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Abstract

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune-mediated neuromuscular disease thought to be caused by auto-

antibodies against P/Q-type voltage-gated calcium channels (VGCCs), which attack and reduce the number of VGCCs within

transmitter release sites (active zones; AZs) at the neuromuscular junction (NMJ), resulting in neuromuscular weakness.

However, patients with LEMS also have antibodies to other neuronal proteins, and about 15% of patients with LEMS are seroneg-

ative for antibodies against VGCCs. We hypothesized that a reduction in the number of P/Q-type VGCCs alone is not sufficient

to explain LEMS effects on transmitter release. Here, we used a computational model to study a variety of LEMS-mediated

effects on AZ organization and transmitter release constrained by electron microscopic, pharmacological, immunohistochemical,

voltage imaging, and electrophysiological observations. We show that models of healthy AZs can be modified to predict the

transmitter release and short-term facilitation characteristics of LEMS and that in addition to a decrease in the number of AZ

VGCCs, disruption in the organization of AZ proteins, a reduction in AZ number, a reduction in the amount of synaptotagmin,

and the compensatory expression of L-type channels outside the remaining AZs are important contributors to LEMS-mediated

effects on transmitter release. Furthermore, our models predict that antibody-mediated removal of synaptotagmin in combination

with disruption in AZ organization alone could mimic LEMS effects without the removal of VGCCs (a seronegative model).

Overall, our results suggest that LEMS pathophysiology may be caused by a collection of pathological alterations to AZs at the

NMJ, rather than by a simple loss of VGCCs.

NEW & NOTEWORTHY We used a computational model of the active zone (AZ) in the mammalian neuromuscular junction to

investigate Lambert-Eaton myasthenic syndrome (LEMS) pathophysiology. This model suggests that disruptions in presynaptic

active zone organization and protein content (particularly synaptotagmin), beyond the simple removal of presynaptic calcium

channels, play an important role in LEMS pathophysiology.

active zone; Lambert-Eaton myasthenic syndrome; MCell modeling; neuromuscular junction

INTRODUCTION

Lambert-Eaton myasthenic syndrome (LEMS) is an auto-
immune-mediated neuromuscular disease that reduces
transmitter release from the neuromuscular junction (NMJ),
resulting in severe muscle weakness (measured in patients
as a smaller than normal compoundmuscle action potential;
CMAP). A common diagnostic marker for LEMS is a reduced
resting CMAP amplitude and a CMAP increase or increment

recorded from the patient’s hand muscle following a short
(10 s) exercise period, which can result in an increase in the
resting CMAP amplitude of between 60% and 1,000%,
depending on the patient (1, 2). This CMAP increment is
caused by short-term synaptic facilitation of neuromuscular
synapses that brings additional muscle fibers to threshold
that were initially not generating a nerve-evoked muscle
action potential (AP) due to LEMS pathology. The reduction
in neurotransmitter release and increase in short-term
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synaptic facilitation is typically ascribed to antibodies tar-

geting the presynaptic P/Q-type voltage-gated calcium
channels (VGCCs) that are primarily responsible for the
calcium influx that triggers transmitter release in the

active zones (AZs) of mammalian NMJs. However, anti-
bodies to other neuronal proteins are also known to be
present in LEMS and may contribute to the disease pa-

thology (3, 4). Furthermore, antibodies to VGCCs are not
detected in 10%–15% of patients with LEMS (5–9). These
patients with seronegative LEMS have similar clinical pre-
sentations to the patients with seropositive LEMS that

express the P/Q-type VGCC antibodies (1, 8). Although
patients with seronegative LEMS do not produce antibod-
ies to the P/Q-type VGCCs, the repeated injection of mice

with seronegative LEMS patient serum can passively
transfer LEMS symptoms to the mice, suggesting that
seronegative LEMS is still antibody mediated (8). These

findings suggest that seronegative LEMS may be caused
by antibodies targeting other proteins important to the
release of neurotransmitter in the AZ.

