q.head = null{ A pq.head = q.sntnl}))
A q.rep/Pnode = g.rep/Pnode
AY n:Pnode € g.rep | n:Pnode € q.rep .
An = A(n.val) A A(n.key)

A(A(n.sibling) V ({n.sibling = null{ A pn.sibling = q.sntnl}))
A(A(n.child) v ({n.child = null{ A pn.child = q.sntnl}))
AA(n.prev) V ({n.prev = null{ A pn.prev = q.sntnl}))

Here, we use syntax sugar An.val for A{n}‘val. Also, the pattern Yq:K € r | ¢:K € r... is sugar
for Vg:K | ¢:K.{q € r{ A bg € r}) = .... Note the type restriction expressions in the agreement
g.rep/Pnode = q.rep/Pnode. Let Mpp be the above formula, conjoined with {I{ A pI') where I, I’
are the private invariants.

The relational spec for insert obtained by applying locEq looks like this:

Ag A Ak ABP = O(A(res.val) A A(res.key) A ... ABQ) [rw {g}‘any, g.rep‘any, alloc],  (9)

where P and Q are the unary pre- and postconditions for insert, including the public invariant of PQ.
We elide some postconditions like A((pool\(pool U pool‘rep))‘head), which arise by subtracting the
boundary from writes in the spec (and expanding any to all field names). This one can obviously
be simplified to A@‘head, which is equivalent to true. The meta-function locEq need not perform
such simplifications, as the reasoning can safely be left to the SMT solver or to the logic’s relational
consequence rule.

To verify the two implementations of insert, we conjoin Mpg to both the pre- and postcondition
of the relational spec above. The resulting precondition is Aq A Ak A BP A Mpg and the postcon-
dition is O(A(res.val) A A(res.key) A ... ABQ A Mpp). Later, we introduce a notation ® Mpg for
this.

4.4 Relational Verification with Biprograms

We consider an example of relational verification, which is modular in the sense of using relational
method specs, but no information hiding. We highlight how regions are used in relational specs,
and how biprograms are used to represent convenient alignments.

List tabulation: illustrating procedure-modular reasoning. Consider the two programs in
Figure 16, which both tabulate a linked list of the values of some method mf that computes a
function, applied to the numbers n down to 1. Objects of class List have two fields: head : Node
references the head of a linked list and nds : rgn is ghost state, to which we return soon. The goal
in this example is to prove the programs are equivalent. We reason about executions of the two
programs in close alignment, to exploit their similarities and make use of a relational spec for mf.
The example also serves to show the use of regions to describe heap structure and in particular to
express the equivalence of the lists returned. The example illustrates two aspects of modular rea-
soning: procedural abstraction and local reasoning; the third aspect, data abstraction, is considered
in Section 4.6.

Both versions of the program use field nds to hold references to the nodes reached from head.
It is initially empty (the default value), and in each iteration the newly allocated node is added to
the list’s nds. An invariant of the loop, in both programs, is t.nds‘next C t.nds. Here t.nds is set of
references. The image expression t.nds‘next denotes the set of values in the next fields of objects
in t.nds (a direct image, thinking of the field as a relation). The containment t.nds‘next C t.nds
says for any object reference in t.nds, the value of the object’s next field is in t.nds. There are no
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meth tabulate (n:int) : List = meth tabulate (n:int) : List =

var t: List, i: int, p: Node; var t: List, i: int, p: Node; /e Agrns/

t := new List; t := new List; L t:= new List J; connect t;

i:=0; i:=1; (i=0]i:=1)

while i < ndo while i < ndo while (i <n) [ (i< n)do
i=i+1; p := new Node; (i:=i+1]skip); /=i=i+/
p := new Node; p.val := mf{(i); | p := new Node |; connect p;
p.val := mf(i); p.nxt := t.head; L p.val := mf(i) ; /= Agr p.val +/
p.nxt := t.head; t.head := p; | p-nxt := t.head J;
t.head := p; t.nds := t.nds U {p}; | t.nds := t.nds U {p} |;
t.nds := t.nds U {p}; =i+ 1 (skip [i:=1i+ 1)

od; od; od;

result := t; /+ return value +/ result := t; [ result:=t |;

(a) Left version, tabu (b) Right version, tabu’ (c) Biprogram CCyupy,

Fig. 16. Two implementations of tabulate, and a biprogram weaving them together.

recursive definitions involved. The containment, together with invariant ¢.head € t.nds, implies
that everything reachable from ¢.head is in t.nds. It does not say that t.nds is exactly the reachable
set, though it will be; we do not need that stronger fact.

Method mf has an integer parameter x and returns an integer result. Its unary spec is true ~»
true [«], which says very little but the empty frame condition says it has no effect on the heap
or global variables. In particular, it does no allocation, since otherwise its frame condition would
have to include rw alloc. Implicitly it is allowed to read its parameter x and write its result, as we
saw in Example 3.5. As relational spec, we use Ax => Aresult [], which expresses determinacy
as self-equivalence in a way that is local: it refers only to locations that may be read or written. It
is this relational spec, and nothing more, that we wish to use for mf in relational reasoning about
tabulate.

For tabulate, the frame condition is [rw alloc]. It allocates, which implicitly updates the special
variable alloc by adding the newly allocated reference; the new value of alloc depends on its old
value, so the frame condition says alloc may be both read and written. Like method mf, method
tabulate reads its parameter and writes its result, but neither reads nor writes any other preexisting
locations.

Although we aim to prove equivalence of the two versions of tabulate without recourse to a
precise functional spec, we do include a postcondition that constrains nds, as this plays a role
in specifying equivalence. The postcondition says nds contains head and is closed under next;
formally: result.nds‘next C result.nds and result.head € result.nds.

To express equivalence of the two versions, the (relational) precondition is agreement on what is
readable, namely, the parameter n. The agreement formula An, or equivalently n = n, simply means
the two initial states have the same value for n. We do not assume agreement on alloc; we want
the equivalence to encompass initial states without constraint on allocated but irrelevant objects.

For the postcondition, we want agreement on what is writable (aside from alloc), thus Aresult.
We also specify that the unary postcondition holds in both final states:

B(result.nds‘next C result.nds A result.head € result.nds). (10)

But result is just a reference to newly allocated list structure. To express that the two result
lists have the same content, we need more than Aresult. A first guess is the agreement formula
Aresult.nds‘val. The formula uses syntax sugar, to abbreviate A{result}‘nds‘val. Agreement for-
mulas, as mentioned in Section 2.3, are interpreted with respect to a refperm, that is, a type-
respecting partial bijection on references of the two states. Whereas An means identical values for
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left-expression I-value in o r-value in ¢

x {x} 0 o(alloc) = {o,p,q,1,s,t}

{x}‘nds {o.nds} {p,q.r} o’ (alloc) = {0, p", ¢’, v, s’}

{x}‘nds‘val {p.val,qval,rval} @ 7={(0,0),(p, '), (q.¢), (r,r"), (s,8")}
{x}nds‘nxt {p.nxt, q.nxt,r.nxt} {q,r, null}

olo’ Ex Ax is true because 0 Z o’

olo’ Ex A{x} nds is true because 0 ~ o’ and {p,q,r} = {p’. ¢, 1"}

olo’ Ex A{x}nds‘nxt is true; note p.nxt ~ p’.nxt, g.nxt ~ ¢’ .nxt, and r.nxt < r’.nxt

olo’ Ex A{x}nds‘val is false because o(q.val) = 1 # 3 = o’ (¢’ .val)

olo’ Ex {x}‘nds = {x}nds is true because {p, ¢, r} = {p’,q’,r'}, regardless of whether (0,0’) is in 7

Fig. 17. Refperm 7 and relations between two states, o, ¢’ with variable x (see Example 4.4).

integer n, the formula Aresult means equivalent reference values, i.e., connected via the bijection.

The formula Aresult.nds‘val says that for pairs o, 0’ of references connected by the bijection, with

o € result.nds, the fields o0.val and o’.val have equal contents (equal because the type is integer).
To fully constrain the lists to have the same structure, we use this postcondition:

O(Aresult A Aresult.nds A Aresult.nds‘next A Aresult.nds‘val). (11)

Here ¢ says there exists some refperm. The formula Aresult.nds abbreviates A{result}‘nds and
says the refperm cuts down to a (total) bijection between the regions result.nds in the two states.
The condition Aresult.nds next says that bijection is compatible with the linked list structure.

The semantics of relation formulas is formalized in Section 7.1. It is a little subtle: {x}f =
{x}*f is different from A{x}‘f, unless guarded by Ax (as a conjunct or antecedent). We invariably
use such guarded formulas, e.g., conjuncts in Equation (11) and antecedents in the coupling of
Example 4.3.

Example 4.4. To illustrate the meaning of agreement formulas like those in Equation (11),
Figure 17 shows an example of two states with a single variable x : List, and using {x}‘nds rather
than its sugared form x.nds. The semantic notations are defined in Section 7.1 but the picture is
meant to be understandable now. The values of some left-expressions are given; we consider the
l-value of any left-expression to be a set of locations, such as the single location x (a variable name)
and p.val (a heap location).

Taken together, Equations (10) and (11) say the results from tabulate are lists for which the nodes
can be put in bijective correspondence that is compatible with the nxt pointers and for which
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corresponding elements have the same value. They serve as postcondition, with precondition An,
to specify equivalence for tabulate. What else would we mean by equivalence of the programs? We
do not want to say they have literally identical values, because we want equivalence to be local: It
should not involve what else may have been allocated, so we do not assume agreement on alloc.
Hence, the resulting lists may not have identical reference values. What matters is that the heap
data produced by the two implementations has the same structure.

On the modality <. The modal operator < is needed for the relational postcondition (11) and
in any spec where allocation is possible. We gloss over it in some examples, but specs of interest
usually have this standard form: R ~> ¢S [¢] where ¢ does not occur in R or S. The tabulate spec
can be put in standard form, because Equation (10) expresses unary conditions, with no dependence
on refperm, so that formula can be put inside the ¢ in Equation (11).

While SMT solvers typically provide some heuristic support for quantifiers, existential quanti-
fiers are problematic, and we cannot expect a solver to find witnesses for the existential expressed
by <. In the WhyRel prototype, specs do not include ¢ explicitly. Instead, a refperm is maintained
in ghost state, thus witnessing the existential. A ghost instruction, connect — with —, can be used
to designate which references the user wants to be considered as corresponding. For example, the
biprogram Figure 16(c) uses connect p, which abbreviates connect p with p, to add newly allocated
Node references to the refperm, thereby establishing p = p. The general form of connect caters for
programs using different variables.

Alignment for tabulate. Recall that Equations (10) and (11) are meant to comprise the postcon-
dition of a spec to relate the bodies, tabu and tabu’, of the two implementations of tabulate in
Figure 16(a) and (b). To say that they satisfy the relational spec, we use a judgment like this:

@ + (tabultabu’) : An ~> R [rwalloc], where R is Equations (10)A(11).

The hypothesis context specifies mf; ® is a triple, with ®,(mf) being the relational spec Ax ~>
Aresult. The unary specs ®o(mf) and ®;(mf) are not relevant to this example.

We derive the judgment for (tabu|tabu’) from a judgment with the same spec for the more conve-
niently aligned biprogram CC, 4, in Figure 16(c), in a way that will be justified in Section 4.5. Sev-
eral features of CC, 4, are important. First, its left and right syntactic projections are the two com-
mands, tabu and tabu’, to be related; semantically it represents pairs of their executions, aligned
in a particular way. Second, the calls to mf are in the sync’d form, which signals that reasoning
is to be done using the relational spec of mf. A comment in the biprogram indicates that we get
agreement on p.val following the calls to mf(i), in virtue of that spec. Similarly, the two allocations
are also in the sync’d form and followed by the connect ghost operation, achieving agreement on
the allocated references. In the proof system, there is a rule for sync’d allocations, with postcon-
dition that yields for example ¢Ap for the Node allocation. Using this rule (or the connect ghost
operation) is a good choice in the present example, but in general it is not necessary to connect al-
locations, even if they happen to be aligned; this is important when relating programs that are not
building the same heap structure, or when proving noninterference and reasoning about branches
with tests that depend on secrets. Finally, the bi-while in CC;,p,, signals that we reason in terms
of lockstep alignment of the loop iterations. This enables us to reason that the two executions are
building isomorphic pointer structures, using a relational invariant similar to the postcondition of
the relational spec (11), conjoined with a simple relation between the counter variables:

i—12iAAnAAtAAt.nds A At.nds‘nxt A At.nds‘val.
The biprogram provides a convenient alignment but incurs an additional proof obligation: the

invariant must imply that the loop tests agree, as otherwise it would be unsound to assume the
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iterations can be considered to be aligned in lockstep. Indeed, the implication is valid: An and
i—1=iimpliesi<nZi<n.

In summary, this example shows biprograms express alignment of the programs under consid-
eration to facilitate procedure-modular reasoning using relational specs and to facilitate the use
of simpler relational invariants for loops. In passing, we introduced ways to express relations on
pointer structures, abstracting from specific addresses (as appropriate for Java- and ML-like lan-
guages) and making it possible to specify relations where some parts of the heap are meant to have
isomorphic structure while other parts may be entirely different. There are at least two important
use cases for such differences: encapsulated data structures, when relating implementations of a
module interface, and structure manipulated by “secret” computations, when proving information
flow properties.

The example happens to work well with close alignment of the program structure and agreement
on all the data involved. The logic must handle aligned allocation in a loop, as in this example. It
must also handle differing allocations, for example to relate programs using different encapsulated
data representations. Differing allocations also arise when proving noninterference, in cases where
allocation occurs under high branch conditions.

The proof rules used to derive a relational modular linking rule like Equation (3) make use of a
general form of local equivalence specification, derived from the frame condition of a unary spec
(and defined in Section 8.1). But it is also possible to express local equivalence notions suited to
specific situations, as in the example, and it is possible to work with differing program structures
as illustrated in some case studies (e.g., Figure 19 and Section 4.6).

4.5 Defining and Using Biprogram Weaving for Alignment

In this subsection, we define the weaving relation on biprograms. The purpose of the weaving
relation is to connect a bi-com (C|C”), that expresses a relational verification problem, with a more
tightly aligned version that facilitates reasoning. If (C|C’) weaves to DD, written (C|C’) «» DD,
then the syntactic projections of DD are C and C’, so DD models executions of the two commands.
The weaving relation + is used in a proof rule that realizes the product principle: any judgment
that holds for DD also holds for (C|C’), given (C|C’) +» DD. In general, weaving brings together
similarly structured subprograms, introducing additional alignment points while preserving syn-
tactic projections. In addition to defining the relation +, the rest of this section gives examples
of its use, and sketches the semantic considerations that justify the proof rule and explain the
orientation of the relation.

The weaving relation + is defined inductively by axioms and congruence rules in Figure 18.
The axioms replace a bi-com by another biprogram form including those that can assert agree-
ments (bi-if and bi-while). The congruence rules, displayed as one rule with multiple conclusions,
allow weaving in all contexts except the procedure bodies in bi-let. Apropos congruence for bi-let,
note that bi-let does not bind general biprograms but only pairs of commands despite the appear-
ance of the concrete syntax (see Figure 5).

The weaving that introduces bi-while allows the introduction of so-called alignment guards.
The biprogram CCy,p,, omits them (Figure 16(c)), which is syntax sugar taking them to be false.
As an example of their use, later in this subsection, we follow up on the example program (4)
discussed in Section 2.1, sketching the three-premise relational loop rule that enables verification
of the example using a simple invariant.

Example 4.5. The sequence weaving axiom (second line of Figure 18) can be used for an ex-
ample mentioned in Section 2.3, namely, (c.val:= v | c.f:= —v); (return c.val | return —c.f). For the bi-com
(a;b;c | d;e; f) (temporarily using lower case letters for atomic commands), there are four different
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(Al]A) > |A]
(G;D | C';D") + (CIC"); (DID")
(if E then Celse D | if E’ then C’ else D’) + if E|E’ then (C|C’) else (D|D’)
(while E do C | while E’ do C") « while E|E’ - PP’ do (C|C")
(letm=BinC|letm=B"inC’) - let m= (B|B") in (C|C’)
(var x:T in C | var x":T" in C") + var x:T|x":T’ in (C|C’)

BB - CC

BB; DD + CC; DD DD; BB + DD;CC if EIE’ then BB else DD « if E|E’ then CC else DD
if EIE’ then DD else BB + if E|E’ then DD else CC
while E|E” - PP’ do BB + while E|E’ - PP’ do CC let m = (B|B’) in BB % let m = (B|B’) in CC
var x:T|x":T" in BB + var x:T|x":T" in CC

Fig. 18. Axioms and congruence rules that define the weaving relation s> . Recall A ranges over atomic
commands (Figure 5).

alignments that can be obtained by a single application of sequence weaving®:

(@ bsclds € £) > (@ bld: (cle; f),

(a; b;cld;e; ) + (ald;e); (b clf), (12)
(a; b; c|d; e; ) = (a; b; c|skip); (skip|d; e; ),

(a; b cld; e; ) > (skip|d;e; f); (a; b; c|skip).

These weavings introduce a semicolon at the biprogram level, which makes it possible to assert a
relation at that point. Different weavings of the same biprogram serve to align different interme-
diate points.

Using the sequence axiom and congruence, we have (a;b;c|d;e; f) + (ald);(b;cle; f) +
(ald); (ble); (c| f), which illustrates how fine-grained alignment can be achieved when desired. We
also have (tabultabu’) +* CCp4py, which connects tabu, tabu’ to the particular alignment we
choose for reasoning about them.

As noted earlier, the bi-if and bi-while forms are meant to designate reasoning in which it will
be shown that the test conditions are in agreement. Technically, we define small step semantics
for biprograms, in which these forms can have a fault—dubbed alignment fault—if the tests
are not in agreement. This can be seen as a kind of assertion failure. As an example, recall the
implementation of insert in the PQ module in Figure 4. Part of the alternate implementation using
sentinels (mentioned in Example 3.4) is shown in Figure 19. We weave the two conditionals using
a bi-if, which introduces the possibility of alignment fault. We can use this weaving, because our
coupling relation will ensure that self.head = null in the left state just when self .head = self .sntnl
on the right.

Use of bi-if or bi-while incurs additional proof obligations that ensure the absence of align-
ment fault, which in turn implies that the designated alignment covers all pairs of execu-
tions of the underlying programs. The weaving transformations can introduce the bi-if and
bi-while forms but not eliminate them; nor can they eliminate any other faults. For example,
(if x > 0 then y.f := x else skip | if x > 0 then y.f := x else skip) weaves to if x > 0|x > 0 then
(y.f == x| y.f := x) else | skip], noting that (skip|skip) = [skip]. Both biprograms can fault due
to null dereference, but the second also faults in a pair of states where x > 0 on one side but x < 0
on the other.

%Keep in mind the syntactic equivalences in Figure 6, which enable these different weavings.
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result := new Pnode(val, key); | result := new Pnode(val, key) J;
result.sibling := self.sntnl; ('skip
result.child := self.sntnl; | result.sibling := self.sntnl;
result.prev := self.sntnl; result.child := self.sntnl;
self.rep := self.rep U {result}; result.prev := self.sntnl );
if (self.head = self.sntnl) then | self.rep := self.rep U {result} J;
self.head := result; if (self.head = null | self.head = self.sntnl) then
else | self.head := result J;
self.head := link(self,self.head,result); else
fi; | self.head := link(self,self.head,result) |;

self.size := self.size + 1; fi;
| self.size := self.size + 1 |;

Fig. 19. Body of alternative implementation of PQ’s insert (left) and woven biprogram (right).

LA]l Z |A] (atomic commands)
LC:D] = L)

|[if E then C else D|| = if E|E then || C]| else || D||
[[while E do C|| = while E|E - false|false do || C||
|[letm=BinC|| = letm=(B|B)in|C|

[[var x:T in C|| = varx:T|x:T in ||C]|

Fig. 20. Full alignment.

Suppose DD can be obtained from CC by a sequence of weavings, i.e., CC " DD. The relation
+> can introduce the possibility of additional alignment faults, but it cannot eliminate such possi-
bility. In this sense, + is oriented (and not symmetric). A consequence is the following: if, under
some precondition, DD has no faults, then under that precondition the executions of DD cover all
those of CC. This is the gist of the argument for soundness of the following proof rule:

from BB:R =~ S|[e] infer (C|C’):R =~ S[e] provided (C|C’)+>* BB. (13)

(See rule RWEAVE in Figure 30.) It is this rule that yields a relational judgment for (tabul|tabu’)
from the same judgment for CC;,p,, (Figure 16).

In general, a biprogram may admit several possible weavings. For the form (C|C) relating C
to itself there is a biprogram that is maximal in the sense that it allows us to reason about two
executions aligned in lockstep. We write || C|| for the full alignment defined in Figure 20. Apropos
linking, we have (let m=Bin C | let m= B’ in C) +* let m = (B|B’) in || C||. Full alignment plays
a key role in deriving the relational modular linking rule that was sketched as Equation (3) and is
formalized in Figure 31.

LEMMA 4.6. ((7?|CY‘) " CC for any CC.
As a corollary, we have (C|C) " ||C|| for any C, because l@ = @ =C.

Sumpub: illustrating conditionally aligned loops. For the tabulate example it is effective to reason
by aligning all iterations of the two loops in lockstep. This is not the case for program (4) in
Section 2.1, recalled here:

sumpub : s:=0; p:=head; while p # null do if p.pub then s:=s+p.val fi; p:=p.nxt od

It sums the elements of a list that are flagged public. It has an information flow property: the
output, in variable s, depends only on the public elements of the input list. (This can be viewed as a
declassification or as a value-dependent classification [4].) Typically such properties are expressed
using a precondition of agreement on some expression, which in this case should denote “the
public elements of the input list”
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As a pointer structure, the list can have cycles, so care needs to be taken in defining predicates
and functions. In the tabulate example, we choose specs that do not involve inductively defined
predicates or relations. Here, we inductively define a predicate listpub(p, Is) that says Is is the list
of values of the public elements in a null-terminated list from p:

p = null = listpub(p,[]),
p # null A =p.pub A listpub(p.nxt,ls) = listpub(p, Is),
p # null A p.pub A p.val = h A listpub(p.nxt,ls) = listpub(p, h :: Is).

We consider the following relational spec, eliding the frame condition for clarity. The bound vari-
ables, Is, Is” are of the math type int list:

Als :int list | Is” : int list. {listpub(head, Is){ A plistpub(head, Is")) A ls = Is" ~> As.

The syntax of quantifiers in relation formulas explicitly designates left- and right-side variables,
which is important in case of reference or region type (since the values must be allocated in the
respective states). There is no need to use distinct names here, so we can use a more succinct
precondition for the spec: Jls|ls. B(listpub(head, Is)) A Als.

We want to prove that (sumpub|sumpub) satisfies the relational spec. One way is to first prove
unary judgment sumpub : listpub(p,ls) ~> s = sum(ls), again treating Is as spec-only, and thus
universally quantified over the spec. A simple embedding rule (REmB in Figure 30) lifts this to
(sumpub|sumpub) : B(listpub(p,ls)) ~> B(s = sum(ls)). The relational frame rule lets us conjoin
agreement on s, to get

(sumpub|sumpub) : B(listpub(p, Is)) A Als ~> B(s = sum(ls)) A Als.

The postcondition implies As, so we complete the proof using the relational consequence rule.

Lifting unary judgments is an important pattern of reasoning and is satisfactory for reasoning
about assignment commands including those in the tabulate example. But sumpub has a loop, so
this argument comes at the cost of proving functional correctness, i.e., the judgment sumpub :
listpub(p, Is) ~> s = sum(ls). Finding a loop invariant is not difficult in this case, but it would be if
sum is replaced by a sufficiently complex computation.

There is an alternative proof of the relational spec that avoids functional correctness, using for
the loops a simple relational invariant:

Axs|xs. B(listpub(p, xs)) A Axs A As. (14)

We verified the example using WhyRel, and instead of asking the solvers to handle the existen-
tial, we used the standard technique: xs on each side is a ghost variable, initialized based on the
precondition and explicitly updated as appropriate.

The point of this example is that this simple invariant only suffices if we align the iterations
judiciously. In case p.pub holds on both left and right, we take a lockstep iteration, i.e., both sides
execute the loop body, and it is straightforward to show the invariant holds afterwards using the
last clause in the definition of listpub and the fact that Axs, i.e., equality of the mathematical lists,
implies agreement on their tails. If pub is true on one side but not the other, then lockstep iter-
ation does not preserve Equation (14). However, if p.pub is false on the left, then listpub(p, xs)
implies listpub(p.nxt, xs), and executing the body just on the left maintains the relation Equa-
tion (14). Notice Equation (14) does not include agreement on p; indeed the precondition requires
no agreement on references. Mutatis mutandis on the right side. To express this reasoning, we
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weave (sumpub|sumpub) to this biprogram:

(s:=0;p := head | s := 0;p := head);

while p # null | p # null . {=p.pub{ | p—p.pub) do
(if p.pub then s := s + p.val fi; p := p.nxt
| if p.pub thens := s + p.val fi;p := p.nxt ) od

(15)

Although the program is being related to itself, we do not bother to fully align the initialization or
loop body: these do not involve allocation or method calls, so reasoning about those parts of the
code is straightforward. For this reason, some uses of sync in Figure 16(c) could as well be bi-coms.
What is important is to use a bi-while. For loop alignment guards, we choose the relation formulas
{—p.pub{ and p-p.pub). The alignment guards are used in the proof rule for bi-while, which has
the following form:

FCC:QA-P A=P AE{ADE) =~ Q  + (CClskip): Q AP A (E] ~ Q
F(skiplCO) : QAP ADE) ~Q  Q=E=E V(P A{E)V (P ADE})
+ while EE' - PP’ do CC : Q =~ Q A (=E{ A j=E’)

This rule has omissions! For clarity, we omit details not relevant to the current discussion: frame
conditions, hypothesis context, and side conditions that enforce encapsulation and immunity. The
encapsulation condition is discussed later and is lifted from the unary logic, as is immunity, a
technical condition needed for stateful frame conditions (adapted unchanged from RLI).

In the rule, Q is the relational loop invariant, like Equation (14) in the example. The three
premises cover a lockstep iteration, a left-side iteration, and a right-side iteration. The one-
sided iterations are expressed using the syntactic projection metafunctions (Figure 13) to obtain
unary commands. In the example the two projections of the loop body are the same, namely,
if p.pub then s := s+p.val; fi; p := p.nxt. In each premise the invariant must be preserved, but each has
a strengthened precondition based on the alignment guards. For the example, the first premise ap-
plies when both sides are at a public element. The second (respectively, third) premise applies when
the element on the left (respectively, right) is not public. Besides alignment guards, the premises
include the loop tests in the usual way, as does the conclusion of the rule.

The side condition, Q = E = E’ V (P A {E{) V (P’ A DE’}), ensures that for any initial states
satisfying Q, at least one of the three premises is applicable. The reader can confirm that the side
condition holds in the example, and thus the rule can be used to carry out the proof as described.

As another example, for tabulate in Figure 16(c), we use false alignment guards, so the one-sided
premises hold trivially and the side condition simplifies to the implication mentioned earlier: the
invariant implies agreement on loop tests. Thatis,i—1=iAAn=i<n=i<n.

The biprogram syntax allows # and #’ to be relation formulas, but it happens that in the exam-
ple {—p.pub{ only constrains the left state and the other alignment guard constrains the right state.
As stated in Section 3.1, $ and P’ are not allowed to have agreement formulas; it is not evident
what refperm would be used to interpret agreements in such a context.

4.6 Relational Reasoning with Hiding and Encapsulation

Having illustrated general relational reasoning (Sections 4.4 and 4.5) and the use of dynamic fram-
ing for encapsulation in unary reasoning (Section 3.5), we now illustrate encapsulation in relational
reasoning. In doing so, we sketch how requirements (E1)-(E4) adapt to the relational setting.

In Section 3.5, we considered the verification of a client linked with a quick-find implementa-
tion of UnionFind, hiding the private invariant. Here, we consider two implementations of that
interface and consider a more interesting client: an implementation, MST, of Kruskal’s minimum
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spanning tree algorithm. For a second implementation of UnionFind, we consider the quick-union
data structure [88].

The goal is to prove a relational property: equivalence of the two programs made by linking MST
with the two module implementations. To do so, we use relational modular linking, as sketched
in the rule (3), hiding a coupling relation between the two implementations, which includes their
private invariants. To use the rule, we do the following:

(i) Prove a unary judgement for MST, with the UnionFind specs in context. As explained in
Section 3.5, this ensures that MST respects the boundary of UnionFind, as per requirement
(E3).

(ii) Define a coupling relation M, s to connect the encapsulated data structures of the two imple-
mentations of UnionFind. Show that it is framed by the dynamic boundary, as per requirement
(E2), and follows from the MST precondition, as per (E4).

(iii) For the two bodies B, B’ that provide alternate implementations of find, prove a relational
judgment for (B|B’) (and likewise for the implementations of union). The specification should
express local equivalence, but with M, conjoined to the pre- and postcondition.

It then follows that the two linkages satisfy a local equivalence property, specifically a relational
spec that is derived by a general construction from the unary spec of MST. Similar to the relational
spec of tabulate in Section 4.4, it requires agreement on inputs and ensures agreement on outputs.
But encapsulation must be taken into account: the two linkages will be equivalent in terms of
client-visible inputs and outputs, but the encapsulated data structures are different. More on this
later.

For item (i), we choose MST for the sake of a nontrivial example, but we do not use a functional
correctness spec, i.e., we do not specify that it produces a minimum spanning tree. All we need
is a precondition under which MST does not fault, and a frame condition. The global variables of
MST are g of type Graph and es of type List. For simplicity, g is an abstract mathematical graph;
es references a list like that used in Section 4.4. The graph interface provides an enumeration of
edges and MST produces, in es, a list of edge numbers for edges in the spanning tree:

numVerts(g) > 0 A pool = @ ~> true [rd g; rw es, alloc, pool, (pool U pool‘rep)‘any].  (17)

Note that the effects here include effects produced by call to UnionFind methods. We verify the
judgment @, ¢ +, MST : spec where spec is Equation (17) and @, has the public specs of find and
union, i.e., without the private invariants. The current module is , the default module with empty
boundary.

The local equivalence spec for the two linked programs is derived, by a general construction
called locEq, based on the frame condition of a unary spec, and the dynamic boundaries of the
modules in scope. In the example there is just one module with a nontrivial boundary, UnionFind;
math modules like Graph have empty boundaries. Agreements in the precondition are derived
directly from the read effects and boundary, using the effect subtraction operator that excludes
from agreement the encapsulated locations. In this example, the relational precondition is

B(numVerts(g) > 0 A pool = @) A B(saiioc = alloc) A Aes.

The conjunct B(s,0c = alloc) introduces snapshot variable syjjoc to be used in the postcondition
to express freshness. The agreement Aes is in simplified form. The general construction takes
the read effect, rd es, alloc, pool, (pool U pool‘rep)‘any and subtracts the boundary rd pool, (pool U
pool‘rep)‘any and alloc, which results in the effect rd es, ((pool U pool‘rep)\(pool U pool‘rep))‘any,
which trivially simplifies to rd es, @‘any and then to rd es.
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What about agreements for a postcondition? In general, a command may write preexisting lo-
cations and allocate new ones. In this case the only preexisting locations that are writable are the
variables es and alloc, so the postcondition includes Aes. (In general, to handle writable heap lo-
cations the general definition of locEq uses snapshots of the relevant expressions in write effects;
for details see Section 8.1.) To handle fresh locations, locEq uses the snapshot s,jioc in the way de-
scribed in Section 3.5: the fresh references are alloc\s,jioc so the fresh locations are (alloc\sajioc)‘any.
Again, effect subtraction is used to exclude alloc and the boundary. The resulting agreement is
A((alloc\sa”oc)\(pool UPOOI‘rep))‘anY'

In summary, the local equivalence spec that we get from Equation (17) for MST is

B(numVerts(g) > 0 A pool = @) A B(salioc = alloc) A Aes

= O(B(true) A Aes A A((alloc\sali0c) \(pool U pool‘rep))‘any) [...]. (18)

If one simply wants to know that the new and old versions of the program are the same, aside
from encapsulated state, then this is enough. By construction, the locEq spec requires agreement
on what the program can read and ensures agreement on its results.

In this particular case, to obtain a more explicit postcondition that refers to the list constructed,
we can do as follows. First, strengthen the unary postcondition from true to something like
es.head € es.nds A es.nds‘next C es.nds A ({es} U es.nds) C (alloc\s,jioc), which expresses the
closure of nds and the freshness of the list (see Section 4.4). The relational spec Equation (18)
then changes to have these conditions in place of true. Then using the rule of consequence and
reasoning about sets, we get Aes.nds‘next and Aes.nds‘val much like in the tabulate example.

For item (ii), as expected since Hoare’72, the coupling relation M, conjoins a relational formula
that connects the two implementations, together with the two private invariants. In particular,
Mg is {IgrdAbgud A . . ., where I;r is the invariant discussed in Section 3.5, and Iy, is the private
invariant of the quick-union implementation. The two implementations have similar internal data
structure, in the sense that both use an array to represent an up-pointing tree, but quick-find and
quick-union manipulate the tree quite differently. To specify the connection between the two data
structures, the third conjunct of M, fis this formula:

Apool A VYu : Ufind € pool|u : Ufind € pool. Au = eqPartition({u.part{, pu.part}). (19)

This says the two pools are in agreement, and for corresponding elements u in the pool, the abstract
partition u.part on the left side is an equivalent partition to the one on the right. This means they
have the same blocks. This coupling uses a common idiom. The coupling relation is defined using
a mathematical abstraction: the two data structures are related if they have the same abstraction.
This idiom is especially suitable if the two data structures are very different. By contrast, in our two
implementations of PQ, we consider two similar pointer structures, and for their coupling, we use
agreement formulas to describe fine-grained correspondence between the two pointer structures;
see Example 4.3.

To show that M,,s is framed by the boundary, the technique is essentially the same as for unary
framing of an invariant (Section 3.5). The difference is that here we consider a pair of states that
satisfy M, r, and a second pair where the two left (respectively, right) states agree on locations
within the boundary, to show the second pair satisfies M,r. Given a suitable representation of
states, as in our prototype, the implication is easily checked by SMT solvers.

The last part of item (ii) is that M,y is implied by the precondition of the client spec, in this
case (17). To be precise, it is an implication at the level of relations: B(numVertices(g) > 0 A pool =
@) = Myz. It holds owing to pool = @.

For item (iii), for each method, we verify the local equivalence spec derived from the method’s
unary spec, with M,¢ conjoined to pre- and postcondition. For example, the frame condition of
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union is [rw ({self} U self.rep)‘any], and its parameters are self,x,y. Based on this, locEq uses
a precondition based on the agreement Aself A Ax A Ay A A({self} U self.rep)‘any. A snapshot
variable s is used in precondition Bs = {self } Uself .rep so the postcondition can express agreement
on writables by As‘any, in addition to agreement on fresh locations as described for MST. Recall
that locEq then subtracts locations within the boundary; it is not agreement that we want for those
locations, but rather the connection expressed by M.

The implementations of union and find are fairly different. For quick-find, the union operation
eagerly updates “parents” so find takes constant time. For quick-union, find has to traverse multiple
parents to reach the representative element. To prove the relational judgments for the method
bodies, we use biprograms that are not tightly woven. The corresponding implementations are
not very similar and are not making external calls or doing allocation, so there is little motivation
for close alignment the way there is for the tabulate example.

More details about the MST verification can be found in Section 9. For now, we review why
relational modular linking—shown in Equation (3) and formalized in rule RMLINK in Figure 31—is
sound. In other words, why do (i)-(iii) suffice to prove equivalence of the linkages? Intuitively, the
coupling is preserved by client steps owing to encapsulation, just like private invariants in the
unary case. This is formalized by a relational version of the SOF rule, called RSOF. For that rule to
be sound, the client needs to be aligned so that context calls can be sync’d (like the call to mf in
the tabulate example) so a relational spec can be used—namely, a local equivalence spec conjoined
with the coupling relation. So rule RSOF applies to the full alignment of some command, and its
premise is that this fully aligned biprogram satisfies a local equivalence spec. This we obtain from
the unary judgment of (i), by a rule that lifts a unary judgment to a relational one for the local
equivalence derived from the unary spec (rule RLocEQ in Figure 30). It relates the command to
itself, expressing the dependency property of its read effect as a relational judgment.

Notations to conjoin couplings. To conclude this section, we define a metafunction that conjoins
a relation to a relational spec; this is used to formulate RSOF and the modular linking rule. It is
based on a similar metafunction, @® , which applies to a unary spec and a unary invariant I:

R~>SHDBI =2 RAI~ SAI[n]. (20)

This lifts to an operation on unary contexts, written ® @® I, by mapping ®I over the specs in ®.

For relation formula M, the operation ®M conjoins M to a relational spec. The operation only
applies to relational specs in the standard form, meaning that ¢ occurs only outermost on the
postcondition, or not at all.

Definition 4.7 (Conjoin Coupling ®M ). If R and S are O-free, then

R=0OS[OM = RAM = (S AM) 1],
R~SHh)oM = RAM==SAMIny].

For context @, let ® ® M conjoin M to the specs in @, and for the unary specs give &y ® M and
®; ® M. In other words, (@, D1, D2) ® M is (Pg ®» M, &1 D M, &y ® M).
Note that ® ® M is only defined if the specs in ®; are in standard form, and then so is the result.

5 SEMANTICS OF PROGRAMS AND UNARY CORRECTNESS

For a correctness judgment @ I—RI C : P ~ Q [e], an informal sketch of the semantics is given
preceding Definition 3.3. To make it precise, we use transition semantics, so we can formulate the
semantics of encapsulation in terms of the module in which a given step is taken, initially module
M. To express modular correctness with respect to assumed specs, a context call makes a single
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step to the result of the call, given by a context model ¢, which provides denotations that satisfy
the specifications of the hypothesis context ®. Transitions go to fault, 4, in case of runtime failure
(null dereference). Fault is also used to represent precondition violation in context calls.?®

A pre-model provides method denotations that do not necessarily satisfy specs; the transition
relation +% is defined for any pre-model ¢.

For readers familiar with O’Hearn et al. [77] or RLII, we note that unlike those works here,
we cannot use a single “most nondeterministic” denotation. We need context models to be quasi-
deterministic, in accord with the VV-interpretation of relational correctness for deterministic
programs.

This section spells out the details, which are somewhat intricate. The most important and novel
part is the semantics of encapsulation, a condition called Encap in the semantics of correctness
judgments (Definition 5.10). Some readers may wish to skip to Section 6, after skimming Sec-
tions 5.1 and 5.2.

5.1 States, Expressions, Method Environments, and Configurations

Assume given an infinite set Ref of references, disjoint from the integers, with distinguished el-
ement null. A T'-state comprises a finite heap and a type-respecting assignment of values to the
variables in I'. We confine attention to contexts I' that include the special variable alloc. We write
o(x) to look up the value of x in state o. In particular, o(alloc) is the finite set of allocated references.
Any reference o € o(alloc) has a class K, which we write as Type(o, o).

A location is either a variable x or a heap location o.f, where we write o. f for the pair (o, f)
of a non-null reference o and field name f. For any state o, define the set of its locations by

locations(o) = Vars(o) U{o.f | o € o(alloc) A f € Fields(Type(o, 0))}.

The heap provides a type-respecting assignment of values to heap locations. We write o(o. f) for
the value of field f of allocated reference o. Type-respecting means that if Type(o, o) isK and f : T
is in Fields(K) then o(o.f) is in [ T Jo. We write [T Jo for the values of type T in state o. In the
case of a reference type K, define [ K Jo by

[K]o = {null} u{o € o(alloc) | Type(o, o) = K}.

Define [ rgn JJo to be P(a(alloc) U {null}). We write [T ] for the set of ['-states.

The transition semantics of a command typed in I' may introduce additional variables for local
blocks, so it is convenient to define Vars(o) to be the variables of the state. We write [o+x:v] to
extend the state with additional variable x with value v, and [o | x: v] to override the value of x
that is already in Vars(o). We write o [ x to remove x from the domain of o.

We write o(F) for the value of expression F. The semantics of program expressions E and region
expressions G is in Figure 21. (To be very precise, the semantics of expressions is defined on a
typing I' + F : T, such that o(F) is in [ T ]o.) The syntax is designed to avoid undefinedness. We
are not formalizing arithmetic operators that can fail, there are no dangling pointers, and program
expressions E do not depend on the heap. Region expressions can depend on the heap, in the case
of images G*f, and they are defined in any state. If f:K for some K, then o(G*f) is the set of values
of the f fields of objects in o(G). If f:int, then o(G‘f) is empty. Finally, for f:rgn, o(Gf) is the
union of the regions o(o.f) for o in o(G).

Transitions relate configurations of the form (C, o, y). The environment ;i maps method names
to commands. The empty environment is written _. In a configuration, the command C may include

260ne could distinguish between these two kinds of faults using different tokens, as done in RLIL Here, we would need a
third kind, for alignment fault. But the correctness judgments disallow all three kinds, so for simplicity, we conflate them.
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{c(0.f) | 0 € 6(G) A o # null A Type(o,0) = DeclClass(f)} if f:K for some K
U{o(0.f) | 0 € (G) A o # null A Type(o, o) = DeclClass(f)} if firgn

0(Ey®Ey) = o0(E;)Q®o0(E;) where®isin{=<,+,...}
o({E}) = {o(E)}

o(2) SR

0(G1®Gy) = 0(G1)®0(Gz) where®isin{U,nN,\}
o(G/K) = {o|o€a(G)Ao# null A Type(o,0) = K}
a(G*f) = @ if fiint (or any primitive type)

Fig. 21. Semantics o(F) of selected program and region expressions (r-values), for state o.

the pseudo-commands: ecall(m) ends the code of a call to method m, evar(x) ends the scope of a
local variable, and elet(m) ends the scope of some methods m (arising from simultaneous binding
let m=B in C). The pseudo-commands do not occur in source programs. The code of a configuration
thus takes a form that represents the execution stack for environment calls:

Cp;ecall(my);...;Cy;ecall(m;);Cy,  where n > 0 and each C; is ecall-free.

So the leftmost command C,, is on top of the stack and m,, is the leftmost environment call. We write
Active(C) for the active command (which one might call the redex), i.e., the unique sub-command
that gets rewritten by the applicable transition rule.?” For example, Active(x := 0;y := 1) is x := 0.

To formalize the semantics of encapsulation, we need to refer to the module of the active com-
mand: it must stay outside the boundary of every module except its own. So, we define the top
module topm(C, M) to be N where N = mdl(m,) and m,, is the leftmost environment call (see
above), or M if C has no ecall (i.e., n = 0). This is used in Definition 5.10, where the argument M is
from the judgment under consideration. In Definition 5.10, we also write N € (®, p), for hypothesis
context ® and method environment y, to mean there is m € dom (®) U dom (u) with mdl(m) = N.

For an empty method context, the transition relation is standard (Figure 34). For non-empty
contexts the transition relation depends on a pre-model, which is defined in terms of the semantics
of specs, to which we proceed.

5.2 Semantics of State Predicate Formulas and Effects

Satisfaction of formula P in state o is written o |= P. The semantics of formulas is standard and two-
valued. The points-to relation x. f = E is defined by ¢ |= x.f = E iff 6(x) # null and o(o(x).f) =
o(E). The type predicate is defined by o |= type(G, K) iff Type(o, o) € K forall o € o(G). Quantifiers
for reference types range over allocated (thus non-null) references: o |= Vx : K. P iff [o+x: 0] |= P
for all o € o(alloc) with Type(o, o) = K.

LeMMA 5.1 (UN1QUE SNAPsHOTS). IfP, T, T satisfy the condition for precondition P in Definition 3.2,
then for all T-states o there is at most one (I',I')-state & that extends o such that 6 |= P.

In contexts where we consider a precondition P and suitable state o, we adopt the hat conven-
tion of writing 6 for the extension of o uniquely determined by ¢ and P as in Lemma 5.1.

For an effect ¢ in a given state o, its read effects designate a set rlocs(o, €) of locations. Specifically,
it is the set of l-values of the left-expressions in its read effects:

rlocs(o,e) = {x | € contains rd x} U
{o.f | € contains some rd G'f with 0 € 0(G), 0 # null, f € Fields(Type(o, 7))}

27\We identify sequentially composed commands up to associativity (Figure 6) so Active(C) can be defined as the leftmost
non-sequence command of a sequence.
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Define wiocs(o, ¢) the same way but for the l-values in write effects. Note that for an effect of

the form rd G* f the definition of rlocs uses the r-value o(G) (Figure 21) where G may itself involve
images. These functions are used in the key lemma about effect subtraction (see Equation (7)).

LEMMA 5.2 (SUBTRACTION). rlocs(c, e\n) = rlocs(a, €)\rlocs(o, 1) and the same for wlocs.

For use in the semantics of write effects, define the locations of ¢ that have been changed in 7
as

wrttn(o, ) = {x | x € Vars(o)nVars(t)Ao(x) # t(x)}U{o.f | o.f € locations(c)Ac(o.f) # (0.f)}

This captures the variables still in scope that have been changed, together with changed heap
locations.?® Say 7 can succeed o, written ¢ < 7, provided o(alloc) C r(alloc) and Type(o, o) =

Type(o, 7) for all o € o(alloc). Say ¢ allows change from o to 7, in symbols c—7 | ¢ ,iffo — ¢

and wrttn(o, ) C wlocs(o, €). The locations of 7 not present in ¢ are designated by freshL(o, 7).
Define freshRefs(o,7) = t(alloc)\o(alloc) and

freshL(o,7) = {p.f | p € freshRefs(o,7) A f € Fields(Type(p, 7))} U Vars(t)\Vars(o).

Read effects and refperms. Read effects constrain the locations on which the outcome of a com-
putation can depend. Dependency is expressed by considering two initial states that agree on the
values in the locations deemed readable, though the states may differ on the values in other lo-
cations. Agreement between a pair of states needs to take into account variation in allocation, as
the relevant pointer structure in the two states may be isomorphic but involve differently chosen
references. Such variation must also be taken into account in relation formulas, as in Example 4.3.
For use with both read effects and relation formulas, agreements are formalized using refperms,
as mentioned in Section 2.3.

Let & range over partial bijections on Ref \{null}, i.e., injective partial functions. Write z(p) =
p’ to express that 7 is defined on p and has value p’. A refperm from o to ¢’ is a partial bijection
7 such that dom(r) C o(alloc), rng () C o’(alloc), and n(p) = p’ implies Type(p, o) = Type(p’, c”).
Define p < p’ to mean 7(p) = p’ or p = null = p’. Extend ~ to a relation on integers by i ~ jiffi = j.
For reference sets X, Y, define X £ Y to mean that 7 U {(null, null)} restricts to a total bijection
between X and Y. The image of 7 on location set W is written (W) and defined for variables and
heap locations by two conditions: x € 7(W) iff x € W,and o.f € #(W)iff (x71(0)).f € W.In other
words: variables map to themselves, and a heap location p. f is transformed by applying = to the
reference p.

Next, we define notations for agreement between states. Agreement is formalized in terms of a
condition that applies to two states together with a refperm and a subset W of the locations of o.
The location agreement Lagree(o, o', , W) holds just if W is a set of locations of ¢ and for each
of these locations, the contents in ¢ is the same as the contents of the location that corresponds
according to 7. Of course, “same as” is modulo , for reference values.

Definition 5.3 (Agreement on a Location Set, Lagree). For W a set of locations in o, and 7 a refperm
from o to ¢’, define

Lagree(o,o’, m,W) iff Vx € W. a(x) % o'(x) AV(o.f) € W.o € dom(r) A a(o.f) ~ o'(n(0).f).

This is defined for any W C locations(o). Agreement is monotonic in the refperm, in the sense
that
Lagree(o,c’, 7, W) and 7 C p implies Lagree(a,c’, p, W). (21)

2The definitions are formulated to be applicable to intermediate states in the scope of local blocks, which introduce vari-
ables not present in the typing context of the initial command.
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Definition 5.4 (Agreement on Read Effects, Agree). Let ¢ be an effect that is wf in I'. Consider I'-
states o, 0’. Let 7 be a refperm. Say that o and ¢’ agree on ¢ modulo r, written Agree(o,o’, 7, ¢) ,
iff Lagree(o, o', m, rlocs(o, €)). Let Agree(o,c’,e) = Agree(o,o’, m,¢) where 7 is the identity on
o(alloc) N o’(alloc).

Often we use Agree(o, 7, ¢) where 0 < 7, in which case o(alloc) n z(alloc) = o(alloc).
Agreement on location sets enjoys a kind of symmetry:

Lagree(o, o', w, W) implies Lagree(c’, o, ™', 7(W)) for all o, o, r, W. (22)

By contrast, Definition 5.4 of agreement on read effects is left-skewed, in the sense that it refers
to the locations denoted by effects interpreted in the left state. The asymmetry makes working
with agreement somewhat delicate. For example, agreement on rd G‘f (modulo ) implies that
o(G) C dom (1) (by Definition 5.3), but it does not imply o(G) ~ ¢’(G). At a higher level there will
be symmetry, for reasons explained in due course.

5.3 Pre-models and Program Semantics

The transition relation depends on a pre-model ¢, defined below, and is written ~2. The pre-model
provides semantics for context calls and represents denotations of method bodies. Transitions act
on configurations where the environment p has procedures distinct?” from those of ¢.

Definition 5.5 (State Isomorphism X, Outcome Equivalence =,). For I'-states o,0’, define
cro (read: isomorphic mod r) to mean that refperm = is a total bijection from o(alloc)
to o’(alloc) and the states agree mod m on all variables and all fields of all objects. That is,
Lagree(o, o’, 1, locations(c)).*® For S,8" € P([T] u {4}), define S =, S’ (read equivalent mod
1) to mean that (i) 4 € Siff 4§ € S’; (ii) for all states o € S and ¢’ € S’ there is p 2 & such that
o % o';and (ii)) S = @ iff S’ = @.

Note that item (ii) involves extensions of 7, whereas the relations < and % involve only 7 itself.
LEMMA 5.6. Suppose o X ¢’ Then o(F)~ ¢'(F),and o |= P iff’ |= P.

Definition 5.7. A pre-model for T is a mapping from some set of method names, such that for
m € dom(¢), ¢(m) is a function of type [T'] — P([T] u {4}) such that ¢ < 7 for all o, 7 with
7 € p(m)(0), and

(fault determinacy) 4§ € ¢(m)(o) implies p(m)(c) = {4},
(state determinacy) o %o implies p(m)(o) =, @(m)(c’).

For ® wfin T, a pre-model of ® is a pre-model for I" and dom (®).

We say pre-models are quasi-deterministic, because from a given initial state, these three
outcomes are mutually exclusive: fault, non-empty set of states, empty set. Moreover, instantiating
o’ := o and setting 7 to the identity on o(alloc) in the condition (state determinacy) yields that all
results from a given initial state are isomorphic.*!

29This representation takes advantage of the hygiene condition that variable and method names are never re-used in nested
declarations.

30Which is equivalent to Lagree(c”’, o, w1, locations(c”)), in this context where o (alloc) = o’ (alloc).

31In light of these definitions and the results to follow, we could as well replace the codomain of a pre-model, i.e., P([T ] U
{4 }), by the disjoint sum of P([T'[) and {4 }. The chosen formulation helps streamline a few things later.
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uCALL uCarLX UCALLO
T € p(m)(o) ¢ € ¢(m)(0) p(m)(o) =2
(m(), o, py = (skip, 7, p1) (m(), o, )+ 4 (m(), o, p)y =5 (m(), o, p)
UCALLE
p(m) =C UECALL

(m), o, u) v (skip, o,
(m0). 0. 1) & (Crecall(m), o, 1) (ecallm. . 4 7= (skip.

ULET _ _ UELET
(letm=BinC, o, ) & (C;elet(m), o, [p+m: B]) (elet(m), o, p) v&s (skip, o, pu|7m)

Fig. 22. Selected transition rules, for pre-model ¢. The others are in Appendix Figure 34.

The transition relation is defined in Figure 22. A trace via pre-model ¢ is a non-empty finite
sequence of configurations that are consecutive for the transition relation . For example, this
sequence is a trace (for any ¢):

(x =1L,y =2, [x:0,4:0], _)(y :=2, [x:1,y:0], _)(skip, [x:1,y:2], _).
Recall that we identify (skip; C) with C (Figure 6). By definition, a trace does not contain .

5.4 Context Models and Program Correctness

For syntactic substitution, we use the notation Py. Substitution notations are mainly used with
spec-only variables. In addition, for clarity, we also use substitution notation for values, even
references—although the syntax does not include reference literals.

Definition 5.8 (Substitution Notation). If T,x:T + P and ¢ € [T ] and v is a value in [ T ] o, then
we write o [=F PX to abbreviate [o+x: v] T P,

A context model, or ®-model when we refer to a specific context @, is a pre-model that satisfies
its specs.

Definition 5.9 (Context Model). Let ® be wfin I' and let ¢ be a pre-model. Say ¢ is a ®-model iff
dom (¢) = dom (®) and for each m in dom (®) with ®(m) = R ~» S [] and for any o and ¢’ in [T |,

(a) 4 € p(m)(o) iff there are no values v with o |= R% where s are the spec-only variables.
(b) Forall 7 € p(m)(c),and all v, if 0 |= R% then 7 |= S% and o—71 |= 1.
(c) For all 7 € p(m)(o) and all N with mdl(m) < N, rlocs(o, bnd(N)) C rlocs(r, bnd(N)).
(d) For all r, if Lagree(o, o', 7, rlocs(a, n)\{alloc}), then
(i) p(m)(0) = @ iff p(m)(0”") = @, and
(ii) ifr € p(m)(o)and t’ € p(m)(c”), then there is p 2 & with p(freshL(o, 7)) C freshL(c’, ")
and Lagree(t, 7', p, (freshL(o, ) U wrttn(o, r))\{alloc}).

Condition (a) says ¢(m) faults just on states outside the precondition of m, (b) says the postcondi-
tion holds and write effect is respected, (c) is a technical condition we call boundary monotonicity,
and (d) is the dependency condition of the read effect.

The snapshot values v in (a) and (b) are uniquely determined by o (Lemma 5.1). So (a) can be
rephrased: 4 € p(m)(o)iff o | R% where v are the values uniquely determined by R in ¢. Similarly
for (b), which treats spec-only variables as being quantified over the pre- and postcondition.

Finally, we can give the semantics of correctness judgments, which embodies encapsulation for

dynamic boundaries. In the definition to follow, we write §® to abbreviate &, rd alloc. Apropos
Definition 5.9(d), note that {alloc} = rlocs(o, rd alloc) = rlocs(a, «®).
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The conditions for a valid correctness judgment include that there are no faulting executions, ter-
minated executions satisfy the postcondition and write effect, and boundary monotonicity. These
conditions are like (a)-(c) above for context model. The absence of fault means more than no
null dereference; it means there are no method calls outside the method’s precondition—because
otherwise the call would fault, by condition (a) for context models. An additional condition for
correctness is that the read effects of the judgment should subsume the read effects in the specs
of methods in context calls; this is called r-safety. Finally, the Encap condition says that each step
reads and writes outside the boundaries of any module the step is not within. The Encap condition
is formulated using the read effects of the judgments and implies the expected end-to-end read ef-
fect as will be explained later. Reading is meant in the extensional sense of a two-run dependency
property, similar to condition (d) for context model.

The Encap condition applies to every reachable step, and refers to the initial state, so we use the
following schema to designate identifiers for the elements of a step reached from command C and
state o:

(C, o, ) v5* (B, 1, p) v (D, v, v).

The step is taken by the active command of B, from state 7 to state v. For such a step, we need to
refer to the locations encapsulated by all modules except the current module, M, of the correctness
judgment. To this end, the collective boundary is an effect § defined by cases:

1) (+N € (D, u), N # topm(B, M). bnd(N)), if Active(B) is not a context call,

(+N € (@, p), mdl(m) £ N. bnd(N)), if Active(B) is a context call of m. (23)

> 1>

Definition 5.10 (Valid Judgment). A wf judgment ® I—g/l C: P~ Q[e] is valid iff the following
hold for all ®-models ¢, all values © for the spec-only variables 5 in P, and all states o such that
= P

Safety) It is not the case that (C, o, _) % 4.

Post) 7 |= Q% for every 7 with (C, o, _) v&* (skip, 7, _).

Write) 0—1 |= ¢ for every T with (C, o, _) v&* (skip, 7, _).

R-safe) Every reachable configuration (C, o, _) +%* (B, 7, u) satisfies the r-safe condition
for (®,¢,0): If Active(B) is a context call to m with ®(m) = m : R ~ S [n], then rlocs(z,n) C
freshL(o, ) U rlocs(o, €).

(Encap) Every reachable step (C, o, _) +%* (B, 7, u) v (D, v, v) respects (D, M, ¢, ¢,0), i.e.,

e For every N with N € (®, ) and N # topm(B, M), the step w-respects N, which means:

either Active(B) is a call to some m with mdl(m) < N or Agree(r, v, bnd(N)).

e For § the collective boundary given by Equation (23) for B, 7, y, the step r-respects 6 for

(¢, €, o), which means: for any*? =, 7’,v’, D’

if (B, 7/, p) +% (D', v’, v) and Agree(z’,v’, §) and

~ o~~~

Lagree(z, t’, 7, (freshL(o, T) U rlocs(a, €))\rlocs(r, 6%)) 24)
then D’ = D and there is p with p 2 7 such that
Lagree(v,v’, p, (freshL(t,v) U wrttn(t,v))\rlocs(v, §%)) and (25)

p(freshL(r,v)\rlocs(v, §)) C freshL(z’,v")\rlocs(v’, §)
e For every N with N € ® or N = M, the step satisfies boundary monotonicity:
rlocs(z, bnd(N)) C rlocs(v, bnd(N)).

32To be precise: such that 7’ has the same variables as 7—there may be local variables in addition to those declared by T.
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In addition to the terms introduced above to refer to parts of the definition, we also use the
following derived notions: A trace from (C, o, _) respects (O, M, ¢, ¢, o) just if each step of the
trace does, and it is r-safe for (®, ¢, o) just if each configuration is. A step is called r-safe if its
starting configuration is r-safe.

While w-respect can be defined one module at a time, this is not the case for r-respect, because
dependency properties do not compose in a simple way.>*> The absence of dependency needs to
be expressed in terms of the collective boundary § with which a given step must not interfere. As
with w-respect, this depends on whether the step is a context call. If not, then the current module’s
boundary is exempt (see condition N # topm(B, M) in Equation (23)). If so, then the step is exempt
from the boundary of the callee’s module together with modules into which its implemenation may
call (second condition in Equation (23)). Dependency is expressed as usual by an implication from
initial agreement Equation (24) on reads to final agreement Equation (25) on writes—subtracting
the encapsulated locations. The read effects in ¢ are interpreted in the pre-state o, as are the write
effects (which cover the written locations according to the condition labelled Write). The collective
boundary § is interpreted at intermediate states.

In case the module boundaries are all empty, in Definition 5.10, two parts of the Encap condition
become vacuous, namely, w-respect and boundary monotonicity. And r-respect reduces to the
property that the dependency of each step is within the readable locations of the given frame
condition. This implies an end-to-end read effect condition given in the following lemma.** The
lemma is used to prove soundness of the linking rule; in that proof we derive a pre-model from
the denotation of the method body, and the lemma is used to show it is a context model.

LEMMA 5.11 (READ EFFECT). Suppose @ |:1F\4 C: P~ Qle] and ¢ is a®-model. Suppose o |= P and
o’ |= P. Suppose Lagree(o, o’, m, rlocs(o, €)\{alloc}). Then (C, o, _) diverges iff (C, o’, _) diverges.
And forany t,7’, if (C, o, _) Ly (skip, 7, _) and (C, o', _) Ly (skip, 7/, _) then

dp 2 n. Lagree(r,t’, p, (freshL(c, 7) U writn(o, 7))\{alloc}) and
p(freshL(o, 7)) C freshL(c’, 7).

6 UNARY LOGIC

Correctness judgments of the unary logic play a crucial role in the relational logic. They are
premises in relational rules such as local equivalence. Framing and encapsulation are handled
at the unary level, separate from the concerns of alignment and relation formulas.

The unary proof rules use two subsidiary judgments, for subeffects and framing of formulas.
These can be presented by inference rules (as shown in RLI). In this article, we present them se-
mantically, in Section 6.1, as the semantics is amenable to direct checking by SMT solver. Informal
descriptions are given, but for the detailed definitions in Section 6.1 the reader needs to be familiar
with the definitions in Sections 5.1 and 5.2. Aside from that, Section 6 can be read without being
familiar with Section 5.

6.1 Framing and Subeffects

The subeffect judgment, written P |= ¢ < n, says that in states satisfying P, the readable or
writable locations designated by ¢ are contained in those designated by 5. It is defined as follows:

P |= ¢ < niff rlocs(o, €) C rlocs(o, ) and wlocs(o, €) € wlocs(o, i) for all o with o = P.  (26)
33For readers familiar with RLII, the w-respect condition is the same except that, here, to support r-respect we add w-respect
of modules in the environment (in addition to those in context).

34The condition is much like the semantics of effects in RLIIL, with a small difference concerning the treatment of variable
alloc. (See Definition 5.2 in RLIIL)
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The framing judgment for formulas, written P |= 5 frm Q , can loosely be understood to say
the read effects in 5 cover the footprint of Q. It is used in the frame rule and also second-order frame
rule, where we need framing of the module invariant by the dynamic boundary. To be precise, the
judgment says of states o and 7 that if o satisfies P A Q and 7 agrees with ¢ on the contents of
locations designated by the read effects of 1, then 7 satisfies Q. Here 7 is interpreted in state o,
which only matters if its effect expressions mention mutable variables. The judgment is defined as
follows:

P =5 frm Qiff for all o, 7, if Agree(o,z,n) and o |= P A Q thent |= Q. (27)

For example, we have x € r |= rdx,rdr‘f frm x.f = 0. The fipt function, defined in Figure 10,
provides framing for atomic formulas. The basic lemmas about fipt are that |= fipt(P) frm P, for
atomic P, and

Agree(o, o', 7, fipt(F)) implies o(F) ~ o’(F). (28)

The framing judgment is used, in the FRAME rule, in combination with a separator formula
(Figure 11). A key property of separators is that a formula obtained as 7 -/. ¢ holds in o iff
rlocs(a, ) N wlocs(o, €) = @. From this it follows that

oc—71 |=eand o |= 1 /. ¢ implies Agree(o, 7, 7). (29)

Separator formulas are also used in the notion of immunity, which amounts to framing for frame
conditions. Immunity is only needed for the sequence and loop rules, which we relegate to the
Appendix as there is no interesting change from RLI. Framing and immunity are about preserving
the value of an expression or formula from one control point to a later one. For preservation
of agreements, framed reads (Definition 3.1) are crucial; e.g., in proving the lockstep alignment
Lemma 8.9.

6.2 Proof Rules

Selected proof rules are in Figure 23. They are to be instantiated only with wf premises and con-
clusions. In the rest of the section, we comment briefly about some rules and derive the modular
linking rule. Then Section 6.3 discusses how the rules work together to enforce encapsulation.

The proof rules for assignment, like FIELDUPD and ALroc, are “small axioms” [76] that have
empty context, are in the default module, and have precise frame conditions. The ConsgQ rule
can be used to subsume a frame condition like wr {x}‘f by a more general one like wrr‘f, given
precondition x € r and using subeffect judgment x € r |= wr {x}‘f < wrr‘f. Rule ALLOC can be
used with the FRAME rule to express freshness in several ways.>® These and the method call rule
have the minimum needed hypothesis context. Extending the context is done by rules discussed
in Section 6.3.

The gist of the second-order frame rule, SOF, is to conjoin a formula not only to the spec in the
conclusion, like rule FRAME, but also conjoin it to the specs in the hypothesis context. The rule
distils a property of program semantics; its practical role is to derive the modular linking rule.

In rule SOF, the conditions N € ® and N # M ensure that the command C respects the en-
capsulation of bnd(N), in accord with the semantic condition Encap of Definition 5.10. Together
with the framing judgment |= bnd(N) frm I, this ensures that C does not falsify I. The condition
C binds no N-method means C contains no let-binding of a method m with mdl(m) = N. This
and the condition Vm € ®. mdl(m) £ N ensure that all of N’s method specs are in © and have the
invariant added simultaneously. Such conditions are the price we pay for not cluttering the logic
with explicit syntax and judgments for a module calculus. Rule Link has analogous conditions.

35Shown in detail in RLIII (Section 7.1).
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CDI-MC:P’\/)Q[S] Pi=P 0= 0 PilFe<g

CONSE
Q (I>|—MC:P1«»Q1[81]

Dy C: P~ Qle] Pl=pfrmR PAR=n /. ¢
Ory C: PAR~ QAR|e]

FrRAME

0,0+, C: P~ Qe]
OF |= bnd(N) frm I Neo N+#M Vm e ®. mdl(m) £ N C binds no N-method

Q,(O@DI) Fp; C: PAT~ QAT |e]

S

Qry C: P~ Qe mdl(m) € ®
O, m:R~> S[n]ry C: P~ Qe]

CtxINTROIN1

DLy A P~ Qle] P = bnd(mdl(m)) -/. ¢ P = bnd(mdl(m)) -/. r2w(e)
O, m:R~ S[nlry A: P~ Q]

CtxINTRO

CALL  m:P~ Q[e] ke m() : P~ Q [¢] FIELDUPD b, x.f ==y : x #null ~ x.f = y [wrx.f,rd x, rd y]

D, 0 Fpgi(m;) Bi: ©(m;)
D,0re C:P~ Qe] dom(©®) =7 VYNedLcONZLL VYN, LNecOAN<L=LE (D0)

Dryletm=BinC: P~ Q|e]

LiNk

Fields(K) = ]7 T spec-only(7)
ALrLoc

Fe x:=new K : r=alloc~ x¢rAalloc=rU{x} A x.f = default(T) [wrx, rw alloc]

I O+ Cr: PANE~ Qe] Oty Co: PA-E~ Qe] (+N € ®,N # M. bnd(N)) -/. r2w(ftpt(E))
F
@+, if Ethen Cyelse Cy : P~ P’ [¢, fipt(E)|

Fig. 23. Selected unary proof rules. For others see Appendix Figures 35 and 36.

In rule LINK, let 7 = B in C means the simultaneous linking of m; with B; for i in some range.
This version of LINK supports simultaneous linking of multiple methods that may be defined in
different modules. Note that © is in the hypotheses for B;, because some methods in ® may call
others in ©, and for recursion. Condition YN € ®,L € ©. N £ L precludes dependency of the
ambient modules on the ones being linked. Condition VN,L. N € © AN < L = L € ($,0)
expresses import closure, which is needed to ensure that all relevant boundaries are considered in
the Encap condition of the premises.

Recall the modular linking rule (2) sketched in Section 2.1. It can now be made precise as follows:

Dk, C: P~ Qe
OPIry B:d(m) DI mdl(m) = M = bnd(M) frm I P=1
toletm=BinC: P~ Q|e]

MLINK

In Section 2.1, we mention requirements for soundness of Equation (2), in vague terms that can
now be made precise. Requirement (E1) is to delimit some internal locations, which is expressed
as a dynamic boundary bnd(M). Requirement (E2) is that the module invariant I depends only on
encapsulated locations, which we express by a framing judgment |= bnd(M) frm I. Requirement
(E3) says the client stays outside boundaries, a part of the meaning of the correctness judgment
for C; more on this in Section 6.3. Finally, (E4) requires that the invariant holds initially; we simply
require that I follows from the main program’s precondition (P = I). Rule MLINK is derived in
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dr, C: P~ Qe]
OPI+e C: (P~ Qle]) DI OPIrpy B:o(m) DI
Feletm=BinC: (P~ Qle]) DI
Feletm=BinC:P~» Q [¢]

Link
CONSEQ

Fig. 24. Derivation of MLINK, with side conditions mdl(m) = M, |= bnd(M) frm I, and P = 1.

Figure 24. The side conditions |= bnd(M) frm I, and P = I are the responsibility of the module
developer. The idea is that precondition P expresses initial conditions for the linked program, e.g.,
that globals have default values (null for class types, @ for rgn). In our examples, the invariant
quantifies over elements of the global variable pool and holds when pool is empty. For a more so-
phisticated language, we would have module initialization code to establish the module invariant.

THEOREM 6.1 (SOUNDNESS OF UNARY Loaic). All the unary proof rules are sound (Figure 23 and
Appendix Figures 35 and 36).

6.3 How the Proof Rules Ensure Encapsulation

The proof rules for commands must enforce requirement (E3), i.e., a command respects the bound-
aries of modules in context other than the current module. In part, this is done by what we call
context introduction rules. One may expect a weakening rule that allows additional specs to be
added to the context, and indeed there is such a rule (CTXINTROIN1) for the case that the method’s
module is already in context. If the method’s module is not already in context, then adding its
spec actually strengthens the property expressed by the judgment, namely, respect of the added
module’s boundary. For this, we have a rule CTxINTRO that extends the context by adding a spec
for method m and has side conditions (using separator formulas generated by -/.) that ensure both
the read and write effects of atomic command A are separate from the boundary of m’s module.
Two other variations are needed to handle method calls and adding a spec for the current module;
these are relegated to the Appendix. (A more elegant treatment may be possible using an explicit
calculus of modules and their correctness, but that would have its own intricacies.)
As an example, consider this code that acts on variables s: Stack and c,d: Cell.

d.val:=0; push(s,d); d:=new Cell; d.val:=1; push(s,d)

Using variable r : rgn and idiomatic precondition d € r A r # (pool U pool‘rep), this code has frame
condition rw d, r, alloc, r‘val. (Here, we use the spec idiom depicted in Figure 3.) The small axiom
for the store command d.val := 0 says it reads d and writes d.val. To add the Stack module to this
command’s context, rule CTXINTRO requires the precondition to imply a separator, which when
simplified is {d} # pool A {d} # pool‘rep. This says d is neither in pool nor in any rep unless d is null.

There is also a rule to change the current module from the default module used in, e.g., rules
CaLL, FIELDUPD, and Arroc. In a proof these and the context introduction rules are used at the
“leaves” of the proof, i.e., for atomic commands, to introduce the intended modules. This organiza-
tion is the same as used previously in RLII. However, here the notion of encapsulation is stronger.
To enforce that reads do not transgress boundaries (r-respect in Definition 5.10), the proof rules
for Ir and WHILE also have side conditions to ensure the conditional expressions are separate from
boundaries. For test expression E, the condition is (+N € ®, N # M. bnd(N)) -/. r2w(ftpt(E)). This
separator formula simplifies to true or false depending on whether any variable in E occurs in any
of the boundaries of modules N in scope other than the current module M. Although the details are
different from RLII, the general idea is the same, so we relegate most of these rules to the Appendix
(see Figure 35 and Remark 8). Relevant examples can be found in Section 8 of RLIL
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olo’ I=x {P{ iff o =P
olo’ |ex FE2F iff 6(F) Z o/ (F')
olo’ Ex AG‘f iff Agree(o,o’, m,rd G‘f) and Agree(o’, o, 77!, rd G‘f)

olo’ |Ex Ax iff o(x) Z o’ (x)

olo’ Ex OP iff olo’ |=p P for some p 2 7
olo’ Fx P = Q iff olo’ =5 P implies o|c’ =, Q
olo’ =P iff oo’ |zx P forall

=P iff o|lo’ |= P forall o, 0’

Fig. 25. Relation formula semantics o|o’ |=1;[|1" P (selected). See Appendix Figure 37 for other cases.

7 BIPROGRAMS: SEMANTICS AND CORRECTNESS

This section defines (in Section 7.2) the relational analog of the pre-models used in unary
program semantics of Section 5.3. This is used (in Section 7.3) to define the transition semantics
of biprograms. Some details are intricate, as needed to ensure quasi-determinacy and to ensure
that a biprogram execution faithfully represents a pair of unary executions. On this basis, the
semantics of relational judgments is defined and shown to entail the expected relational property
of unary executions (Section 7.4). The first step is to define the semantics of relation formulas
(Section 7.1).

7.1 Relation Formulas

Refperms and agreement, the basis for semantics of read effects, are also used for semantics of
agreement formulas. For relation formulas, satisfaction o|o’ |=, P says state o relates to ¢’ ac-
cording to  and refperm 7 (see Figure 25). The propositional connectives have classical semantics.
Formula P is called valid if |= P.

Recall that semantic agreement (Lagree, Agree) is skewed in the sense that region expressions are
evaluated in the left state, as noted following Equation (22). The semantics of AG*f uses agreement
via refperm 7 and agreement via 7! for the swapped pair of states. As a result, o|o’ =, AG'f
implies not only o(G) € dom(r) but also ¢’(G) C rng(x). However, AG‘f does not imply G = G
in general. So the form G = G A AG'f is often used, e.g., formula (11); in particular, it appears in
the agreements from a read framed effect.

The formulas AG‘f and G‘f = G‘f have different meaning and in general are incomparable.
In case f : int, the region Gf is empty in which case AG‘f implies G‘'f = G'f trivially. Using
a diagram like in Figure 17, Figure 26 shows two states and a refperm such that A{x}‘f holds
(noting that (g, q’) € 7 and (r,7’) € 7). But {x}‘f = {x}‘f does not; we have c({x}‘f) = {q} and
o' ({x}'f) = {r'} but (q,r") ¢ m. Also {x} = {x} is false, because (0,p’) & 7.

Here are some valid schemas: P = OP, OOP = OP,and O(P A Q) = OP A OQ. Another
validity is (alloc = alloc) A 0P = P, in which alloc = alloc says the refperm is a total bijection on
allocated references. The strong condition alloc = alloc is not local, and is not a useful requirement
for most purposes.

Validity of # = of is equivalent to  being refperm monotonic, i.e., not falsified by extension
of the refperm. Agreement formulas are refperm monotonic, as a consequence of Equation (21). A
key fact is

If Q = oQ is valid, then so is OP A Q = O(P A Q). (30)

Validity of OGP = % expresses that P is refperm-independent, ie., olo’ |=, P iff olo’ =, P,
for all o, ¢’, 7, p. If P contains no agreement formula, then it is refperm-independent (even if ¢
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Fig. 26. Refperm m and states o, o’ that satisfy A{x}‘f but neither {x} = {x} nor {x}‘f = {x}‘f.

occurs in P). For such formulas the condition in Equation (30) can be strengthened:
If ©Q = Q is valid, then sois OP A Q < O(P A Q). (31)

Syntactic projection is weakening: # = (P{ A )P’} where P is P and P’ is P. The implication
is strict, in general, because projection discards agreements (Figure 15). Syntactic projection is not
=-monotonic: for boolean variable x, the formula x = x A jJx > 0) = {x > 04 is valid, but
X =x ADx > 0) = true A true and {x > 0¢ = x > 0. The example also shows that agreements can
have unary consequences. As another example, this is valid: O(x = x’ Ax = y’) = px’ = y’}). The
antecedent holds if the refperm relates the value of x to both the values of x” and y’, or can be
extended to do so. Neither is possible if the value of x’ is different from the value of y'.

The framing judgment generalizes the unary version (27).

Definition 7.1 (Framing Judgment). Let P |= n|n’ frm Q ifffor all 7, 0,0’, 7, 7', if Agree(o, 7, n),
Agree(o’,t’,n’),and olo’ |=r P A Q then7|r’ =, Q.

For example, G = G |= n|n frm AG‘f where 1 is fipt(G), rd G*f (Lemma C.2). Apropos relations
of the form R = G = G A AG'f, we have |= §|5 frm R where § is fipt(G),rd G'f. If P |= n frm Q,
then {P{ |= nle frm {Q{ (and same on the right). Also, |= fipt(F)|ftpt(F’) frm F = F’, which can be
shown using the footprint agreement lemma (28).

The subeffect judgment P |= (¢le”) < (n|n’) is also a direct generalization of the unary version:
the inclusions of Equation (26) hold on both sides, for ¢, 0’, 7 with o|c’ |5, P.

Definition 7.2 (Substitution Notation). f T, x:T|T",x":T"+ P,c € [T],v € [T]o,0’ € [T'], and
T lex' |:F,x:T|F’,x’:T’ P.

oo £O abbreviate [o+x: v]|[0"+x": 0]

v’ € [T']o’, then we write oo’ |=

7.2 Relational Pre-models

A relational pre-model involves two unary pre-models (Definition 5.7) together with a function

on state pairs as appropriate for the denotation of a biprogram. This function is subject to similar

conditions as for unary pre-models, and must also be compatible with its two unary pre-models.
Definition 7.3 (State Pair ISO 4 , 2y ). Building on Definition 5.5, we define isomorphism

x’

of state pairs modulo refperms: (c|o”) €4 (r|") iff o X rand o’ ~ 7’ . For relational outcome
sets Sand §', ie, Sand S" are in P(([T | x [T/ ]) u{4}), define S =,,» S’ (read equivalence mod
7, 7") to mean that (i) 7 € Siff 4 € S’; (ii) for all state pairs (o|c’) € S and (r|z") € S’ there are

p, p’ with p 2 m and p’ 2 7/, such that (c|c”) pfl%p (r|r’); and (iii)) S\{4} = @ iff S'\{4} = @.
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Definition 7.4. A relational pre-model for T'|I'’ is a triple ¢ = (o, @1, ¢2) with dom (@) =
dom (¢1) = dom(¢pz), such that ¢ (respectively, ¢;) is a unary pre-model for I (respectively, I')
(Definition 5.7), and for each m, the bi-model ¢;(m) is a function ¢(m) : [T]x[I['] — P([T] x
[T'] u {4}) such that

(fault determinacy) 5 € @p.(m)(o|c’) implies p,(m)(clo”) = {4},

(state determinacy) (c]0’) "X (r|r’) implies p,(m)(a]”) = o2(m)(z|T),

(divergence determinacy) (c|o”) ﬂlz”/ (r]z”) implies that @y(m)(clo’) = @ iff p,(m)(z|7”) = @.
Moreover, ¢, 1, ¢2 must be compatible in the following sense:

(unary compatibility) t|t’ € p,(m)(c|o’) = 7 € po(m)(o) A’ € p1(m)(c’),

(relational compatibility) © € @y(m)(c) A T/ € pi(m)(c’) = t|t' € @(m)(clc’)V 4 €
p2(m)(ala’),

(fault compatibility) 4 € po(m)(@)V 4 € pi(m)(c") = § € pa(m)(alo”).

We do not require 4 € @z(m)(clc’) to imply 4 € @o(m)(c) or 4 € @1(m)(c’). The bi-model
denoted by a biprogram may fault due to relational precondition, or alignment conditions, even
though the underlying commands do not fault.

LEMMA 7.5 (EMPTY OUTCOME SETS). For any relational pre-model ¢, p2(m)(c|o’) = @ implies that
po(m)(o) = @ or p1(m)(c”’) = 2.

Prook. If either ¢o(m)(o) or ¢1(m)(c’) contains fault, then so does ¢2(m)(c|o’), by fault com-
patibility; and if both ¢o(m)(c) and ¢;(m)(c’) contain states, say t € @o(m)(o) and 7’ € ¢1(m)(c’),
then by relational compatibility ¢,(m)(c|o”) contains either (z|z”) or 4. O

In a relational pre-model, the bi-model outcome sets are convex in this sense:
7|t" € pa(m)(clo’) and v|v” € pa(m)(c|o”) imply 7|v” € p2(m)(clo’) and v|z” € pa(m)(clo’).

This is a consequence of unary compatibility, relational compatibility, and fault determinacy. But
it is not a consequence of the three conditions imposed on bi-models alone.

7.3 Biprogram Transition Relation

Biprograms are given transition semantics by relation =5  on configurations, defined
in Figures 27 and 28 for any (relational) pre-model ¢. Configurations have the form
(CC, ol|o’, p|u’y, which represents an aligned pair of unary configurations. These have projections
(CC, ala’, ulp’)y = (CT‘, o, uyand (CC, olo’, plu’y = (CT‘, o’, i’). Environments are unchanged
from unary semantics: y and y’ map procedure names to commands, not biprograms.*® The rules
are designed to ensure quasi-determinacy (see Lemma C.38).

The bi-com (C|C’) represents a pair of programs for which the only alignment of interest is the
initial states and the final states (if any). Its steps are dovetailed, unless one side has terminated,
so that divergence on one side cannot prevent progress on the other side. It make direct use of the
unary transition relation. The exact order of dovetailing does not matter; what matters is that one-
sided divergence is not possible. Here are the details of the specific formulation we have chosen.
The bi-com (C|C’) takes a step on the left (rule BComL in Figure 27), leaving the right side un-
changed. It transitions to the r-bi-com form (C['C”), which does not occur in source programs,
and which takes a right step (BComR). In configurations, identifier CC ranges over biprograms

36This simplification streamlines the development but is revisited in Section 8.5.
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A not a method call (A, o, p)y ¥ (skip, 7, v) (A, o, 1’y ¥ (skip, 7/, V')
(LA olo’, plp'y 5 (Lskip], 7|2/, vIv')

BSYNC

A not a method call (A o, 1) ¥ 4 or (A o, 1)y
(LAL olo’, plp') &5 4

BSYNCX

(z]7') € @2(m)(olo”) BCALLX 4 € g2(m)(olo”)

(Lm(O)), olo’, plp'y &5 (Iskip, 7|7/, plp') (LlmQO)), olo’, plp'y &5 4

BCALLS

p2(m)(olo’) =
(lmO], olo’, plg'y £ (Im() ], olo’, plu')

BCALLO

pu(m)=B  py'(m)=8B
(Lm() 1, olo’, plp'y £5 ((BIB'); Lecall(m) |, olo’, uly’)

BCALLE

(C, 0, p) ¥ (D, 7, v) DD = ((DFC’) if (C" # skip) else (D|skip))

BCoML "
((CIC"), ald’, uly') == (DD, z|o’, vii')

(C, o, )Wy (D, o, V)
((CFC), ola’, plp'y £ ((CID"), ol7’, plv')

BCoMR

(€, o, 'y ¥ (D, 7, V)

BCoMRO 7
((skip|C"), ala’, plu") == ((skip|D"), a|’, u|v')

C, o, Po C,, /, L P1 BBis (CPC’ Kip|C’
BCoMmLX (Comt - BCOMRX (C'y o/, ')y v is ( L ) or (skip|C”)
((CIC), alo’, plp')y B ¢ (BB, olo’, plp'y = 4

v=[p+tm:C] v = [ +m:C']

BLET
(let m=(C|C’) in DD, o|c’, ply') 2 (DD; elet(m) |, olo’, v|V')

o(E) =true =o' (E")

BIFTT -
(if E|E’ then CC else DD, ol|d’, pu|y') == (CC, o|d’, plu’)

o(E) = false = ¢’ (E’)
(if E|E’ then CC else DD, o|o’, ply')y £% (DD, o|o’, plu’)

BIFFF

o(E) # o' (E")
(if E|E’ then CC else DD, o|o’, plp’) £5 4

BIFX

w = FreshVar (o) w’ = FreshVar(c”) 7 = [o+w: default(T)]
' = [o/+w: default(T")] DD = (levar(w) | if w= w' else (evar(w)|evar(w')))

BVAR 2 -
(var x:T|x":T" in CC, ol|o’, p|y') = (CC:;’XW,;DD, 7|7/, plp’)
s (BB, o|o’, plp')y 5 (CC, 7|7, v|v') SsoX (BB, olo’, ply'y S 4
BSE . ’ ’ P . ’ ’ BSEQ . ’ ’ '
(BB;DD, old’, p|p') = (CC;DD, |7, v|v') (BB; DD, olo’, plp')y = ¢

Fig. 27. Transition rules for biprograms, except bi-while (for which see Figure 28).
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o(E) = true ole’ EP
(CC, olo’, plp'y =% ((BBskip); CC, olo’, ulu’)

BWHL

o’ (E) = true old’ P’ (o(E) = false or o|o’ | P)
BWHR

(CC, old’, ulp'y 2% ((skip|BB);CC, olo’, ulu’)

olo’ P olo’ P’ o(E) = true = ¢’ (E')
(CC, ald’, uly") = (BB;CC, alo’, plp")

BWHTT

o(E) = false = ¢/ (F’
BWHFF (&) (E)

(CC, alo’, pli'y 25 (Iskip), olo”, ulu’)

(o(E) = true and ¢’ (E’) = false and oo’ [~ P)
X or (0(E) = false and ¢/ (E’) = true and o|o’ £ P’)

(CC, old’, pli'y &5 4

Fig. 28. Transition rules for bi-while, in which we abbreviate CC = while E|E” - P|P’ do BB.

(asbyc) ---- {(asb;cldses f9)) ---- (dse; f39)

(bic) ----- ((bscldses f39)) =77 (a;b;c) ----- ((ald;e); (biclf)) ----- (dse; f)
T (Bseles f39)) - (e fig) (bic) ----- ((skipFd; e); (b;clf)) -
(eyzzzmmm ((cPe:fig)) =777 I A(skiple)s (B elf)) - (e:f)
e ((lfi9) o (fig) T self) e ()
(skip) ------- ((skipF f39)) ==~ (€) zzzmmmmmeee ((ePf)y ===
iz ((skiplg)) <-eeeeee (9 e ((elskip)) ---------- (skip)
" (Lskip]) -----o-- (skip) (skip) ---------- (LskipJ) ----==""

Fig. 29. Two example biprogram traces, with alignments, omitting states and environments.

that may include endmarkers from the unary semantics and also the r-bi-com.*” Rule BCOMRO is
needed to handle biprograms of the form (skip|D). The rules ensure that (skip[D) never occurs
for D # skip, and we identify (skip['skip) = |skip].