Synaptotagmin-1 and synaptotagmin-2 (syt1 and syt2)

are both found in mouse NMJs (10) and are known to be
the calcium-sensing proteins responsible for fast synchro-
nous release of neurotransmitter (11). Antibodies to synap-
totagmin have been found in the serum of patients with

LEMS (9, 12). These antibodies are thought to be directed
against synaptotagmin-1 and/or 2, and it is unknown if
other synaptotagmin types are affected (i.e., there are no

studies to date specifically addressing the potential for
synaptotagmin-7 antibodies in LEMS). Thus, it has been
hypothesized that patient-derived synaptotagmin-1 and/

or -2 autoantibodies could be at least partially responsible
for seronegative LEMS. This hypothesis is supported by
the finding that rats injected with synaptotagmin antibod-
ies developed electrophysiological characteristics of LEMS

(13). In addition, synaptotagmin-2 knockout mice display
similar electrophysiological characteristics to LEMS (10).
Finally, there is a report of a rare genetic alteration of syn-

aptotagmin-2 in human patients that causes symptoms
similar to LEMS (14).

We previously developed computational models of an
AZ in the healthy frog NMJ (15, 16) and have recently

developed a preliminary model of AZs in the healthy
mouse NMJ (17). Here, we further develop our computa-
tional model of AZs in the healthy mouse NMJ, and then
utilize this model to investigate possible mechanisms of

LEMS-induced changes to the AZ. We use the known mag-
nitude of LEMS-induced reduction in transmitter release
and increase in short-term synaptic facilitation as targets

for our model output. We find that simple removal of pre-
synaptic AZ VGCCs is not sufficient to reproduce LEMS
effects. Rather, the removal of VGCCs must be accompa-

nied by a disruption in the organization of the remaining
VGCCs. We also show that loss of some AZs and the upreg-
ulation of L-type VGCCs can contribute to LEMS effects.
Furthermore, removal of some of the synaptotagmin fast

calcium sensors (either alone or in combination with dis-
ruption of AZ structure) can also predict these LEMS
effects, providing computational evidence in support of

the synaptotagmin-autoantibody hypothesis of seronega-
tive LEMS.

METHODS

Intracellular Recordings

Tomeasure themagnitude of transmitter release, intracellu-

lar recordings weremade from themouse epitrochleoanconeus

(ETA) neuromuscular preparation in accordance with proce-

dures approved by the University of Pittsburgh Institutional

Animal Care and Use Committee as previously described (2).

The extracellular saline contained 150 mM NaCl, 5 mM KCl, 11

mM dextrose, 10 mM HEPES, 1 mM MgCl2, 2 mM CaCl2, pH =

7.3–7.4. The nerve was stimulated with a suction electrode and

muscle contractions were blocked by exposure to 1 μM μ-cono-

toxin GIIIB (Alomone Labs, Jerusalem, Israel). Microelectrode

recordings were performed using �40–60 MΩ borosilicate

electrodes filled with 3Mpotassium acetate. Spontaneousmin-

iature synaptic events (mEPPs) were collected for 1–2 min in

each muscle fiber, and then 10–30 nerve-evoked synaptic

events (EPPs) were collected with an interstimulus interval of 5

s. All recordings were corrected for nonlinear summation (18).

To calculate quantal content, the average EPP amplitude was

divided by the average mEPP amplitude recorded from each

NMJ. This ratio estimates the average number of quanta (pack-

ages of neurotransmitter stored in synaptic vesicles) that are

released following each presynaptic action potential. To evalu-

ate the effects on short-term synaptic plasticity, a train of four

EPPs with an interstimulus interval of 20 ms (50 Hz) was col-

lected in each muscle fiber. Data were collected from the same

NMJ before and 30–60 min after exposure to 25 nM

x-Agatoxin IVA to block a fraction of presynaptic VGCCs.

Data were collected using an Axoclamp 900A and digitized

at 10 kHz for subsequent analysis using pClamp 10 soft-

ware (Molecular Devices, Sunnyvale, CA).

LEMS Passive Transfer to Mice

We used a LEMS passive transfer mouse model as previ-

ously reported (2, 19–26). The collection of serum from a

patient with LEMS was performed following the guidelines

set forth by the University of Pittsburgh Institutional Review

Board. Serum from patient “GS” was used for all LEMS pas-

sive transfer data reported here and was collected using plas-

mapheresis. Patient GS is a patient with paraneoplastic

LEMS with small cell lung cancer and metastases to media-

stinal nodes that have been treated with six cycles of chemo-

therapy (carboplatin and etoposide). As has been previously

reported, a LEMS diagnosis increases survival in patients

with small lung cancer (27, 28). Consistent with these reports,

GS is now >10 yr postdiagnosis with no evidence of cancer

recurrence. However, clinical weakness persists, and GS

presents with areflexia that recovers after 10 s of exercise.