Rules BSEQ and BSEQX simply close the transitions under command sequencing. Recall that we
identify some biprograms, e.g., (skip|skip) = [ skip], to avoid the need for bureaucratic transitions
(see Figure 6). A trace T via ¢ is a finite sequence of configurations that is consecutive under =29
The projection lemma (Lemma 7.8) confirms that T gives rise to unary trace U on the left via +2%
and V on the right via +%5.

Example 7.6. To illustrate the dovetailed execution of bi-coms, we show a trace for the bi-com
(a;b; c|d; e; f; g) of some atomic commands, omitting states and environments from the configura-
tions. The trace is displayed vertically on the left side of Figure 29, between the two corresponding
unary traces. Thus, (a; b; c|d; e; f; g) executes the commands in the order a,d, b, e, c, f, g. Dashed
lines in the figure show the correspondence between unary and biprogram configurations. In this
example, the right side takes additional steps after the left has terminated. The opposite can also
happen, as in ((a; b; c|d)){(b; c[ d)){(; c|skip)){(c|skip)){|skip]), which executes a,d, b, c.

The right side of Figure 29 shows a trace for the second of the weavings in Equation (12).

37The left and right projections of (—F —) are as with (—|-).
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The sync atomic command | A| steps A by unary transition on both sides, unless A is a context
call in which case the context bi-model is used. Endmarkers are considered to be atomic commands,
e.g., |elet(m)] transitions via rule BSync and removes m from the environment on both sides.

A bi-if, if E|E’ then CC else DD, faults from initial states that do not agree on the tests E, E’,
which we call an alignment fault (rule BIIFX). A bi-while, while E|E” - P’ do CC, executes the
left part of the body, CC, if E and the left alignment guard # both hold, and mutatis mutandis for
the right. If neither alignment guard holds, then the loop faults unless the tests E, E” agree (BWHX).

The transition relation == uses the unary models ¢y and ¢; for method calls in the bi-com
form, e.g., (m()|skip) goes via ¢y according to BComML. A sync’d call [m()] in the body of a loop
that has non-false left or right alignment guards may give rise to steps where the active biprogram
has the form (m(); C|D) or (skip|m(); C) (rules BWHL, BWHR). The active biprogram, like the
active command in a unary configuration, is the unique sub-biprogram that gets rewritten by the
applicable transition rule. As with unary programs, we define Active(CC) to be the unique BB such
that CC = BB; DD for some DD and BB is not a sequence; it is what gets rewritten by the applicable
transition rule.

Projecting from a biprogram trace does not simply mean mapping the syntactic projections over
the trace, because that would result in stuttering steps that do not arise in the unary semantics
(where stuttering only happens for context calls and only if the model returns an empty set). In
the preceding diagrams, some unary configurations correspond with more than one biprogram
configuration; one may say the unary program is idling while a step is taken on the other side.

The alignment of biprogram traces with unary ones is formalized as follows. Here, we treat
a trace T as a map defined on an initial segment of the naturals, so dom(T) is the set {0,...,
len(T) — 1}.

Definition 7.7 (Schedule, Alignment, align(l,r,T,U,V)). Let T be a biprogram trace and U,V
unary traces. A schedule of U,V for T is a pair [,r with [ : (dom(T)) — (dom(U)) and r :
(dom(T)) — (dom(V)), each surjective and monotonic. A schedule I, r is an alignment of U,V

for T, written align(l,r,T,U, V), iff Uy;) = f and V,(;) = TL for all i in dom (T).

The dashed lines in Figure 29 represent the [ and r index mappings of a schedule. For Example 7.6,
left side of the figure, the mapping is r(0) = 0, 7(1) = 0, 7(2) = 1, and so on.

The following result makes precise that every biprogram trace represents a pair of unary traces.
It is phrased carefully to take into account the possibility of stuttering transitions at the unary
level.

LEMMA 7.8 (TRACE PROJECTION). Suppose ¢ is a pre-model. Then the following hold. (a) For any

step (BB, o|o’, u|p’) = (CC, t|t’, v|V'), either

° (IBTS, o, 1) RLN (CT’, 7, v) and (B_]\S, o’y 1’y LZN (CTC\’, /., v'), or

e (BB, o, yi) = (CC, 7, v) and (BB, o', i’y +*s (CC, 1’, v'), or

e (BB, o, i) RLN (CC, 7, vy and (BB, o', p'y = (CC, t’, v').
(b) For any trace T via lé, there are unique traces U via 2% and V via V2, and schedule 1, r, such
that align(l,r,T,U, V).
(c) If Active(BB) = || B|| for some B, then (BB, &, yt) +*% (CC, 7, v) and (BB, o', ')y v (CC, ', v').

7.4 Relational Context Models, Biprogram Correctness, and Adequacy

Owing to careful design of Definitions 5.9, 5.10, and 7.4, the following notions are mostly about
relational aspects. Relational context models are pre-models that satisfy some specs. They play
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the same role in the semantics of relational judgments as unary context models play in unary
correctness.

Definition 7.9 (Context Model of Relational Spec, ®-model). A pre-model ¢ is a ®-model provided
that ¢, ¢; are @y, ®;-models, and for each m, with ®;(m) = R = S [5|n’], the bi-model ¢,(m)
satisfies the following, for all o, o”:

(@) 4 € @z(m)(o,0”’) iff there are no 7,7, 7" such that o|o’ =, Rég
where 5,5” are the spec-only variables on left and right.

(b) for all (r,7") in po(m)(c, o’), and all 7, ,v” such that olo” |=, R%;,, we have 7|7’ |=, S;;
and o—7 |Enpand o’'—7" |7’

A direct consequence of Definition 7.9, together with unary compatibility of pre-models and
condition (c) of Definition 5.9, is that for all N with mdl(m) < N, letting § = bnd(N), we have

(z|r") € @2(m)(c|o’) implies rlocs(a, §) C rlocs(t, §) and rlocs(a’, §) C rlocs(t’, §),

and there is also a direct consequence of condition (d) of Definition 5.9.
The projections of Lemma 7.8 are used in the following definition of relational correctness.

Definition 7.10 (Valid Relational Judgment ® |=,, CC: P ~> Q [¢|¢’] ). The judgment is valid
iff the following conditions hold for all states o and ¢’, ®-models ¢, refperms =, and values o, o’
such that glo” £, P22, (where 5,5 are the spec-only variables):

(Safety) It is not the case that (CC, olo’, _|_) o 4,
(Post) 7|7’ |=x Q%’%, for every 7,7’ with (CC, olo’, _|_) A (Lskip], 7|7, _|),

(Write) o>t | ¢ and o’—>1t" | ¢  for every 7,7’ with (CC, olo’, _|_) s

(Lskip], 7l7’, _|),
(R-safe) For every trace T from (CC, o|o’, _|_), let U,V be the projections of T; then every
configuration of U (respectively, V) satisfies r-safe for (®y, ¢, o) (respectively, (@1, ¢’, 0”’)),
(Encap) For every trace T from (CC, olc’, _|_),let U,V be the projections of T; then every step
of U (respectively, V) satisfies respect for (9o, M, ¢y, ¢, o) (respectively, (91, M, ¢1,¢",0")).

The values of spec-only variables are uniquely determined by the pre-states, just like in unary
specs. In virtue of the universal quantification over refperms 7, for a spec in standard form P ~>
OQ, the judgment says for any 7 that supports the agreements in # there exists an extension
p 2 x that supports the agreements in Q.

The following result confirms that the relational judgment is about unary executions. In par-
ticular, a judgment about a bi-com (C|C’) implies the expected property relating executions of C
and C’. The proof uses the embedding Lemma C.9, which says a biprogram’s traces cover all the
executions of its unary projections, unless it faults.

THEOREM 7.11 (ADEQUACY). Consider a valid judgment ® |=,, CC : P ~> Q [¢|e’]. Consider any
®-model ¢ and any o,0’, 7w witholo’ =, P. If(C/_C, o, _) %% (skip, 7, _) and ((7\7, of, ) FHLx
(skip, T/, _), thent|t" |=; Q. Moreover, all executions from (CI‘_C, o, _) and from (C?‘, o’, _) satisfy
Safety, Write, R-safe, and Encap in Definition 5.10.

Remark 1. 1t is not straightforward to formalize a converse to this result. The judgment about
CC says not only that the underlying unary executions are related as in the conclusion of the
theorem, but in addition certain intermediate states are in agreement according to the alignment
designated by the bi-ifs and bi-whiles in CC.
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8 RELATIONAL LOGIC

This section presents the rules for proving relational correctness judgments. Section 8.1 defines
how local equivalence specs are derived from unary specs. Section 8.2 gives the proof rules and
discusses them, including the derivation of the modular linking rule RMLINK, sketched as Equa-
tion (3) in Section 2.1. Section 8.3 considers derived rules involving framing and the ¢ modality.
Section 8.4 states and explains the lockstep alignment lemma, which is the key to proving sound-
ness of rules RLocEQ, RSOF, and RLINK from which RMLINK is derived. Section 8.5 considers nested
linking and Section 8.6 addressess unconditional equivalences. For Section 8.4 readers need to be
familiar with the semantic definitions in Section 7.

THEOREM 8.1 (SOUNDNESS OF RELATIONAL Logic). All the relational proof rules are sound
(Figure 30 and Appendix Figure 38).

8.1 Local Equivalence

In Section 2.1, we introduced the notion of local equivalence. There is a relational proof rule,
RLocEQ, which lifts a unary judgment to a relational one. The unary read effect, which has an
extensional semantics that is relational (Definition 5.10) gets lifted to an explicit relational prop-
erty, a local equivalence relating a command to itself. As basis for the proof rule, we now formalize
a construction, locEq, that applies to a unary spec and makes a relational spec—like the spec (9)
in Example 4.3, and others in Section 4.6—that expresses equivalence in terms of the given frame
condition and takes into account encapsulation boundaries.

Both unary and relational proof rules have conditions to enforce encapsulation with respect
to the boundaries of modules in scope. For unary this is discussed in Section 6.3. The semantic
condition Encap, in Definition 5.10, refers to a collective boundary. This is an effect formed as a
union of the relevant boundaries, for example in the expression (+N € ®, N # M.bnd(N)) where M
is the current module and @ is the hypothesis context. For brevity, several relational proof rules are
expressed using d to name the collective boundary; in particular, rule RLocEQ, which introduces
the locEq spec we now define.

Given a boundary ¢ and unary spec P ~> Q [¢], the desired pre-relation expresses agreement
on the readable locations. Absent a boundary, this can be written Ae, taking advantage of our
abbreviations, which say that Ae abbreviates Ards(¢), which in turn abbreviates a conjunction of
agreement formulas (Figure 14). But, we should avoid requiring agreement on variable alloc, as we
want to allow entirely different data structures within boundaries. The requisite agreement can be
expressed, using effect subtraction, as A(£\§®), where § is the collective boundary of the modules
to be respected. Note that §® abbreviates &, rd alloc (as in Definition 5.9).

A first guess for the post-relation would use agreement on the writable locations, but that cannot
be written as Aw2r(¢), because any state-dependent region expressions in write effects of ¢ should
be interpreted in the pre-state. This is why the concluding agreements in the definition of r-respect
are expressed in terms of the fresh and written locations. So this is what we need to express in
a spec. The solution is to use snapshot variables. If we use fresh variable syjoc in precondition
Salloc = alloc, then the fresh references can be described in post-states as alloc\sajioc and agreement
on fresh locations can be expressed as A(alloc\sajioc)‘any. For written (pre-existing) locations, we
can obtain the requisite agreements in terms of initial snapshots of the locations deemed writable
by ¢. For an example, see Equation (18) in Section 4.6.

For each wrG'f in ¢, we add a snapshot equation sg s = G to the precondition, or rather
B(sg,f = G). The desired post-relation is then Asg ¢‘f. Please note that sg ¢ is just a fresh iden-
tifier, written in a way to keep track of its use in connection with G f. The snapshots and agree-
ments are given by functions snap and Asnap defined next. The following definitions make use of
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effects like rd sg ¢*f, in which spec-only variables occur. These are used to define agreement for-
mulas used in postconditions—they are not used in frame conditions, where spec-only variables are
disallowed.

Definition 8.2 (Write Snapshots). For any effect ¢, we define functions snap from effects to unary
formulas and Asnap from effects to read effects:

snap(e, n) = snap(e) A snap(n) Asnap(e, n) = Asnap(e), Asnap(n)
snap(wr x) = true Asnap(wr x) = rdx if x # alloc else »
snap(wr G f) = sgfr=G Asnap(wr G*f) Z rdsgr'f

snap(wrG'any) £ sgany =G Asnap(wrG'any) = rdsgany‘f,rdsG anyg, . - -
snap(. . .) = true Asnap(. . .) E

Notice that Asnap omits alloc and uses the snapshot variables introduced by snap.3® Notice also
that in the case Asnap(wr G‘any) a single snapshot variable s any is used, but the image expression
in G‘any gets expanded to the constituent fields (f, g, . ..).

The following result confirms that Asnap serves the purpose of designating the writable loca-
tions from the perspective of the post-state. It uses semantic notions from Sections 5.1 and 5.2.

LEmMA 8.3. If 7 |= snap(e) and t—v |= ¢, then wlocs(r, £)\rlocs(v, §®) = rlocs(v, Asnap(e)\5).

The following definition of locEq uses effect subtraction to avoid asserting agreement inside the
given boundary, in both pre and post. For example, if ¢ includes wr x, wr G*f, then we convert to
read effects and use the snapshot variable: rd x, rd sg ¢ f. Then (rd x, rd sg £ f)\& will remove x if
rd x is in 8, and result in rd (s, £ \H)‘f if rd H'f is in 6.

Definition 8.4 (Local Equivalence). For spec P ~» Q [¢] and boundary &, define relational spec
locEqs(P ~ Q[e]) = BP A Aeg A B(saioc = alloc A snap(e)) = G(BQ A Aey’) [e],
where e = rds(e)\6® and &g = (rd (alloc\sajioc)‘any, Asnap(e))\S.

For unary context ®, define LocEqs(®) = (®,P,P;) where Oy(m) is locEqs(P(m)) for each
m e O.

If P~ Qe] and § are wfin T, then locEqs(P ~> Q [¢]) is wf in T'|T" and has the same spec-only
variables on both sides.

Recall from Section 6.3 the Stack client with precondition P £ ¢ € r A r # (pool U pool‘rep)
and frame ¢ £ rwec,r, alloc, r‘val, where the boundary § is rd pool, pool‘any, pool‘rep‘any. For the
precondition, the reads are rd ¢, rd r, rd alloc, rd r‘val. Subtracting 5® leaves the variables c, r and is
more interesting for r‘val. Expanding abbreviation any and discarding empty regions, we are left
with rd (r\(pool U pool‘rep))‘val. So the precondition Aeg is Ac A Ar A A(r\(pool U pool‘rep))‘val.
(In conjunction with BP, the formula A(r\(pool U pool‘rep))‘val is equivalent to Ar‘val.) There is
a snapshot variable in precondition s, .4 = r, due to wrr‘val. It is used in this conjunct of the
Asnap part of the postcondition: A(s,, 41 \(pool U pool‘rep))‘val.

38The snapshot variables used should be distinct from each other, distinct from the ones used in the original spec, and
also globally unique so that the local equivalence specs of different methods use different variables. In the definition of
LocEq, where multiple method specs are considered, we adopt the convention of naming snapshots for method m as s g’ r
(and snap™, Asnap™ for short), to distinguish them from each other and from the snapshots used in the conclusion of a
judgment.
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0,0k, |[C||: P~ Q]
D, 0 Fpai(m) (BIB') : @(m)  ©0,00 Fpi(m) B:@p(m) 01,01 Fpi(my B : ©1(m)
8= (+L € (9,0). bnd(L)) (®,0) = LocEqs(P,0) P = pre(locEqs(P ~ Q [€]))
VNedLe® N LKL VN,LLNe®OAN<L=Le€(D0O) C is let-free

O, let m=(B|B)in|C|: P~ Qle]

RLINK

®+DD: P> Q el CC «* DD @y F m() : do(m) @ Fm() : Dy (m)
RWEAVE RCALL
O+ CC: P> Qele] OF [m()]: d2(m)

(+L € (®),L # M. bnd(L)) -/. wr x, wralloc
® kpr [x = new K| : true &> & (x = x) [wrx, rwalloc] REMPPRE @ + CC : false 2> Q [¢]¢’]

RALLOC

QrpyC: P~ Qle] P |= w2r(e) < rds(e) 8=(+N € &,N # M. bnd(N)) C is let-free
LocEqs(®) Far [[C]| : locEqs(P ~ Q [e])

RLoOCEQ

Dy C: P~ Qe] O rC P~ Q€] oss OFCC: P Qele]
B
O+ (C|IC") : (PUADP') = (QADQ'D [ele'] O+ CC: OP => 0Q [e]e]

LocEqs(®,0) kg [[C]| : locEqs (P ~ Q [e]) |= bnd(N)|bnd(N) frm N N = ON
N+M Neo Vm e ®. mdl(m) £ N 8= (+L € (®,0),L + M. bnd(L)) C is let-free

LocEqs(®), LocEqs(©) ® N kar |[C]| = locEqs(P ~ Q [e]) O N

RSOF

OFCC: P~ Qlele] P l=nln’ frm R PAR=(nl.eQAby 1€)
O+CC: PAR~> QAR [ele']

RFRAME

O+ CC: P= Qlele] R=P Q=S P = (ele) < (nln’)
O+ CC: R~ S[nly']

RCONSEQ

O+ CC: Py~ Q el O+ CC: P~ Q el
O+ CC: PyVv P~ Qlele]

RrD1sj

O+-CC: P> Qlele] OFCC: P> Q[ele]
PFHCC: P=> QAQ [Slé’,]

RCONJ

Fig. 30. Selected relational proof rules (for others see Appendix Figure 38). The typing context | is un-
changed thoughout, so omitted. The current module is omitted in rules where it is the same in all the judg-
ments and unconstrained.

8.2 Relational Proof Rules and Derivation of RMLINK

Selected proof rules are in Figure 30. For relational judgments, the validity conditions (Defini-
tion 7.10) have been carefully formulated to leverage the unary ones (Definition 5.10). This obvi-
ates the need for rules like CTXINTRO at the relational level. Rule RCALL, for aligned calls using
a relational spec, relies on unary premises to enforce the requisite encapsulation conditions. The
relational rules for bi-if and bi-while have separator conditions to enforce encapsulation, taken
straight from their unary rules (e.g., Ir in Figure 23). The relational rules for bi-while and sequence
include an immunity condition for framing of their effects, again taken straight from the unary
rules.

The linking rule, RLINK, relates a client command C to itself using relations that imply its exe-
cutions can be aligned lockstep. It can be instantiated with local equivalence specs but also with
more general specs that include hidden invariants and coupling on encapsulated state. To allow
this generality in a sound way, rule RLINK uses the following notion.
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Definition 8.5 (Covariant Spec Implication = ). Define (Ry => Sy [&0]e]) = (R1 = S [e1]e]])
iff Ry = Ry and Sy = S, are valid and the effects are the same: ¢y = ¢ and ¢; = ¢]. For contexts
® and ¥, define ® = ¥ to mean they have the same methods and = holds for the relational spec
of each method.

For example, we have locEqgs(spec) ® M = locEqs(spec) for any 3, spec, M.

In RLINK, side conditions constrain module imports, exactly as in unary LINK, as part of the en-
forcement of encapsulation. As with LINK, some of the conditions merely express module structure.
The soundness proof for RLINK goes by induction on biprogram traces, similar to the soundness
proof for unary LINK; the relational hypothesis can be used, because the relevant context calls are
aligned (see Appendices B.10 and D.10).

Rule REMB lifts unary judgments to a relational one. It applies to arbitrary commands. For ex-
ample, it can be applied to the sumpub program of Equation (4), to prove the judgment about
(sumpub|sumpub) by lifting a unary spec as described in Section 4.5. It is also needed to obtain re-
lational judgments about assignments, and it enables the use of unary specs in one-sided method
calls.

For allocation, there needs to be a way to indicate when a pair of allocations are meant to
be aligned; this is the purpose of RALLOC. Using RCoNj, REMB, the unary rule Arroc, and the
frame rules, one can add postconditions like A{x}‘f and freshness of x. (Detailed derivations for
freshness can be found in RLIII (Section 7.1)). Like RCALL, rule RALLOC does not have the minimal
hypothesis context but rather allows an arbitrary one; this is needed, because we do not have
context introduction rules at the relational level. To enforce encapsulation, RALLOC has a side
condition that simply says neither x nor alloc occur in the boundaries of any models other than
the current one.

Rule RLocEQ has a side condition about the unary judgment’s frame condition: the writes must
be subsumed by the reads (subeffect judgment P |= w2r(e) < rds(¢)). This ensures that the precon-
dition of the relational conclusion has agreement for writable locations. The requirement that C
is let-free is needed in accord with Lemma 8.9.

Example 8.6 (How Framing is Used with RLOCEQ). Just as the unary axioms for assignments are
“small” in the sense that they only describe the locations relevant to the command’s behavior, we
are interested in program equivalence described in terms of the relevant locations. As an example,
without methods, consider this valid judgment (omitting the module, which is irrelevant):

Fx:=y.f;z2:=w):y # 0~ truele],
where ¢ = wrx,z,rdw,y,y.f. It should entail this relational one:
Flx =y.fiz:=w:B(y # 0) A Ay, w, {y}f) = Btrue A A(x, z)[e].

Desugared, the precondition agreement is Ay A Aw A A{y}‘f. The precondition only requires
agreement on locations that are read. The postcondition tells about the variables that are written.
In fact w and y are unchanged, and we can strengthen the postcondition to

Flx:=y.fiz:=w] By £ 0) A Ay, w, {y}‘f) = Btrue A A(x, z,y, w)[e],

using the RFRAME rule, because A(y, w) is separate from the writes. Rule RConsEQ allows us to
strengthen the precondition by adding the agreements A(u, {y}‘g):

Flx=y.fiz:=w] : By #0) A Ay, w, {y} f,u, {y}g9) ~ Btrue A A(x, z, y, w)[e].
Now rule RFRAME allows us to carry these agreements over the command, because the locations
u and y.g are separate from the write effects:

Fllx = yf, z = WJ_| : B(y * 0) A A(y’ w, {y}‘f’ u, {y}"g) = Btrue A A(x’ Y, w, U, {y}‘g)[f]
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dr, C: P~ Q[e] @O Ma (B|B') : locEqs(®) (m) ® M S8 =bnd(M)
POMiyB:O(m)OM OO MiyB :0(m)OM  M=mdi(m)  Pl=war(e) < rds(e)
= 6|6 frm M M=0OM C is let-free pre(locEqs(P ~ Q [¢])) = M
Fe (letm=BinC|let m=B"inC) : locEqs(P ~ Q [¢])

RMLINK

Dr, C: P~ Qe]
LocEq, (@) e [C] : locEqs (P ~ Q [¢]) .
Y ke ||C]| : locEqs(P ~> Q [¢]) © M Y kar (B|B') : locEqs(®(m)) ® M
Fe let m= (B|B’) in |[C] : locEqs(P ~ Q [¢]) ® M
ke let m= (B|B’) in |[C]| : locEqs(P ~ Q [¢])
Fe (letm=BinC|let m=B"inC) : locEqs(P ~ Q [¢])

RLocEQ

RLINK

RCONSEQ

RWEAVE

Fig. 31. RMLINk and its derivation, where ¥ abbreviates LocEqs(®) ® M, @ specifies m, 6 = bnd(M), and
M = mdl(m). See text for details.

In summary, the local equivalence spec expresses a program relation in terms of only the loca-
tions readable and writable by the command. Such equivalence can be extended to arbitrary other
locations not touched by the command.

Rule RSOF follows the pattern of the unary SOF in its use of ®M from Definition 4.7. It can
only be instantiated with specs in standard form, so that ® M is defined. It requires refperm mono-
tonicity of the coupling, i.e., N = oN; more on this in Section 8.3.

Figure 31 presents the relational modular linking rule, RMLINK, and its derivation. (Here spe-
cialized to a single method, i.e., dom(®) = {m}, for clarity). The side conditions are P |=
w2r(e) < rds(e) (for RLOCEQ); |= 5|6 frm M and M = oM (for rRSOF); dom(®) = {m}
(for RLINK); and pre(locEqs(P ~ Q [e])) = M (for RCoNsEQ, to drop AM from the precon-
dition; of course AM is also dropped from postcondition). For RWEAVE, we use the fact that
(letm=BinC | let m=B"in C) +* let m = (B|B’) in ||C||. Vertical elipses in the derivation
indicate that, in addition to the expected relational premise for B and B’, unary premises are re-
quired: ® ® M Fyr B : ®(m) ® Mand @ ® M by B : ®(m) ® M. These are required by RLINK,
for technical reasons explained in its proof (Section D.10).

The implication pre(locEqs(P ~ Q [¢])) = M refers to the precondition of local equivalence.
Typically, the implication is valid, because P includes initial conditions that imply M just as in
the case of unary modular linking and module invariant. This is the responsibility of the module
developer, who defines M, shows its framing by the boundary, and shows refperm monotonicity

of M.

Example 8.7 (Lllustrating RMLINK with SSSP). We instantiate M in the rule with PQ (Sec-
tion 3) and ® with the specs of PQ’s public methods. Let § be PQ’s dynamic boundary
rd pool, pool‘any, pool‘rep‘any. We instantiate client C with Cygs)p, an implementation of Dijkstra’s
single-source shortest-paths algorithm acting on global variables gph, src, and wts. For simplic-
ity, gph is a variable of type “mathematical graph,” for which we use an API supporting usual
operations. We assume the vertex set V(gph) is an initial segment of naturals so the source vertex
variable src has type int. Edges have positive integer weights. The integer array wts, of length
|V(gph)| and allocated by the client, is for the output: for every vertex v € V(gph), Csssp computes
in wts[v] the weight of the shortest path from src to v.

The unary spec for Cyssp is P~ Q [¢] where P = src € V(gph) A pool = @; Q = true;
and ¢ = rd gph, src, rw wts, pool, pool‘any, pool‘rep‘any, alloc. The trivial postcondition does not
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specify functional behavior but the spec is still useful. The local equivalence spec locEqs(P ~> Q[¢])
is R = OS [¢] where R = B(src € V(gph) A pool = @ A sajioc = alloc) A A(wts, gph, src); and
S = A(wts, (alloc\(salioc U pool U pool‘rep))‘any), eliding details about spec-only variables apart
from saioc. Here saioc snapshots alloc so fresh locations are those in alloc\s,jioc. This spec ensures
agreement on fresh locations that are not in PQ’s dynamic boundary.

The coupling Mpg is Vq:Pqueue € pool|g:Pqueue € pool. Aqg = Vn € q.rep|n € q.rep. An =
..., conjoined with the private invariants I and I’ (eliding parts shown in Example 4.3). One side
condition of RMLINK is pre(locEqs(P ~> Q [e])) = Mpg, which is easy to show: expanding
definitions, the antecedent includes B(pool = @), which implies the private invariants and the
coupling relation. The subeffect P |= w2r(e) < rds(e) is immediate from the definition of ¢. The
framing judgment, |= 5|8 frm Mpo, is easily proved by SMT, as is refperm monotonicity of Mpg.

8.3 Refperm Monotonicity, Standard form, and Agreement Compatibility

For modular linking and most other purposes, we are concerned with specs in the standard form,
i.e., either R ~> 08 [n] or R ~> S [n] where R and S are ¢-free. In this section, we consider the
rules that give rise to other forms, and related notions concerning formulas with <. It is possible
to reformulate the logic to consider only standard form specs. We choose the present formulation,
because some proof rules can be simpler and more orthogonal.

For reasoning about sequential composition one wants to combine judgments for specs £ =~
OQ and Q =~ OR into a judgment for P ~> OGR (omitting frame for clarity). It is easy to derive a
rule for specs of this form, from the more basic rule for sequence together rules RPoss and RCONSEQ.
From Q ~> OR, we get OQ ~> OGOR by RPoss. Then, we get OQ ~ OR by RCONSEQ, because
OOR = ORisvalid. From £ ~> ¢Q and ¢Q = OR we get P ~> OR by the sequence rule.

Similarly, one can derive a relational rule for loops, with premises in standard form and relational
invariant Q that is ¢-free. In accord with the loop rule sketched as Equation (16), we elide frame
conditions, context, and side conditions for immunity and encapsulation. The derived rule looks
like this:

FCC:QA-P A=P AEIADE}) = 0Q (CClskip) : Q AP A (E] = 0Q
F (skiplCC) : QAP APE') = 0Q  Q=E=E V(P A(E] V (P’ ADE'D)
+ while EEE" - PP’ do CC : Q = O(Q A {(=E{ A p=E'})

(32)

Given the premises, three applications of RPoss yields CC : O(QA=P A=P’' A{EIADE'}) =~ OOQ,
(CClskip) : &(Q AP A (E]) = ©OQ, and (skip|CC) : O(Q A P’ A PE'}) = ©0Q. But 00Q is
equivalent to ©Q. Furthermore, {(E{ and pE’} are agreement-free and thus refperm independent.
Also P, P’ are refperm independent, because they are agreement free by the wellformedness con-
dition mentioned at the end of Section 3.1. So, using property (31), the precondition of the second
judgment, G(Q A P A (E{) is equivalent to one where ¢ is applied only to Q, i.e., CQ A P A {E{.
Similarly for the other two preconditions. So by RCONSEQ, we get

e CC: 0Q A =P A =P’ AMEIADE) = 0Q,
e (CC|skip) : CQ AP A {E] = ©Q,
e (skip|CC) : OQ AP’ ADE') = OQ.
With these, we instantiate the rule (16) with ¢Q for Q, which yields while E|E” - P|P’ do CC :

OQ = OQA{—E{Ap—E’}).Finally, the implication Q = ¢Q is valid, and we can distribute refperm
independent formulas under <; so using RCONSEQ, we obtain the conclusion of Equation (32).
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For a bi-while with false alignment guards, there is a derived rule with a single premise + CC :
Q A (E{ A DE’) = OQ. It can be derived, using rule REMPPRE.

Refperm monotonicity. Given a judgment ® + CC : P ~> OQ [¢|¢’], rule RFRAME yields @ + CC :
P AR = OQ AR [¢|e’], which is not in the standard form. But suppose R is refperm monotonic,
ie, R = oOR is valid. Then by Equation (30), we have 0Q A R = O(Q A R). So using RCONSEQ
we get this derived frame rule:

O CC: P~ 0Q |ele] P E=nlp’ frm R PAR=(nl.eQAby /. €} R = oR

OFCC: PAR = O(QAR) |[ele’]

Refperm monotonicity is also a side condition for the coupling relation in rule RSOF. In that rule,
moving the coupling relation under < is done by the @® operation (Definition 4.7).

Agreement formulas are refperm monotonic, as are refperm independent formulas. But negation
does not preserve refperm monotonicity, and in particular a formula of the form Ax = R is not
refperm monotonic even if R is. Such implications are used in our example couplings. In particular,
implication is used in the following idiomatic pattern:

Gz=G AVWxKixK. {x € G{Alx € G') A Ax = R). (33)
The second conjunct can be written in sugared form as Vx:K € Gix:K € G’. Ax = R.

LEMMA 8.8 (REFPERM MONOTONICITY). (i) Any agreement formula is refperm monotonic and so
is any refperm independent formula. (ii) Refperm monotonicity is preserved by conjunction, disjunc-
tion, and quantification. (iii) Any formula of the form (33), with R refperm monotonic, is refperm
monotonic.

The coupling M, s in Section 4.6 is refperm monotonic. The embedded invariants {Ir{ and pI4, )
are refperm monotonic, by (i) in the lemma, as is the consequent eqPartition({u.part{, pu.part}))
in the relation (19). So refperm monotonicity of M, follows using (ii) and (iii).

The coupling Mpo in Example 4.3 is refperm monotonic. To see why, first note that Equation (33)
is equivalent to G/K = G’'/K A (Vx:K € Gix:K € G’'. Ax = R), because a quantified variable of
type K ranges over allocated (non-null) references of type K. So inside the quantification, x € G
is equivalent to x € G/K. The relevant subformula of Mpg is q.rep/Pnode = q.rep/Pnode. Now,
we distill the following pattern from Mpg, in which we assume f : rgn and assume both Q and
R are refperm monotonic:

G=2GA(VxK € GxK € G. Ax = Q A{x}'f = {x}'f A(Vy:L € {x}'fiy:L € {x}'f. Ay = R)).

By (iii) in the lemma, the subformula {x}‘f = {x}'f A (Vy:L € x.fily:L € x.f. Ay = R)is
refperm monotonic. Then by (ii), we extend that to the conjunction with Q. Then by (iii), the
displayed formula is refperm monotonic. Note that this relies on agreement of the region values,
{x}f = {x}f, not pairwise agreement A{x}‘f on field values.

This discussion provides guidelines for writing specs, but checking refperm monotonicity can
be automated. Validity of R = oOR only involves universal quantification. Unfolding semantic
definitions, it says: for all 7, p,0,0’, if 0|0’ |z R and p 2 7 then o|o’ |=, R. A straightforward
encoding of this in our prototype suffices to show refperm monotonicity of the example couplings.

Agreement compatibility. The last rule for which ¢ is an issue is RCoNj. With premises of the
form P =~ OQp and P =~ OQ it yields P =~ OQy A ©Q;. To obtain the standard form P >
O(Qp A @q) one can use RCONSEQ but only if @y and Q; are agreement compatible, which means
this implication is valid:

OQ A OQ; = O(Qy A Q). (34)

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 4, Article 25. Pub. date: December 2022.



A Relational Program Logic with Data Abstraction and Dynamic Framing 25:67

An easy case is where Q) or Q; is refperm independent, in which case agreement compatibility
holds by Equation (31). Formulas that depend on the refperm involve agreements, and for these,
we do not have an easy characterization of agreement compatibility.

In the prototype, < is not explicit in specs. A current refperm is witnessed in ghost state, so
even when using conjunctive splitting, we effectively get G(Qy A Q) as desired. So agreement
compatibility is not an issue in the tool. Morever our case studies show that agreement compati-
bility is achievable in practical examples where it is needed. Please note that nontrivial formulas
of the form (34) are not amenable to validity checking by SMT, owing to the existential quantifier
that underlies < in the consequent.*

We end this section with some examples regarding agreement compatibility. But it is not needed
later so it is safe to skip now to Section 8.4.

As a first example, consider the agreements A(G/List) head and A(G/Cell)‘val, where class List
has field head : Node and class Cell has field val : int. The truth value of A(G/List)‘head depends
only on references of type List and Node. The truth value of A(G/Cell)‘val depends only on refer-
ences of type Cell. Refperms respect types, so extensions of a refperm to witness ¢A(G/List) head
and GA(G/Cell)‘val can be combined to witness &(A(G/List) head A A(G/Cell)val). Such con-
siderations also apply in a case like Btype(G, List) A AG‘head and Btype(H, Cell) A AH val.

Agreement compatibility of Q, and @, may fail even if both formulas are Q and R are refperm
monotonic. For example, the formula ¢(x = y) A O(x = z A pz # y)) is satisfiable but &(x =
yAx = z Az # y)) is not. This example may give the impression that disequalities are the
culprit but they are not. Consider these two formulas: O(x = x" Ay =y’ )and O(x =2y’ Ay = x7)
(for distinct variables x, x’, y, y’). Both are satisfiable. In fact their combination, ¢(x = x’ Ay =
y' Ax =y’ Ay =x’),is also satisfiable: it can hold when {x = y{ A px’ = y’}). But the agreement-
compatibility implication is not valid. Consider o, ¢’, 7 where x, y, x", y’ have four distinct values,
none of which are in the domain or range of 7. Then both ¢(x = x’Ay = y’) and O(x =y’ Ay = x7)
are true but O(x =x’' Ay =y Ax =y’ Ay = x’) is false.

One might guess AG'f is agreement compatible with AH*g where f, g are distinct field names.
But consider A{x}‘f and A{x}‘g for distinct fields f, g of some reference type. Suppose o|o’ =,
x = x, so n(o(x)) = o’(x). Suppose o(x.f) and o(x.g) are non-null values not in dom (r), and
likewise ¢’(x. f) and o’ (x.g) are non-null values not in rng (7). Then, we have o|o’ |=, OA{x} fA
OA{x}‘g, because 7 can be extended to link o(x.f) with ¢’(x.f) and mut. mut. for g. However,
if o(x.f) = o(x.g) and o’(x.f) # o’(x.g) then there is no single extension of & that satisfies
A{x}f A A{x}g.

Region disjointness G# H does not entail agreement compatiblity of AG*f with AH‘f. Consider
A{x}'f and A{y}‘g. Suppose o]0’ =z x = x Ay = y AB(x # y). Similar to the preceding example,
if o(x.f) = o(y.g) and o’(x.f) # o’(y.g) and none of the field values are in 7, then we have
alo’ Ex OA{x}f A OA{y}‘g but again there is no extension of 7 that satisfies A{x}f A A{y}‘g.

8.4 Lockstep Alignment Lemma

The lockstep alignment lemma brings together the semantics of encapsulation in the unary logic
(Definition 5.10), in which dependency is expressed in terms of two runs under a single unary
context model, with the biprogram semantics, which involves two possibly different unary con-
text models as needed for linking with two module implementations. The lemma says that, from
states that agree on what may be read, a fully-aligned biprogram remains fully aligned through its

39For the record, earlier versions of this article had a slightly different RSOF, with agreement compatibility as a side condi-
tion for the coupling rather than refperm monotonicity (arXiv:1910.14560v3).
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execution, and maintains agreements sufficient to establish the postcondition of local equivalence—
for any of its traces that satisfy the r-safe and respect conditions of Definition 5.10. In light of trace
projection (Lemma 7.8), it says a pair of unary executions can be aligned lockstep, with strong
agreements asserted at each aligned pair of configurations. The result does not rely on validity of
a judgment—rather, we use this result to prove soundness of rules RLocEQ, RSOF, and RLINK.

A number of subtleties in the unary semantics of encapsulation, in the biprogram semantics, and
in the definition of locEq are all motivated by difficulties in obtaining a result that is sufficiently
strong to support the soundness proofs for the three rules from which the modular relational
linking rule is derived (RLocEQ, RSOF, and RLINK).

LEMMA 8.9 (LOCKSTEP ALIGNMENT). Suppose

(i) ® = LocEqs(¥) and ¢ is a P-model, where § = (+N € ¥, N # M. bnd(N)),
(ii) olo” [ pre(locEqs(P ~ Q [e])),
(ili) T is a trace {||C||, olo”’, _|_) =5 (BB, 1|7/, u|p’y and C is let-free,
(iv) Let U, V be the projections of T. Then U (respectively, V) is r-safe for (@, ¢, o) (respectively,
for (91, ¢, 0”)) and respects (Pg, M, ¢y, ¢, o) (respectively, (®1, M, ¢1, €, 0")).

Then there are B, p, with

(v) BB=||B|,p2 7, and p =/,
(vi) Lagree(r,t’, p, (freshL(c, 1) U rlocs(c, €) U wrtin(c, 7))\ rlocs(z, §%)), and
(vii) Lagree(r’,t, p~, (freshL(c”, ") U rlocs(a”’, €) U wrttn(c”’, t’))\rlocs(z’, §9)).

In other words, the Lemma says that if we have fully aligned code, unary encapsulation (iv), ini-
tial agreement (ii), and relational specs that imply the local equivalence spec (but may be strength-
ened to include hidden invariants and coupling) (i), then the code remains fully aligned at every
step, and agreements outside encapsulated state are preserved. Condition (v) can be strengthened
to say pr and p’ are empty, which holds owing to the assumption that C is let-free. We keep this for-
mulation, because it suffices and shows what we expect for the extensions discussed in Section 8.5.

The lemma is proved by induction on steps, maintaining (v)-(vii), using several technical lemmas
for preservation of agreement (in Appendix Section D.2).

Lemma 8.9 resembles Lemma 5.11 but has significant differences. Lemma 8.9 is for client code
outside boundaries, in a setting where there are different implementations of methods. Lemma 5.11
is for code potentially inside boundaries, but relating two runs of exactly the same program. In the
proofs of both results, r-safety helps ensure that the small-step dependency embodied by r-respect
implies an end-to-end dependency condition.

8.5 Nested Linking

The unary and relational linking rules allow simultaneous linking of multiple modules, for example
linking MST with the PQ and Graph modules. In RLII (Section 9), a modular linking rule is derived
for simultaneous linking of two modules with mutually recursive methods, each respecting the
other’s boundary. That can be done with both the unary and relational rules in this article: the
judgments for correctness of the bodies are extended with the other module’s invariant or coupling
(using SOF or RSOF) and then linked (using LINk or RLINK). In RLII and the unary logic in this
article, it is also possible for linking to be nested (shown by examples in Sections 2.4 and 8.4 of
RLII). However, there is a limitation of the relational rules with nested use of bi-let.

To set the stage, we carry out the derivation of modular linking as in Figure 24 but with a second
module in context, to which we then apply modular linking. Methods of ® may be used in both
the client C and the implementation B. The implementation of ® has its own internal state with
invariant J:
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D,OFe C: P~ Qle]
O, (OB Nre C: (P~ Qle])DI D, OPI)Fpm B:O(m)D I
Dreletm=BinC: (P~ Qle])OI
OO Jreletm=BinC: (P~ QeI J QOJFND:®(n) BT
teletn=Dinletm=BinC: (P~ Qe)BID ]

We would like the relational analog of this derivation, so that with coupling M for module M and
coupling N for N one could obtain the judgment

ko let n=(D|D’) in let m = (B|B’) in [[C]] : locEqs(P ~ Q[e) D M DO N.

Following the pattern of the derivation above, one would like to apply RSOF for N to the judg-
ment LocEqs(®) +, let m = (B|B’) in [[C] : locEqs(P~Q [e]) ® M, where § = bnd(M), bnd(N).
However, the current RSOF and RLINK are only for fully aligned client code, and the “client” body
let m = (B|B’) in [|C|| of the outer let is not in that form. Soundness of RSOF hinges on the calls
being sync’d—but in the program let m = (B|B’) in ||C]|, calls to n (the method of ®) from B or B’
are not sync’d, because m() steps to (B|B’), which has no sync’d calls. The restriction of bi-let to
separate unary commands simplifies the technical development considerably. But, we would like
to generalize the bi-let form to allow let m = BB in CC where BB is sufficiently woven that all
its calls are sync’d, and CC is a nest of such bi-lets enclosing a fully aligned client. This requires
Lemma 8.9 to be generalized to account for such biprogram computations. The Lemma relies on
agreements derived from unary Encap, but this is no longer sufficient to handle computations with
sub-computations that are not fully aligned. The premises of RSOF and RLINK entail that such
computations can make sync’d calls, but this fact is not retained in the semantics of relational
judgments. Details of our solution are beyond the scope of this article.

8.6 Unconditional Equivalence Transformations

An important feature of relational logic that is introduced in Banerjee et al. [11] (long version)
is unconditional rewrites. These are correctness-preserving transformations of control structure
in commands that enable the use of the bi-if and bi-while forms for programs with differing con-
trol structure. An example is the equivalence while E do C = while E do (C; while E A E0 do C).
Banerjee et al. use this and another loop unrolling equivalence to prove correctness of a loop tiling
optimization. In that proof the loop iterations are aligned lockstep, i.e., rule RWHILE and a bi-while
with false alignment guards.

In the cited work, it suffices to define = as a safety-preserving trace equivalence. These sorts of
transformations do not alter the series of states reached and which atomic commands are executed.
From the same initial state and environment, the computations proceed almost in step-by-step cor-
respondence, the exceptions being different manipulation of the control state in some cases, which
leaves the (data) state and method environment unchanged. As a result, correctness is preserved
in the sense that if C = Dthen ® |= C: P ~ Q [¢] implies® = D : P ~ Q [¢]. Moreover,
O = (CIC) : P ~ Qe|le’] implies @ |= (D|C") : P =~ Q [e|e’] (and the same on the right
side). However, to cater for the stronger conditions of valid unary and relational judgments in the
present work (Definitions 5.10 and 7.10), a stronger notion is needed, because those conditions
refer to the control.

As an example, suppose we have a valid correctness judgment ® +j; while Edo C : P ~ Q [¢]
and consider the form while E do (C; while E A E0 do C). If EO reads some variable that is encap-
sulated by a module, different from M, in @, then it may violate the Encap condition of Defini-
tion 5.10 and invalidate the judgment ® +; while E do (C; while E A E0 do C) : P ~ Q [¢]. For the
equivalences considered here, which involve rearranging control structure, branch conditions turn
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out to be the main complication. Details of our formalization of = and its rules are beyond the scope
of this article.

9 REMARKS ON CASE STUDIES

WhyRel is a proof-of-principle prototype relational verifier which we developed and used to inves-
tigate the applicability of the logic and its amenability to automation. The tool supports general
relational verification and includes support for relational modular linking. It has been used to spec-
ify and verify a number of examples. This includes examples discussed in earlier sections: Kruskal’s
MST as client of two implementations of union-find; Dijkstra’s shortest-path algorithm as client of
two implementations of PQ; and the tabulate and sumpub examples. We have done other examples
taken from recent literature on relational verification, including information flow, other relational
properties, and equivalence for program transformations. A current version of the prototype and
examples are available open source.*’ In addition to the following highlights and the documenta-
tion in the software distribution, further information is available in the thesis of Nikouei [75] (but
note it describes a previous implementation of WhyRel).

The WhyRel prototype is based on the Why3 platform.*! Why?3 serves as an intermediate ver-
ification language to which WhyRel translates specs and programs. Why3 generates verification
conditions for pre-post specs and programs in a first-order fragment of ML (WhyML) without
shared references, and discharges those conditions by orchestrating calls to automated provers
and proof assistants. Like Why3, WhyRel is “auto-active” [63], requiring some user interaction
while leveraging automated provers especially SMT solvers. Our translation involves substantial
encoding, because Why3 does not support shared mutable objects, dynamic frames, or hiding of in-
variants. In this section, we describe the encoding, the user interaction needed, and our experience
with the case studies.

The language supported by WhyRel extends the language of Figure 5 and Section 3.2 with arrays,
parameters/results, and mathematical data types (defined in Why3 theories). Module interfaces are
separate from module implementations and class fields can have module scope. The spec language
is like that of the article (with usual keywords requires, ensures, etc.), extended with “old” expres-
sions, assertions, loop invariants, assumptions, and explicit ghost declarations. WhyRel effectively
works with relational specs in standard form: the possibility modal (¢) is not used and instead a
ghost refperm is updated by the connect—with ghost operation described in Section 4.4.

WhyRel has three main capabilities: unary verification, relational verification, and relational
verification with modular linking. The user provides module interfaces (class declarations, method
specs, and boundaries which may be empty) and unary module implementations which can im-
port Why3 theories providing mathematical types (like lists, graphs, and partitions used in our
case studies). These theories can include lemmas, which get proved by Why3. The user can also
state lemmas in our source language, e.g., useful consequences of public invariants. For relational
verification, the user provides a module with biprograms, which we call a bimodule. Each bimod-
ule relates two unary modules. WhyRel checks, for each bimethod in a bimodule, that its unary
projections conform to the (unary) programs being related. This ensures the biprogram can be
constructed by weaving those unary programs (Lemma 4.6). Thus, verification of the biprogram
implies a relation between the unary programs, as per the weaving rule (13).

For relational modular linking of a client program and two versions of a module the client im-
ports, WhyRel can generate the local equivalence specs for the module methods. The user can edit

“Ohttps://github.com/dnaumann/RelRL.
“why3.Iri.fr.
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the specs to add the chosen coupling relation, and use these in a bimodule for relating the module
methods. WhyRel also generates the side conditions of rule RMLINK, which include framing of
invariants/coupling by the boundary and refperm monotonicity of the coupling.

The user provides specs and also loop invariants and loop frame conditions; for hiding, the
user provides boundaries, private invariants, and coupling relations. Once WhyRel has translated
the specs and programs/biprograms to WhyML, Why3 generates verification conditions. The user
guides Why3 to prove these, by applying tactics (called transformations) like splitting conjunctions.
To complete a verification the user typically has to assert intermediate facts and sometimes state
and prove lemmas (expressed in our source language). In our case studies, the SMT-solvers Alt-
Ergo, Z3, and CVC4 discharge all obligations automatically.

Translation to Why3. We encode methods and specs as Why3 functions that have specs. Why3
is procedure-modular: it verifies each function assuming the specs of the ones it imports, which
corresponds to a hypothesis context in our logic. Why3 provides ghost annotations and checks that
ghost code terminates and does not interfere with the underlying program. We use this feature to
mark the allocation map, which is part of our heap model, and translate source code ghost state to
Why?3 ghost state. Why3 is sound under idealizations also made in our logic: unbounded integers
and unbounded maps (which we used to model unbounded heap).

The Why3 language (including WhyML) does not include shared mutable objects. So, we use
mutable records and maps to explicitly model the heap using the standard field-as-array represen-
tation, with references as an uninterpreted type and an extra field, alloct, for allocation to model
the alloc variable and typing of references. WhyML has ML-style references constrained by static
analysis that precludes aliasing; we use those to encode local variables. Invariants of source lan-
guage semantics, like the absence of dangling pointers, are encoded using Why3’s invariant fea-
ture for the data type of states. (States have the heap and global variables.) Common elements
of translation are included in a WhyRel standard library that includes lemmas about operations
on regions, which aids automated proving. Why3 specs include coarse grained reads and writes
clauses enforced by simple syntactic analysis, which is not suited to our purposes. To encode the
stateful frame conditions of our logic, WhyRel expresses write effects semantically, in universally
quantified postconditions using “old” expressions. In accord with Definition 5.10, read effects are
checked together with the encapsulation checks, discussed below.

WhyRel translates a biprogram to a WhyML function acting on a pair of states together with
the current refperm. Relational pre- and postconditions are translated to WhyML requires/ensures.
WhyRel represents a refperm by a pair of maps subject to universally quantified formulas that
express bijectivity and are type-respecting. As an example, Figure 32 shows our source code for
sumpub biprogram (15), together with its translation to WhyML. The WhyML loop body reflects
the semantics of loop alignment guards. For readability, some dead code has been removed from
the actual translation.

Checking read effects and encapsulation. By contrast with the check of write effects, WhyRel does
not directly check the relational semantics of read effects (r-respect in Definition 5.10). Rather,
it performs local checks based on the relevant conditions in the proof rules of our logic. When
used for relational modular linking of modules with nontrivial boundaries, WhyRel must also
enforce encapsulation, that is, the conditions on reads of if, while, bi-if, and bi-while, as well as
the conditions of the context introduction rules used for atomic commands. These checks involve
computing separator formulas, following a preliminary step that normalizes dynamic boundaries
and expands the any datagroup to concrete fields. The tool immediately reports a violation when
variables are required to be distinct but are not, or are read but not included in the read effect. For
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let sum (o, o,: state) (n: refperm)
(self, self,: reference) : (int, int)
requires { self, # null A o;.alloct[self,] = List }
requires { self, # null A o,.alloct[self,] = List }
requires { 3 Isg, Is,: int list.
listpub op o¢.heap.head[self,] Isp
A listpub o, o,.heap.head[self,] Is,
Alsg =1s, }
ensures { fst result = snd result }
= let ref resulty = 0 in (= default value for int =)
let ref result, = 0 in
(+ variables of math type initialized using any =)
let ghost ref xs¢ = any (int list) in
let ghost ref xs, = any (int list) in
assume { listpub o o,.heap.head[self,] xs,
A listpub o, o,.heap.head[self,] xs, }
let ref pp = o¢.heap.head[self,] in
let ref p, = o,.heap.head[self,] in
while (pg # null) || (p, # null) do

meth sum (self:List | self:List) : (int | int) invariant { listpub o p¢ xs¢ A listpub o, p, xs, }
requires { B self # null } invariant { xsy = xs, A result, = result, }
requires { 3 Is:int list | Is:int list. invariant { (+ generated using alignment guards )
B listpub(self.head,Is) A Is = s } pe # null A = op.heap.pub[p,]
ensures { A result } V pr # null A = o,.heap.pub[p,]
= var ghost xs : int list | ghost xs : int list in V pe #null A pr # null

/+ Initial values of math type variables are havoc'd; V pe=null Ap,=null}

assume they witness the existential if (p¢ # null && = o¢.heap.pub[p,]) then (+ left »)

in the precondition +/ pe < o¢.heap.nxt[p,]
assume { B listpub(self.head,xs) }; else begin
/+ Initial value of result:int is 0 +/ if (pr # null && = o,.heap.pub[p,]) then (+ right +)
var p : Node | p : Node in pr < or.heap.nxt[p,]
| p :=self.head J; else begin (« lockstep =)
while (p # null) | (p # null) . { = p.pub { [ ) = p.pub ] resulty < resulty + op.heap.value[p,];

invariant { B listpub(p,xs) A A xs A A result } xsp «— tl xsg;

(if p.pub then pe «— op.heap.nxt[pe];

result := result + p.value; xs := tl(xs); result, « result, + o,.heap.value[p,];
fi; p := p.nxt xsy  tl xs,;
| if p.pub then pr < or.heap.nxt[p,]
result := result + p.value; xs := tl(xs); end;

fi; p := p.nxt ) end;

od; done; (resulty, result;)

Fig. 32. WhyRel source biprogram for sumpub and translated WhyML (eliding frame conditions).

separation of heap locations, it generates disjointness formulas (in accord with Figure 11) in assert
statements added to the generated code where the encap checks should be made. For reads of heap
locations, it asserts an inclusion based on the reads allowed by the frame condition. A snapshot of
the initial state is used so the frame condition can be interpreted where it should be; the asserted
inclusion is at the point in the code where the read takes place, which may follow updates to the
state.

When true, the disjointness and inclusion assertions for reads and encapsulation are usually
proved without any need for user interaction. The user does see the assertions among the proof
obligations enumerated by Why3. The user does not compute separators or effect subtractions,
those are done by WhyRel.

Modular linking. In terms of the logic, Why3 verifies the premises of the standard linking rule
(Link in Figure 23) so the contracts assumed by a procedure’s callers are the ones for which the pro-
cedure’s implementation is verified. WhyRel generates code that expresses hiding, i.e., the premises
of our modular linking rules: the implementations get to assume the private invariant (or coupling,
in the relational case) and must maintain it. For this to be sound, WhyRel checks encapsulation,
as described above, and generates Why3 lemmas to encode the additional proof obligations.
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lemma boundary_frames_QuickFind_invariant :
V o: state, 7: state, 7r: refperm.
okRefperm o 7 7 A identityRefperm sz (domain o.alloct) (domain z.alloct) =
idRgn 7 o.pool 7.pool = (+ o(pool) = r(pool) =)
agreeAny o 7 7 (union o.pool (imgRep o o.pool)) =
ufPriv o = (+ private invariant I, r =)
ufPriv 7

lemma boundary_frames_UnionFind_coupling :

V o: state, 7: state, o’: state, 7’: state, m: refperm, ' refperm, p: refperm‘
okRefperm o 7 7 A identityRefperm sz (domain o.alloct) (domain z.alloct) =
okRefperm ¢’ ©/ ' A identityRefperm 7’ (domain ¢’ .alloct) (domain 7’.alloct) =
okRefperm o ¢’ p A okRefperm 77/ p =
idRgn 7 o.pool r.pool = (+ o(pool) = r(pool) =)
agreeAny o 7 7 (union o.pool (imgRep o o.pool)) =
idRgn 7’ ¢’ .pool 7’ .pool = (+ o’ (pool) = 7’ (pool) )
agreeAny ¢’ 7’ 7’ (union o’ .pool (imgRep ¢’ ¢’.pool)) =
ufCoupling o 6’ p = (= coupling relation My )
ufCoupling 7 7/ p

Fig. 33. Framing judgments as lemmas.

For unary hiding, the private invariant should be framed by the module boundary; this obliga-
tion is generated in the form of a lemma that expresses the framing semantics (27). At the same
time, WhyRel generates the obligation that the client precondition implies the private invariant.
For relational hiding, the coupling invariant should be framed, on both left and right, by the bound-
ary (using relational framing semantics Definition 7.1). Example framing lemmas are in Figure 33.

Another obligation generated in the form of a lemma is that the coupling should be refperm
monotonic:

lemma ufCoupling_is_monotonic :
V o: state, 7: state, 7: refperm.
okRefperm ¢ 7 & = ufCoupling o 7 7 =
V p: refperm. okRefperm o 7 p = extends = p = ufCoupling o 7 p

WhyRel can generate a local equivalence spec, given boundaries and a unary spec; it is generated
as source code, which the user can include in a biprogram. Local equivalence specs are defined in
Section 8.1 and examples appear in Section 4.

Experience and findings. Despite achieving a high level of automation based on SMT solvers, auto-
active tools require user effort and intelligence to devise specs and find loop invariants. Here, there
is the additional task of writing a biprogram to express an alignment for which straightforward
invariants suffice. (See Section 10 for work on automated inference of alignments.) Use of dynamic
frames entails extensive reasoning about set expressions, set disjointness and containment. Aided
by some lemmas in the WhyRel standard library, the solvers have little difficulty in this regard; the
requisite reasoning about refperms also works fine. In most of our examples, the user needs to do
a few clicks in Why?3 to invoke the tactic to split conjunctions, and sometimes introduce assertions
or lemmas that aid the solvers in finding proofs. Why3’s assert tactic is helpful for this. This sort
of interaction is typical in ordinary use of Why3.

For sumpub, we provide a couple of lemmas about the listpub relation, proved using the rule-
induction transformation (i.e., a Why3 induction rule, dispatched to SMT). For the SSSP biprogram,
we needed a number of asserts in the code (plus assert tactics); but not many for the other exam-
ples. Our priority has been to complete illustrative examples and a prototype that can be used by
interested researchers; we have not tried to find optimal specs and minimal use of Why3 tactics.
We are not proposing the concrete syntax for use in practice, nor does the tool provide sufficient
error handling to be usable by software engineers. Moreover, although the prototype implements
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some syntax sugar relative to the formal development, the current language has desugared loads
and stores, which entails the use of annoyingly many temporary variables (sugared in examples
in the article).

Finally, Why3 generates many proof obligations about the state being well formed, which is ac-
tually guaranteed by type-checking of source programs. The obligations are simple to prove but it
is still one more thing to do. It should be possible to eliminate these through more sophisticated use
of Why3’s abstraction mechanisms. In BoogiePL these pointless obligations could be avoided us-
ing “free requires/ensures,” and we could achieve the same effect using Why3 assumptions instead
of type invariants; but the latter make it easier to read the generated WhyML.

Why3 records sessions to replay the user’s choices of provers and tactics to apply. Replaying the
sessions for our big case studies takes on the order of an hour or more of prover time, though clock
time is a little faster owing to parallelism. The smaller examples take minutes or less. Less time
would be needed if we used assumptions to avoid pointless checks about states being well formed.
Significantly more automation could be achieved if Why3 enabled scripting of routine choices of
tactics.

In summary, the formal development in preceding sections shows that general relational reason-
ing with encapsulation, for first-order programs, can be carried out using only first-order asser-
tions and relations. The case studies carried out using WhyRel demonstrate that the verification
conditions are well within what can be automated by SMT solvers. User interaction is needed
mainly to deal with specs and loop invariants involving mathematical properties of data types and
inductively defined predicates and relations. Inductive definitions are often needed for problem-
specific properties, but are not required for encapsulation, framing, hiding or any other element
of the logic.

10 RELATED WORK

Our main result (Theorem 8.1) brings together modular reasoning techniques, relational properties,
representation independence, automated verification, and their semantic foundations.

We make a rough categorization of related work as follows: (Section 10.1) Directly related pre-
cursors; (Section 10.2) Algorithmic studies and implementations of automated verification for rela-
tional properties, often lacking detailed foundational justification and support for dynamic alloca-
tion or data abstraction, but identifying FOL fragments enabling automated inference of relational
invariants and alignment; and (Section 10.3) Semantic studies of representation independence, fo-
cused on contextual equivalence and challenging language features including dynamic allocation,
higher order procedures, and concurrency, leading to the higher order relational separation logic
ReLoC implemented in the Coq proof assistant.

Union-find implementations have been verified interactively using Coq [32]. Functional correct-
ness of Kruskal has been verified in a proof assistant [48]. Functional correctness of C implementa-
tions of Dijkstra’s, Kruskal’s, and Prim’s algorithms have been verified by Mohan et al. [66] using
VST [31]. The point of our case studies is to achieve automated equivalence proof for clients, with-
out recourse to functional correctness. A purely applicative implementation of pairing heaps has
been verified in Why3 (http://toccata.lri.fr/gallery/).

10.1 Region Logic and Other Logics with Explicit Footprints

Bao et al. [15] introduce a unified fine-grained region logic with both separating conjunction and
explicit read/write effects, subsuming a fragment of separation logic. To enable effective use of
SMT solvers, Piskac et al. [80, 81] encode separation logic style specifications using explicit regions.
Several works implement implicit dynamic frames [67, 90], which combines the succinctness of
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separation logic with the automation of SMT. For recent work on decidable fragments of separation
logic, see Echenim et al. [38]. Using an extension of FOL with recursive definitions, the logic of
Murali et al. [68] has an expression form for the footprint of a formula, akin to our fipt operator but
usable in formulas, avoiding the need for a separate framing judgment; this can encode a fragment
of separation logic but effectiveness for automation has not been thoroughly evaluated.

The most closely related works are the RL articles. The image notation, introduced in RLI [14],
was inspired by the use of field images to express relations in the information flow logic of Amtoft
et al. [3]. In RLI this style of dynamic framing was shown to facilitate local reasoning about global
invariants, and this was extended to dynamic boundaries and hiding of invariants in RLII [9].

In RLIII [12], pure methods are formalized with end-to-end read effects. The end-to-end seman-
tics of read effects is also used in the preliminary work [11], from which we take biprograms, weav-
ing, and bi-while alignment guards. But, we change the semantics of bi-com (C|C’) to eliminate
one-sided divergences and to allow models to diverge (see rules UCALLO in Figure 22 and BCALLO
in Figure 27). This validates a better weaving rule (no termination conditions) and a stronger ad-
equacy theorem (Theorem 7.11). We drop their semantics of read effects, which is inadequate for
our purposes (and is subsumed by r-respects in Definition 5.10), but use quasi-determinacy and
agreement-preservation results from RLIIL Neither RLIII nor [11] addresses information hiding or
encapsulation. Our semantics of encapsulation (Definition 5.10) is a major extension of that in RLII,
from which we take the minimalist formalization of modules; but we change the semantics to use
context models (from RLIII where models are called interpretations) and add r-respects, and so on.
We adapt unary rules from RLII but use the term modular linking for what they call mismatch. The
case studies in RLIII are implemented using Why3 with an encoding of heaps and frame conditions
similar to the one used by WhyRel.

10.2 Relational Verification

Francez [43, 74] articulated the product principle reducing relational verification to the inductive
assertion method and introduced a number of proof rules. Benton [25] introduced the term Rela-
tional Hoare Logic and brought to light applications including compiler optimizations. Yang [100]
introduced relational separation logic, motivated by data abstraction although the logic does not
formalize that as such. Beringer [27] extends Benton’s logic with heap (still not procedures), and
provides proofrules for non-lockstep loops, on which our RWHILE is based; a similar rule appears in
Barthe et al. [22]. There has been a lot of work on relational logics and verification techniques [24],
e.g., applications in security and privacy [21, 70, 83] and merges of software versions [94]. A shal-
low embedding of relational Hoare logic in F* is used to interactively prove refinements between
union-find implementations [47]. Aguirre et al. [1] develop a logic based on relational refinement
types, for terminating higher order functional programs, and provide an extensive discussion of
work on relational logics.

Automated relational verification based on product programs is implemented in several works
that address effective alignment of control flow points and the inference of alignment points and
relational assertions and procedure summaries [16-18, 34, 40, 55, 99, 101, 102]. One line of work,
centered around the SymDiff verifier [50, 56, 57], proves properties of program differences using
relational procedure summaries. Godlin and Strichmann [46] prove soundness of proof rules for
equivalence checking taking into account similar and differing calls. Eilers et al. [39] implement a
novel product construction for procedure-modular verification of k-safety properties of a program,
maximizing use of relational specs for procedure calls. (We follow O’Hearn et al. [77] in using
“modular” to imply also information hiding.) Girka et al. [45] explore forms of alignment automata.
Shemer et al. [89] provide for flexible alignments and infer state-dependent alignment conditions,

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 4, Article 25. Pub. date: December 2022.



25:76 A. Banerjee et al.

as do Unno et al. [97]. The latter works rely on constraint solving techniques, which are not yet
applicable to the heap. For the heap the state of the art for finding alignments is syntactic matching
heuristics.

For V3 properties, product constructions appear in some recent works [5, 17, 35, 59, 97]. Pi-
oneering work by Rinard and Marinov [85, 86] introduces a logic of V3 simulations for correct
compilation, for programs represented as control flow graphs.

Sousa and Dillig’s Cartesian Hoare Logic [93] (a generalization of Benton’s logic) can be used
to reason about k-safety properties such as secure information flow (2-safety) and transitivity
(3-safety). They also develop an algorithm, based on an implicit product construction, for auto-
matically proving k-safety properties; The corresponding tool, Descartes, has been used in the
verification of several user-defined relational operators in Java programs. For more efficient rela-
tional verification, Pick et al. [79] introduce a new algorithm atop Descartes, which automatically
detects opportunities for alignment (the synchrony phase) and detects opportunities for pruning
subtasks by exploiting symmetries in program structure and relational specs.

None of the above works address hiding, and many do not fully handle the heap [58]. Our work
is complementary, providing a foundation for verified toolchains implementing these algorithmic
techniques. The use of RWHILE with alignment guards, together with the disjunction rule to split
cases and unconditional rewriting (Section 8.6), enables our logic to express a wide range of state-
dependent alignments.

10.3 Representation Independence

It is difficult to account for encapsulation in semantics of languages with dynamically allocated
mutable state and especially with higher order features. Crary’s tour de force proves parametricity
for alarge fragment of ML but excluding reference types [36]. Semantic studies of the problem [2, 7]
have been connected with unary [10] and relational logics [37]. The latter relies on intensional
atomic propositions about steps in the transition semantics. In this sense it is very different from
standard (Hoare-style) program logics.

Birkedal and Yang [30] show client code proved correct using the SOF rule of separation logic
is relationally parametric, using a semantics that does not validate the rule of conjunction, which
plays a key role in automated verification. That rule is an issue in some other models as well, e.g.,
Iris (in part owing to its treatment of ghost updates as logical operators).

Thamsborg et al. [96] also lift separation logic to a relational interpretation, but instead of
second-order framing, address abstract predicates. Their goal is to give a relational interpreta-
tion of proofs. They uncover and solve a surprising problem: due to the nature of entailment in
separation logic, not all uses of the rule of consequence lift to relations. Our logic does not directly
lift proofs but does lift judgments from unary to relational (the REMB and RLocEQ rules). In gen-
eral, most works on representation independence, including work on encapsulation of mutable
objects, are essentially semantic developments [7, 10]; general categorical models of Reynolds’ re-
lational parametricity [84], which validate his abstraction theorem and identity extension lemma
have been developed and are under active study by Johann et al. [92].

The state of the art for data abstraction in separation logics is abstract predicates, which are
satisfactory in many specs where some abstraction of ADT state is of interest to clients, but less
attractive for composing libraries such as runtime resource management with no client-relevant
state. Such logics have been implemented in interactive provers [29, 53, 71]. These are unary log-
ics with concurrency; they do not feature second-order framing but they have been used to verify
challenging concurrent programs. As shown by the recent extension of VST with Verified Software
Units [28], higher order logics with impredicative quantification facilitate expressive interface spec-
ifications for modular reasoning about heap-based programs.
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ReLoC [44], based on Iris [53], is a relational logic for conditional contextual refinement of higher
order concurrent programs. Iris and the works in the preceding paragraph do support hiding in the
sense of abstraction: through existential quantification and abstract predicates, and in Iris through
the invariant-box modality and the associated “masks” With respect to our context and goals, we
find such machinery to be overkill. Like O’Hearn et al. [77], we only need invariants in the sense
of conditions that hold when control enters or exits the module—not conditions that hold at ev-
ery step. There is a considerable gap between this work and the properties/techniques for which
automation has been developed; moreover their step-indexed semantics does not support termina-
tion reasoning or transitive composition of relations (which needs relative termination [50]); our
logic is easily adapted to both.

Maillard et al. [65] provide a general framework for relational program logics that can be in-
stantiated for different computational effects represented by monads. The paper does not address
encapsulation, except insofar as the system is based on dependent-type theory.

11 CONCLUSION

We introduced a relational Hoare logic that accounts for strong encapsulation of data representa-
tions in object-based programs with dynamic allocation and shared mutable data structures. Con-
sequently, changes to internal data representations of a module can be proved to lead to equivalent
observable behaviors of clients that have been proved to respect encapsulation. The technique of
simulation, articulated by Hoare [52] and formalized in theories of representation independence,
is embodied directly in the logic as a proof rule (RMLINK in Figure 31). The logic provides means
for specifying state-based encapsulation methodologies such as ownership. It also supports effec-
tive relational reasoning about simulation between both similar and disparate control and data
structure. Although our exposition focuses on encapsulation and simulation, the logic is general,
encompassing a range of relational properties including conditional equivalence (including com-
piler optimizations), specified differencing (as in regression verification), and secure information
flow with downgrading [3, 11, 13, 33]. The rules are proved sound.

The programmer’s perspective articulated by Hoare is about a single module and client, distin-
guishing inside versus outside. The general case, with state-based encapsulation for a hierarchy of
modules, requires a precise definition of the boundaries within which a given execution step lies.
While we build on prior work on state-based encapsulation, we find that to support change of repre-
sentation, the semantics of encapsulation needs to be formulated in terms of not only the context
(hypotheses/library APIs) but also modular structure of what’s already linked, via the dynamic
call chain embodied by the runtime stack. This novel formulation of an extensional semantics
for encapsulation against dependency is subtle (Definition 5.10), yet it remains amenable to sim-
ple enforcement. Our relational assertions and verification conditions for modules and clients are
first-order. As proof of concept, we demonstrate that they can be effectively used in an auto-active
SMT-based verification prototype.

To a great extent, the three goals in Section 1 have been achieved. Beyond this progress, for
foundational justification one might like to machine check the soundness proofs. For automation,
one could explore techniques for inferring alignment conditions and relational invariants [89, 97].

Apropos completeness of the logic, the ordinary notion of completeness is that valid relational
judgments are provable (relative to validity of entailments). Completeness in this sense is an im-
mediate consequence of completeness of the underlying unary logic together with the presence
of a single rule (like REmB) that lifts unary judgments to relational ones [19, 20, 43]—provided
that unary assertions can express relations. That proviso is easy to establish for simple imperative
programs, by using renamed variables. For pointer programs, expressing a relation as an assertion
can be done using separating conjunction [19], but to do so using only FO assertions requires a
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complicated encoding [72]. The recently introduced notion of alignment completeness [69] is bet-
ter than ordinary completeness as a way to evaluate relational logics. We have not yet investigated
completeness for either unary or relational region logic.

12 ENVOI

Hoare’s 1972 paper articulates the fundamental notions of hiding and encapsulation with a mini-
mum of extraneous formalization. In seeking to formulate the ideas in a logic for first-order pro-
grams using first-order assertions, we hoped to achieve a comparably elementary and transparent
account. To handle dynamically allocated mutable state, however, we have been unable to avoid
some amount of auxiliary notions.

Having incorporated encapsulation into a unary+relational logic that supports hiding of internal
invariants, we are poised to investigate a longstanding problem: the hiding of unobservable effects
for object-based programs. This is intimately connected with encapsulation [26, 73, 82] and appears
already in Hoare’s work under the term benevolent side effects [52].

APPENDICES
A PROGRAM SEMANTICS AND UNARY CORRECTNESS (RE SECTION 5)
A.1 On Effects, Agreement, and Valid Correctness Judgment

LEMMA 5.2 (SUBTRACTION). rlocs(o, e\n) = rlocs(o, €)\rlocs(o, ) and the same for wlocs.

Proor. Assume w.l.o.g. that € and 5 are in the normal form described as part of the definition,
Equation (7). For a variable x, we get x € rlocs(o, £\n) iff x € rlocs(o, €)\rlocs(o, ) directly from
definitions. For a heap location, o.f is in rlocs(c, €)\rlocs(a, 1) just if there is rd G'f in ¢ with
0 € 0(G) and there is no rd H' f in 5 with o € o(H) (by definitions). This can happen in two cases:
either there is no read for f in 7, or there is rd Hf in 5 but 0 ¢ o(H). In the first case, rd G°f is
in £\7 so o € rlocs(¢\n). In the second case, rd (G\H)*f is in £\7, and since 0 € o(G\H), we have
o € rlocs(e\n). O

LEMMA 5.6. Suppose o ~ ¢’. Then o(F) £ ¢'(F), and o |= P iff o’ |= P.
Proor. Straightforward, by induction on F and induction on P. ]

Remark 2. For partial correctness, all specs are satisfiable (at least by divergence). This is mani-
fest in Definition 5.9, which allows that ¢(m)(o) can be @ for any o that satisfies the precondition.
In RLII, a context call faults in states where the precondition does not hold. It gets stuck if the pre-
condition holds but there is no successor state that satisfies the postcondition. Here (and in RLIII,
for impure methods), the latter situation can be represented by a model that returns the empty set.
Instead of letting the semantics get stuck, we include a stuttering transition, tCALLO.

Remark 3. Apropos Definition 5.10, one might expect r-respect to consider steps (B, 7/, ) %
(D', v’, v") with potentially different environment v’, and add to the consequent that v/ = v. But
in fact the only transitions that affect the environment are those for let and for the elet command
used in the semantics at the end of its scope. The transitions for these are independent of the state,
and so B and y suffice to determine v.

Remark 4. The consequent (25) of r-respect express that the visible (outside boundary) writes
and allocations depend only on the visible starting state. One may wonder whether the condi-
tions fully capture dependency, noting that they do not consider faulting. But r-respects is used in
conjunction with the (Safety) condition that rules out faults.
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Remark 5. In separation logic, preconditions serve two purposes: in addition to the usual role as
an assumption about initial states, the precondition also designates the “footprint” of the command.
This is usually seen as a frame condition: the command must not read or write any preexisting
locations outside the footprint of the precondition. In a logic such as the one in this article, where
frame conditions are distinct from preconditions, it is possible for the frame condition to designate
a smaller set of locations than the footprint of the precondition. As a simple example, consider the
spec x > 0 Ay > 0 ~» true [rwx]. In our logic, it is possible for two states to agree on the read
effect but disagree on the precondition. For example, the states [x : 1,y : 0] and [x : 1,y : 1] agree
on x but only the second satisfies x > 0 A y > 0. Lemma 5.11 describes the read effect only in
terms of states that satisfy the precondition. For a command satisfying the example spec, and the
states [x : 1,y : 1] and [x : 1,y : 2], which satisfy the precondition but do not agree on y, that the
command must either diverge on both states or converge to states that agree on the value of x.

LEMMA A.1 (AGREEMENT SYMMETRY). Suppose ¢ has framed reads. If Agree(c, o', , ), then (a)
rlocs(o”’, ) = n(rlocs(a, €)) and (b) Agree(c’, o, t7 1, ¢).

Proor. (a) For variables the equality follows immediately by definition of rlocs. For heap lo-
cations the argument is by mutual inclusion. To show rlocs(c”’,¢) € n(rlocs(o,¢)), let o.f €
rlocs(c”, €). By definition of rlocs, there exists region G such that ¢ contains rd G‘f and o € ¢’(G).
Since ¢ has framed reads, ¢ contains fipt(G), hence from Agree(o, o', 7, €) by Equation (28) we get
o(G) < ¢’(G). Thus, 0 € 7(c(G)). So, we have o.f € m(rlocs(c, €)). Proof of the reverse inclusion
is similar.

(b) For variables this is straightforward. For heap locations, consider any o. f € rlocs(c’, €). From
(a), we have 771(0). f € rlocs(a, €). From Agree(o, o', , ), we get a(x1(0).f) = o’(0.f). Thus, we

have o”(0.f) "~ o(x~1(0).f). 0

The definition of r-respect is formulated (in Definition 5.10) in a way to make evident that
client steps are independent from locations within the boundary. But r-respect can be simplified,
as follows, when used in conjunction with w-respects.

The following notion is used to streamline the statement of some technical results. It is used
with states o, 7, 7/, v, v/, where ¢ is an initial state from which 7 and then later v is reached, and in
a parallel execution 7’ reaches v’. Moreover, § is a dynamic boundary. We write §% to abbreviate

4, rd alloc.

.. 7 7 : ’ & ! |—O
Definition A.2. Say ¢ allows dependence from,t’ tov, v’ foro,§, n, written 7,7'=v,v |‘5 @

iff the agreement Lagree(r, ', , (freshL(a, ) Urlocs(o, €))\rlocs(t, 5%)) implies there is p 2 7 with
Lagree(v,v’, p, (freshL(t,v) U wrttn(t, v))\rlocs(v, 5%)).

Like Definition 5.4, this definition is left-skewed, both because ¢ is interpreted in the left state
o and because the fresh and written locations are determined by the left transition o to 7. This is
tamed in case ¢ has framed reads (Lemma A.1).

Allowed dependence gives an alternate way to express part of the Encap condition in Defini-
tion 5.10. For a step (B, 7, u) +% (D, v, v) that r-respects & for (¢, ¢, o) and Active(B) is not a call,

and alternate step (24), the condition implies 7, T'=”>l), v’ |29 ¢ in the notation of Definition A.2.

A critical but non-obvious consequence of framed reads is that for a pair of states o, ¢’ that are
in ‘symmetric’ agreement and transition to a pair 7, 7’ forming an allowed dependence, the transi-
tions preserve agreement on any set of locations whatsoever. The formal statement is somewhat
intricate; it generalizes RLIII Lemma 6.12.
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-1
LEMMA A.3 (BALANCED SYMMETRY). Suppose T, 'S0,/ 5 eandt’, TS0 |=‘5’/ €. Suppose
Lagree(t,t’, 7, (freshL(o, T) U rlocs(o, €))\ rlocs(z, §9)),
Lagree(r’, 7, n7Y, (freshL(c’, t’) U rlocs(a”, €))\rloes(z’, 5%)).
Let p, p’ be any refperms with p 2 m and p’ 2 =" that witness the allowed dependencies, i.e.,

Lagree(v,v', p, (freshL(t, v) U wrttn(t, v))\rlocs(v, §9)),

Lagree(v’,v, p’, (freshL(t’,v") U wrttn(t’, v"))\rlocs(v’, §%)). (35)
Furthermore, suppose

p(freshL(z,v)\rlocs(v, §)) C freshL(z’,v")\rlocs(v’, 5),

p’(freshL(t’,v")\rlocs(v’, 8)) C freshL(z,v)\rlocs(v, 5). (36)
Then, we also have

Lagree(v’,v, p~t, (freshL(z’,v") U wrttn(z’,v"))\rlocs(v’, §)),
p(freshL(t,v))\rlocs(v, §) = freshL(z’,v")\rlocs(v’, ).

Proor. From Definition 5.3 and Equation (35), we know that p and p’ are total on
freshL(z,v)\rlocs(v, §) and freshL(t’,v")\rlocs(v’, &), respectively. Since p and p” are bijections, from
Equation (36), we have equal cardinalities: |freshL(t, v)\rlocs(v, §)| = |freshL(z’,v")\rlocs(v’, d)]. So,
we get p(freshL(r,v)\rlocs(v, §)) = freshL(z’,v")\rlocs(v’, ). Now from Equation (35) using the
symmetry lemma Equation (22) for Lagree, we get

Lagree(v', v, p’l, p(freshL(z,v)\rlocs(v, §))).

So, we have Lagree(v’,v, p~}, freshL(t’,v")\rlocs(v’, §)). However, we have wrttn(r’,v’) C
locations(t’), and we have p’liocations(r'y = 7 iocations(z) = P~ *liocations(z")» using vertical bar for
domain restriction. So, from Equation (35), we get

Lagree(v’,v, m~*, wrttn(t’,v")\rlocs(v’, 5%)),
which we can write as Lagree(v’, v, p~!, wrttn(z’,v")\rlocs(v’, 5%)). Thus, we get

Lagree(v’, v, p~", (freshL(t’,v") U wrttn(t’,v"))\rlocs(v’, §%)). m|

-1
LEMMA A.4 (PRESERVATION OF AGREEMENT). Suppose T, r’:”w, v’ |:g eand 1/, = v, v |:g/ €.
Suppose
Lagree(t, t’, 7, (freshL(c, ) U rlocs(c, €))\rlocs(r, 5%))  and
Lagree(r’, 7, n7Y, (freshL(c’, t") U rlocs(a”, )\ rlocs(t’, 59)).

Then for any W C locations(t), if Lagree(r,t’, m, W) then Lagree(v,v’, p, W\rlocs(v, §%)), for any
refperm p that witnesses 7, r':ﬂw, v’ |:g €.

ProoF. Suppose Lagree(t, 7/, 7, (freshL(o, T) U rlocs(c, €))\rlocs(r, §®)) suppose that p 2 7 wit-
nesses 7, r’=ﬂ>v, v’ |=g £, S0 we get

Lagree(v,v’, p, (freshL(z,v) U wrttn(z,v))\rlocs(v, §%))). (37)
Suppose Lagree(t’,t, n™}, (freshL(c’,7") U rlocs(c”, €))\rlocs(t’,5%)) and let p’ 2 77! witness
-1

T/, Tn=>l)/, v |=g/ £, S0 we get

Lagree(v',v, p’, (freshL(z’,v") U wrttn(z’,v"))\rlocs(v’, §%)). (38)
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Now suppose W is a set of locations in 7 such that Lagree(r, 7/, &, W). We show that
Lagree(v,v’, p, W\rlocs(v, §9)).
For x € W\rlocs(v, §9), either x € wrttn(r,v) or 7(x) = v(x).

o If x € wrttn(z,v), then from Equation (37), we have v(x) £ v'(x).
o If 7(x) = v(x), then we claim that 7’(x) = v’(x). It follows that from Lagree(z, t’, z, W), we
have v(x) = 7(x) £ /(x) = V/(x).
We prove the claim by contradiction. If it does not hold, then x € wrttn(z’,v"). By Equa-

1

tion (38) this implies v’(x) 2 v(x) = 7(x) = 7’(x). Then, since p’ 2 7', we would have

7/(x) = 7(n71(v'(x))) = v'(x), which is a contradiction.
For o.f € W\rlocs(v, §%), either o.f € wrttn(r,v) or 7(o.f) = v(o.f).

o If o.f € wrttn(r,v), then from Equation (37), we have v(o.f) 2 v'(p(0).f).
o If 7(0.f) = uv(o.f), then we claim that 7’(n(0).f) = v'(x(0).f). It follows that from
Lagree(t, 7', m, W), we have v(o.f) = 7(0.f) = 7/(n(0).f) = v'(7(0). ).

The claim 7/((0).f) = v'(x(0).f) is proved by contradiction. If it does not hold, then
7(o).f € writn(z’,v’). By (38) this implies v’((0).f) 2 v(p'm(0).f) = v(o.f) = t(0.f) =
t/(7(0).f). Then, since p’ 2 77!, we would have 7’(n(0).f) = #(z7'(v'(x(0).f)))
v'(7(0).f), hence 7/(n(0).f) = v'(x(0). f), which is a contradiction.

This completes the proof of Lagree(v, v’, £, W\rlocs(v, §®)) for heap locations. O

LEMMA A.5 (SUBEFFECT). If P |= ¢ < mn, then the following hold for all o,0’,7,7", 0,0, 7,8

such that o |= P and ¢’ |= P: (a) o—1 |= ¢ implies co—71 |= n; (b) Agree(o,o’, 7, n) implies

Agree(o,0’, 7, €); and (c) T, T’év, v’ |=g ¢ implies t, T/=”>l), v |:g 1.

Proor. Straightforward from the definitions. For part (c), we have rlocs(o,e) C rlocs(o, 1),
so 1 gives a stronger antecedent in Definition A.2 and the consequent is unchanged between
€ and 1. O

A.2 On the Transition Relation

Figure 34 completes the definition of the transition relation, with respect to a given pre-model
¢.*? The definition is also parameterized by a function, Fresh, for which we assume that, for any
o, Fresh(c) a non-empty set of non-null references that are not in o(alloc).