Limb weakness is symmetrical and unchanged since diagno-

sis with a Medical Research Council sum score (29) of 46/60.

Autoantibodies were detected to voltage-gated calcium

channels (128 pM; control <30 pM), but not to voltage-gated

potassium channels or acetylcholine receptors. Compound

muscle action potential (CMAP)measured from the abductor

digiti minimi was reduced (1.3–2.4 mV as compared to nor-

mal of 7–8 mV) (30) and showed an augmentation of 200%–

225% postexercise. A 3-Hz repetitive nerve stimulation

resulted in a CMAP decrement on the 4th stimulation of

20%–30% (normal shows no decrement).
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To passively transfer LEMS to mice, adult female BL6/C57

mice (6- to 16-mo old at beginning of passive transfer; weigh-

ing 25–32 g; Charles River Laboratories) received one intra-

peritoneal (ip) injection of LEMS patient serum on day 1, and

then an injection of 300 mg/kg of cyclophosphamide on day

2 to suppress the specific immune response to human IgG.

This was followed by an intraperitoneal injection of 1.5 mL of

LEMS patient serum once per day for 33–35 consecutive

days. Control (BL6/C57) mice did not receive any injections.

Passive transfer of LEMS was confirmed bymeasurements of

EPP amplitude, mEPP amplitude, and quantal content in

ETA nerve-muscle preparations as described earlier. After

LEMS passive transfer, EPP size and quantal content were

significantly reduced (control mice: mEPP = 0.29 þ 0.01

mV, EPP = 28.6 þ 1.1 mV, quantal content = 102.1 þ 3.9, n =

41; LEMS mice: mEPP = 0.33 þ 0.04 mV, EPP = 12.1 þ 0.9

mV�, quantal content = 44.2 þ 4.6�, n = 18; � = significantly

different from control, Student’s t test).

Immunohistochemical Analysis

Tissue was collected from control mice and from LEMS

mice following the passive transfer protocol. The gastro-

cnemius muscle was dissected and postfixed with 2% para-

formaldehyde in PBS for 20 min at room temperature. The

muscle was then cryoprotected in 20% sucrose/PBS at 4�C

overnight and then embedded in optimal cutting tempera-

ture compound (Fisher Healthcare). Longitudinal sections

(25-lm thick) were cut using a cryostat and blocked with

2% bovine serum albumin, 2% normal goat serum, and

0.1% Triton X-100 in PBS. The sections were incubated with

the Synaptotagmin-2 primary antibody (1:4,000; Synaptic

Systems, No. 105225) at 4�C overnight, washed with PBS, and

incubated with the Alexa Fluor 546-conjugated anti-guinea

pig secondary antibody (1:1,000; Invitrogen, No. A-11074)

and a-Bungarotoxin, Alexa Fluor 488 conjugate (Invitrogen,

No. B13422) for 2h at room temperature. The sections were

washed with PBS and mounted in ProLong Gold antifade re-

agent (Invitrogen, No. P36934) with a No. 1.5 cover glass

(VWR, No. 48393-230).

Synaptotagmin-2 Signal Intensity Quantification

Images were obtained using a Leica TCS SP8 confocal

microscope with a �63 objective lens (HC PL APO CS2 �63/

1.40 OIL) and immersion oil (Leica Type F, refractive index

1.518). Confocal images were obtained by collecting a z-stack

and creating a maximum intensity projection of all the

scanned slices of the synapse. To facilitate a comparison of

the staining intensity for the synaptotagmin-2 antibody in

control and LEMS tissue, paired cryostat sections (control

and LEMS) were mounted on the same slide and stained to-

gether. Then, imaging laser intensity, zoom, and hybrid pho-

todetector gain was maintained at constant values for all

images. The NMJs were identified using a-bungarotoxin to

label the acetylcholine receptors.
Image analysis was performed using ImageJ. For each syn-

apse, a binary mask encompassing the NMJ was generated

using the bungarotoxin (BTX) co-stain. For most synapses

analyzed, the mask was generated automatically using the

“Make Binary” function in ImageJ. Some synapses were not

amenable to automatic mask generation, so for these synap-

ses, the mask was manually drawn using the BTX co-stain.