We take care to model realistic allocators, allowing their behavior to be nondeterministic at
the level of states, to model their dependence on unobservable low-level implementation details,
yet not requiring the full, unbounded allocator required by some separation logics. However, the
language is meant to be deterministic modulo allocation. To make that possible for local variables,
we assume given a function FreshVar : states — LocalVar such that FreshVar(c) ¢ Vars(c). We
also assume that FreshVar depends only on the domain of the state:

Vars(o)\SpecOnlyVars = Vars(c")\SpecOnlyV ars implies FreshVar(c) = FreshVar(c’).  (39)

42To be very precise, in the transition rules for context calls (Figure 22), we implicitly use a straightforward coercion: the
pre-model is applied to states that may have more variables than the ones in scope for the method context ® for ¢. Suppose
@ is wf in T. For method m in @, ¢(m) is defined on I'-states. Suppose o is a state for I' plus some additional variables
X (including but not limited to spec-only variables). Then ¢(m)(c) is defined by discarding the additional variables and
applying o. If the result is a set of states, then each of these states is extended with the additional variables mapped to their
initial values. This coercion is implicitly used in the rules context calls, i.e., rules UCALL, UCALLX, and UCALLO in Figure 22.
The coercion is also used in RLIII where it is formalized in more detail.
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uLoap uLoAapX
o(y)=o o # null o(y) = null
(x:=y.f, o, p) LN (skip, [o|x:0(0.f)], 1) (x:=y.f, o, p) N 4
USTORE USTOREX
o(x)=o0 o # null o(x) = null
(x.f =y, 0, py v (skip, [ |o.f:0(y)], p) (x.f =y, 0, py v §
USEQ USEQX
UASSG (€, o, )y v (D, 1, v) (€ o py s 4

:=F, o, y) v (skip, 1o(F)],
(x 0, j) == (skip, [o|x:a(F)], p) (B 0. 1) % (DB, 7. ) (B o

UNEW
o0 € Fresh(o)

Fields(K) = J_‘ :T o1 = “o with 0 added to heap, with type K and default field values”

(x :=new K, o, ) (N (skip, [o1 | x:0], )

UVAR
x’ = FreshVar(o) UEVAR

(evar(x), o, uy 5 (skip, o [x, u)
(varx:Tin C, o, py v (C¥,sevar(x’), [o+x: default(T)], p) a P K

UuWHT uWHF
o(E) = true o(E) = false
(while E do C, o, p) N (C;while E do C, o, p) (while E do C, o, ) N (skip, o, p)
ulrT UlrF
o(E) = true o(E) = false
(if E then C else D, o, u) s (C, o, 1y (if E then C else D, o, u) (D, o, 1y

Fig. 34. Rules for unary transition relation ~2> omitted from Figure 22.

These technicalities are innocuous and consistent with stack allocation of locals.

A configuration cfg faults if cfg +2* 4.1t faults next if cfg +%> 4. It terminates if cfg ~2>*
(skip, 7, _) for some 7— so “terminates” means eventual normal termination. When applied to
traces, these terms refer to the last configuration: a trace faults if it can be extended to a trace in
which the last configuration faults next. Perhaps it goes without saying that cfg diverges means
it begins an infinite sequence of transitions; in other words, it has traces of unbounded length.

For any pre-model ¢, the transition relation +% is total in the sense that, for any (C, o, y) with
C # skip, there is an applicable rule and hence a successor—which may be another configuration
or 4. This relies on the starting configuration being well formed in the sense that all free methods
are bound either in the model or the environment, all free variables are bound in the state, and the
command has no occurrences of evar or elet. Moreover, evar(x) (respectively, elet(m)) only occurs
in a configuration if x is in the state (respectively, m is in the environment).

Well formedness is preserved by the transition rules, and can be formalized straightforwardly
(see RLII), but in this article, we gloss over it for the sake of clarity.

The transition relation % is called rule-deterministic if for every configuration (C, o, )
there is at most one applicable transition rule. Strictly speaking, this is a property of the definition
(Figures 22 and 34), not of the relation +%s.
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LEMMA A.6 (QUASI-DETERMINACY OF TRANSITIONS). For any pre-model ¢,

(a) V% is rule-deterministic.

(b) If o % ¢ and (C, o, u) 5 (D, 7, v) and (C, o’, 1y Fs (D, !, V), thenD = D', v = v/,
andt % 7’ for some p 2 .

(©) Ifo = o', then (C. 0, p) = § iff (C, 0", p) > 4.

Proor. (a) This is straightforward to check by inspection of the transition rules: for each com-
mand form, check that the applicable rules are mutually exclusive. One subtlety is in the case of
context call. If there is 7 € @(m)(0), and also 4 € ¢(m)(o), then two transition rules can be used
for (m(), o, p). This is disallowed by Definition 5.7 (fault determinacy). Also, Definition 5.7 (state
determinacy), and condition (iii) in the definition of &, (Definition 5.5) distinguishes between the
two transition rules for empty and non-empty ¢(m)(o) (see Figure 22).

(b) Go by cases on Active(C). For any command other than context call or allocation, take p = 7
and inspect the transition rules. For example, x. f := y changes the state by updating a field with
values that are in agreement mod 7. For the case of x := E, we need that expression evaluation
respects isomorphism of states, Lemma 5.6. For allocation, let p = {(0,0")} U & where o, 0" are the
allocated objects. For context call, we get the result by the determinacy conditions of Definition 5.7.
The only commands that alter the environment are let and elet, and we get v = v/, because their
behavior is independent of the state.

(c) Similar to the proof of (b); using item (i) in the definition of =, for context calls. O

A consequence of (a) is that the transition relation is fault deterministic: no configuration has
both a fault and non-fault successor (by inspection, no single rule yields both fault and non-fault).
We note these other corollaries:

T - .

(d) For all i, if ¢ = ¢’ and (C, o, p) +5(D, 7, v) and (C, o', p) +&(D’, 7/, v’y then D = D',
v=v,andr £ ¢/ for some p 2 n (by induction on i).

(e)Ifo % ¢’ and (C, o, ) N (D, 1, v), then (C, o', u) N (D, /, vyand T £ 7/, for some 7
and some p 2 & (because only skip lacks a successor).

(f) From a given configuration (C, o, j), exactly one of these three outcomes is possible: normal
termination, faulting termination, divergence.

LEmMA 5.11 (READ EFFECT). Suppose ® |=]rw C: P~ Qle] and ¢ is a ®-model. Supposec |= P and
o’ |= P. Suppose Lagree(o, o', m, rlocs(o, €)\{alloc}). Then (C, o, _) diverges iff (C, o’, _) diverges.
And forany t,7’, if (C, o, _) AN (skip, 7, _) and (C, o', _) AN (skip, 7/, _) then

dp 2 . Lagree(t, 7', p, (freshL(o, T) U wrttn(o, 7))\{alloc}) and
p(freshL(o, 7)) C freshL(c’,7").
Proor. To prove the lemma, we prove a stronger result. O
CraM. Under the assumptions of Lemma 5.11, for any i > 0 and any B, B, u, i’ with
(€, 0, )+ (B, 7, mand(C, o', )+ (B, 7', ),
there is some p 2 7 such that B= B’, y = p’, and

Lagree(z,t’, p, (freshL(o, ) U rlocs(o, €) U wrttn(o, 7))\{alloc}),

Lagree(r’, 7, p~ !, (freshL(c’, ") U rlocs(c”, €) U wrttn(o’, 7/))\{alloc}),

p(freshL(o, 7)) C freshL(c’,’),

p~Y(freshL(c’,7")) C freshL(c, 7).

This directly implies the conclusion of the Lemma.
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The claim is proved by induction on i. The base case holds, because the fresh and written loca-
tions are empty, and agreement on rlocs(o, ¢) is an assumption of the Lemma. For the induction
step, suppose the above holds and consider the next steps:

(B, 7, p)y V% (D, v, vy and (B, 7', ) v& (D', v', v').
Go by cases on whether Active(B) is a call.
Case Active(B) not a call. By judgment ® |:R,I C : P ~ Q [e], the step from 7 to v respects
(P, M, ¢, €,0), as does the step from 7’ to v’. As this is not a call, the collective boundary is
6 =(+N € (D, u), N # mod(B, M). bnd(N)).

So by w-respect for each step, we have Agree(r,v,5) and Agree(t’,v’, 5).

We begin by proving the left-to-right agreement and inclusion for the induction step, i.e., we will
find p such that Lagree(v, V', p, (freshL(o, v)Urlocs(o, e)Uwrttn(o, v))\{alloc}) and p(freshL(c,v)) C
freshL(a’,v").

We will apply r-respect of the left step, instantiated with 7 := p and with the right step. The
two antecedents in r-respect are Agree(r’,v’, ), which we have, and

Lagree(t, 7', p, (freshL(c, T) U rlocs(a, €))\rlocs(t, §9)),

which follows directly from the induction hypothesis. So r-respect yields some p 2 p (and hence
p2r)ywithD=D’,v=1v,and

Lagree(v,v’, p, (freshL(t,v) U wrttn(t, v))\rlocs(v, §%)),
p(freshL(r,v)) C freshL(t’,v’).

To conclude the left-to-right Lagree part of the induction step it remains to show the two conditions

(40)

Lagree(v, V', p, rlocs(o, €)\{alloc}),
Lagree(v,v’, p, (freshL(t,v) U wrttn(t,v)) N rlocs(v, §%)).

The latter holds because the intersection is empty, owing to Agree(r,v, §) and Agree(t’,v’, §) (not-
ing that rlocs(v, §) = rlocs(t, §) from those agreements and using Equation (28) and the require-
ment that boundaries have framed reads). For the same reasons, we have

Lagree(v,v’, p, rlocs(c, €) n rlocs(v, §)).

So it remains to show Lagree(v,v’, p, rlocs(c, €)\rlocs(v, §%)). This we get by applying Lemma A.4,
instantiated by 7, p := p, p and W := rlocs(o, €) (fortunately, the other identifiers in the Lemma
are just what we need here). The antecedents of the Lemma include allowed dependencies and
agreements that we have established above, and also the reverse of Equation (40), for p~!, which
we get by symmetric arguments, using the reverse conditions in the induction hypothesis. The
Lemma yields exactly what we need: Lagree(v, v’, p, rlocs(a, €)\rlocs(v, §%).

Finally, we have p(freshL(o,v)) = p(freshL(o,7)) U p(freshL(r,v)) < freshL(c’,7’) U
p(freshL(r,v)) C freshL(c”’, t”)UfreshL(t’,v") = freshL(c’,v") by definitions, (40), and the induction
hypothesis.

The reverse agreement and containment in the induction step is proved symmetrically.

Case Active(B) is a call. Let the method be m and suppose ®(m) = R ~> S[p]. By R-safe from the
judgment ® |=1rw C: P~ Q[e], we have rlocs(r,n) C rlocs(o, €) U freshL(o, 7). So by induction
hypothesis, we have Lagree(r, ', p, rlocs(r, n)\{alloc}). So by ¢ |= ® and Definition 5.9(d), there
are two possibilities:

e p(m)(r) = @ = p(m)(r’) and the steps both go by uCALLO,
e p(m)(r) # @ # p(m)(r’) and the steps both go by uCALL.
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In the first case, D = B = D’, v = p = v/, and the states are unchanged, so the agreements hold
and we are done.

In the second case, we have D = B= D', v =y =v',v € p(m)(r) and v" € p(m)(zr’). Moreover,
by Definition 5.9(d) there is some p 2 p such that

Lagree(v,v’, p, (freshL(r,v) U wrttn(t,v))\{alloc}, A
p(freshL(r,v)) C freshL(z’,v’"). (41)

We also get reverse conditions, for p~!, by instantiating Definition 5.9(d) with p~! and the states
reversed. We must show

Lagree(v, V', p, (freshL(o,v) U rlocs(o, €) U wrttn(o, v))\{alloc},
p(freshL(o,v)) C freshL(c’,v")

(and the reverse, which is by a symmetric argument). We get p(freshL(c,v)) C freshL(c’,v") using
the induction hypothesis and Equation (41), similar to the proof above for the non-call case. For
the Lagree condition for v, v’, we have it for some locations by Equation (41). It remains to show
v, V" agree via p on the locations freshL(o, 7), rlocs(o, €)\ wrttn(z, v), and wrttn(o, v)\ writn(z, v). The
latter simplifies to wrttn(o, 7), because wrttn(o,v) C wrttn(o, T) U wrttn(z, v). We obtain the agree-
ments by applying Lemma A.4 with § := o, 7 := p, and W := freshL(c, 7) U rlocs(o, €)\ wrttn(z, v) U

. P
wrttn(o, 7). To that end, observe that the above arguments have established 7, 7’=v, 0" =7 ¢, and

. . P ,
symmetric arguments establish 7/, 7=v",v [ e. Moreover, we have the antecedent agreements
and p as witness. So Lemma A 4 yields the requisite agreements and we are done.

Definition A.7 (Denotation of Command, [T + C] ). Suppose C is wf in ' and ¢ is a pre-model
that includes all methods called in C and not bound by let in C. Define [T + C ], to be the function
oftype [T] = P([TJu {4}) given by

[T+CJy(o) = {r|(C, 0, ) Fx (skip, 7, )} U ({4} if (C, o, _) v5* 4 else @).

The denotation of a command can be used as a pre-model (Definition 5.7), owing to this easily-
proved property of the transition semantics: if (C, o, _) A (D, 7, p) then o < 7. We define a
pre-model suited to be a context model, by taking into account a possible precondition: Given C,
@, formula R, and method name m not in dom (¢) and not called in C, one can extend ¢ to ¢ that
models m by

o(m)(0) = ({4} if o |£ Relse [T + C[,(0)). (42)
The outcome is empty in case C diverges. The conditions of Definition 5.7 hold owing to

Lemma A.6, see corollaries (e) and (f) mentioned following that Lemma. (Note that o [~ R means
there is no extension of ¢ with values for spec-only variables in R that make it hold.)

LEMMA A.8 (CONTEXT MODEL DENOTED BY COMMAND). Suppose P |=1Fw C:R ~ S|[n] and
M = mdl(m). Suppose ¢ is a ®-model. Let  be ® extended withm : R ~> S[n], wherem ¢ dom (®) and
m not called in C. Let ¢ be the extension given by Equation (42). If N € ® for all N with mdl(m) < N,
then ¢ is a d-model.

Proor. To check ¢(m) with respect to R ~ S [n], observe that C does not fault (via ¢) from
states that satisfy R, by ® |=p C : R ~ S [n] and ¢ being a ®-model. So, we get part (a) in
Definition 5.9. Part (b) is an immediate consequence of ® |=y C : R ~ S [n]. Part (c) requires
boundary monotonicity for every N with mdl(m) < N.Encap for the judgment gives monotonicity
for every N € ® and also for M itself. We’re done owing to hypothesis N € ® for every N with
M < N. That condition is for single steps, but by simple induction on steps it implies rlocs(a, §) C
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rlocs(z, §) for any 7 such that (C, o, _) Ly (B, t, p) for some B, . Part (d) is by application of
Lemma 5.11. a

B UNARY LOGIC AND ITS SOUNDNESS (RE SECTION 6)
B.1 Additional Definitions and Proof Rules; Soundness Theorem

Figures 35 and 36 present the proof rules omitted from Figure 23. They are to be instantiated
only with well-formed premises and conclusions. To emphasize the point, we make the following
definitions. A correctness judgment is derivable iff it can be inferred using the proof rules instan-
tiated with well-formed premises and conclusion. A proof rule is sound if for any instance with
well-formed premises and conclusion, the conclusion is valid if the premises are valid and the side
conditions hold.

Expression G is P/e-immune iff this is valid: P = fipt(G) -/. ¢. Effect nj is P/e-immune iff G is
P/e-immune for every G with wr G'f or rd G*f in 1 (see RLI). The key fact about immunity is that
if n is P/e-immune then

o |= P and 0—1 |= ¢ imply rlocs(o, n) = rlocs(z, n) and wlocs(o, ) = wlocs(z, n). (43)

Definition B.1 (Boundary Monotonicity Spec). BndMonSp(P, ¢, M) is P A Bsnapy ~> Bmonyy [€]
where Bsnapy and Bmony are defined as follows. Let § be bnd(M), normalized so that for each
field f for which rd H'f occurs in bnd(M) for some H, there a single region expression Gy with
rd G¢‘f in 8. Let Bsnapy (for “boundary snap”) be the conjunction over fields f of formulas sf = G¢
where each s¢ is a fresh spec-only variable. Let Bmon be the conjunction over fields f of formulas
sy € Gy.

Remark 6. In case boundaries are empty, the postcondition becomes vacuously true. As a result,
the second premises in rules MobDINTRO and CTXINTROCALL, for boundary monotonicity, become
trivial consequences of the main premises.

Remark 7. The syntax directed rules in Figure 35 are very similar to the unary proof rules in
RLII Other than addition of modules, one noticeable difference is that in RLIII rules SEQ and
WHILE require the effects to be read framed. This is not needed with the current definition of valid
judgment, which imposes a stronger condition for read effects (Definition 5.10).

Remark 8. Recall that rule CTxINTRO (Figure 23) allows the introduction of additional modules,
by adding methods to the hypothesis context (see Section 6.3). It has side conditions that ensure
encapsulation. For method calls, CTXINTRoO is useful to add context that is not imported by the
method’s module. A separate rule, CTXINTROCALL, is needed to add context that is imported by
the method’s module (as it was in RLII). To add a method of the current module to the context,
rule CTXINTROINZ is used if the judgment is for a non-call; otherwise CTXINTROCALL is used. To
add a method to the context for a module already present in context, rule CTXINTROIN1 is used.
The context intro rules are not applicable to control structures, so requisite context should be
introduced for their constituents before their proof rules are used.

The axioms for atomic commands (e.g., ALrLoc in Figure 23) are for the default module « and the
empty context, or in the case of CaLL the context with just the called method. Rule MoDINTRO
changes the current module from « to another one; this is not needed in RLII, because its main
significance is to enforce boundary monotonicity (Definition 5.10), which is not needed in RLII. For
non-call atomic commands, the rule needs to be used before introducing methods of the current
module into the context.
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ZEX

FIELDACC
Fex=yf:y#nullAz=y~ x=zf [wrx,rdyrdy.f]

X
ASSIGN Y

Fex=F: x=y~>x= F;‘ [wrx, ftpt(F)]

CI>I-MC12 P~ Py [6‘1]
Oy Cot P~ Q e, er‘f] P; = Hé#r £ is P/e1-immune spec-only(r)

SEQ
Ok Cpi;Co: PAr=alloc~ Q [e1, 2]

O+ C: PANE~Plg er‘?] eis P/ (e, er‘f)—immune
P = H#r (+N € &, N # M. bnd(N)) /. r2w(fipt(E)) spec-only(r)

@+, while EdoC: PAr=alloc ~ P A=E [, fiptE]

WHILE

Fig. 35. Syntax-directed proof rules not given in Figure 23.

Or, A: P~ Q[e]
@+, A: P A Bsnap,, ~> Bmony [€] if M € ® then A is a call

Dry A: P~ Qe]

MobINTRO

Oy A: P~ Q|e] mdl(m) =M Aisnota call
O, mR~>S[n]+y A: P~ Q[e]

CtxINTROIN2

®ryp(): P~ Qle]
@ty p() : P A Bsnapy ~> Bmony [¢€] N = mdl(m) mdl(p) < mdl(m)

CtxINTROCALL

O, m:R~> S [n] Fy p(): P~ Q [e]

D, C: P~ Qg e] Dty C: P~ Q]
Cong

<I>|—MCZ PMQ()/\QI [E]
5 DryC: Pp~> Qle] @y C: Py~ Qle] . o+ C: P Q]
Is XIST

! ®r, C: PV P~ Qe O C: (Fx:T.P)~ O [e]

Fig. 36. Structural proof rules not given in Figure 23.

Some of the rules use a second premise, the boundary monotonicity spec of Definition B.1, to
enforce boundary monotonicity.** In many cases, this judgment can be derived from the primary
judgment of the rule, by a simple use of the FRAME rule to get Bsnap in the postcondition, and then
CoNSEQ to get Bmon.

THEOREM 6.1 (SOUNDNESS OF UNARY LogIc). All the unary proof rules are sound (Figure 23 and
Appendix Figures 35 and 36).

The proofs comprise Appendices B.2-B.10. We prove the R-safe and Encap conditions for all
rules, since Encap differs from the definition in RLII and R-safe is a new addition. Otherwise, the

#30ne can contrive a rule with only one premise, subject to conditions that ensure it refines the second spec, but we prefer
this way.
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proofs are mostly as in RLII. We give full proofs for the rules that have significantly changed from
RLILRLII, e.g., CTxINTRO and SOF.

B.2 Soundness of CALL

To show soundness of the axiom m : P ~ Q [¢e] Fo m() : P ~ Q [¢], consider any ¢ with
6 |= P where 6 = [o+5:7] and 5 are the spec-only variables of P. Consider any ¢ that is an
(m : P~ Q [¢e])-model. Owing to & |= P and Definition 5.9 of context model, there is no faulting
transition. So either ¢(m)(o) is empty and the stuttering transition is taken (transition rule uCALL0),
or execution terminates in a single step (m(), o, _) v (skip, 7, ) with 7 € ¢(m)(c) (transition rule
vCatr). The stuttering transition repeats indefinitely, and Safety, Post, Write, R-safe, and Encap
all hold, because the configuration never changes. In case execution terminates in (skip, 7, _),
Safety, Post, and Write are immediate from Definition 5.9, which in particular says 7 |= Q where
T = [r+5:0]. For R-safe, there is only one configuration that is a call, the initial one, and it is r-safe,
because the frame condition in the judgment is exactly the frame condition of the method’s spec.

Encap requires boundary monotonicity for the current module and every module in context.
Boundary monotonicity for module « holds, because bnd(s) = «. It holds for mdi(m), the one module
in context, by Definition 5.9(c), since < is reflexive.

Encap requires w-respect for every N in context different from the current module, which in
this case means either mdl(m) or nothing, depending whether mdl(m) = .. The step w-respects
mdl(m), because it is a call and mdl(m) < mdl(m).

Encap considers ¢/, & such that Lagree(c, o’, r, rlocs(o, n)\rlocs(a, 5®)) where collective bound-
ary 0 is the union of boundaries for N in context and not imported by mdl(m); hence § = .. By
condition (d) in Definition 5.9, we have ¢(m)(c) = @ iff ¢(m)(c”) = @, so either both transition go
via UCALLO to unchanged states, thus satisfying r-respect, or both transition go via UCALL to states
7,7’ with 7 € p(m)(c) and t’ € p(m)(c”’). In the latter case, rlocs(c,+)® is {alloc} by definition of
rlocs, and the r-respect condition to be proved is exactly the condition (d) in Definition 5.9. In a lit-
tle more detail, we must show the final states agree on freshL(c, 7) U wrttn(c, )\ rlocs(t, «®), which
simplifies to freshL(o, ) U wrttn(o, r)\{alloc}. R-respects also requires a condition that simplies to
p(freshL(o, 1)) C freshL(c’,t"), because rlocs(z,s) = @.

B.3 Soundness of FiIELDUPD

This is an axiom: b, x.f =y : x # null ~ x.f = y[wrx.f, rd x, rdy]. The Safety, Post, and Write
conditions are straightforward and proved the same way as in RLL R-safe holds because there is
no method call. For Encap, the only steps to consider are the single terminating steps from states
where x is not null. So suppose {(x.f := e, o, _) v (skip, v, _), where v = [¢ | o(x).f: o(y)]. For
Encap, boundary monotonicity: the only relevant boundary is bnd(.), which is empty, so mono-
tonicity holds vacuously. For Encap, w-respect is vacuously true for the empty boundary. For r-
respect, since the command is not a call the collective boundary is empty. As we are considering
the initial step and the boundary is empty, the antecedent of r-respect can be written

Lagree(a, o, , rlocs(a, €)\{alloc}) and (x.f :=e, o', _) v (skip, v/, _). (44)

Since there is no allocation, extending 7 is not relevant, and the condition about fresh locations
is vacuous, so it remains to show that Lagree(v, v’, 7, (wrttn(o,v))\{alloc}). What is written is the
location o(x). f, so this simplifies to Lagree(v,v’, 7, {o(x).f}). Given that rd x is in the frame con-
dition, we have x € rlocs(o, €) so the assumption Equation (44) gives agreement on which location
is written. It remains to show agreement on the value written, which is o(y) versus ¢’(y). From
the frame condition, we have y € rlocs(o, €), so by Equation (44), we have initial agreement on it
and we are done.
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B.4 Soundness of IF
Suppose the premises are valid: @ |=, C; : PAE ~ Qleland ® |5, C; : PA-E ~ Q [e].
Suppose the side condition is valid: (+N € ®, N # M. bnd(N)) /. r2w(ftpt(E)). To show @ ,,
if E then C; else C; : P ~ Q [e, fipt(E)], we only consider R-safe and Encap, because the rest is
straightforward and similar to previously published proofs. Consider any ®-model ¢, noting that
the premises have the same context. Consider and any o with o |= P. Consider the case that o(E) =
true (the other case being symmetric). So the first step is (if E then C; else Cy, o, _) v (Cy, 0, _).
This is not a call, so the step (or rather, its starting configuration) satisfies r-safe. For Encap, the
first step does not write, so it satisfies boundary monotonicity and w-respect.

For r-respect, the requisite collective boundary is § = (+N € (®, N # M. bnd(N)), because there
is no ecall and the environment is empty. We show r-respect for the first step, i.e., instantiating
r-respect with 7, v := o, 0. The requisite condition for this step is that for any ¢’, if

(if E then C; else Cy, o/, ) v (D', o/, _)

and Lagree(o, o’, m, (freshL(c, o) U rlocs([o+5:D), (¢, ftpt(E)))\rlocs(a, 5®)), then D’ = C; and
two agreement conditions about fresh and written locations. (We omitted one antecedent,
Agree(a’, o', §), which is vacuous.) There are no fresh or written locations, so those two condi-
tions hold. It remains to prove D’ = C;. We can simplify the antecedent to

Lagree(c, o', 1, (rlocs(a, (¢, ftpt(E)))\rlocs(a, 5%))).

Because the side condition is true, (+N € ®,N # M. bnd(N)) /. r2w(ftpt(E)), we have
rlocs(a, ftpt(E)) disjoint from rlocs(c, 5%). So Lagree(o, o, rr, (rlocs(a, (e, ftpt(E)))\rlocs(a, 5®))) im-
plies Lagree(o, o”’, 7, rlocs(o, ftpt(E))). Hence, o(E) = ¢’(E) by footprint agreement lemma. By se-
mantics, D’ = C; and we are done.

For subsequent steps in the case o(E) = true, we can appeal to the premise for Cy, which applies
to the trace starting from (C;, o, _), since o |= P A E. This yields r-safe and respect (as well as the
other conditions for validity).

B.5 Soundness of VAR
Suppose the premise is valid: ® |=]F\;IX:T C: P Ax = default(T) ~ P’ [rw x, ¢]. To prove the R-safe
and Encap conditions for |:5v1 var x:T inC: P ~» P’ [¢], let ¢ be a ®-model and 6 |= P (where &
extends o with values for the spec-only variables of P). The first step is (var x:T in C, o, u) %
(C%sevar(x’), [o+x": default(T)], p) where x” = FreshVar(c). Let 6 = (+N € ®,N # M. bnd(N)).
This step satisfies w-respect, because the variables in § are already in scope, so are distinct from
x". (Indeed, x’ is a local variable and boundaries cannot contain locals.) The first configuration
satisfies r-safe, because it is not a call. To show the first step satisfies r-respect, note first that
rlocs(o, 8) = rlocs([o+x': default(T)], §), again, because x’ is not in §. Consider taking the first
step from an alternate state ¢’ satisfying the requisite agreements with 0. Now ¢’ has the same
variables as o (by definition of r-respect, including footnote 32), and by assumption (39) the choice
of x” depends only on the domain of o, so the alternate step introduces the same local x” and the
same command CJ,; evar(x’). We have freshL(o, [o+x": default(T)]) = {x’} by definition, and the
agreements for r-respect follow directly, noting that default(T) is a fixed value dependent only on
the type T.

If execution reaches the last step, then that last step satisfies r-safe and respects, because it
merely removes x’ from the state. For any other step, the result follows straightforwardly from
R-safe and Encap for the premise: The state [o+x”: default(T)]) satisfies P A x = default(T), and a
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trace of C%,; evar(x’) gives rise to a trace of C (by dropping evar(x”) and renaming), for which the
premise yields r-safe, respects, indeed Safety, and so on.

B.6 Soundness of MoDINTRO

Or,A: P~ Qle]
@+, A: P A Bsnap,; ~> Bmony [¢] if M € ® then A is a call

Ory A: P~ Qle]

For Encap, as A is an atomic command A, the only reachable step is the single step taken in a

MoDINTRO

terminating execution (4, o, _) N (skip, 7, _) or the stutter step by uCALLO, which has the form
(A, o, )% (A, o, _). (A stutter step may repeat, but no other state is reached.) In either case,
there is no ecall in the configuration, and the environment is empty.

For Encap, boundary monotonicity for N € ® is from the first premise, and boundary mono-
tonicity for N = M is from the second premise.

For Encap, the w-respect condition quantifies over N € (&, _) different from the mod(A, M).
Since the environment is empty, N € (®, _) is the same as N € ®. Since A has no ecall, mod(A, M)
is M. So the condition quantifies over N € ® with N # M. By side condition M ¢ @, this is the
same as N € ®. So the condition for the conclusion is the same as for the first premise, from which
we obtain Encap (a).

For Encap r-respect, go by cases whether A is a method call. If not, then the collective bound-
ary for the premise is (+N,N € (®,_),N # mod(A,.). bnd(N)), and for the conclusion it is
(+N,N € (9, ), N # mod(A, M). bnd(N)). These are the same, owing to side condition M ¢ @, and
simplifying as above. So r-respect is immediate by the first premise.

If Ais a call to some method p, then the collective boundary is (+N,N € (®,_), mdl(p) £
N. bnd(N)). This is independent of the current module, so again the conclusion is direct from the
first premise.

B.7 Soundness of CTXINTRO

DLy A P~ Qle] P = bnd(mdl(m)) -/. ¢ P = bnd(mdl(m)) -/. r2w(e)
O, m:R~ S[nl+y A: P~ Qle]

CTxINTRO

Proor. Consider any (®, m:R ~» S [n])-model ¢. By definitions, ¢ [ m is a ®-model, with which
we can instantiate the premise. The Safety, Post, Write, and R-safe conditions follow from those for
the premise—it is only the Encap condition that has a different meaning for the conclusion than it
does for the premise.

For Encap, as A is an atomic command A, the only reachable step is a single step, either the
terminating step (A, o, _) N (skip, 7, _) given by UCALL or the stuttering step by UCALLO,
which is (A, o, _) N (A, r, ) witht = 0.

For Encap, for boundary monotonicity, we need rlocs(o, bnd(N)) C rlocs(z, bnd(N)) for all N
with N € (d,m : R~ S[n]) or N = M. This holds for all N € ®, and for N = M, by the same condi-
tion from the premise, so it remains to consider N = mdI(m). From the premise, we have 0 —7 |= ¢.
By side condition (and o |= P), we have ¢ |= bnd(N) -/. €. So, we have Agree(o, t, bnd(N) by sep-
arator property (29). Since boundaries are read framed (Definition 3.1), we can apply footprint
agreement (28) to get rlocs(v, bnd(N)) = rlocs(z, bnd(N)).

For Encap, we need w-respect of each N with N € (d,m : R ~ S [5]) and N # mod(A, M).
(simplified for the empty environment, as in the proof of MobpINTRO). Since ecall does not occur
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in A, N # mod(A, M) simplifies to N # M. Again, we have this condition from the premise for all
N except N = mdl(m). For that, in the case that A is not a call to a method m with mdIl(m) < N,
we must show Agree(o, 7, bnd(N)); and it was shown already in the proof of (c).

For Encap, we show r-respect by cases:

Case: the step is not a call. Then the collective boundary is § = (+N € (®,m : R~ S[n]),N #
mod(A, M). bnd(N)), and N # mod(A, M) is just N # M.

Let § be the collective boundary for the premise: § = (+N € ®, N # M. bnd(N)) (again, sim-
plifying N # mod(A,M) to N # M). So § is 5, bnd(N).If N = M, or N € ®, or bnd(N) = .,
then § is equivalent to &, and we get r-respect directly from the premise. Otherwise, suppose
(A, o/, ) N (B, t’/, _) and Agree(c’,7’,5) and

Lagree(c,o’, 1, rlocs(c, £)\rlocs(a, 5%)). (45)

(This is simplified from the general condition of r-respect, which includes fresh locations in the
assumed agreement; here, because we consider the first step of computation, there are none.) We
must show
Lagree(t, t’, p, (freshL(c, T) U wrttn(o, 7))\ rlocs(r, §9)),
p(freshL(o, v)\rlocs(z, 8)) C freshL(c’, 7")\rlocs(z’, ).

The premise gives an implication similar to (45)=>(46) but for §. Now & may be a proper subeffect of
8, so we only have rlocs(o, §) C rlocs(o, §) and thus rlocs(o, €)\rlocs(o, §®) may be a proper subset
of rlocs(c, €)\rlocs(c, §®). This means Equation (45) does not imply the antecedent in r-respects
for the premise, so we cannot simply apply that. Instead, we exploit the fact that the command A is
one of the assignment forms: x := F, x := new K, x := x.f, x.f := x. Each of these has a minimal
set of locations on which it depends in the relevant sense.

(46)

Craim. For each of the atomic, non-call commands, and for each o, o', i, i’ there is a finite number
of minimal sets X C locations(c) such that if (A, o, p) — (skip, 7, i), (A, o', pr) — (skip, 7/, u),
and Lagree(o, o', m,X), then there is p 2 7 with

Lagree(t,t’, p, freshL(o, T) U wrttn(c, t)) and p(freshL(c, 7)) C freshL(c’,7").

(Here, we omit the model for —, which is not relevant to semantics of non-call atomics.) In fact,
the minimal sets are unique in most cases, but we do not need that.*

Now, consider the antecedent of r-respect for the premise: Lagree(o,o’, x, rlocs(o, €)\
rlocs(o, 59)). We must have X C rlocs(a, €)\rlocs(o, §®), as otherwise, according to the Claim,
r-respect would not hold for the premise. By side condition, we have & |= bnd(mdl(m)) /. r2w(e),
hence rlocs(o, bnd(N)) is disjoint from rlocs(o, €) by the basic separator property mentioned just
before (29). By set theory, from X C rlocs(c, €)\rlocs(c, §2) and rlocs(o, bnd(N)) N rlocs(o, €) = @
we get X C rlocs(o, €)\rlocs(o, §%). By monotonicity of Lagree, Equation (21), the agreement Equa-
tion (45) implies by X C rlocs(c, £)\rlocs(a, 5®) the antecedent agreement in the Claim. Whence
by the Claim we get agreement on everything fresh and written, which implies the agreement in
Equation (46). As for the second line of Equation (46), what the Claim gives is p(freshL(o, 1)) €
freshL(c’,7"). This implies p(freshL(o,7)\rlocs(r,8)) C freshL(c’,7”). From Agree(c’,7’,d), we
have rlocs(z’, §) = rlocs(o’, 8 so there are no fresh locations in rlocs(z’, §). Hence, freshL(c’,7") =
freshL(c’, 7")\rlocs(z’, &), so we have p(freshL(o,t)\rlocs(r,5)) € freshL(c’,z")\rlocs(z’, §), and

we are done.

1t is only assignments x := F for which non-uniqueness is possible, owing to information loss in arithmetic expressions.
For example, with the assignment x := y * z and for o with o(y) = 0 = o(z) then agreement on either y or z is enough
to ensure the values written to x agree. The minimal sets are {y} and {z}. This also happens with conditional branches,
like “if x or y”
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The Claim is a straightforward property of the semantics. For each of the assignment forms, one
defines the evident location set (which underlies the small axioms in the proof system) and shows
that it suffices for the final agreement. Then by counterexamples one shows that the location set
is minimal.

Case: the step is a call. We show r-respect in the case that A is a call to some method p. Note
that p # m, because rules can only be instantiated by wf judgments and m is not in scope in the
premise. The primary step has the form (p(), o, _) AN (Ao, 7, _), where either Ay = skip and
7 € p(p)(o) or Ay = p(), T = o, and ¢(p)(c) = @. It turns out that we do not need to distinguish
between these cases. We need r-respect for

5 = (+N € (®,m:R ~> S [5]), mdl(p) £ N. bnd(N))

(as the environment is empty). The premise gives r-respect for § = (+N € ®, mdl(p) # N.bnd(N)).
If mdl(m) € ® or mdl(p) < mdl(m), then § is §, and we have r-respect from the premise. It remains
to consider the case that mdl(m) ¢ ® and mdl(p) £ mdl(m), in which case § = 8, bnd(mdI(m)). Let
us spell out r-respect for the premise and this step. The r-respect from the premise says that

Lagree(c, o, 1, rlocs(o, €)\rlocs(o, 5%)) and Agree(c’,7’, 5) (47)

implies there is p with p 2 7, such that Lagree(r, 1, p, (freshL(c, 7) U wrttn(o, 7))\rlocs(z, §®))

and p(freshL(c, 7)\rlocs(r,8)) C freshL(c’,7’)\rlocs(z’, 8). (The antecedent is simplified from the

definition of r-respect, by omitting the set of fresh locations, which is empty in the initial state.)
For the conclusion, the condition is the same except with § in place of §. So suppose

Lagree(a,o’, 1, rlocs(c, £)\rlocs(a, 5%)).

This implies Equation (47), because rlocs(c,¢) is disjoint from bnd(mdl(m)) owing to the
condition bnd(mdl(p)) /. ¢ in the rule. So, we get some p as above, and the agreement
Lagree(r, ', p, (freshL(c, 7) U wrttn(a, 7))\ rlocs(t, 52)) implies the needed agreement for &, since §
is a subeffect of §, which is being subtracted. Finally, we need to show p(freshL(c, 7)\rlocs(r, §)) C
freshL(a’, t")\rlocs(z, §). By w-respect for the o-to-r step and by assumption Agree(o’,7’,9),
there are no fresh locations in rlocs(r, §) or rlocs(t’, §), so this simplifies to p(freshL(o,7) C
freshL(c’, t"), which for the same reasons is equivalent to the inclusion p(freshL(c, 7)\rlocs(r, §)) €
freshL(c”, ")\ rlocs(t’, §) from the premise. O

B.8 Soundness of other Context Introduction Rules

In RLII the rule “CtxIntroln” has a disjunctive antecedent. In the present work, we need additional
side conditions, so we split the rule into multiple rules:

D+, C: P~ Qle] mdl(m) € ®
O, mR~> S[n]+y C: P~ Qle]

CTXINTROIN1

Proor. Given a model ¢ for the conclusion, ¢ ['m is a model for the hypotheses of the premise.
Owing to mdl(m) € ®, we have N € (O, m : spec) iff N € ®. As a result, all the conditions of Encap
(a—c) are have identical meaning for the conclusion as for the premise. The same is true for Safety,
Post, Write, and R-safe: O

Oy A: P~ Qle] mdl(m) = M Ais not a call
O, m:R~> S[nlry A: P~ Qle]

CtxINTROIN2
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Proor. Note that A is an atomic command. Given a model ¢ for the conclusion, ¢[m is an model
for the hypotheses of the premise. Validity of the premise implies validity of the conclusion, for
all conditions except Encap. Boundary monotonicity is immediate, because the premise already
requires boundary monotonicity for all N € ® and for N = M. For w-respect, note that A is not a
call and there is only a single step that has no ecall in the configuration. The condition exempts the
current module M and is a direct consequence of Encap (a) of the premise, owing to mdi(m) = M.
For r-respect, the current module is not included in the collective boundary for non-call commands,
so again the addition of m does not change the requirement. O

®Fyp(): P~ Qe]
@+ p() : P A Bsnapy ~> Bmony [€] N = mdl(m) mdl(p) < mdl(m)
O, m:R~> S[n] Fy pO: P~ Qle]

CTXINTROCALL

Proor. We get Safety, Post, Write, and R-safe from the first premise. For Encap, we get boundary
monotonicity from the first premise, except for N in the case that N = mdl(m) # M and mdl(m) ¢
®. Boundary monotonicity for N is directly checked by the second premise.

We get w-respect, by side condition mdl(p) < mdl(m), as a consequence of the first premise.

Finally, r-respect is also a consequence of the first premise, because the collective boundary for
the premise is (+N € @, mdl(p) £ N. bnd(N)) and by side condition mdl(p) < mdl(m) this is the
same set as for the conclusion. O

B.9 Soundness of SOF

D,0F,, C: P~ Qle] I= bnd(N) frm I
Neo®o N+M Vm e ®. mdl(m) £ N C binds no N-method
D (O®I)Fy C: PAI~> QAIe]
Observe that, because boundaries have no spec-only variables (Definition 3.1), and bnd(N)
frames I, the latter does not depend on any spec-only variables. To prove validity of the conclu-

sion, suppose /" is a (&, © ® I)-model. To use the premise, define {y~(m) as follows. For m in @, let
y~(m) = ¢*(m). For m in © with ©(m) = R ~» S [n] define, for any

{¢} T E R,
Y (m)(r) £ { @ TERAI,
yr(m)(r) tERAIL

The precondition R may have spec-only variables, in which case 7 |= R A I abbreviates that there
are some values for the spec-only variables so that RAT holds. Because I has no spec-only variables,
the clauses are exhaustive and mutually disjoint. It is straightforward to check that ¢~ is a (®, ©)-
model according to Definition 5.9.

For the rest of the proof, we consider arbitrary o with 6 |= P A I, where 6 = [o+5:7] is the
extension of o uniquely determined by P and o according to Lemma 5.1.

To finish the proof, we need the following.

SOF

Cram. If (C, o, _) AR (B, 7, uy, then v |= I and that sequence of configurations is
also a trace (C, o, _) AN (B, t, p) viay~.
We also need the following observations, to prove the Claim and to prove the rule. For any
B, T, p:

(a) If Active(B) is not a call to method in ©, then the transitions from (B, 7, p) via ll//—+> to 4 or
to a configuration, are the same as those via /. Because: the model is only used for calls, and the
models differ only on methods of ©.
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(b) If Active(B) is a call to some method m of ©, and 7 |= I, then the transitions from (B, 7, y) via

+— are the same as those via /. Because: For faults, fault via W is when the precondition of the

original spec ©(m) does not hold, and that is one conjunct of the precondition for ¢~, the other
being I. For non-fault, iy~ (m)(r) is defined to be ¢*(m)(r) when 7 |= I.

Before proving the Claim, we use it to prove the conditions for validity of the conclusion of
SOF.

Safety. Suppose (C, o, _) AN (B, T, u) AN 4. By the Claim, (C, o, _) o (B, t,pyand |= L.
So by observations (a) and (b), we get a faulting step from (B, t, ) via y~, whence (C, o, _) o 4,
which contradicts the premise of SOF.

Post. For all 7 such that (C, o, _) AR (skip, 7, _), wehave r = I'and (C, o, _) AR (skip, 7, _)
by the Claim. By premise of the rule, we have 7 |= Q%. So, we have 7 |= (Q A I)%, because I has no
spec-only variables.

Write. Direct consequence of the premise and the Claim.

R-safe. For m in ©, the frame condition of (® @® I)(m) is the same as that of ©(m), by definition
of @®. So this is a direct consequence of the premise and the Claim.