The average intensity of both BTX and syt2 within the mask

was then determined for each synapse in both the wild type

(WT) and LEMS conditions.
To determine if LEMS caused a dispersal of syt2 outside

the bounds of the NMJ (as defined by the BTX co-stain), we

measured the syt2 signal in an annulus surrounding the orig-

inal BTX-defined mask. To do this, we dilated all the original

masks by 10 pixels (690 nm) using the “Dilate” function in

ImageJ. We determined the integrated intensity of the

enlarged mask and then subtracted the integrated intensity

of the original mask to determine the average intensity just

within the annulus around the original mask.

Monte Carlo Simulations

MCell version 3.4 (www.mcell.org) was used to study syn-

chronous vesicle release at the mouse NMJ. MCell is a sto-

chastic particle-based diffusion-reaction simulator that can

model biological systems with arbitrarily complex three-

dimensional (3-D) geometries (31–33). For each simulation,

6,000 separate MCell seeds were run. During each run, an

AP (or a train of APs) caused VGCCs to open according to a

Markov-chain ion channel gating scheme (see Fig. 1D).

Calcium was then released from open VGCCs and diffused

into the model terminal. As they diffused, the calcium ions

bound to either calcium sensors located on synaptic vesicles
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Figure 1. AP waveforms and voltage-gated calcium channel (VGCC) kinetics used in the MCell models. A: the normalized average of AP waveforms

recorded from mouse neuromuscular junctions (NMJs) (black) and the computational AP waveform used in MCell simulations (magenta). B: the normal-

ized average of AP waveforms recorded from mouse NMJs in the presence of 1.5 μM 3,4-diaminopyridine (3,4-DAP) (black) and the computational AP

waveform used to simulate 3,4-DAP in MCell (green).C: a comparison of the computational AP waveforms used in control (magenta) and 3,4-DAP (green)

simulations. D: the Markov-chain ion channel gating scheme used to determine the behavior of VGCCs in our simulation. Average AP waveforms in A

and B are from Ginebaugh et al. (34).
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or to calcium buffer molecules evenly distributed through-

out the model terminal. Our models are based on previously

developedMCell models of the frog AZ (15, 16) and a recently

developed preliminary model of mouse AZs (17). We then

further constrained these models with several new parame-

ters such as the predicted number of synaptotagmin sensors

at the base of docked synaptic vesicles (35), on- and off-rates

for synaptotagmin 1 and synaptotagmin 7 (36–38) and VGCC

gating (using a model with two open states) (39). Key param-

eters for our MCell model are shown in Table 1, and our

MCell mouse NMJ AZ model has been deposited in GitHub:

https://github.com/r0zita/mcell_mouse_mdl_ctrl.

Action Potentials and VGCCs

To further constrain our model, we used AP waveform

inputs based on recently published AP waveforms recorded

from the mouse NMJ via voltage imaging (45). We used the

average AP waveforms from both control and 3,4-diamino-

pyridine (3,4-DAP) recordings and prepared them for use in

our simulations as previously described (34). In brief, the av-

erage AP waveforms were normalized to a peak voltage of 30

mV and a resting potential of �60 mV. We then removed

fluctuations caused by noise in the experimental data at the

onset of the rising edge of each of the AP waveforms by

replacing the first 10% of the rising edge with a line that had

the same slope as the next 10% of the rising edge. We then

removed fluctuations in the falling edge of each AP wave-

form by fitting a second-degree polynomial through the last

30% of the falling edge and then replacing that 30% with the

polynomial (Fig. 1, A–C).
The kinetics of VGCC gating were based on the Markov-

chain model used in our excess-calcium-binding-site model

of the frog NMJ (15), which consisted of three closed states

and one open state. However, because prior research has

shown that VGCC gating is best fit by a model with two open

states (39), we altered the previous VGCC gating scheme to

contain two open states and re-parameterized it to fit the av-

erage calcium currents frompreviously published recordings

from HEK293 cells expressing P/Q type VGCCs (26) (Fig. 1D).

The rate constants a, b, and kwere the same as used in previ-

ous models (15, 16) except the reversal potential for calcium

used in the calculation of k was þ60 mV rather than the

þ 50mV value that was used in those previousmodels (47).

Mouse MCell Model and Vesicle Fusion

The NMJ ultrastructure and placement of mouse NMJ

AZs in our MCell model were the same as previously

described in our preliminary mouse model (17). The healthy

mouse model consisted of six AZs placed 500 nm apart, and

each AZ contained two docked synaptic vesicles (Fig. 2A). All

distances between channels and vesicles are taken from

Fukuoka et al. (21).
The vesicle fusion mechanism was similar to our previ-

ously described mechanism (16). In brief, the bottom of each

vesicle contained two different types of calcium sensors. The

first type was a fast sensor that represented synaptotagmin-1

or synaptotagmin-2 (syt1/2). The second was a slow second-

sensor binding site. Since the publication of the NMJ AZ

model that contained a second-sensor binding site (16), it

was revealed that this second sensor is likely to be synapto-

tagmin-7 (syt7) (55). Thus, to be more consistent with the lit-

erature, we altered the calcium binding on- and off-rates of

both the syt1/2-like and syt7-like sensors based on a previous

simulation of phospholipid binding of both sty1 and syt7

(36). The calcium-binding rates for the syt1/2-like sensor

were set to kon = 2.2 � 107 M�1·s�1 and koff = 910 s�1, and the

Table 1. Summary of model input parameters

Input Parameter Description References

AZ ultrastructure Average dimensions of nerve terminal segment, vesicle diameter, location, and

number. The healthy mouse model consisted of six AZs placed 500 nm apart,

and each AZ contained two docked synaptic vesicles.

(21, 40–42)

Diffusion coefficient for free calcium D = 6� 10�6 cm2 s�1 (43, 44)

Action potential AP waveform inputs based on recently published AP waveforms recorded from the

NMJ via voltage imaging. We used the average AP waveforms from both control

and 3,4-DAP recordings and prepared them for use in our simulations

(34, 45)

Calcium channel kinetic properties Three closed states, two open states: C0$C1$C2$O1$O2; Conductance of open

state: 2.4 pS. We fit the average calcium currents to the previously-published

recordings from HEK293 cells expressing P/Q type VGCCs.

(15, 26, 39, 46)

Calcium channel rate constants The rate constants a, b, and k in our kinetic scheme (15, 16)

Reversal potential the reversal potential for calcium used in the calculation of k is þ60 mV (47)

Calcium channel distribution Two docked synaptic vesicles with one row of two VGCCs placed on each side of

vesicle.

(21, 42)

Calcium buffer binding-site

properties

Concentration: 2 mM (�10
6
sites); kon = 1 � 10

8
M

�1
·s
�1
, koff = 10,000 s

�1
, mean

Ca2þ dwell time = 1/koff = 100 μs

(48–52)

Calcium binding sites arrangement The number of synaptotagmin sensors at the base of docked synaptic vesicles is

likely to be six protein densities (syt1/2 proteins) placed symmetrically around

the bottom of the vesicle.

(35)

The vesicle fusion mechanism The activated vesicular fusion mechanism is probabilistic as determined by the

Metropolis-Hastings sampling protocol with the free energy barrier of Eb = 40

kBT.

(16, 53, 54)

Calcium binding rates The calcium-binding rates for the syt1/2-like sensor were set to kon = 2.2 � 10
7

M�1·s�1 and koff = 910 s�1, and the calcium-binding rates for the syt7-like sensor

were set to kon = 1 � 10
7
M

�1
·s
�1

and koff = 15 s
�1
.

(36–38)

Extracellular calcium concentration 1.8 mM (17)

Calcium buffer concentration 2 mM (16)

AZ, active zone; 3,4-DAP, 3,4-diaminopyridine; NMJ, neuromuscular junction; VGCC, voltage-gated calcium channel.
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calcium-binding rates for the syt7-like sensor were set to

kon = 1 � 107 M�1·s�1 and koff = 15 s�1.
Recent literature has revealed that there are likely to

be six protein densities (thought to contain syt1/2 pro-

teins) surrounding the bottom of synaptic vesicles (35).

Thus, we rearranged the placement of calcium-sensing

syt1/2-like particles on the bottom of each vesicle to

match the literature (Fig. 2B) and placed 6 syt1/2-like

sensors symmetrically around the bottom of the vesicle.