Encap. Boundary monotonicity is a direct consequence of the Claim, using the premise. So too
the w-respects condition: the condition for the conclusion is the same as for the premise, because
®, ® ® I has the same methods, thus the same modules, as ®, © has.

For r-respects, consider any reachable step (C, o, _) AN (B, 7, ) AN (D, v, v) and an

alternate step (B, 7/, p) RaN (D', v', v') where Agree(r’,v’,§) and 7’ agrees with 7 according
to the r-respect condition for §, where the collective boundary ¢ is determined by Active(B),
®,0, and M, in the same way for the conclusion as for the premise (ie., § is the same for
both).

If the active command of B is not a call to a method in ©, then the steps can be taken via i/~ (see
observation (a) above) and so r-respect from the premise can be applied. If the active command of
B is a call to some method m € ©, then we have 7 |= [ and 7’ |= I by definition of ¢/ (m). So the
steps can both be taken via /™ (see observation (b) above). So, we can appeal to r-respect from the
premise, and we are done.

ProoF of Craim. By induction on steps.

Base case zero steps: immediate from 6 = P A 1.

Induction case: (C, o, _) AR (B, T, u) AN (D, v, v). The inductive hypothesis is that
(C, o, ) W (B, 7, u), by the same intermediate configurations, and 7 |= I.

Case Active(B) not a call to a method of ©: by observation (a) above, the step to D can be
taken via ~. So, we can use Encap from the premise. In particular, we get Agree(r,v, bnd(N))
by w-respect, owing to side condition N € © and M # N and also the fact that if the step
calls m in ® then mdl(m) £ N by side condition. Moreover, we use side condition that C binds
no N-method, so that in the definition of w-respect, we have that topm(B, M) is not N. So from
|= bnd(N) frm I and induction hypothesis 7 |= I, by definition (27) of the frames judgment, we get
viEL

Case Active(B) is a call to some m € ©. Suppose ©(m) = R ~ S [5]. By induction hypothesis
(C, o, ) AN (B, 7, py we have 7 |= R?ﬁ (with u the uniquely determined values of R’s spec-only
variables t), because otherwise there would be a fault via i/~ contrary to the premise. Because
= RtH A I, we have ¥~ (m)(r) = ¢*(m)(r) by definition of /~(m), so the step can be taken via /=
and moreover v |= I, because /" is a @, (© @® I)-model.
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B.10 Soundness of LINK

D, 0 Fpdim,) Bi : O(m;) 0,0+, C: P~ Qle]
dom(®) =m VNed, LeO®. N £L VN, LLNe®AN<L=Le(D,0)

Or,letm=BinC:P~> Qle]

Link

Remark 9. 1t is sound to generalize the rule to allow any module M for C and for the linkage,
provided that bnd(M) = .

For clarity, the proof is specialized to case that © has a single method named m. We spell out
the proof in considerable detail, as there are a number of subtleties. However, we assume there are
no recursive calls in the bodies of the linked method. There is no difficulty with recursion, it just
complicates the proof: recursion can be handled using a fixpoint construction for the denotational
semantics (as in proof of the linking rule in Section A.1 of RLIII, and using quasi-determinacy) and
an extra induction on calling depth (as in the linking proofs in both RLII and RLIII).

We use the following from RLII: For method m in the environment, a trace is called m-truncated
provided that ecall(m) does not occur in the last configuration. This means that a call to m is not
in progress, though it allows that a call may happen next. In a trace that is not m-truncated, an
environment call has been made to m, making the transition from a command of the form m(); C
to B;ecall(m); C where B is the method body, and then further steps may have been taken. Note
that in an m-truncated trace, it is possible that the active command of the last configuration is m().

To prove soundness of the rule, suppose ©(m)is R ~» S[n] andlet N = mdl(m). Assume validity
of the premises for B and C:

D,0=yB:R~ S[p] and ®,0|=, C: P~ Q[e]. (48)
To prove validity of the conclusion, i.e.,
Ol.letm=BinC: P~ Qle], (49)

let ¢ be any ®-model. Define 6 to be the singleton mapping [m:[ B],], using the denotation of B,
so that ¢ U 0 is a (¥, ©)-model, by Lemma A.8. (To handle recursive methods, the generalization of

Lemma A.8 is proved by induction as in Lemma A.10 of RLIIL) For brevity, we write ¢, 0 for ¢ U 0

0 ue
and +25 for £=3.

For any o, the first step is (let m=Bin C, o, _) +% (C;elet(m), o, [m:B]), and if the computation
reaches a terminal configuration then the last step is the transition for elet(m), which removes m
from the environment but does not change the state. So to prove Equation (49), we use facts about
traces from (C, o, [m:B]).

The following result is used not only to prove Equation (49) but also used to prove soundness
of the relational linking rule. In its statement, we rely on Lemma 5.1 about spec-only variables in
wf preconditions.

LEmMA B.2. Suppose we have valid judgments ®,0 |=x B : ©(m) and ®,0 |=, C: P ~ Q [¢],
and alsom ¢ B. Let ¢ be a ®-model and 6 = [m:[ B],]. Let o be any state such that o |= P. Suppose

(C, o, [m:B]) v%* (D, 7, j1) is m-truncated (for some D, T, j1). Then

e (C, 0, ) 120, (D, 7, i), where u = ji[m.
e If D = m(); Dy for some Dy, then 7 |= R.

(Here, the abbreviations ¢ |= P and 7 |= R mean satisfaction by the states extended with the
uniquely determined values for spec-only variables.)
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Proor. We refrain from giving a detailed proof; it requires a somewhat intricate induction hy-
pothesis, similar to the one for impure methods in RLIII (Section A.2, Claim B) and the one in RLII
(Section 7.6). The main ideas are as follows.

The combination ¢, 6 is a (®, ®)-model, by Lemma A.8. If (C, o, [m:B]) A (D, 7, ) is
m-truncated, then we can factor it into segments alternating between code of C and code of B

. . . )
during environment calls to m. The steps taken in code of C can be taken via +=, because the
two transition relations are identical except for calls to m. A completed call to m amounts to a
terminated execution of B (with a continuation command and environment left unchanged). A

completed call gives rise to a single step via +2% with the same outcome, because 6(m) is the
denotation of B, which is defined directly in terms of executions of B.*> Reasoning by induction

on the number of completed calls, we construct a trace via +2% At each call of m, we appeal to the
premise for C to conclude that the precondition of m holds, as otherwise there would be a faulting

)
trace of C via 5. |

Proor of Link. Using Lemma B.2, we prove Equation (49), validity of the conclusion of rule
LINK, as follows, for any o such that & |= P where & is [o+5: D] for the unique values v determined
by o.

Post. An execution of (let m = B in C, o, _) via ¢ that terminates in state 7 gives an execution
for (C, o, [m:B]) via ¢ that ends in 7. It is m-truncated, so by Lemma B.2 we have (C, o, _) K20,
(skip, 7, _). By validity of the premise for C, see Equation (48), we get 7 |= Q.

Write. By an argument very similar to the one for Post.

Safety. By semantics of let m = B in C and of elet(m), a faulting execution has the form

(letm=BinC, o, ) +% (C;elet(m), o, [m:B]) v2* (D;elet(m), 7, i) +% 4
for some D, 7, 1, with D # skip. This yields a faulting execution:
(C, o, [m:B]) +v&* (D, 7, i) v 4. (50)

We show by two cases that this contradicts the premises (48) of LINK.

Case. The trace (C, o, [m:B]) =%* (D, 7, ji) is m-truncated. Note that Active(D) is not a call
to m, because that would be an environment call and would not fault next. By Lemma B.2, we get
(C, a, _) 120, (D, 7, p) (where u = ji|'m), and the transition from (D, 7, y) to ; can be taken
via +<p—9>, because it is the same relation as +2» except for calls to m. But a faulting trace via ¢, 6
contradicts the premise for C.

Case. The trace (C, o, [m:B]) w%* (D, t, j1) is not m-truncated. So Equation (50) can be factored
as

<C, o, [mB]) I'l)* <m();D0, 7o, y0> +i> <B;D0, To, y0> PL* <B0;D0, T, 'tl) }i) é
for some Dy, By, 7o, flo, Where D = By; Dy. Applying Lemma B.2 to the m-truncated prefix, we get
C, o, ) 129, (m(); Do, 70, Ho) (Where pio = fip I m) and 7y |= Rg, for some u’. We also have a

faulting execution of B from 1y, i.e., (B, 7o, lo) 5% (B, T, I +25 4, which (because m is not
called in B) yields the same via ¢, , which contradict the premise for B in Equation (48).

45 A fine point: Calls of m may occur in the scope of local variable blocks, so the state may have locals in addition to the
variables of the context I' of the judgment; this is handled using the implicit conversion of context models is discussed in
Section 5.3, footnote 42.
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R-safe. The first step is not a call, nor is the elet step if reached. Consider any other reachable
configuration: (C, o, [m:B]) v&* (D, , fi). If Active(D) is a call to some p where ®(p) is R, ~
Splnp], then we must show rlocs(z, n,) C freshL(o, T)Urlocs(o, €). Depending on whether Active(D)
is in code of C or B, the conclusion follows from the premise of C or B, similarly to the proof for
Safety. In the non-m-truncated case, i.e., steps of B, a called method p is different from m, since
we are assuming no recursion. The R-safe condition refers to starting state of B (which is 7 in the
Safety proof above). The premise yields an inclusion of the p’s readable locations in those of m in
its starting state rj. Because the R-safe condition holds for the call of m (by induction hypothesis),
its readable locations are included in rlocs(o, €). Moreover, locations that are fresh relative to 7
are also fresh relative to o. So the result follows using transitivity of inclusion. A more detailed
argument of this form can be found in the proof of Encap below.

Encap. For boundary monotonicity, we must prove, for every N’ with N’ = « or N’ € ®, that
every reachable step, say with states 7 to v, has rlocs(z, bnd(N")) C rlocs(v, bnd(N")). For steps of
C this is immediate from boundary monotonicity from the premise for C, where boundary mono-
tonicity is for all N’ € (®,0) and N’ = .. For steps of B and N’ € ® this is immediate from Encap
from the premise for B, where boundary monotonicity is for all N’ € (®,0) and N’ = N. However,
the judgment for B does not imply anything about the boundary of « (unless « happens to be in
®, ©). But by wf, we have bnd(s) = », which makes boundary monotonicity for bnd(s) vacuous.

For w-respect and r-respect, we need to consider arbitrary reachable steps. The first step of
let m = B in C deterministically steps to C;elet(m), putting m : B into the environment without
changing or reading the state, so both w-respect and r-respect hold for that step. Both conditions
also hold for the step of elet(m), which again does not change or read the state. So it remains to
consider reachable steps of the following form, in which we abbreviate A = elet(m):

(letm=BinC, o, ) v5 (GA, o, [m:B]y ¥5* (DA, 1, fi) V5 (Dp; A, v, ), (51)
where D # skip. Aside from the first step, such traces correspond to traces of the form
(C, o, [m:B]) v* (D, 1, i) ¥ (Do, v, V),

i.e., exactly the same sequence of configurations, but for lacking the trailing elet(m).

For w-respect, our obligation is to prove that the step (D, 7, f) LN (Dy, v, v) w-respects L for
every L € (®, 1) and L # topm(D, »). In the case of an m-truncated trace from C to D, we appeal to
Lemma B.2. In the case of a non m-truncated trace from C to D, the above step is one arising from
an environment call to m and therefore occurs in the trace from B. So, we use w-respects for B. The
result follows, because the condition for w-respects L for Bis L € (9,0, ) and L # topm(D, N)
and this is equivalent to the w-respects condition for the step from D, because both conditions are
equivalent to L € (®, p). In the case of an m-truncated trace from C to D, we appeal to Lemma B.2.
We can use w-respects for the premise C. In the case where Active(D) is not a context call this
condition is L € (®, 0, p) and L # topm(D, «), which is equivalent to L € (®, j1) and L # topm(D, »).
In the case where Active(D) is a context call to some p € ®, the condition to be proved is L € (®, /1)
and L # topm(D, ) and mdl(p) < L. We obtain this from the w-respects condition for the premise,
which is L € (®,0, ) and L # topm(D, ) and mdl(p) < L.

For r-respect, we must show the step (D, 7, 1) LN (Do, v, v) r-respects § for (¢, ¢, ) where §
is defined by cases on Active(D):

o if Active(D) is not a call, then § = (+L € (®, 1), L # topm(D, ). bnd(L))
e if Active(D) is a call to some m, then § = (+L € (P, j1), mdl(m) £ L. bnd(L))

Let us spell out the r-respect conditions for the given trace (51).
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(*) For any m,7’,v’, if Agree(z’,v’,6) and (D, 7', 1) N (D}, v’, v) and Lagree(z,7’, 7,
freshL(o, 1) U rlocs(o, €)\rlocs(r, §9)), then D), = Dy and there is p 2 & such that

Lagree(v,v', p, freshL(t, v) U wrttn(r, v)\rlocs(v, §%)), +
p(freshL(t,v)\rlocs(v, §)) C freshL(z’,v")\rlocs(v’, 5). ()

To prove (*), we go by cases on whether the trace up to D, 7 is m-truncated.
Suppose the antecedent of (*) holds: that is,
Agree(t’,v’,8) and (D, 1/, i) v (Dg, v’, V) and
Lagree(z, t’, 7, (freshL(o, T) U rlocs(c, €))\rlocs(z, §%)).
Case. (C, o, [m:B]) v&5* (D, 1, ji) is m-truncated.

Then by Lemma B.2, we have (C, o, _) 129, (D, 7, uy, where p = ji[m.
If Active(D) is not a context call, then the r-respect condition to be proved is for

)

(+L € (D, 1), L # topm(D, ). bnd(L))
(+L € (D, ), L # topm(D, ). bnd(L)), bnd(N).

We have the additional step (D, 7, u) 29, (Dy, v, v), because in this case ¢ and @0 agree. For the

same reason the step (D, 7/, 1) to (D}, v’, V) can also be taken via ¢0, so (D, 7’, i) 29, (D], v, v),
where v = v [m. The Encap condition for the premise for C says that

€. o, )% (D, 1, py % (D}, v, v)

respects (@, ©), o, (¢0), €, 0).

Unpacking definitions, from r-respect, we have that the step (D, 7, ) r29, (D}, v, v) r-respects
S for (pb, ¢, o), where & (+L € (9,0, p), L # topm(D, ). bnd(L))
(+L € (D, p), L # topm(D, ). bnd(L)), bnd(N)

= 4.

Now to establish (f), we show Agree(r’,v’,8) and Lagree(r,z’, r, freshL(c,7) U rlocs(c, )\
rloes(t, 5®)). Because & = &, both hold by assumption.

If Active(D) is a context call to p € @, then the r-respect condition to be proved is for

1) (+L € (D, 1), mdl(p) £ L. bnd(L))
= (+L € (D, ), mdi(p) £ L. bnd(L)), bnd(N),

where the last equality follows, because mdl(m) = N and mdl(p) £ N by side condition of LINK,

and bnd(.) is empty. For the premise for C, note that there is a step (D, 7, u) 29, (D!, v, v), because
¢ and @0 agree on p. For the same reason, the step (D, 7’, 1) to (D], v, V) can also be taken via

00, so (D, T/, u) 29, (D}, v, v), where v = v [ m. The r-respect condition for the premise is for
collective boundary &, where 8§ = (+L € (9,0, y), mdl(p) £ L. bnd(L))
(+L € (D, u), mdl(p) £ L. bnd(L)), bnd(N)
= 0,

where the second equality follows because mdl(p) Z N by the side condition of the
Link rule. From these, we get an argument similar to above, because Active(r’,v’,8) and
Lagree(t, t’, 7, freshL(c, 7) U rlocs(o, €)\ rlocs(r, §%)) hold by assumption.

This completes the proof of (*) for m-truncated traces.
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Case. (C, o, [m:B]) v5* (D, t, ji) is not m-truncated. As in the proof of Safety, we factor out
the m-truncated prefix for the last call to m. That is, there are By, Dy, 3, 1 such that

(C, o, [m:B]) =% (m(); Dy, 71, fun) > (Becall(m); Dy, 11, fiu), since jiy(m) = B,
AN (By; ecall(m); Dy, 7, 1), with D = By; ecall(m); Dy,
25 (By;ecall(m); Dy, v, vy, with Dy = By;ecall(m); D;.

So, for just B, we have

(B, 11, f11) W5* (By, T, iy 5 (By, v, V),
and as in the proof of Safety, we have 7; |= R by Lemma B.2. Note that Active(D) = Active(By).
Moreover, m does not occur in B, By, By, because there is no recursion. Hence, ¢ and ¢0 agree so
that

(B, 11, H1) 120, (By, T, 1) LN (By, v, V).

By assumption, (D, 7/, i) +& (D/, v, ). That is,
(By;ecall(m); Dy, 7, j1) +% (B};ecall(m); D}, v’, ),

where D; = Bj;ecall(m); D;. There are no calls to m, so

<B0’ T,’ /l> |¢_9) <Bia U’, V>'

Because 7 is reached from o via 71, we have freshL(o,7) = freshL(o,11) U freshL(zy, 7), whence
freshL(t1,7) C freshL(o, 7). Moreover, by the validity of premise for C, we can use its R-safe con-
dition for the call to m to obtain rlocs(zy, 1) C rlocs(o, €).

If Active(D) is a context call to some p € @, then the r-respect condition to be proved is for

collective boundary § = (+L € (D, 1), mdl(p) £ L. bnd(L))
= (+L € (D, ), mdl(p) £ L. bnd(L)), bnd(N)
(in which we omit L = ., because bnd(e) is empty). For the premise for B, the r-respect condition
is for collective boundary § where § = (+L € (®,0, i), mdl(p) £ L. bnd(L))
(+L € (P, u), mdil(p) £ L. bnd(L)), bnd(N)
= 4,

where the second equality holds by side condition mdl(p) # N of the LINk rule.

Using the antecedent of (*) and noting § = §, we get

Lagree(t, 7', 1, (freshL(ty, ) U rloes(ty, n)\rlocs(z, 5%))).

Now, by the r-respect condition for the premise for B (and because Agree(r’,v’, ) holds by as-
sumption), we obtain p 2 & such that

Lagree(v,v’, p, (freshL(t,v) U wrttn(t,v))\rlocs(v, §%) and
p(freshL(r,v)\rlocs(v, 6)) C freshL(z’,v")\rlocs(v’, J).

Furthermore, B = B;, whence Di = Dy, because B; in the source code has a unique continuation.
Thus, D = Dy. Thus, () is established.

If Active(D) is not a context call, then note that topm(D, ) = topm(By; ecall(m); D1, «). Hence, the
r-respect condition to be proved is for collective boundary

6 = (+L e (D, 0),L +# topm(D,s). bnd(L)).
If By does not contain an ecall, then topm(D,s) = N. Then,
6 = (+L€(d,),L+# N.bnd(L))
= (+L e (@,p). bnd(L)),
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where the second equality follows, because mdl(m) = N and m € dom .
If By contains an outermost ecall(p), then p # m and topm(D, s) = mdl(p). Then

1) (+L € (D, 1), L # mdl(p). bnd(L))
(+L € (D, u), L # «. bnd(L)), bnd(mdl(p)), bnd(N)
(+L € (D, ). bnd(L)), bnd(mdl(p)), bnd(N).

The premise for B gives r-respect for the collective boundary
5 = (+L e (®,0,p),L # topm(By, N). bnd(L)).
If By has no ecalls, then topm(By, N) = N. In this case,

5 = (+L e (®,0,pu),L+ N. bnd(L))
(+L € (®, p). bnd(L)).

If By contains an outermost ecall(p) as above, then p # m and topm(By, N) = mdl(p). Then

5 (+L € (®,0, 1), L # mdl(p). bnd(L))

(+L € (@, j1). bnd(L)), bnd(mdl(p)), bnd(N).

In either case, § = 8. To obtain (), we must show Agree(zt’,v’, 5) and
Lagree(z,t’, 7, (freshL(ty, ) U rlocs(zy, n))\rlocs(z, 59).
Since & = 8, both of these hold by assumption.

C BIPROGRAM SEMANTICS AND RELATIONAL CORRECTNESS (RE SECTION 7)
C.1 On Relation Formulas

Semantics of relation formulas is given in Figures 25 and 37. Omitted in the figures are the left and
right typing contexts for the formula. Semantics for quantifiers is written in a way to make clear
there is no built-in connection between the left and right values. In particular, we allow one side to
bind a reference type while the other binds a variable of integer type. This is useful when a variable
is only needed on one side (whereas using a dummy of reference type would make the formula
vacuously true in states with no allocated references on that side). For practical purposes, we find
little use for quantification at type rgn ; however, it is convenient to exclude null at reference type.

The form R(FF), where FF is a list of 2-expressions, is restricted for simplicity to heap-
independent expressions of mathematical type (including integers but excluding references and
regions). So the semantics can be defined in terms of given denotations [ R] that provide a fixed
interpretation for atomic predicates R in the signature, as assumed already for semantics of unary
formulas. The semantics of left and right expressions is written using [ - ] and defined as follows:

[{F](clo’) = o(F) and [pF) |(a|c’) = o’ (F).

LeEmMA C.1 (UNIQUE SNAPSHOTS). If P is the precondition in a wf relational spec with spec-only
variabless on the left ands’ on the right, then for all 6, o', & there is at most one valuationv, v’ such

that olo’ |=, 7’;; Moreover, they are independent from n, i.e., determined by 0,0’ and P A P.
The proof is straightforward.

LEmma C.2 (FRAMING OF REGION AGREEMENT). G = G |= nlp frm AG‘f where n is

fipt(G), rd Gf.
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olo’ Ex DP) iff o’ F P
ol Ex PAQ iff olo’ Ex P and olo’ E, Q
ol Ex PVQ iff olo’ Ex Porolo’ Fr Q

olo’ Ex Vx:K|x":K'. P iff [o+x:0]|[0"+x":0"] Ex P forallv € [K]o\{null} and v’ € [K’ Jo'\{null}
olo’ Ex Vxirgn|x"rgn. P iff [o+x:0]|[0’+x":0"] Ex P forallo € [rgn]oand v’ € [rgn]o’

olo’ Ex VYxiint|x":int. P iff [o+x:0]|[0’+x":0"] Ex P forallv € Zandov' € Z

olo’ Ex R(FF) iff [FF](olo’) € [R] (and similarly for list FF)

Fig. 37. Relation formula semantics cases omitted from Figure 25. See Figure 14 for syntax.

ProoF. Suppose olo’ |=, G = G A AG'f and Agree(o, t,n) and Agree(c’, 7', ). By semantics,
olo’ |=r AG'f iff Agree(o, o', 7,rd G*f) and Agree(o’, o, 771, rd G°f), i.e.,

Lagree(a,o’, m, rlocs(a, rd G*f)) and Lagree(c’, o, m, rlocs(c’, rd G*f)).

We must show Lagree(t, 7/, 7, rlocs(t, rd G*f)) and Lagree(z’, T, 71, rlocs(z’, rd G* f)).

From Agree(o, 7,n) we get 0(G) = 7(G), and from Agree(c’, 7', n) we get 6’(G) = 7/(G). From
o(G) = 7(G), we get that rlocs(o, rd G f) = rlocs(r, rd G°f) and from o’(G) = 7/(G), we get that
rlocs(a’,rd G*f) = rlocs(z’, rd G*f). So, it suffices to show

Lagree(r, 7', 7, rlocs(a, rd G*f)) and Lagree(t’, 7, n~", rlocs(c”’, rd G* f)).

First the left conjunct: For any o. f € rlocs(a, rd G f), we have from above that 7(o.f) = o(o.f) ~
o’(7(0).f) so it remains to show o¢’(n(0).f) = t'(n(0).f). From olo’ =, G = G, we have
a(G) = ¢/(G), ie., 1(a(G)) = ’(G). So 7(0) € ¢'(G), and we get o’(7(0).f) = 7’(n(0).f) from
Agree(o’, 7', rd G°f).

Now the right conjunct: For any o.f € rlocs(o’, rd G'f), o(x7(0).f) X o’(0.f) = 7’(0.f) so it
remains to show 7(77'(0).f) = o(77(0).f). From ol¢’ = G = G, we have ¢(G) =~ ¢'(G),
ie, 7(a(G)) = d'(G). So 7o) € o(G), and we get o(r 0).f) = 1(r o0).f) from
Agree(o, 7,rd G°f). O

Lemma C3. If(olo’) 4 (r|z"), then oo’ |=, P implies t|t" [Fp1,p 0 P

Here n7%; p; ©’ denotes composition of refperms in diagrammatic order, so (77! p; 7)(0) is

7' (p(r~1(0))) if it is defined on o.

Proor. Proof by induction on P. We consider two cases; the other cases are similar or simpler.
Consider the case of F = F’, where F, F’ are expressions of some class type K. (The argument
for type rgn is similar and for base types int and bool straightforward.) Now suppose o|o’ |5,

F = F',ie, o(F) 2 o’(F’). For the non-null case, this is equivalent to p(c(F)) = o’(F’). (We
leave the null case to the reader.) We must show 7(F) i t'(F), i.e., 7' (p(x 1 (z(F)))) = ©/(F').
From (o|o”) " (zr|r’) we have o Zrando’ ~ 1’ by definition. By Lemma 5.6 we get o(F) ~
7(F) and ¢’(F’) ~ 7/(F’), which for non-null values means 7(c(F)) = 7(F) and n'(¢’(F’)) =
t’/(F’). We conclude by using the equations to calculate 7' (p(z~(7(F)))) = n'(p(n " (x(c(F))))) =
7'(plo(F))) = n'(c’(F)) = 7' (F').

Consider the case of AGf where f is a reference type field. Suppose o|o’ |=, AG‘f. By seman-
tics and the definitions of Agree, rlocs, and Lagree, this is equivalent to

Yo € 0(G). a(0.f) £ 6"(p(0).f). (52)
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In the rest of the proof, we consider the non-null case, so the body can be rephrased as p(c(o.f)) =
a’(p(0).f). We must show

Vp e (G). tp.f) " L (" (p))). ).

ie, 7' (p(x  (z(p.f)))) = /(x'(p(x~1(p))).f). By & 21, we have p € 7(G) iff 77 1(p) € o(G), so we
reformulate our obligation in terms of 7(0):

Vo € a(G). 7' (p(x " (z(n(0). ) = 7'(z(p(z~ (7 (0))). f)- (53)
By the isomorphisms o(F) ~ 7(F) and ¢’(F’) z t/(F’), we have n(c(o.f)) = 7(x(0).f) and
w'(o’(p.f)) = ' (' (p).f) for any o, p. We prove Equation (53) by calculating for any o € o(G):

7' (p(~}(z(n(0)-£))))
' (p(r~H(x(0(0.f)))) by 7(c(o.f)) = t(n(0).f)

= 1'(p(c(0.f))) by 7 bijective

= 7(0"(p(0).f)) by p(e(0.1) = "(p(0).f) from Equation (52)
=7/'(7'(p(0)).f) by 7'(c’(p.f)) = 7'(x"(p).f)

=t'(z'(p(x~ (n(0)))).f) by x bijective. O

LEMMA 8.8 (REFPERM MONOTONICITY). (i) Any agreement formula is refperm monotonic and so
is any refperm independent formula. (ii) Refperm monotonicity is preserved by conjunction, disjunc-
tion, and quantification. (iii) Any formula of the form (33), with R refperm monotonic, is refperm
monotonic.

Proor. (i) To show R is refperm monotonic, we must show for all 7, p, 0,0, if 0|0’ |=; R and
p 2 m then oo’ |=, R. This is immediate in case R is refperm independent.

There are two general forms for agreement formulas. For the form F = F’, we only need to
consider F (and thus F’) of reference or region type, as otherwise it is refperm independent. For
both reference type and region type, we have o|¢’ |=, F = F’ iff 6(F) = ¢’(F’) (by semantics,
see Figure 25). The latter holds only if ¢(F) is in the domain of 7 (for F : K) or a subset of the
domain (for F : rgn), and mut. mut. for o’(F’) and the range of 7. So o|o’ |=, F = F’ implies
olo’ |z, F = F' forany p 2 7.

The other form of agreement formula is ALE where LE may be a variable x—in which
case the meaning is the same as x = x and the above argument applies—or LE has the
form G‘f. Suppose o|oc’ |, G‘f. Unfolding the semantics, we have Agree(c,o’,,rd G'f)
and Agree(c’,o, 77 ,rd G°f). That is, Lagree(c,o’, m, rlocs(o,rd G'f)) and Lagree(c’,o, 7},
rlocs(o’, rd G'f). This does not entail ¢(G) ~ ¢’(G) (see Section 7.1). But it does entail that
0(G) € dom(r) and ¢'(G) C rng(x) (as already remarked in Section 7.1). So extending =z
to some p 2 7 does not affect the agreements: we have Lagree(c,o’, p, rlocs(o, rd G*f)) and
Lagree(o’, o, p~1, rlocs(o”, rd G* f) (cf. Equation (21)).

(ii) Conjunction and disjunction are straightforward by definitions. For quantification at a
reference type, suppose R is refperm monotonic and suppose olo’ |=, Vx:Kix:K’. R. Thus,
by definition (see Figure 37), we have [o+x:0]|[c’+x":0'] |=; R for all 0 € [K]o\{null} and
o’ € [K']o’\{null}. Now, if p 2 7 then for any 0 € [K]o\{null} and o’ € [K’]o’'\{null} we
have [o+x:0]|[c’+x":0"] |z, R by refperm monotonicity of R. Hence, o|o’ |5, Vx:Kix":K’. R. For
existential quantification, and quantification at type int and type rgn, the argument is the same.

(iii) Suppose olo’ = G = G’ A (Vx:K € Gx:K € G'. Ax = R).So olo’ =, G = G, ie,
by semantics (G) ~ ¢’(G’). Thus, each element of o(G) (respectively, ’(G’)) is in the domain
(respectively, range) of x. Also by semantics, we have [o+x:0]|[c’+x:0"] |, R, for every
(0,0") € X where X = {(0,0") | 0 € 0(G),0" € ¢’(G’), and (0,0") € x}.
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Now suppose p 2 w. We have o|c’ |z, G = G'— As already noted, agreements are refperm
monotonic. For the second conjunct, we need [o+x:0]|[0"+x:0'] |5, R for every (o,0’) in the set
Y where Y = {(0,0") | 0 € 0(G),0’ € ¢’(G’), and (0,0") € p}. But Y = X, owing to a(G) ~ ¢'(G’)
hence o € dom () and o’ € rng (). So the result follows by refperm monotonicity of R. O

C.2 On Biprogram Semantics

Example C.4. Bi-coms deterministically dovetail unary steps, without regard to the unary con-
trol structure. For example, traces of (while 1 do a; b; ¢ | while 1 do d) look like this*’:

{(while 1 do (a; b;c) | while 1 do d))

((a; b; c; while 1 do (a; b;¢) [ while 1 do d))
{(a; b; c; while 1 do (a; b; ¢) | d; while 1 do d))
{(b; c; while 1 do (a; b;¢) [ d; while 1 do d))
{(b; c; while 1 do (a; b; c) | while 1 do d))

{(c; while 1 do (a; b;¢) [ while 1 do d))

{(c; while 1 do (a; b; ¢) | d; while 1 do d))
((while 1 do (a; b;¢) [ d; while 1 do d))
((while 1 do (a; b; c) | while 1 do d))

The right side iterated twice, the left once.

Example C.5. In terms of operational semantics, the respective computations of the five bipro-
grams in Equation (12) are as follows, where for clarity, we underline the active command for the
underlying unary transition, and abbreviate skip as «:

((a; bs clds e; [))(bs el ds es [))(Bscles (el e Il fNCF LD

((a; bld); (cles £))(BFd); (cle; £)){(Ble)s (cles £ {(cles fICFes I

((ald; e); (b; c FIICF 5 €); (bs el £l e); (b5 e s el ) (el Fele)){Le])

((@;b; cle); (old; €5 fI(Bs clo); (olds &5 £))((cle); (olds €5 f))(elds € F))(Celes FCI (LD
((elds & f)s (a; bs clo))((sF & f)s (a; bs clo))((oF f); (@5 bs cle)) (@ b; c]«)) (b5 cl+)){(clo)){Le])

Note that d-steps of the last two examples go by rule BCOMRO.

Example C.6. In the preceding, we illustrate what happens when the commands do not fault.
Now suppose that the transition for ¢ faults but none of the others do. (That is, the c-transitions
above do not exist.) Thus, there are unary traces completing actions ab and def, which can be
covered by ((ald;e); (b;c|f)) and by ((«|d; €; f); (a; b; c|s)) but not by (a;b; c|d;e; f) or the other
rearrangements.

If instead both ¢ and e fault, then both (a; b|d); (c|e; f) and (a; b; c|skip); (skip|d; e; f) fault trying
to execute c, while the others fault trying to execute e.

Here is an example of the weaving axiom for conditional:

(if E then a; b else c; d|if E’ then e; f else g; h) + if E|E" then (a; ble; f) else (c; d|g; h).

Consider a trace of the left-hand side (lhs), where E is true in the left state and E’ is false on the
right. Absent faults, the trace may look as follows:

46The details depend on the unary transition semantics for loops, which is a standard one that takes a step to unfold the
loop body. An alternate semantics, e.g., using a stack of continuations, would work slightly differently but the point is the
same: bi-com deterministically dovetails the unary executions without regard to unary control structure.
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((if E then a; b else c;d|if E’ then e; f else g; h))
((a; bl'if E’ then e; f else g; h))

((a; blg; h))

((bFg: h))

((blh))

((skip[h))

(Lskip])

For the right-hand side (rhs), a trace from the same states has only the initial configuration:
(if E[E’ then (a; ble; ) else (c;d|g; h)).
It faults next, an alignment fault due to test disagreement.
LEMMA 4.6. (/C—C|C_é) +* CC for any CC.

Proor. We need the fact that +* is a congruence. This is proved by induction on the reflexive-
transitive closure, using the congruence rules for +» (Figure 18).

The proof of the lemma proceeds by induction on CC . It’s easy to check the lemma holds when
CC is of the form | A]. For the inductive cases, we rely on congruence and transitivity of «»*. For

example, consider the case when CC = DD; EE. We need to show (mlm) +* (DD; EE).
We have

(DD;EE|DD; EE)

(ITD; ﬁ|lﬁ; ﬁ) def of projection

(DI_D|D_D\) (ﬁlﬁ) using s> axiom for sequence

NN
"  DD; (ﬁ|ﬁ) congruence and ind hyp (IT)|DT)) —* DD
"  DD;EE congruence and ind hyp (ﬁﬂﬁ) " EE.

So (DD; EE|DD; EE) «* DD; EE by transitivity. The other cases follow the same pattern. ]

Lemma C.7. For any C, we have Active(||C]|) = || Active(C)||.
The proof is by induction on C using definitions.

LeEMMA C.8 (QUASI-DETERMINACY OF BIPROGRAM TRANSITIONS). Let ¢ be a relational pre-model.
|7’

Then (a)té is rule-deterministic. (b) If (o|0”) i (o0log) and (CC, al|o”’, pu|u") = (DD, t|t’, v|v")
and (CC, aoloy, plp") RN (DDy, 1ol7y, volvy), then DD = DDy, v = vy, v/ = v{, and there are p 2 &

and p’ 2 n’ such that (t|t’) plzp (z0l7y). () If (o]0”) T (o0loy), then (CC, ala’, plp’) = 4 iff
(CC, aylag, plp") BN 4.

Proor. Similar to the proof of Lemma A.6. For the one-sided biprogram transition rules like
BCoML, the argument makes direct use of Lemma A.6. Explicit side conditions of rules BSync and
BSYNCX ensure that | m()] transitions only by BCaLL, BCALLX, or BCALLO.

A configuration for (C|D) with C # skip takes a step via either BCoML or BCOMLX depending
whether C faults or steps; and these are mutually exclusive according to a result about the unary
transition relation. A configuration for (skip|D) with D # skip goes via either BCOMRO or BCOMRX,
depending on whether D faults or not. A configuration for (C" D) goes via BCOMR or BCOMRX. The
slightly intricate formulation of the rules for bi-com is necessitated by the need for determinacy
and liveness.

Similarly, the rules for bi-while in Figure 28 are formulated to be rule deterministic, e.g., BWHR
is only enabled if BWHL is not. O
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Projection and embedding: between unary and biprogram traces. It is convenient to classify the
biprogram transition rules as follows. Leaving aside BSEQ and BSEQX, all the other biprogram rules
apply to a non-sequence biprogram of some form. Rules BCoML and BWHL take left-only steps,
leaving the right side unchanged, whereas BComMR, BCOMRO, and BWHR take right-only steps. All
the other rules are for both-sides steps or faulting steps.

LEmMMA 7.8 (TRACE PROJECTION). Suppose ¢ is a pre-model. Then the following hold. (a) For any
step (BB, c|o’, plp’y £ (CC, t|t’, v|v'), either

° (lﬁ}, o, 1) LN (C%C, 7, v) and (ﬁ}, o’y 1’y 2N (C_C\, ', v'), or
e (BB, o, i) = (CC, 7, v) and (BB, o', i’y v¥s (CC, ', v'), or
e (BB, o, u) V% (CC, 7, v) and (BB, o', p’) = (CC, ', v').

2% and V via v2s, and schedule 1, r, such

(b) For any trace T via =2, there are unique traces U via ——
that align(l,r,T,U, V).

(c) If Active(BB) = || B|| for some B, then (ﬁ, o,y H2% (CT’, 7, v) and (@, o', 1y Fs (CT‘, T/, v').

Proor. Part (a) is by case analysis of the biprogram transition rules. For the rules BCALLS and
BCALLX, observe that the condition (unary compatibility) ensures that the unary steps can be
taken. For rule BCALLO, the biprogram transition is a stutter, with both (ﬁ, o, gy = (ICT‘, T, V)
and (B_B, o, 1) = (CT‘, 7, v). Indeed, either the left or right step is in the transition relation (or
both), via the unary rule uCALLO for empty model, owing to Lemma 7.5.

In all other cases, it is straightforward to check that the rule corresponds to a unary step on one
or both sides, and in case it is a step on just one side the other side remains unchanged. Note that
it can happen that a step changes nothing: in the unary transition relation, this happens for empty
model of a context call, e.g., biprogram step via BCOML using unary transition uCALLO.

For part (b) the proof goes by induction on T and case analysis on the rule by which the last
step was taken. Recall that traces are indexed from 0. The base case is T composed of a single
configuration, Ty. Let U be TT), V be TO\, and let both [ and r be the singleton mapping {0 — 0}.
For the induction step, suppose T has length n + 1 and let S be the prefix including all but the last
configuration T},. By induction hypothesis, we get I, r, U,V such that align(l,r,S,U, V). There are
three sub-cases, depending on whether the step from T,,_; to T, is a left-only step (rule BComL or
BWHL), or right-only, or both sides. In the case of left-only, let U’ be UIT_n, let!’belu{n — len(U)},
and let r’ be r U {n — len(V) — 1}. Then align(l’,r’, T, U’, V). The other two sub-cases are similar.

Part (c) holds, because one-sided steps are taken only by transition rules BCoML, BCOMR,
BCoMRO, BWHL, and BWHR, none of which are applicable to fully aligned programs. O

LEmMmA C.9 (TRACE EMBEDDING) Suppose ¢ is a a pre- model. Let cfg be a biprogram configuration.
LetU be atrace via @g from cfg, andV via ¢, from cfg Then there is trace T via ¢ from cfg and traces

W from cfg and X from cfg and l,r with align(l,r, T, W, X), such that either

(a) U<WandV <X,

(b)) U < W and X <V and W faults next and so does T,

(c) V<X andW < U and X faults next and so does T,

(d) W < U or X <V and the last configuration of T faults, via one of the rules BCALLX, BIFX, or
BWHLX, i.e., alignment fault.

Proor. First, we make some preliminary observations about the possibilities for a single step.
Let cfg be (CC, o|o’, u|p’) such that cfg does not fault next and CC # |skip] so there is a next step.
By rule determinacy (Lemma C.8(a)), there is a unique applicable transition rule. That rule may
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be a left-only, right-only, or both-sides step, as per Lemma 7.8(a). For all but one of the biprogram
transition rules, the form of the rule determines whether its transitions are left-, right-, or both-
sides. The one exception is BCALLO: in case of a transition by this rule, at least one of the unary
parts can take a transition, owing to Lemma 7.5, but whether it is left, right, or both depends on
the unary models and the states.

For left-only transitions, the applicable rules are BCoML and BWHL. In case of BWHL, CCisa
loop with test true in o and (CI‘_C , 0, u) takes a deterministic step, unrolling the loop and leaving the
state and environment unchanged. In case of BCoML, CC = (C|C’) for some C,C’ with C # skip,
and (C, o, p) can step via 2% to some (D, 7, v) where 7 may be nondeterministically chosen in
case C is an allocation or a context call. (If v differs from g, it is because C is a let command and
its transition is deterministic.) For any choice of 7, rule BCoML allows ((C|C’), a|o’, plp’) =
((DFC’), tlo’, v|u") (or (D|skip) if C” is skip). For right-only transitions, the applicable rules are
BCoMR, BCoMRO, and BWHR, which are similar to the left-only ones.

The remaining transitions are both-sides. By cases on the many applicable both-sides rules, we
find in each case that: (i) the left and right projections have successors under F2%, +% and (i) if
(CIY? o, 1) LN (D, 7, v) and ((7\? o', 1’y LZN (D’, ©’/, v'), then there is some DD with DD = D,
DD = D’,and (CC, o|o’, plu") (SN (DD, t|t’, v|v"). Note that, as in the one-sided cases, 7 and/or
7’ may be nondeterministically chosen (e.g., in the case of BSyNC), and any such choices can also
be used for the biprogram transition. In case the active command of c¢fg is a sync’d conditional or
loop, the applicable rules include ones like BIFTT that have corresponding unary transitions but
also the rules BIFX and BWHX in which the biprogram faults although the left and right projections
can continue.

For a both-sides step by rule BCALLS, we rely on condition (relational compatibility) in Defini-
tion 7.4 of pre-model, to ensure that the two unary results 7,7’ can be combined to an outcome
t|t’ from @,(m)—since otherwise the biprogram configuration faults via BCALLX, contrary to the
hypothesis of our preliminary observation above that cfg does not fault.

To prove the lemma, we construct T, W, X by iterating the preceding observations, choosing the
left and right unary steps in accord with U and V, unless and until those traces are exhausted. If
needed, W (respectively, X) is extended beyond U (respectively, V).

Let us describe the construction in more detail, as an iterative procedure in which I,r, W, X, T
are treated as mutable variables, and there is an additional variable k. Initialize W, X, T to the
singleton traces lcﬁf, @, and cfg, respectively. Initially, let k := 0. Let [ and r both be the singleton
mapping {0 — 0}. The loop maintains this invariant:

align(l,r, T, W, X)and (U < WV W <U)and (V<XVX<V)
len(T) = k + 1 and len(W) = I(k) + 1 and len(X) = r(k) + 1

Thus, the last configurations of T, W, X are indexed k, I(k), r(k), respectively.

e While (U £ WorV £ X) and neither W, X, nor T faults next, do the following updates,
defined by cases on whether Ty, is left-only, right-only, or both-sides.

For left-only: update I, r, W, T as follows:

e setl(k+1):=1lk)+1,r(k+1):=rk),

o if W < U,setW :=W - Uyy); otherwise extend W by a choosen successor of W),

e set T := T - ¢fg’ where ¢fg’ is determined by the configuration added to W, in accord with
the preliminary observations above. Note in particular that T does not fault due to failed
alignment condition, i.e., by rules BIFX, BCALLX, or BWHX, because if it does, then the loop
terminates.
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For right-only: update I, 7, X, T as follows:

e setl(k+1):=1k),r(k+1):=r(k)+1,
o set X := X - V,(x) if X <V, otherwise extend X with a choosen successor of X, ),
e set T := T - ¢fg’ where cfg’ is determined by the configuration added to X.

For both-sides steps, set I(k + 1) := I(k) + 1, r(k + 1) := r(k) + 1, and update W, X, T similarly to
the preceding cases, in accord with the preliminary observations.

To see that the invariants hold following these updates, note that the invariant implies Ty, = W,
and ?k = X,(k)- Then by construction we get a match for the new configuration: m = Wi+
and Tgq = Xp(kr1)-

The loop terminates, because each iteration decreases the natural number:

(2 x (len(W) = len(U)) + (len(X) = len(V)) + (1 if “active cmd is bi-com” else 0).

Here n = m means subtraction but 0 if m > n. The term (1 if “active cmd is bi-com” else 0) is
needed in case len(W) > len(U) and a left-only step must be taken before the next step happens
on the right. The factor 2X compensates for that term. (Alternatively, a lexicographic order can be
used.)

Now, we can prove the lemma. If the loop terminates because condition U £ WV V £ X is false,
then we have condition (a) of the Lemma. If it terminates because W faults next, then we have (b),
using invariants U < WV W < U and V < X vV X < V, noting that we cannot have W < U if
W faults next, owing to fault determinacy of unary transitions (a corollary mentioned following
Lemma A.6). Similarly, we get (c) if it terminates because X faults next. If it terminates because T
faults, but the other cases do not hold, then we have (d) owing to the invariants U < WV W < U
andV<XVX<V. O

Definition C.10 (Denotation of Biprogram [T|T” + CC] ). Suppose CC is wf in T'|T’" and ¢ is a
pre-model that includes all methods called in C. Let [T|I” - CC], to be the function of type
[T]x[T'] > P(T]x[T"])v{s} defined by

[TIr" k CClly(ale’) = {(zlz") | (CC. olo’, _|_) =" (Lskip). 7lz’, _|)}
U ({4}if(CC, olo’, _|_) ED* 4 else @).

Given a pre-model ¢, biprogram CC, and relational formula R, and method name m not called

in CC and not in dom (¢), one can extend the bi-model ¢, by

@2(m)(olo’) £ ({4} if ~3m. olo’ |Ex R else [CC]y(ala”)). (54)
To be precise, if precondition R has spec-only variables 5,5" on left and right, then the condition
should say there are no values for these that satisfy: ~37,9,7". |0’ [Fr RZL,.

LEmMA C.11 (DENOTED RELATIONAL MODEL). (i) Suppose ¢ is a relational pre-model that includes
all the methods in context calls in CC, and suppose m is not in ¢. Suppose R = {R{ A pR’} is valid.
Let ¢ extend ¢ with ¢,(m) given by Equation (54), po(m) given by Equation (42) for CC,R, and ¢1(m)
given by Equation (42) for CC,R'. Then (¢o, @1, ¢2) is a pre-model.

(ii) Suppose, in addition , that ® = CC : R =~ S [n|n’]. Suppose ® extends ® with &y(m) = R ~>
S[nl, ®1(m) = R ~ S’ '], and &2(m) = R = S [5|n’] such that & is wf. If go(m) and ¢1(m) are
models for R ~» S [n] and R’ ~» S’ [n’], respectively, then ¢ is a d-model.

PRroOF. (i) To show ¢2(m) is a pre-model (Definition 7.4), the fault, state, and divergence de-
terminacy conditions follow from quasi-determinacy Lemma C.8 (cf. remark following projection
Lemma 7.8).
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Next, we show unary compatibility, i.e., 7|z’ € ¢,(m)(c|o’) implies 7 € ¢o(m)(c). and 7" €
@1(m)(c’). Now t|t" € ¢o(m)(o|o’) iff (CC, olo’, _|_) =y (Lskip], z|z’, _|_) and by projection
Lemma 7.8 that implies (CI‘_C, o, _) %% (skip, 7, _) whence 7 € ¢o(m)(c) provided that ¢ |= R
(mut. mut. for the right side). Since 7|z” € ¢,(m)(c|c’), there is some 7 for which (c|o”) satisfies
R, and by validity of R = (R{ A )R’} this implies o |= R. Similarly for the right side.

For fault compatibility, suppose 4 € @o(m)(c) or 4 € ¢1(m)(c’). Then either o [ Ror ¢’ [ R/,
by definitions, whence o|o’ [£ R owing to validity of R = (R{ A pR’}. So 4 € ¢,(m)(c|o’) as
required.

To show relational compatibility, suppose 7 € @o(m)(c) and 7’ € ¢;(m)(c”). We need ¢,(m) to
contain either 4 or (zr|7’). If there is no 7 with o|o’ |=, R, then ¢,(m) is {4}, and we are done.
Otherwise, from 7 € ¢o(m)(c) and 7’ € ¢;(m)(c”), we have traces (C, o, _) +¥%* (skip, 7, _) and
(C’, o', _)y ¥+ (skip, 7/, _). By embedding Lemma C.9, we get that either (CC, o|o’, _|_) sy
(Lskip], z|z’, _|_) orelse (CC, o|o’, _|_) faults due to alignment conditions. Either way, we are
done showing that (¢, ¢1, ¢2) is a pre-model.

(ii) Suppose that @ |= CC : R => S|[n|n’]. The conditions of Definition 7.9 for ¢,(m) with respect
to R > S [n] are direct consequences of @ |= CC : R = S [57|n’] and (54). O

THEOREM 7.11 (ADEQUACY). Consider a valid judgment ® |=, CC: P ~> Q [¢|¢’]. Consider any
®-model ¢ and any o,0’, 7w witholo’ |=, P. If(CI'_C, o, ) 20, % (skip, 7, _) and (CT, o, ) P
(skip, 7/, _), thent|t’ |=; Q. Moreover, all executions from (CIY?, o, _) and from (C_C\, o’, _) satisfy
Safety, Write, R-safe, and Encap in Definition 5.10.

Proor. Let U, V be the traces and let T be the biprogram trace given by embedding Lemma C.9.
The judgment for CC is applicable to T, so cases (b), (c), and (d) in the Lemma are ruled out—
T cannot fault. The remaining case is (a), that is, T covers every step of U and V. If U and V are
terminated, then so is T, whence the postcondition holds, and the Write condition holds, by validity
of the judgment. Regardless of termination, we also get the unary Safety and Encap conditions for
U and V, by definitions, since every step is covered by T. ]

D RELATIONAL LOGIC AND ITS SOUNDNESS (RE SECTION 8)

THEOREM 8.1 (SOUNDNESs OF RELATIONAL LocIc). All the relational proof rules are sound
(Figure 30 and Appendix Figure 38).

Appendix D.1 presents relational proof rules omitted from the body of the article. Section D.2
proves the crucial lockstep alignment lemma. The soundness proofs comprise Appendices D.3—-
D.11; these are largely independent and need not be read in any particular order.

D.1 Additional Rules

Figure 38 presents the proof rules omitted in the body of the article.

Rule RIF is typical of relational Hoare logics, with the addition of side conditions to ensure
encapsulation. Similarly, rules RSEQ and RWHILE have the same immunity conditions as their unary
counterparts. Rules RWHILE and RSEQ are slightly simplified from the general rules, for clarity.
The general rules should include an initial snapshot r = alloc, and region H and field list ? with
conditions to ensure that H contains only freshly allocated objects so writes of Hf can be omitted
from the frame condition. This caters for writes to locations allocated in the first command of a
sequence, or previous iterations of a loop, just as it is done in the unary SEQ and WHILE rules
(Figure 35). (The details are justified in RLI, though in RLI the rules are slightly more succinct
owing to use of freshness effect notation.)
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Do+ A: P~ QJe] O +FA: P~ Q€]
o [A]: (PUADP') 2> (QUADQ'D [el€’]

REMBS

QFCCr: P> P ele] OFCCy: P 2> Q[ele)] & is P /e;-immune £ is ?/e{—immune
O+ CC1;CCr: P> Qler, 261, 6]

RSEQ

D, CC: PALE{ADE']) => Q [ele] O+ DD : PA(-E{AD-E') 2> Q[ele]
P=SE=E  5=(+N e ® N # M. bnd(N))  8-/.r2zw(fipt(E)) & -1. r2w(ftpt(E’))

I
i @+, if E|[E" then CCelse DD : P => Q [¢, fipt(E)|¢’, fipt(E")]
OFCC: QA-P AP A{E{ADE') = Q[e|e']
@ (CClskip): QAP A(E|{ = Qlels] @+ (skip|CC): QAP ADE') = Q[o]¢']
(+N € &, N # M. bnd(N)) -/. r2w(ftpt(E)) (+N € &, N # M. bnd(N)) /. r2w(ftpt(E"))
W Q=E=zE V(PALE V(P ADE)) eis Q/e-immune ¢ is Q /&’'-immune
RWHILE

@+ while E[E' - P|P" do CC: Q &> Q A (=E{ A D=E') [e, fipt(E)|€, fipt(E')]

Dy (CIC) : PALE{ADE) = Q[ele’] Dy (CID") : PALE{AD-E') => Q [e]€]
®ry (DIC): PAL=E{ADE') %> Qlele’]  @rp (DID'): PAL=E{ A D-E') > Q[el¢’]
§=(+N € &, N # M. bnd(N)) S/ r2w(ftpt(E)) S/ r2w(fipt(E"))

@+, (if Ethen Celse D | if E' then C’ else D") : P => Q [&, fipt(E)|¢’, fipt(E’)]

RrIF4

o PXTINT! 00 P~ Q [ele']
& VT var x:T)x":T" in CC: P A {x = default(T){ A Dx’ = default(T") ) => Q [¢|€']

RVAR

Fig. 38. Relational proof rules omitted from Figure 30.

Remark 10. Asin the unary WHILE, the frame condition in RWHILE needs to include the footprint
of the loop tests (fipt(E), fipt(E’)) as the behavior depends on them. Given that the alignment
guards  and P’ influence the bi-while transitions, one may expect that their footprints should
also be included. But the dependency of r-respect (Encap) is about execution on one side. The value
of E (respectively, E’) determines the control state (i.e., unfold the loop body or terminate) at the
unary level. By contrast, the value of P (respectively, ’) determines the biprogram control state.
This is reflected in the unary control state, but during a one-sided iteration the other side stutters;
and stuttering transitions are removed (by projection, see Lemma 7.8) according to the definition
of Encap in Definition 7.10.

Remark 11. Rule RWHILE can be slightly strengthened to take into account that in our semantics,
to ensure quasi-determinacy, a right iteration only happens when the left guard or test is false.
We prefer the more symmetric phrasing of the rule: What matters is that one-sided executions
under their designated alignment guard maintain the invariant. The deterministic scheduling is a
technical artifact, just like the specific details of the dovetailed execution of the bi-com construct
are not important for reasoning.

D.2 Proof of Lockstep Alignment Lemma
LEmMA 8.3. If T |= snap(e) and t—v |= ¢, then wlocs(r, £)\rlocs(v, §®) = rlocs(v, Asnap(e)\5).

Proor. Assume 7 |= snap(¢) and t—v |= e The equality wlocs(t,¢)\rlocs(v, %) =
rlocs(v, Asnap(e)\d) is between sets of locations, i.e., variables and heap locations. We consider
the two kinds of location in turn.

For variables, we have x € wlocs(r, £)\rlocs(v, §%) iff wr x is in ¢ and rd x is not in 6%, by defi-
nitions. However, by definition of Asnap, we have x € rlocs(v, Asnap(e)\9) iff rd x is not in § and
wrx is in ¢ and x # alloc. The conditions are equivalent.
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For heap locations, w.l.o.g., we assume ¢ and § are in normal form and have exactly one read
and one write effect for each field. We are only concerned with writes in ¢ and reads in §. Consider
any field name f and suppose ¢ contains wr G‘f and § contains rd H f for some G, H. Now for
location o. f, we have

o.f € wlocs(, )\ rlocs(v, 5%)

0 € 7(G)\v(H) by defs wlocs, rlocs and normal form

0 € 7(sg,r)\v(H) by 7 | snap(e), we have 7(sg r) = 7(G)

0 € u(sg,r)\v(H) by r—v = eand wrsg s ¢ € have 7(sg, ) = v(sG,f)
0 € U(sg,f\H) by semantics of subtraction.

1101

However,

o.f € rlocs(v, Asnap(e)\5)
& o.f €rloes(v, (rdsg ¢ f\rd H'f)) by def Asnap and assumption about G, H
& o.f € rlocs(v, rd (sg,r\H )'f) by effect subtraction
& o€uv(sgr\H) by defrlocs.

The conditions are equivalent. O

LEMMA 8.9 (LOCKSTEP ALIGNMENT). Suppose

(i) ® = LocEqs(¥) and ¢ is a P-model, where § = (+N € ¥, N # M. bnd(N)),
(ii) olo” = pre(locEqs(P ~ Q [e])),
(ili) T is a trace {||C||, olo”’, _|_) ey (BB, t|t’, p|p’y and C is let-free,
(iv) Let U,V be the projections of T. Then U (respectively, V) is r-safe for (@, ¢, o) (respectively,
for (@1, ¢,0")) and respects (D, M, ¢, €, 0) (respectively, (®1, M, ¢1,¢,0”)).

Then there are B, p, with

(v) BB=||B|l,p 2 m,and pp = /',
(vi) Lagree(r,t’, p, (freshL(c, 1) U rlocs(c, €) U wrttn(c, 7))\ rlocs(t, 5®)), and
(vii) Lagree(r’,t, p~t, (freshL(c’,t’) U rlocs(a’, &) U wrttn(o’, 7/)\rlocs(z’, §®)).

ProoF. As usual write 6, 6’ for the extensions of o, ¢’ for the spec-only variables of the precon-
dition, as per (ii).

We show that the conditions (v-vii) hold at every step within T, by induction on steps.*” One
might expect that the lemma could be simplified to simply say the conditions hold at every reach-
able step, without mentioning traces, but we are assuming rather than proving that the r-safety
and r-respect conditions hold, so the present formulation seems more clear.

Base Case. For initial configuration (||C||, o/, _|_), we have freshL(c, c) = @ = freshL(c’, c”)
and wrttn(o,0) = @ = wrttn(c’,¢’). From hypothesis (ii) of the Lemma, and the semantics of
the agreement formulas in the precondition, we get Agree(o,o’, 7, e5") and Agree(o’, o, x L €5 ).
Unfolding definitions, we have proved the claim with p, 7, 7" := 7,0, 0.

Induction case. Suppose (||C||, |o’, _|_) =2* (BB, 7|7/, ulp =2 (DD, v|v’, v|v') as a prefix
of T. By induction hypothesis, we have p = p’, BB = || B|| for some B, and for some p 2 7, we
have

Lagree(t, T/, p, (freshL(c, T) U rlocs(c, €) U wrttn(a, 7))\ rlocs(t, §%)), (55)
Lagree(t’,z, p~ !, (freshL(c”, ") U rlocs(c”, €) U wrttn(c”’, 7"))\rlocs(t’, §®)).

47We are glossing over the local variables introduced by local blocks. To be precise, the initial states are both for T' and
have no extra variables. The Lemma should have additional conclusion that Vars(z) = Vars(z”), which becomes part of the
induction hypothesis, to account for possible addition of locals, which will be in freshL.
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Without loss of generality, we assume that ||B]| = || Bo]|; || B1]l, where Active(B) = By. (Recall by
Lemma C.7 that Active||B|| = || ActiveB||.)

To find D and an extension of p, such that the agreements for v|v” and other conditions hold for
the step (BB, t|z’, p|u") = (DD, v|v’, v|v"), we go by cases on the possible transition rules. The
fault rules are not relevant.

Cases BCoML, BCOMR, BCOMRO, BWHL, and BWHR are not applicable to || B].

Case BSYNC. So By is an atomic command other than a method call and there are unary transi-

tions (By, 7, p) F2% (skip, v, p) and (By, 7/, p’) F& (skip, v’, i’). The successor configuration has
DD = ||By|| and v = g = i/ = v'. Because the step is not a method call, the same transitions can be
taken via the other models, i.e., we have (By, 7, u1) 2 (skip, v, ) and (By, 7/, p’) +2% (skip, v/, i’).
Moreover, owing to the agreements, we can instantiate the left and right trace’s respect condition
(hypothesis (iv) of this Lemma). As we are considering a non-call command, the collective bound-
ary for r-respect is § = (+N € (¥, y), N # topm(B, M). bnd(N)). By hypothesis (iii) of the Lemma,
C is let-free. So y is empty. Moreover, there is no ecall in B, there being no environment calls (and
as always the starting command has no end markers), so topm(B, M) = M. So the collective bound-
ary for r-respect is the § assumed in the Lemma, i.e., § = (+N € ¥, N # M. bnd(N)). Both steps
satisfy w-respect, i.e., do not write inside the boundary, owing to hypothesis (iv) of the Lemma.
Instantiating r-respect twice (with 7,7/, @9, p and with 7/, 7, @1, p~!), we have the allowed depen-

dencies 7, r’:pm, v’ |:g eand 7/, Tp:>v’, v |:g’ ¢. Even more, r-respects applied to Equation (55)

gives some p and p’ with p 2 p and p’ 2 p~! and the following four conditions:
Lagree(v,v’, p, (freshL(t,v) U wrttn(t, v))\rlocs(v, §%)),
p(freshL(r,v)\rlocs(v, 6)) C freshL(z’,v")\rlocs(v’, 5),
Lagree(v’, v, p’, (freshL(t’,v") U writn(z’, v"))\ rlocs(v’, §9)),
p’(freshL(t’,v")\rlocs(v’, §)) C freshL(r,v)\rlocs(v, §).

By balanced symmetry Lemma A.3, we get

(56)

Lagree(v’,v, p~*, (freshL(z’,v") U wrttn(z’, v"))\rlocs(v’, 5®)),
p(freshL(r,v)\rlocs(v, §)) = freshL(t’,v")\rlocs(v’, §).
We can use preservation Lemma A.4 for these three sets of locations (which are subsets
of locations(t)): rlocs(a, e)\rlocs(t, §%), wrttn(o, t)\rlocs(r, 5%), and freshL(o, 7)\rlocs(r, 5%). By
Lemma A.4, we get

Lagree(v,v’, p, ((freshL(c, 7) U rlocs(a, €) U wrttn(c, 7))\ rlocs(t, §%))\ rlocs(v, §%)).

So, by the boundary monotonicity condition of Encap, we have rlocs(z, §%) C rlocs(v, §%). Now
from this and Equation (56), using freshL(o,v) = freshL(o,7) U freshL(r,v) and wrttn(o,v) C
wrttn(o, 7) U wrttn(r,v), we can combine the agreements together to get

Lagree(v,v’, p, (freshL(c,v) U rlocs(a, £) U wrttn(a, v))\rlocs(v, §%)).
With a similar argument, we obtain the symmetric condition
Lagree(v’,v, p~*, (freshL(c”,v") U rlocs(c’, €) U wrttn(a’,v"))\rloes(v’, §9)),

which finishes this case for the induction step.

Case BCALLS. So By is m() for some m, and (v|[v”) € @2(m)(r|7”). The successor configuration has
DD = ||B;|| and v = p = p’ = v'. Suppose ¥(m) is R ~ S [1]. By the assumed r-safe condition
(hypothesis (iv) of the Lemma), we have rlocs(r, ) C freshL(o, t)Urlocs(o, €). Since go(m)(z|t’) # 4,
there must be values for the spec-only variables  of m’s spec for which 7|z’ satisfy the method’s
precondition, which by hypothesis (i) of the lemma implies the precondition of locEqs(¥(m)). That
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is, there are u and u’ such that 7|7’ |=, BR A A(rds(n)\6®) A B(s”__ = alloc A snap™(n)), where

alloc

t = [r+t:u] and 7’ = [¢'+t:u’]. (Apropos the identifier Shloc: See Footnote 38.) Since ¢ |= @ and

(v|v") € pa(m)(r|7’), we get the postcondition of ®(m), which implies that of locEqs(¥(m)). Hence,
0|0’ p O(BQ A Any’), where b = [v+t:u], 0" = [v'+t: U], and

ns = (rd (alloc\slj )‘any, Asnap™(n))\6. (57)

So by semantics of ¢ and A there is p 2 p with Agree(0,0’, p,n3’) and Agree(v’, 0, p™", n5’). We
have freshL(r,v) = rlocs(v, rd (alloc\se’l’lzloc)‘any) and freshL(z’,v") = rlocs(v’, rd (alloc\sé’l’llloc)‘any).
We also have wrttn(r,v) € wlocs(z, ) and writn(z’,v") € wlocs(z’, n), from 7—v |= pand /=0’ |=

1. Furthermore, by Lemma 8.3, we have

wlocs(z, n)\rlocs(v, 5°) = rlocs(v, Asnap™(n)\6) € rlocs(v, "),
wlocs(t’, n)\rlocs(v’, %) = rlocs(v’, Asnap™(n)\8) < rlocs(v’, ny’).

So, we have
Lagree(v,v’, p, (freshL(z,v) U wrttn(z,v))\rlocs(v, §%)), (58)

Lagree(v’, v, p~*, (freshL(t’,v") U wrttn(z’,v"))\rlocs(v’, §9)). (59)
-1
Thus, we have 7, T’=p>v, v’ |=g n and 7/, Tp=>v’, v |=§/ n. Since rlocs(a, e)\rlocs(z, §9),
wrttn(o, T)\rlocs(r, §%) and freshL(c, 7)\rlocs(t, 5®) are subsets of locations(r), using Lemma A.4,
from Equation (55), we get

Lagree(v,v’, p, ((freshL(c, 7) U rlocs(a, €) U wrttn(c, 7))\ rlocs(t, §%))\ rlocs(v, 5%)).

By hypothesis (iv) of the Lemma, the steps satisfy boundary monotonicity, i.e., rlocs(z,5) C
rlocs(v, §), which implies rlocs(z, §%) C rlocs(v, §%). Combining this with the agreements of Equa-
tion (58), we get

Lagree(v,v’, p, (freshL(c,v) U rlocs(a, €) U wrttn(a, v))\ rlocs(v, §%)).
With a similar argument using Equation (59), we get the symmetric condition
Lagree(v’,v, p~*, (freshL(c’,v") U rlocs(c”’, €) U wrttn(a”’,v"))\rlocs(v’, §)),

which completes this case.

Case BCALLO. So By is a context call m() that stutters, because the ¢;(m) is empty. The agreements
are maintained, as nothing changes.

Case BVAR. This relies on the additional condition that Vars(t) = Vars(z’), which can be in-
cluded in the induction hypothesis but is omitted for readability. We have that By is var x:T in B
for some x,T, By, so ||By|] = var x:T\x:T in ||Bz]|. Because Vars(t) = Vars(r’), and using the
assumption that FreshVar depends only on Vars() of the state (Equation (39)), we have some w
with w = FreshVar(r) = FreshVar(r’). This ensures Vars(v) = Vars(v’), justifying the omitted in-
duction hypothesis; the only other change to variables is by dropping them, by BSYNc transition
for [evar(w)]. The step from var x:T|x:T in || B, || goes to (||B.||};7,; Levar(w)]; | By ||, v[v’, plu")
where v = [r+w: default(T)] and v" = [v'+w’: default(T")]. We get the agreements, because noth-
ing changes except the addition of w with default value. We get the code alignment, because
1B21I3,, = B2y || by definitions.

Cases BIFTT and BIFFF. So By has the form if E then B, else B; and the successor configura-
tion has the form either || Bz]|; [[B1 ] or || Bs||; | B1]]- Nothing else changes so the agreements are
maintained.
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Cases BWHTT and BWHFF. So By has the form while E do B, and the successor configuration has
the form either || B, ||; || Bo ||; || B1]| (for BWHTT) or || B ||. Nothing else changes so the agreements
are maintained.

Case BCALLE does not occur, because C is let-free.

Case BLET does not occur, because C is let-free.

D.3 Soundness of RLocEq

Oy C: P~ Qle]
P |= w2r(e) < rds(e) d=(+N € ®,N # M. bnd(N)) C is let-free
LocEqs(®) Fu [[C]) : locEqs(P ~ Q [e])
Leteg = rds(¢)\8® as in Definition 8.4 of locEqs(P ~» Q [¢]). Let ¢ be a LocEqs(®)-model, i.e.,
®o and ¢; are ®-models and ¢, satisfies ®,, which is given by applying the locEq construction
to each spec in ® as per Definition 8.4. In symbols: (¢, @1, ¢2) |= (P, @, locEqs(P)). Suppose 5 are

the spec-only variables of P ~ Q [¢], and suppose o, ¢’ satisfy the precondition, for the unique
snapshot values © and 0" of 5 on left and right (cf. Lemma C.1). That is,

RLOCEQ

616" |Ex BP A Aeg AB(r = alloc A snap(e)) where 6 = [0+5: 0] and 6" = [0/+5:7']. (60)

Notice that these assumptions entail hypotheses (i) and (ii) of Lemma 8.9, to which we will appeal
repeatedly. We instantiate ® in the Lemma by LocEqs(®), and the initial states o|o” satisfy the
requisite precondition.

Encap. Consider any trace T from (||C||, olo’, _|_). Recall that (LocEqs(®))y = & and
(LocEqs(®)); = @. So according to Definition 7.10, we must prove that the projections U (respec-
tively, V) of T (by projection Lemma 7.8) satisfy r-safe for (®, ¢, o) (respectively, (D, ¢, 0”)), and
respect for (®, M, ¢y, ¢, o) (respectively, (®, M, ¢1, ¢, 0”)). These are both traces of C from P-states,
and ¢, 1 are ®-models, so we get r-safe and respect by two instantiations of the premise.

Write. A terminated trace via ¢ provides terminated unary traces via ¢y and ¢; The initial states
satisfy the precondition P of the premise, and we get the Write property directly from two instan-
tiations of the premise.

Safety. Suppose (||C||, olo”’, _|_) %% (BB, 1|r’, ulp”) = 4. We can apply Lemma 8.9 to
the trace ending in BB. The lemma requires the trace to satisfy exactly the r-safe and respects
conditions that are established above for Encap. By Lemma 8.9 there are B, p with BB = || B,
pm, =y,

Lagree(r, 1/, p, (freshL(c, T) U rlocs(c, £) U wrttn(c, 7))\ rlocs(t, 5%)),
Lagree(t’, 7, p~1, (freshL(c”, ") U rlocs(a”, €) U wrttn(c”’, t’))\rlocs(t’, 5§9)).

(61)

We show that (BB, t|r’, u|p’) does not fault, by contradiction, going by cases on the possible
transition rules that yield fault.

e BSYNcX would give a unary fault via ¢ or ¢;, contrary to the premise.

e BCALLX applies if 4 is returned by ¢,(m), and because ¢, is a context model, that means 7|z’
falsifies the precondition for m. Suppose that ®(m) = R ~» S [5]. The precondition includes
IBS(s;”IIOC = alloc A snap™(n)), which uses spec-only variables that do not occur in R, §, or 7,
and which can be satisfied by values determined by 7|z’. So for the precondition to be false
there must be no p,#,u’ such that p 2 7 and 7|7’ |=, BR A Ards(n)\6® where 7 = [r+1:U]

and £’ = [t/+t:u’]. From fault and relational compatibility (Definition 7.4), we have

4 € @o(m)(7) V § € p1(m)(z") V (v € po(m)(7) A V" € p1(m)(z")).
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From the premise, it is not the case that 4 € @o(m)(r) or 4 € @;(m)(z’), so there must
be u and u’ such that 7 |= R A #/ |= R (with %, %, as above). (Note that u, 4’ are uniquely
determined, by Lemma 5.1.) Thus, there is no p 2 & with 7|7’ |=, Ards(n)\6®. But from
R-safe condition of the premise, we know that rlocs(r,n) C freshL(o,t) U rlocs(o, ) and
rlocs(z’,n) C freshL(c’,t") U rlocs(a”’, €). So (61) implies Agree(r, ', p,n\(J, rd alloc)) and
Agree(t’, 1, p~1, n\(8, rd alloc)), which is a contradiction.

e In case BIFX, B has the form (if E then Dg else D;); D, for some Dy, D1, D,.

To show that BIFX does not apply, we show that 7(E) # 7’(E) cannot happen, by contradic-
tion. Suppose 7(E) = true and 7’(E) = false (a symmetric argument handles the case 7(E) =
false and 7/(E) = true). By unary semantics, we have (if E then Dy else Dy; Dy, 7, p) +2%
(Dy; Dy, 7, p)y and (if E then Dy else Dy; Dy, t’, p) 2N (Dy; Dy, t’, p). The latter step can
also be taken via ¢ as it is not a call. By Equation (61), we have

Lagree(z,7’, p, (freshL(c, 7) U rlocs(o, €5 )\ rloes(r, 59)).

The r-respects condition for the left step is for the collective boundary (+N € (®, ), N #
topm(B, M). bnd(N)), but because C is let-free, u is empty and topm(B, M) is M, so this simpli-
fies to 8. So, we have the agreement in the antecedent for r-respects, and the other antecedent
is Agree(r’, 7', 5), which holds. So by r-respect from the premise, and instantiating the alter-
nate step as the one from 7', we can obtain Dy; D, = D;; D,. This is false, because we assume
all subcommands are uniquely labeled and thus the label on Dy is distinct from the one on
D;. (See footnote 19 in Definition 3.3.)

e For BWHX, B has the form while E do Dy; D; so ||B]| is while E|E - falsel|false do Dy; || D1 ||.
As the alignment guards are false, rule BWuX applies just if 7(E) # 7’(E). We can show this
contradicts the premise for the same reasons as in the argument above for BIFX in the case
D, # Dy, i.e., the conditional branches differ. We do not have to consider the situation where
the branches go different ways but the code is the same: if 7(E) = true and z’(E) = false then
(while E do Dy; Dy, 7, ) LN (Do; while E do Dy; Dy, 7, p) and {while E do Dy; Dy, 7’, pt) ZN
(Dy, ', uy—the code is different, as needed to contradict r-respects in the premise.

Post. Consider terminated trace (CC, o|o’, _|_) Ly (Lskip], |z’, _|_), for states 7, 7’. We must
prove ,7" [F; O(BQ A Aey’), where e5” = (rd (alloc\r)‘any, Asnap(e))\& with ¢ = [r+5:7] and
t’ = [r’+5: 0] (with 0,7" as defined following Equation (60)).

Recall that we have 6(6” [, BP A Aes™ AB(salloc = alloc A snap(e)), where e~ = rds(e)\6® (see
Equation (60)). From Equation (61), we get allowed dependencies

' /o ’ 7! ’ o’
o,0'=1,7 |F§ eand o', 0=>1", 7 5§ €. (62)
Also, from Lemma 7.8 (projection lemma), we get two terminated traces of the premise. Thus, we
have 7 |= Q and 7’ |F Q. From 6|6" [ Aej and 6|6” |=, BP and side condition P |= w2r(e) <
rds(e) we get 6|67 |=, Aw2r(¢)\6®. This means, by semantics of A and definitions (noting that
spec-only variables are not among the agreeing locations) that

Lagree(o, o', m, wlocs(a, €)\rlocs(o, §%)),
Lagree(o’, o, 7%, wloes(a’, €)\rlocs(a”, §%)).

Now using Equation (62), by preservation Lemma A.4, we get
Lagree(z, 7/, p, wlocs(o, €)\rlocs(a, §%)\rlocs(r, §9)),

Lagree(t’, 7, p~1, wloes(a’, €)\rlocs(a”, §®)\rloes(z’, 5©)).
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From Encap boundary monotonicity condition of the premise we get rlocs(o, ) C rlocs(z, §) and
rlocs(o’, 8) C rlocs(z’, §). Thus, the preceding agreements simplify to

Lagree(r, t’, p, wlocs(a, €)\rlocs(t, §%)),
Lagree(t’, 7, p~1, wlocs(a”, )\ rlocs(z’, §%)).

Furthermore, by Lemma 8.3, we have wlocs(a, ¢)\rlocs(t,5%) = rlocs(r, Asnap(e)\§) and also
wlocs(a”, €)\rlocs(z’, §%) = rlocs(t’, Asnap(e)\8). Thus, we get

Lagree(t, t’, p, rlocs(t, Asnap(e)\9)),
Lagree(t’, 7, p~, rlocs(r’, Asnap(e)\5)).

This means 7|7 |=, AAsnap(e)\9.

Since freshL(t,v) = rlocs(v,rd (alloc\r)‘any) and freshL(t’,v’) = rlocs(v’,rd (alloc\r)‘any),
we can use the agreements on fresh locations given by Equation (62) to get 7|7" |=,
A(rd (alloc\r)‘any)\é.

Combining what is proved above and using p as witness of the existential in the semantics of
¢, we conclude the proof of Post: 7|2’ |=, G(BQ A A(rd (alloc\r)‘any, Asnap(e)\5)).

R-safe. By projection Lemma 7.8(c) there are unary executions that take the same unary steps.
The R-safe condition from the premise applies on both sides and yields R-safety for the conclusion.

D.4 Soundness of RSOF

LocEqs(®,0) Fu [[C]) : locEqs(P ~> Q [e])
|= bnd(N)|bnd(N) frm N N = oN N+M
Neo® Vm e ®. mdl(m) £ N §=(+L € (9,0),L # M. bnd(L)) C is let-free

LocEqs(®), LocEqs(©) ® N +u [[C]| = locEqs(P ~ Q [e]) O N

Before studying the following, readers are advised to be familiar with Sections D.2 and D.3.
To show soundness of rRSOF, suppose the side conditions hold and the premise of the rule is
valid:

RSOF

LocEqs(®,0) [=p ||C]| : locEqs(P ~ Q [e]). (63)
We must prove validity of the conclusion:
LocEqs(®), (LocEqs(©) ® N) |Em [IC]| : locEqs(P ~ Q [e]) ® N. (64)

To that end, consider an arbitrary model ¢ of the relational context LocEqs(®P), LocEqs(©) ® N.
To make use of the premise, we define a model, ¢~, of LocEq(®, ©).

For m in @, the definition is unchanged: ¢; (m) = ¢ (m) for i € {0, 1,2}. For methods m of ©,
we first define ¢, (m). For that, we need some notation. Suppose ®(m) = R ~» S []. Let R be the
local equivalence precondition

R = BR A Ards(n)\6® A B(s”, = alloc A snap™(n)). (65)

alloc

Let ¢ be the spec-only variables, including s’ and the snap™ ones. Note that N depends on no
spec-only variables, by the side condition that it is framed by dynamic boundary bnd(N). For any
states 7 and 7/, define

— — |t
{¢} VL el e R -
- N o~ = = _ t|t - = — Lt
@, (m)(r|t") = {2 Ar,uu’. |t Ex 73@7’) A(Vr,wu'. |t g Rﬁlﬁ":) |’ fex N),
P (m)(cle’) 3m @@ 7l x RO AN.
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One might hope that (¢;, ¢, ¢;) is a model for LocEq5(®, ©) but this may fail for m in @ if ¢ (m)(7)
or ¢ (m)(t’) is non-empty for 7|7’ that satisfy R but not N'—because then the relational compati-
bility condition for pre-model fails (Definition 7.4, which is a pre-requisite for Definition 7.9).

To solve this problem, we define ¢;(m) and ¢ (m) like ¢; (m) and @7 (m) but yielding empty
outcome sets for such 7,7’. To see why this works, we make the following observations about
the definitions of pre-model and model for unary specs. For any pre-model ¢(m) and states 7, o,
if 7 € p(m)(o) and ¢’(m) is defined identically to ¢(m) except that ¢’(m)(c) = (e(m)(c))\{r},
then ¢’ is a pre-model. Moreover, if ¢(m) is a context model for some spec and o satisfies the
precondition, then ¢’ is a context model. Now, for any 7, define ¢, (m)(r) = @ if there is " such
that the conditions of the second case for ¢, hold for 7|t’, that is

(Elﬂ,ﬁ,ﬂ'. = y(g/’) and (Vﬂ,ﬂ,ﬁ'. 7|7 R;ll%,,=> |t [ r N).
Otherwise, define ¢ (m)(r) = @o(m)(7). The displayed condition implies that 7 satisfies the unary
precondition R, so ¢ (m) is a model for ©(m) as observed above. Define ¢ (m) the same way but
existentially quantifying the left state: 7 (m)(r) = @ if there is 7 such that (37, u,u". 7|t" |=,

Ryltﬁ,,) and (Vr,u,u’. 7|t |5, ;lltﬁ” = 1|t" 5 N); otherwise define ¢ (m)(7) = @1(m)(r). We
leave it to the reader to check that (¢, @7, ¢;) satisfies all the conditions to be a relational pre-
model and to be a context model of LocEqs(®, ©). The latter means ¢, and ¢ are (®, ®)-models,
and ¢; (m) models locEqs(®, ©)(m) for all m.

Now, we return to the proof of validity of the conclusion, (64). Having fixed an arbitrary context
model ¢*, we now consider any o, c’, 7 that satisfy the precondition of the conclusion, i.e., the

precondition of locEqs(P ~» Q [¢]) ® N. That is, we assume
616" [Ex BP A Ards(e)\6® A B(saiioc = alloc A snap(e)) A N, (66)

where 5 are the spec-only variables (which are the same on both sides of these specs), & = [o+5: 7],
6" = [0’+5:7] for some T, ". (Recall that ©, 7’ are uniquely determined, by Lemma C.1.)

To finish the soundness proof, we need the following claim involving o, ¢’, & and the context
model ¢~ derived from ¢™.

Cram. If (||C]), alo’, _|_) v* (BB, 7|7’, u|p’), then there are B and p such that

@) |[Cl. olo”, _|) ¥=* (BB, |z, ulu),

(b) tlt" l=p N,

(c) p2 7w and BB = ||B| and u = 1/,

(d) Lagree(t,t’, p, (freshL(c, 1) U rlocs(a, €) U writn(o, 7))\ rlocs(z, %)), and
(e) Lagree(r’, 7, p~ ", (freshL(c’, ") U rlocs(c’, €) U wrttn(a’, v"))\rlocs(z’, 59)).

Item (a) says a trace via the conclusion’s ¢* can be taken via the premise’s ¢~. Item (b) says N
holds at every step (outside context calls). Items (c), (d), and (e) are the same as the conclusions
(v), (vi), and (vii) of the lockstep alignment Lemma 8.9, for refperm p that additionally truthifies
N according to item (b).

We do not directly apply Lemma 8.9 in the following argument, because it gives us no good
way to establish 7|7’ |=, N. However, we will establish (c)-(e) by similar arguments to the proof
(Section D.2) of Lemma 8.9, in which the conclusions (v)—(vii) are proved by induction on a given
trace. In short, we will apply the induction step of that proof. Whereas the lemma connects an
initial 7 with a refperm p 2 x for a given reachable configuration, the proof of the induction
step of the lemma does exactly what we need: Given a current p with p 2 7, it yields a p with
p 2 p, for the next step of the trace. We can reason the same way, for (c)-(e), but also add that p
satisfies N.
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One could factor out the induction step of the lemma as a separate result, and then apply it
directly here. We refrain from spelling that out explicitly, but we do need to be clear how we are
instantiating the assumptions of Lemma 8.9. For the unary spec ¥ in the Lemma, we take (P, ©).
For the relational spec ® in the Lemma, we take (LocEqs(®), LocEqs(®)), which is the same as
LocEq5(®, ©). For the context model ¢, we take ¢~. So, we have assumption (i) of the Lemma. We
also have (ii), as direct consequence of Equation (66). For (iii), we will consider a trace via ¢~ given
by (a) in the Claim. For (iv), i.e., r-safety and respect for that trace, we will appeal to the premise
(63).

Proof of Claim, by induction on steps.

Base Case. For initial configuration (||C||, o|o’, _|_), take p := n. We have o|c’ £, N by
assumption (66); the rest follows.

Induction Case. Suppose

(IC], alo’, _|_) E=* (BB, 7|7/, plu’y &= (DD, v|v’, v|v'). (67)

By induction hypothesis there is p such that the conditions (a)-(e) of the Claim hold for the
configuration with 7, 7’—including p 2 7, 7|t’ |, N, BB has the form ||B|| for some B, and
e, olo’s L) e (BB, t|t/, plp’). We must show there is p such that p 2 7, v|v" |55 N,
(B, tlr’, plu’) SN (DD, v|v’, v|v’), and the other conditions of the Claim for p,v,v". We write
(), (b), and so on, to indicate those conditions instantiated for p, v, v’.

To find p and show the conditions of the Claim for v, v” we distinguish three cases:
Case Active(B) is not a context call. Because the step is not a call, it is independent of model, so

we have

(LBJ. 77, ulp') ¥= (DD, olt’, vIv"), (68)
which takes care of part (a) of the Claim. Moreover, this together with Equation (66) lets us in-
stantiate the premise Equation (63), so (by Encap) we have that the left and right projections of
the whole trace Equation (67) satisfy respect for ((®,®), M, ¢, ¢,0) and ((,0), M, ¢7,¢,0'), re-
spectively. Thus, we have the assumption (iv) of Lemma 8.9 applied to the trace Equation (67). By
direct application of the Lemma, we get that v = v’ and there is some D with DD = || D||. Direct
application would also yield agreements for some p O 7, but that is not enough. Instead, we apply
the induction step of the Lemma’s proof, which yields p such that p 2 p and (d) and (&) hold.
Finally, from the Encap condition of premise of the rule, we also know that unary steps on left and
right of Equation (68) w-respect bnd(N), so we get Agree(r,v, bnd(N)) and Agree(t’,v’, bnd(N)).
So from side condition |= bnd(N)|bnd(N) frm N, by Definition 7.1 of the relational framing judg-
ment, using (b), we get v|v’ |z, N.By p 2 p and the side condition N' = 0N of rSOF, we get
vv" |=5 N, proving (b) and concluding the induction step for this case.

Note that the induction step in the proof of Lemma 8.9 goes by cases on transition rules. The
preceding paragraph covered all the transition rules except for context call.

Case Active(B) is a context call to some m in ®. The step can be taken via ¢~, because ¢, (m) is
defined to be ¢; (m), so we have (a). As in the preceding case, we can apply the induction step of
Lemma 8.9 to get p 2 p with (¢)—-(€). As in the preceding case, we appeal to w-respect for premise
(63), and |= bnd(N)|bnd(N) frm N, to get (b).

In our appeal to the proof of Lemma 8.9, we are here using the cases of transition rules BCALLS
and BCALLO.

Case Active(B) is a context call to some m in ©. So B has the form B = m(); B, for some B,. The
transition can go by either BCALLO or BCALLS. In the case of BCALLO, we get the Claim directly
from the induction hypothesis: taking p := p we get (a)-(é) from (a)—(e).
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Now consider the case of BCALLS. Suppose ©(m) = R ~» S [5] and 7 is spec-only variables of R
and of the snapshot variables of locEqs(R ~> S [17]) tagged for m. Since we are in the case BCALLS,
the precondition of m for ¢* holds, for some refperm; ¢~ (m) is defined the same way (last case in
its definition) and the transition can be taken via ¢, so we have (a). It remains to find some p 2 =
satisfying (b)-(&) for v, v’. For (¢), by BCALLS the method environments are unchanged and DD has
the form || By ]|

Let us spell out what it means that the precondition of m for ¢* (i.e., the precondition of
locEqs(R ~ S [1])) holds for some p;: We have
= alloc A snapm(ry)))ﬂi,, AN, (69)

ulu

t|t" |Ep, (BRA Ang AB(s

m
alloc

where 7 £ [r+5:0] and 7/ £ [r+5:7'], where U, 7" are the unique values for the spec-only vari-
ables 5 defined in connection with Equation (66), and u, u” are the unique values for the spec-only
variables f for ©®(m). We can write N outside the substitutions, because it has no spec-only vari-
ables, but this is not important. What is important is that ©,?’,u,u’ are uniquely determined,
independent of the refperm, by Lemma C.1. Let 7 £ [#+t:u] and 7/ £ [£+%:u’]. So Equation (69)
can be written
7|t |Fp, BRA A A B(sh.. = alloc A snap™(n)) AN. (70)
Now, BR A B(slj, . = alloc A snap™(n)) is refperm independent. So using induction hypothesis
(b), we have 7|7" |z, BR A B(s]j . = alloc A snap™(n)) A N. We can get 7|7" |=, Any from
induction hypothesis (d) and (e), as follows. First, we have Encap and r-safety for the trace up to
7,7’, by induction hypothesis (a) and the premise. Now 75 is rds(n)\8®, i.e., rds(n)\(5, rd alloc).
By r-safety, we have rlocs(z,n57) € (freshL(o, 1) U rlocs(o, €))\rlocs(z, 5%)) and rlocs(z’, ns) <
(freshL(c’, ") U rlocs(a’, €))\rlocs(z’, 5%)). So by semantics of Any and induction hypothesis (d)
and (e) we get 7|7" |5, Any .
Having established that the precondition (70) holds for p; := p, we can instantiate the spec of
m with p and obtain the postcondition (in accord with Definition 7.9 of relational context model):

00 =, OBS A Ay AN).

By semantics, this implies there is p 2 p with v[v” |5, BS A Apy” A N. So, we have (b) and (¢).
Finally, p satisfies the agreements of (d) and (é); this follows from v|v’ |= p Any for reasons that
are spelled out in detail in proving the induction step of Lemma 8.9 in the case of BCALLS, starting
around the displayed formula (57).

Having proved the Claim, we prove validity of the conclusion (64) of RSOF.
Safety. Suppose (||C||, alo’, _|_) RN (BB, t|t’, p|u"). We show by contradiction the latter

configuration cannot fault.
Case: fault by a non-call step. Then the faulting step can also be taken via ¢~, and it is reached

via ¢~ owing to the Claim (a), but a faulting trace via ¢~ contradicts the premise (63).

Case: fault by a context call to some m in ®. Then the step can also be taken via ¢, again con-
tradicting the premise.

Case: fault by a context call to some m in ©. Let the spec of m be R ~» S [], so the relational

precondition is R A N where R is given by Equation (65). Because ¢* is a context model, the
Tt

call only faults if there are no p,u,u’ such that 7|z’ |=, AN (see transition rule BCALLX).

H‘ﬁ/’
By the snapshot uniqueness Lemma C.1, values #, %’ exist and are uniquely determined by 7,7’.
So the call only faults if there is no p such that 7|7’ |5 R A N where 7,7’ are the states ex-

tended with u,u’ for the snapshot variables. But, we have p and can show 7|7’ Fp RAN
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as follows. We have 7|7’ |=, N by Claim (b). We have |7’ |5, B(sl . = alloc A snap™(n))
in accord with our choice of the correct snapshot values. To show the conjunct 7|7’ |=, BR,
we can apply the premise, in particular Safety: there must be some refperm for which 7|7’ sat-
isfy BR, because otherwise the call would fault via ¢~, contrary to the premise Equation (63).
Now, we get 7|7’ |=, BR, because BR is refperm independent. It remains to show the conjunct
t|t’ |, Ang, thatis, 7|7 |5 Ards(n)\5®. We have r-safety for the trace up to 7,7/, by Claim
(a) and the premise. By r-safety, we have rlocs(z, ) € (freshL(o, 1) U rlocs(o, €))\rlocs(z, 59))
and rlocs(z’,n5) S (freshL(o’,7") U rlocs(c”’, €))\rlocs(z’, §%)). So by Claim (d) and (e) we get
Tt Fp Any .

Post. For all 7,7’ such that (||C|, old’, _|_) lg* (Lskip], 7|7/, _|_), we must show 7|7’ |=,
O(BQ A Aeg” AN). Applying the Claim to this trace, we obtain p such that conditions (a)-(e) hold
for 7,7’. We will show z|7" |=, BQ A As;’ A N; our obligation then follows by semantics of <,
using p 2 & from (b).

We have 7|7’ |=, N by (b). By (a), we can instantiate the premise Equation (63), which yields
|’ Fr O(BQ A Aey’). This implies z|7” £, BQ, because BQ is refperm independent. Finally,
we get 7|t’ |5, Aey” as a consequence of (d) and (e) by essentially the same argument as the one
spelled out in the proof of Post for rule RLocEQ (Section D.3).

Write, R-safe, and Encap. These are obtained directly from the premise, using the Claim. Note that
®,0 ® N has the same methods, and thus the same modules, as @, © has, so the Encap conditions
have exactly the same meaning for the conclusion of the rule as for the premise.

D.5 Soundness of RPoss, RDis), and RCoN}J

For RPoss, assume validity of the premise: @ |=,, CC : P = Q [e|e’]. To prove validity of the
conclusion @ |, CC : OP = OQ [¢]e’], consider any ®-model ¢. Consider any o, 0’, 7 such
that |0’ |=; OP. By formula semantics, there is p 2 7 such that o|o” |5, P. The Safety, Write,
and Encap conditions now follow by instantiating the premise with ¢ and p. For Post, the premise
yields that for terminal state pair 7|7r’, we have 7|r’ |5, Q. This implies 7|t" =, ©¢Q, since
p 2.

For RD1sj, suppose ¢ is a ®-model and suppose oo’ |=, PoVP;. By semantics of formulas, either
olo’ [=x Poorolo’ |=x P1, so we can instantiate one of the premises using ¢. It is straightforward
to check that the conditions of Definition 7.10 for the conclusion follow directly from the premise.
Note that the propositional connectives have classical semantics in relational formulas, as they do
in unary formulas.

For RCoNJ the argument is similar.

D.6 Soundness of RFRAME

All conditions except Post are easy consequences of the premise. For Post, suppose a|o’ =, P AR
and (CC, olo’, _|_) e (Lskip], z|t’, _|_). By Write, we have 0—7 |= ¢ and ¢’ —1’ |= ¢’ (as
well as 0 < 7 and ¢’ < 7’ of course). By the rule’s condition P A R = (n /. el A’ -/. €'}, we
can use fact (29) to get Agree(o, 7, 1) and Agree(c’,7’,1"). So by P |= n|n’ frm R and semantics of
this judgment we get 7|7’ |=, R. We have 7|7’ |=, Q by Post for the premise.

D.7 Soundness of REMB and REMBS

We prove REMB (Figure 30). The argument for REMBS (Figure 38) is similar.
Suppose @y |=,, C: P~ Qle]land @, |=,, C": P’ ~» Q’[¢’]. To show validity of the conclusion,
@ =, (CIC) = (P{ADP) = {Q1ADQ’) [ele’], consider any ®-model ¢ and any o, 0, 7 such
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that olo’ [=, (P3{ A QP’Z/,}. By biprogram semantics, (C|C’) goes by dovetailed steps of C via ¢
(rule BComL) and steps of C’ via ¢; (rules BCoMR and BCoMRO0). All reached configurations are
in the bi-com form. For Safety, observe that if fault is reached it is by BCoMLX or BCoMRX, so
by projection, we obtain a faulting trace either of C or of C’, contrary to the premises. For Post
and Write, suppose ((C|C’), olo’, _|_) L (Lskip], z|z’, _|_). Then by projection, we obtain
terminated traces (via o and ¢, respectively) to which the premises apply. This yields c—7 |= ¢
and 6’—7’ |= ¢ (proving Write) and 7 |= QS and 7’ |= Q’:}-,, sothatr|t’ |5, (Q(A DQ'g,} (proving
Post). For every trace from ((C|C’), o|o’, _|_) consider its projections, which are unary traces from
(C, o, _) via ¢ and (C’, o', _) via ¢;. Then both R-safe and Encap follow using R-safe and Encap
for the unary traces to which the premises apply.

D.8 Soundness of RCALL

(I)O F m() : <I>0(m) (Dl F m() : fbl(m)
O+ [m()] : @2(m)

RCALL

Let the current module be N in all three judgments.

Suppose ®y(m) is m : P =~ Q [¢]. Let ¢ be a ®-model and suppose 0,0’ |=, P. Be-
cause ¢ is a ®-model (Definition 7.9), ¢;(m)(c|c’) does not contain 4. Moreover, execution from
(Lm()], olo’, _|_) either goes by BCALLS to a terminated state, or by BCALLO repeating the config-
uration (| m()], o|o’, _|_) unboundedly. So Safety holds. We also get Post and Write by definition
of context model. R-safety requires rlocs(o, 1) C rlocs(o, n) and rlocs(o’, ") C rlocs(o”, n’), which
hold.

Encap is more interesting, as it is not a direct consequence of ¢ being a context model. Encap
imposes conditions on the unary projections of every trace from (| m()], o|o’, _|_). By projection
Lemma 7.8, or indeed by unary compatibility of the context model, the premises of RCALL apply
to these traces—and yield all the Encap conditions.

D.9 Soundness of RIF

Dy CC: PA(EIADE) ~ Q [e]e’]
Ory DD: PA(E{AD-E) = Qlele’] P =E=E
§ =(+N € &, N # M. bnd(N)) 5 1. r2w(fipt(E)) § 1. r2w(ftpt(E’))

@+, if EIE" then CC else DD : P ~> Q ¢, fipt(E)|¢’, ftpt(E’)]

RIF

As in the unary rule I, the separator (+N € ®,N # M. bnd(N)) /. r2w(ftpt(E)) and its coun-
terpart simplify to true or false. In virtue of condition # = E = E’, every biprogram trace from
states satisfying P begins with a step going to CC via BIFT or a step going to DD via BIFF; it
cannot fault via BIFX, which is for tests that disagree. Subsequent steps satisfy all the conditions
Safety, Post, Write, R-safe, because these are the same as the conditions for the premises CC and
DD. Encap for the conclusion is almost the same condition as for the premise, the only difference
being that the frame condition ¢|n’ for the premise is a subeffect of the one for the conclusion. So
Encap for the conclusion follows from the premises by an argument like that for soundness of rule
RCONSEQ.

The first step clearly satisfies Safety, Post, Write, and R-safe. To show the first step satisfies
Encap, boundary monotonicity and w-respect are immediate, because the step does not change
the state. For r-respect, we need that alternate executions follow the same control path—and this
is ensured by separator conditions, for reasons spelled out in detail in the proof of Ir.
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D.10 Soundness of RLINK

D,0F, |C]: P~ Qle]
D, 0 Fpaim) (BIB) : ©3(m) P9, o Fmdi(m) B : Qo(m) 1,01 Fmgiim) B' : ©1(m)
= (+L € (9,0). bnd(L)) ($,0) = LocEqs(P,0) P = pre(locEqs(P ~ Q [¢]))
VNed,LeO. N £L VN, LNeEOAN<L=Le(D,0) C is let-free

O+, letm=(B|B)in|C|: P =~ Q|e]

The rule caters for different specs on left and right, subject to the constraints of Definition 4.1.
For RMLINK, we instantiate ©;(m) to somethmg of the form locEq(...) ® M, for coupling relation

RLINK

M, and the operation ® M conjoins M and M to the unary specs. Some unary ingredients appear
in the premises and side conditions but are not directly used in the conclusion: P, Q, and & and ©.
These ensure that the specs are strengthenings of a local equivalence spec.

Remark 12. This version of the rule includes unary premises for B and B’. These are used only
to obtain unary models (of ®¢(m) and ©;(m)), which are formally required to define a full context
model of © (using Lemma C.11). As the proof shows, execution of || C || remains fully aligned (except
during environment calls to m) and all calls are sync’d, so the unary models have no influence
on the traces used in the proof. In future work, we expect to eliminate these unary premises by
revisiting the definitions of compatibility for context models (Definition 7.4), and adjusting the
well-formedness conditions for contexts (Definition 4.1) and definition of covariant implication
(Definition 8.5) for a better fit with compatibility.

In the following proof of RLINK, we assume there are no recursive calls in B or B’. To allow
recursion, one should use a fixpoint construction for the denotational semantics (as in proof of
linking for impure methods in RLIII) and an extra induction on calling depth (as in the linking
proofs in RLII and RLIII). This adds complication but does not shed light; and there are plenty
other complications that do deserve to be spelled out carefully.

As in the unary semantics, we say a biprogram trace is m-truncated iff the last configuration
does not contain ecall(m). In general, there may be unary environment calls and ecall(m) may
occur inside a bi-com, as in (skip|B; ecall(m); C); DD.

Consider any ®-model ¢. Let 8y(m) and 6;(m) be the models of ©y(m) and ©;(m) from the de-
notations of B and B’, by Lemma A.8, using the unary premises for B and B’, and side conditions
about imports. Let 0 be the bi-model of m given by Lemma C.11(i) for the denotation of (B|B’) in
¢, for which we use that each method’s relational precondition implies its unary preconditions
(which holds, because @ is wf; see Definition 4.1). Owing to validity of ®,© Fx (B|B’) : ©,(m), we
have that (¢, 0) is a (9, ®)-model by Lemma C.11(ii).

In the rest of the proof, no further use is made of the unary premises for B and B’.

To introduce identifiers for the relational spec of m, suppose ®;(m) is R => S [n|n’]. For clarity,
we follow a convention also used the in proof of unary LINk: environments that contain m have
dotted names like ;7 and the corresponding environment without m has the same name without dot.

CraM. Let o, 0’, 7w be such that 6|6’ |=, P, where & is[o+5: 0] and 6’ is[o+5": D] for the unique
values 0, 0" determined by o, ¢’ for the spec-only variabless,s" of P. Suppose

(€], olo’, [m:Bl|[m:B']) E5* (DD, |7, mm

is m-truncated (for some DD, 7,7, j1,i'). Then {||C||, olo’, _|_) &=* (DD, t|t’, plp’), where
p=ptmandy’ = ' 'm, and DD = || D|| for some D. Moreover, if D = m(); Dy for some Dy, then
there is p such that t|t" |=, R
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Proor oF CraM. By induction on the number of completed top-level calls of m. (Since we are not

considering recursion, all calls are top level.) The steps taken in code of || C|| can be taken via lg,
because the two transition relations are identical except for calls to m. By induction hypothesis,
any call is in sync’d form, and a completed call from |m()] amounts to a terminated execution of
(B|B’). Thus, a completed call gives rise to a single step via (¢, ) with the same outcome, because
0,(m) is defined to be the denotation of (B|B’), which is defined directly in terms of executions
of (B|B’)—provided that the precondition R of m holds. The premise for ||C]| is applicable to the
trace via ¢, 0, so the precondition R must hold—because otherwise that trace could fault, contrary
to the premise for ||C|). It remains to show that at DD is || D|| for some D. For this, we appeal to
lockstep alignment Lemma 8.9. Let U and V be the unary projections of this trace. By validity of
the premise for || C||, we get that U (respectively, V) satisfies r-safe for (9, ©p), ¢, o) (respectively,
((®1,01),¢,0")) and respect for (Do, Oy), s, (9o, 6p), €, o) (respectively, ((P1,01), e, (¢1,01),€,0")).
By side condition of RLINK, C is let-free. Thus, the assumptions are satisfied for the instan-
tiation ® = (®,0) of Lemma 8.9, which yields that DD is ||DJ|| for some D. The Claim is
proved.

Post. Consider any ¢, o, ¢’, © with 6|6’ £, P (where & is [c+5:7] and 67 is [o+5": D] for the
unique values 7, 7" determined by o, o’ for the spec-only variables 5,5" of P). A terminated trace
of the linked program has the form

(let m=(BIB')in |[C]|, olo’, _|) ES ([C]|; Lelet(m)], o|o’, [m:B]|[m:B'])
=y (lelet(m)], |z, [m:B]|[m:B’])
=% (skip), 7]/, _|_).
By semantics, we obtain (||C||, o|o’, [m:B]|[m:B’]) = (Lskip], t|z’, [m:B]|[m:B’]). This is m-

0
truncated. By the Claim, we have (||C||, o|o’, _|_) £5* (|skip], 7|z’ _|_). By the premise for
IC]|, we get 7|z’ |=, Q, where %, %’ are the extensions using v,v’".

Write. Very similar to the argument for Post.
Safety. As the steps for let and elet do not fault, a faulting execution gives one of the form
(C]. olo’, [m:Bl|[m:B']y E5* (DD, |r’, I’y E5 4.

We show this contradicts the premises, by cases on whether the trace up to DD is m-truncated.
Case m-truncated. The active command of D (equivalently, of || D||) is not a call to m, because
an environment call does not fault on its first step; it goes by rule BCALLE. By the Claim, we have

0
qcll, ele’, _12) 5% (DD, 1|7, u|p’). Because the active command is not a call to m, the step

(DD, t|t’, p|i") = 4 can also be taken via I(P:et But then we have a faulting trace that contradicts
the premise for || C|.

Case not m-truncated. A trace with an incomplete call of m has the following form. (Here, we
rely on the Claim to write parts in fully aligned form.)

(lcl, olo’, [m:Bll[m:B']y =* (Lm()J; | Doll, wolz]> il
=5 ((BIB'); Do), wolzg, fiolpiy) E5* (BBo; |[Do |, 7l7’, fli') =5 4,

with BBy # [skip]. Applying the Claim to the m-truncated prefix, we get 7|7y |=, R for some
p. By semantics, we get (B|B'), |z, fiolft}) ==* (BBy, z|t’, filfi’) = 4. Now, (B|B’) has
no calls to m—because we are proving soundness assuming there is no recursion. So the same
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transitions can be taken via r2%. But then we get a faulting trace that contradicts the premise for
(B|B).

R-safety. For any trace T of let m=(B|B’) in ||C|| from o, ¢’ satisfying P, we must show that the
left projection U and right projection V is r-safe for (o, ¢, o) and (@1, €, 0”), respectively. Observe
that the premises for ||C|| and for (B|B’) give r-safety of their left projections, for ((®y, ©y), ¢, 7),
and r-safety of their right projection for ((®1, ©1), ¢, ¢”)). For methods of @, by definition of r-safety,
these are the same conditions as r-safety for (®y, ¢, o) and for (®y, ¢, 0”). Let us consider U, as the
argument for V is symmetric. We must show the r-safety condition for any configuration, say U;.
Let T the prefix of T such that U is aligned (by projection Lemma) with the last configuration of
T. Now go by cases on whether T is m-truncated.

case T is m-truncated. If the last configuration is calling m, then there is nothing to prove.
Otherwise, that configuration is not within a call of m, so by the Claim, we get from T atrace T of

€] via =% that ends with the same configuration. Now can appeal to r-safety from the premise
for ||C], and we are done. (The claim does not address the first step of let m = (B|B’) in ||C]], but
that satisfies r-safety by definition.)

case T is not m-truncated. So a suffix of T is an incomplete environment call of m, say at position
j. By the Claim, the call is sync’d (and m’s relational precondition holds), so the code of T; has the
form |m()]; DD for some continuation code DD, and the following steps execute starting from
(B|B"); DD (by transition rule BCALLE). By dropping “; DD” from each configuration, we obtain a
trace of (B|B’) that includes configuration T;. Now, we can appeal to r-safety from the premise for
(B|B’), and we are done.

Encap. For any trace of let m=(B|B’) in ||C|| from o, ¢’ satisfying $, we must show that the left
projection respects (Do, », ¢, €, 0) and the right respects (1, s, ¢1,¢,0"). The proof is structured
similarly to the proof of R-safe, though it is a bit more intricate.

Observe that the premises yield respect of ((®g, ©y), «, (@0, 0o), £, 0) and ((P1, O1), «, (¢1, 01), €, 77).
By contrast with the argument above for r-safety, where the meaning of the condition for the con-
clusion is very close to its meaning for the premises, for respect there are two significant differ-
ences. First, the respect condition depends on the current module ., and the judgment for (B|B’)
is for a possibly different module. Second, respect depends on the modules in context, and by side
conditions of the rule the modules of ® are not the same as those of (®, ). Fortunately, these dif-
ferences are exactly the same in the setting of rule Link. The proof Encap for Link (Section B.10)
shows in detail how respect, for traces of let m = B in C, follows from respect for traces of B and
for traces of C in which calls to m are context calls.

Now, we proceed to prove Encap. For any trace T of let m=(B|B’) in ||C|| from o, ¢’ satisfying P,
consider its left projection U (the right having a symmetric proof), which is a trace of let m=B in C.
Consider any step in U, say U;_; to U;.

If the step is an environment call to m, i.e., the call is the active command of U;_, then it satisfies
respect of (®g, «, o, €, ) by definitions and semantics. If the active command is ecall(m), then again
we get respect by definitions and semantics. Otherwise, let T be the prefix of T such that the last
configuration corresponds with U;, and go by cases on whether T is m-truncated.

case T is m-truncated. So the step is not within a call of m, and is present in the trace T given by
the Claim. So, we can appeal to the premise for ||C||. We get that the step respects (g, «, ¢o, €, 0),
using the arguments in the LINK proof to connect with respect of ((®g, ), s, (90, ), €, o) in accord
with the premise for [|C]].

case T is not m-truncated. As in the r-safety argument, we obtain a trace of (B|B’) that includes
the step in question, and it respects (o, «, @9, €, 0), using the arguments in the LINK proof to con-
nect with respect of (99, ©y), mdl(m), (¢o, 6p), €, o) in accord with the premise for (B|B’).
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D.11 Soundness of RWEAVE

®+DD: P~ Q|ele] CC -* DD
O+ CC: P~ Qlele’]

RWEAVE

Remark 13. In general, ® |= DD : P = Q|[¢] and DD s CC do notimply ® |= CC: P = Q [¢],
for one reason: CC may assert additional test agreements that do not hold.

The crux of the soundness proof for rule RWEAVE is soundness for a single weaving step, CC +
DD, which is Lemma D.4 below. Using the lemma, we can prove soundness of RWEAVE by induction
on the number of weaving steps CC +* DD. In case of zero steps, CC = DD and the result is
immediate. In case of more than one steps, apply Lemma D.4 and the induction hypothesis.

Before proving Lemma D.4, we prove preliminary results.

Lemma D.1 (WEAVE AND ProJECT). IfCC o> DD, then CC = DD and CC = DD.

Proor. By induction on the rules for + (Figure 18), making straightforward use of the
definitions of the syntactic projections. As an example, for the if-else axiom, we have
(if E then Celse D | if E’ then C” else D’) = if E then C else D = if E then (C|C’) else (D|D’) =
if EIE" then (C|C’) else (D|D’ ) As an example 1nduct1ve case, for the rule from BB + CC infer

BB; DD «> CC; DD, we have BB; DD = BB; DD = CC; DD = CC; DD where the middle step is by
induction hypothesis. ]

LEMMA D.2 (TRACE COVERAGE). Suppose ® |= DD : P ~> Q [¢] and let ¢ be a -model. Consider
any zr and any o,0’ such that o|lo’ |=, P. Let U and V be traces from (lD_D o, _)and (D_D\, o', ),

respectively. Then there is a trace T from (DD, ol|o’, _|_), with projections W, X such thatU < W
andV < X.

Proor. Apply embedding Lemma C.9 to U, V to obtain T, W, X satisfying one of the conditions
(a), (b), (c), or (d) in that Lemma. Conditions (b), (c), and (d) contradict the premise, specifically
Safety for DD. That leaves condition (a), which completes the proof. O

LeEMMA D.3 (WEAVE AND TRACE). Suppose ® |= DD : P =~ Q [¢] and CC + DD or DD + CC.
Consider any ®-model ¢. Consider any m and any o, ¢’ such that o|c’ |=, P. Consider any trace S
from (CC, clo’, _|_) and let U,V be the projections of S according to the projection Lemma 7.8. Then
there is a trace T from (DD, o|o’, _|_), with projections W, X such thatU < W andV < X.

Proor. Using CC + DD or DD + CC, by Lemma D.1, we have (DD, olo’, _|_) = (CI_C, o, _)
and (DD, olo’, | ) = (CT‘, o, _), so we get the result by Lemma D.2. O

Finally, we proceed to prove soundness for a single weaving step. The hard case is Safety, for
reasons explained in the proof.

LEMMA D.4 (ONE WEAVE SOUNDNESS). Suppose ® |= DD : P = Q [¢] and CC - DD. Then
OECC: P~ Qlel

PRroOF. Suppose @ |= DD : P =~ Q [¢] and CC s DD. To show the conclusion ® |= CC: P >
Q [¢], consider any ®-model ¢. Consider any 7 and any o, ¢’ such that o|o’ |=, P

R-safe. Consider any trace S of CC from o, ¢’. By Lemma D.3, there is a trace T of DD such that
every unary step in S is covered by a step in T. So r-safety follows from r-safety of the premise.

Encap. Similar to R-safe.
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Write and Post. By Lemma D.3, a terminated trace of CC gives rise to one of DD with the same
final states, to which the premise applies.

Safety. This requires additional definitions and results. Faults by CC may be alignment faults
(rules BCALLX, BIFX, BWHX) or due to unary faults (BSyncX, BCoMLX, BCoMRX). The latter can be
ruled out by reasoning similar to the above, but alignment faults pose a challenge, because weaving
rearranges the alignment of execution steps. We proceed to develop some technical notions about
alignment faults, and use them to prove Safety.

In most of this article, we only need to consider traces from initial configurations (CC, a|c”, u|p")
where the environments are empty (written _) and the code has no endmarkers. In the following
definitions, we need to consider non-empty initial environments, and CC may be an extended bi-
program; in particular, CC may include endmarkers. (It turns out that we will not have occasion to
consider an initial biprogram CC that contains a right-bi-com.) This is needed because, in the proof
of Lemma D.5 below, specifically the case of weaving the body of a bi-let, we apply the induction
hypothesis to a trace in which the initial environments are non-empty. The initial configuration of
a trace must still be well formed: free variables in CC should be in the states, and methods called
in CC must be in either the context or the environment and not in both.

Define a sync point in a biprogram trace T to be a position i, 0 < i < len(T), such that one of
the following holds:

e i =0 (i.e., T; is the initial configuration),

o The configuration T; is terminal, i.e., has code [skip],

e Active(T;) is not a bi-com, i.e., neither (—|—) nor (= —). Thus, Active(T;) may be | —|, bi-if,
bi-while, bi-let, or bi-var (by definition, the active biprogram is not a sequence),

e i > 0 and the step from T;_; to T; completed the first part of a biprogram sequence. That is,
the code in T;_; has the form CC; DD with CC the active command, and the code in T; is DD.
Such a transition is a transition from CC to |skip] that is lifted to CC; DD by rule BSEQ.*®
Later, we refer to this kind of step as a “semi-colon removal”

A segment of a biprogram trace is just a list of configurations that occur contiguously in the
trace. A segmentation of trace T is a list L of nonempty segments, the catenation of which is
T. Thus, indexing the list L from 0, the configuration (L;); is T,4+; where n = 3g<x<;len(Lg). An
alignment segmentation of T is a segmentation L such that each segment in L begins with a sync
point of T.

For an example, using abbreviations A0 = x := 0, Al = x := 1, A2 = x := 2 and omitting
states/environments from the configurations, here is a trace with one of its alignment segmenta-
tions depicted by boxes:

((A0JA0); if x > 0|x > 0 then (A1|A1) else (A2|A2))
((skip[ A0);if x > 0]x > 0 then (A1|A1) else (A2|A2))

(if x > 0|x > 0 then (A1|A1) else (A2|A2))
((A2]A2))
((skiplA2))

(Lskip])

Every trace has a minimal-length alignment segmentation consisting of the trace itself—a single
segment—and also a maximal-length alignment segmentation (which has a segment for each sync

80ne could make this more explicit by dropping the identification of |skip ]; DD with DD and instead having a separate
transition from |[skip |; DD to DD, but this would make extra cases in other proofs.
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point). (Keep in mind that we define traces to be finite.) The above example, with three segments,
is maximal.

As another example, here is a trace that faults next (because x > 0 is false on the left but true
on the right), with its maximal alignment segmentation.

{(x := 0]x := 1);if x > 0|]x > 0 then |A1] else | A2])
((skipfFx := 1);if x > 0|x > 0 then | A1] else | A2])

(if x > 0]x > 0 then | A1] else |A2]) \

Note that a segment can begin with a configuration that contains end-markers whose beginning
was in a previous segment. For example,

(varx : T|x’ : T" in (a|b);(c|d))
((alb); (c|d); (evar(x)|evar(x”)))
((skip[b); (c|d); (evar(x)|evar(x")))

{(c|d); (evar(x)|evar(x")))
{(skip[ d); (evar(x)|evar(x”)))
((evar(x)|evar(x’)))
((skip[evar(x”)))

(Lskip])

In the following, we sometimes refer to the left and right sides of a weaving as lhs and rhs. A
weaving lhs + rhs introduces sync points in the biprogram’s traces, but it does not remove sync
points of [hs. Moreover, though it rearranges the order in which the underlying unary steps are
taken, it does not change the states that appear at sync points. This is made precise in the following
lemma, which gives a sense in which weaving is directed (i.e., not commutative).

LeEMMA D.5 (WEAVING PRESERVES SYNC POINTS). Consider any pre-model ¢. Consider any bipro-
grams CC and DD such that CC + DD. Let S be a trace (via ¢) of CC from some initial states and
environments. (No assumption is made about the initial states, and non-empty method environments
are allowed.) Let L be the maximal alignment segmentation of S. Then there is a trace T of DD from
the same states and environments, such that either

(i) the last configuration of T can fault next, by alignment fault; or

(ii) there is an alignment segmentation M of T such that M has the same length as L and for
all i, segment M; and segment L; begin with the same states, same environments, and same
underlying unary programs, that is

T = (My)o and {L1)o = (My).- (71)

Note that M in Lemma D.5 need not be the maximal segmentation. Typically T will have addi-
tional sync points, but these are not relevant to the conclusion of the lemma. What matters is that
T covers the sync points of S. (Note that T need not cover all the steps of S.) As an example of the
lemma, consider a biprogram of the form ((A0|A0);if x > 0|x > 0 then (A1|A1) else (A2]A2)). It
relates by + to ((A0]A0); if x > 0|x > 0 then (A1|A1) else | A2]) (by an axiom and the congruence
rules for sequence and conditional). From the same initial states (and empty environments), the
latter biprogram has a shorter trace (owing to sync’d execution of A2) but that trace can still be
segmented in accord with the lemma. Its second segment has three configurations:

(if x > 0]x > 0 then (A1]A1) else | A2]) (| A2]){|skip]).
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We defer the proof of Lemma D.5 and use it to finish the proof of Lemma D.4 by completing the
proof of Safety. As before, we assume ® |= DD : £ ~> Q [¢] and CC s> DD. To show the Safety
condition for @ |= CC : P = Q [¢], consider any ®-model ¢. Consider any =z and any o, ¢’ such
that o|o’ |5, P. Suppose CC has a trace S from o, ¢’ (and empty environments). If S faults next by
a unary fault, then let its unary projections be U, V (one of which faults next). Then by Lemma D.3
the trace T from U, V must also fault next—and this contradicts the assumed judgment for DD.

Finally, suppose S faults next by alignment fault. Consider the maximal alignment segmentation
of S and let T be the trace from DD given by Lemma D.3. By Lemma D.5 there is a segmentation
of T that covers each sync point of S, including the last configuration of S, which faults. But then
T faults next, contrary to the premise for DD.

This concludes the proof of Lemma D.4 and thus soundness of RWEAVE.

Proor. (Of Lemma D.5). By induction on the derivation of the weaving relation CC +» DD, and
by cases on the definition of « starting with the axioms (Figure 18).

Case weaving axiom (AJA) - | A]. For most atomic commands A, a trace S of the lhs consists
of an initial configuration ((A|A), o|o’, p|u’), possibly a second one with code (skip['A), and pos-
sibly a third one that is terminated (i.e., has code |skip]). However, because the lemma allows
non-empty environments, there is also the case that A is an environment call to some m in the
domain of p and of p’. In that case, if y(m) = B and p’(m) = B’, then there are traces of the form
{(mO|m())){(B; ecall(m)[ m())){(B; ecall(m)|B’; ecall(m))) . . .. Traces of the | m() | can have the form
(Lm()]){(B|B’)) ... but also, if B” = B, the form (| m()|){||B]]) . . . (see rule BCALLE and Figure 20).
The latter is susceptible to alignment faults.

In any case, the only sync points in S are the initial configuration and, if present, the terminated
one. If S is not terminated, then it has only the initial sync point, so L has only a single segment.
This can be matched by the trace T consisting of the one configuration (| A|, o|o’, p|u’), which
also serves as the single segment for T. (The lemma does not require T to cover all steps of S, only
the sync points of S.)

If S terminated, then by projection and then embedding Lemma C.9, (| A], o|o”’, u|p’) has a trace
T that either terminates, covering the steps of S, or faults. It cannot have a unary fault, because S
did not. If it has an alignment fault, which would be via context call transition BCALLX or by some
step of an environment call executing || B||, then we are done. Otherwise, T can be segmented to
match the segmentation L: One segment including all of T except the last configuration, followed
by that configuration as a segment.

Case weaving axiom (C;D | C’;D’) + (C|C’);(D|D’). A trace S of the lhs may make several
steps, and may eventually terminate. If terminated, then it has two sync points, initial and final;
otherwise, only the initial configuration is a sync point. If not terminated, then the initial con-
figuration for (C|C’); (D|D’) provides the trace T and its single segment. If S terminated, then by
projection and embedding, we obtain a trace T that either terminates in the same states or has an
alignment fault. So, we either get a matching segmentation of T or an alignment fault.

Cases the other weaving axioms. The argument is the same as above, in all cases. The rhs of
weaving has additional sync points, which are of no consequence, except that they can give rise to
alignment faults. Like the preceding cases, bi-if and bi-while introduce the possibility of alignment
fault; bi-let and bi-var weavings do not.

Having dispensed with the base cases, we turn to the inductive cases, which each have as premise
that BB « CC (Figure 18). The induction hypothesis is that for any trace S of BB and any alignment
segmentation L of S, there is a trace T of CC such that either its last configuration can alignment-
fault or there is a segmentation M of T that covers the segmentation of S.

Case BB; DD + CC;DD.
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A trace S of BB; DD may include only execution of BB or may continue to execute DD.

e In case S never starts DD, the trace S determines a trace S* of BB by removing the trailing
“;DD” from every configuration. (In the special case that CC is run to completion in S, i.e.,
its last configuration has exactly the code DD, then the last configuration of S* has [skip].)
(Note that S may have sync points besides the initial one, as BB is an arbitrary biprogram.)
By induction, we obtain trace T of CC and either alignment fault or segmentation of T that
covers the segmentation of S. Adding ; DD to every configuration of T yields the requisite
segmentation of S.

e Now consider the other case: S includes at least one step of DD, so there is some i > 0 such
that S;_; has code BB’; DD for some BB’ that steps to |skip], and S; has code DD. Because
L is the maximal segmentation of S, it includes a segment that starts with the configuration
Si. Now we can proceed as in the first bullet, to obtain trace T of CC and either alignment
fault or segmentation for the part of S up to but not including position i. Catenating this
segmentation with the one for the trace of DD from i yields the result.

Case DD; BB + DD;CC. For a trace S that never reaches BB, the result is immediate by taking
T := S and M := L. Otherwise, the given trace S can be segmented into an execution of DD that
terminates, followed by a terminating execution of BB. By maximality, the segmentation breaks at
the semicolon, and we obtain the result using the induction hypothesis similarly to the preceding
case.

Case if EIE’ then BB else DD s if E[E’ then CC else DD. If the given trace S has length one,
then we immediately obtain a length-one trace and segmentation that satisfies the same-projection
condition (71).

If len(S) > 1, then the first step does not fault, i.e., the tests agree. Let S* be the trace starting
at position 1, which is a trace of BB or of DD depending on whether the tests are initially true
or false. If the tests are false, then catenating the initial configuration for if E|E’ then CC else DD
with S* provides the requisite T, and also its segmentation. If the tests are true, then apply the
induction hypothesis to obtain a trace T for CC, and segmentation (if not alignment fault); and
again, prefixing the initial configuration to T and to its first segment yields the result.

Case if E|E’ then DD else BB « if E|E’ then DD else CC. Symmetric to the preceding case.

Case while EIE’ - P|P’ do BB + while EIE’ - PP’ do CC. A trace S of lhs can be factored into
a series of zero or more iterations possibly followed by an incomplete iteration of left/right/both.
Note that a completed iteration ends with a “semi-colon removal” step (the left-, right-, or both-
sides loop body finishes and was followed by the bi-loop). Because the segmentation L is maximal,
it has a separate segment for each iteration.

Now the argument goes by induction on the number of iterations. The inner induction hypothe-
sis yields segmentation for rhs up to the last iteration, which in turn ensures that lhs and rhs agree
on whether the last iteration is left-only, right-only, or both-sides. In the one-sided cases there are
no sync points. In the both-sides case, the main induction hypothesis for BB = CC can be used in
a way similar to the argument for sequence weaving above.

Case let m = (B|B’) in BB s> let m = (B|B’) in CC. Suppose S is a trace from (let m =
(B|B")in BB, o|o’, p|1"), with segmentation L.If S has length one, then the rest is easy. Otherwise, S
takes at least one step, to (BB; | elet(m)], o|o’, fi|i’) where i and i’ extend p, p’ with m:B and m:B’,
respectively. We obtain trace S* of (BB; | elet(m)], o|o’, ji|f1’) by omitting the first configuration of
S—and here we use a trace where the initial environments are non-empty. Applying the induction
hypothesis, we obtain trace T* for S*, and either alignment fault or matching segmentation M*.
Prefixing the configuration (let m=(B|B’) in CC, o|o’, u|p’) yields the requisite trace T. If there is
alignment fault, then we are done. Otherwise, if BB begins with an aligning bi-program, i.e., if Sy is
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a sync point in S, then let segmentation M consist of the singleton (let m=(B|B’) in CC, o|o’, pu|p")
followed by the elements of M. Finally, if S; is not a sync point in S, then we obtain M by prefixing
(let m = (B|B’) in CC, ol|o’, u|p’) to the first segment in M*.

Case var x:T1x":T" in BB = var x:T1x":T" in CC. By semantics and induction hypothesis, similar
to the preceding case for bi-let.

E GUIDE TO IDENTIFIERS AND NOTATIONS

The prime symbol, like ¢”, is consistently used for right side in a pair of commands, states, and so
on. Other decorations, like ¢ and 7, are used for fresh identifiers in general.

Table 1. Use of Identifiers

A atomic command Figure 5

B,C,D command Figure 5
BB,CC,DD biprogram Figure 5

E program expression Figure 5

G, H region expression Figure 5

F either program or region expression Figure 5

f.g field name Figure 5, Equation (6)
K reference type Figure 5

M,N,L module name

T data type Figure 5

T,U,V,W trace (unary or biprogram)

P,O,R formula Figure 9

P,.Q, R, M,N relation formula Figure 14

X, Y, 2,7, program variable

& 1,0 effect expression Equation (6)

r typing context

D,0,V¥, unary or relational hypothesis context Sections 3.4 and 4.3
0,0,y unary or relational context model Sections 5.4 and 7.4
Dy, Dy, Dy components of relational context see preceding Definition 4.2
o,T,U state Section 5.1

G state with spec-only vars

T, p refperm Section 5.2
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Table 2. Use of Symbols
. separator function Equation (29)
. default/main module Section 3.2
. empty effect Equation (6)
e\n effect subtraction following Definition 3.1
(+-.-) combination of effects following Definition 3.1
‘f image in region expression or effect Figure 5, Equation (6)
# disjoint regions Figure 9
< < module import Section 3.2
= equal reference or region, modulo refperm Figure 14, Figure 25
Ax AG'f agreement formulas Figure 14, Figure 25
(-4 b—), B- embed unary formula (left, right, both) Figure 14, Figure 25
(-4 Db-) embed unary expression Figure 14, Figure 25
O possibly (in an extended refperm) Figure 14, Figure 25
@) conjoin invariant Definition 4.7
=1 full alignment of command Figure 20
> weave biprogram Figure 18
[o+x:v] extend state to map x to v Section 5.1
[o]x:0] update value of x Section 5.1
olx drop variable x from state Section 5.1
— can succeed Section 5.2
5% abbreviates effect §, rd alloc preceding Definition 5.10
z equiv modulo refperm Section 5.2
x|x’ .. . .
X R, state pair isomorphism Definition 7.3
x o, state isomorphism, outcome equivalence  Definition 5.5
A unary transitions Figures 22 and 34
s Lo biprogram transitions Figures 27 and 28
cren r-bi-com biprogram Section 7.3
o7 Ee allows change Section 5.2
T, T’év, v |:g £ allowed dependence Definition A.2
PEe<py subeffect judgment Equation (26)
Pl=Pfrme framing of a formula Equation (27)
P = nly’ frm Q framing of a relation Section 7

Definition 3.3, Definition 5.10
Definition 4.2, Definition 7.10
Definition 8.4
Definition 8.5

Drpy C: P~ Qle] correctness judgment

Dy CC: P~ Q e|e’] relational correctness judgment
locEqs(P ~> Q[e]) LocEqs(®) local equivalence specs

= covariant spec implication
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