Since less is known about the syt7 proteins, we kept our

syt7 placement similar to previous computational mod-

els (16) but placed 18 syt7-like sensors (rather than 16 as

used in the previous model) around the bottom of the

vesicle to be more symmetrical with the 6 syt1/2-like sen-

sors (creating a 3:1 ratio of syt7 to syt1/2 sensors). The

precise details of synaptotagmin-mediated vesicle fusion

are still unknown, and refinements in the density and

distribution of syt7 proteins, and their specific role at the

NMJ would require additional experiments that are

beyond the scope of this study. Regarding calcium-medi-

ated interactions with synaptotagmin proteins, this is

thought to be a complicated two-step process with cal-

cium binding to C2 domains and then the syt—calcium

ion complex binding to lipid (56–61), however, for the

purpose of our simulations reported here, we have sim-

plified this to a single on and off rate (see Table 1). Our

simplified approach has been shown to closely model

transmitter release at the NMJ (16).
When bound by a sufficient number of calcium ions, the cal-

cium sensors were considered activated and contributed to

increasing the probability of vesicular fusion. Vesicles fuse in a

probabilistic manner, with fusion for each vesicle determined

with the Metropolis–Hastings sampling protocol (62, 63) using

the probability P ¼ min exp �
Eb�nS1�DES1�nS7�DES7

kBT

� �

; 1
� �

. Here,

Eb = 40 kBT is the free energy barrier preventing vesicle fusion

(53, 54), nS1 and nS7 are the number of syt1/2-like sensors and

syt7-like sensors that have been activated by calcium, and

DES1 and DES7 are the energy each active calcium sensor con-

tributes to overcoming the 40 kBT free energy barrier.

Experimental Design and Statistical Analysis

For experimental data, all statistics were performed using

GraphPad Prism software (v.9). The p- and n values are

reported in the text. All data in the graphs are shown as the

means ± SE. For computer simulation studies, 6,000 sepa-

rate MCell seeds were run to generate reliable averages for

simulation outputs. For mouse electrophysiology experi-

ments measuring endplate potential amplitude, data were

collected from 18 synapses from twomice. For immunohisto-

chemical studies, we imaged a total of 33 synapses from

three LEMS model mice and the same number from aged-

matched control mice (untreated). We confirmed that the

data were normally distributed and then performed an

unpaired Students t test for significance with an a< 0.05.

RESULTS

Constraining the Healthy Mouse AZ Model

Our MCell model of the healthy mouse AZ was initially

based on previous MCell models of the frog AZ (15, 16), a pre-

liminary model of the mouse AZ (17), and experimental and

biophysical data (see METHODS). The only free parameters in

our model were the number and location of VGCCs as well as

the energy contribution of the syt1/2-like and syt7-like cal-

cium binding sites that contribute to overcoming the 40 kBT

free energy barrier for synaptic vesicle fusion. We had previ-

ously reported simulation results for models with varying

numbers of sensor sites and fusion mechanisms (15, 16) and

used these results to constrain model parameters in this

study. We also tested a wide variety of spatial configurations

for P/Q-type VGCCs based on the previously reported organi-

zation of presynaptic proteins demonstrated in freeze-frac-

ture electron microscopy (21) and found that a four-channel

VGCC AZ model (Fig. 3) with a binding energy of 15 for syt1/

C

16 nm

38 nm
B

500 nm

A

Syt1-like

sensors

Syt7-like

sensors

Figure 2. Diagrams of the healthy mouse active zone (AZ) MCell model. A: visualization of the overall geometry of the health mouse AZ MCell model. Six

AZs are modeled, and each AZ consists of voltage-gated calcium channels (VGCCs) (small black dots) and two docked synaptic vesicles (black spheres).

B: a diagram of the calcium sensors on the underside of each synaptic vesicle. Each vesicle has six synaptotagmin-1 and synaptotagmin-2 (syt1/2)-like

sensors, consisting of five calcium ion binding sites each. A syt1/2-like sensor is activated when at least two of its five sites are bound to calcium. Each

vesicle also has 18 syt7-sensors, positioned in a single annulus around the outside of the syt1/2-like sensors. Each syt-7 like sensors only contain one cal-

cium-binding site and are activated when the site is bound by a calcium ion. Adapted from Laghaei et al. (17). C: a schematic of a single AZ, showing the

positions for transmembrane proteins based on freeze-fracture data (black and white circles). The schematic shows two docked synaptic vesicles (gray

circles) with a row of two VGCCs placed on each side (black circles). The white circles are unidentified AZ proteins that do not contribute to the model

output.

NMJ AZ CHANGES IN LEMS

J Neurophysiol � doi:10.1152/jn.00404.2022 � www.jn.org 1263
Downloaded from journals.physiology.org/journal/jn at Carnegie Mellon Univ (132.174.253.119) on September 27, 2023.



2-like sensors and 8 for syt7-like sensors was able to predict a

variety of electrophysiological results. This model was able

to match the experimental probability of release per AZ of

0.22 (17), a slight depression over short trains of stimuli (Fig.

3A), a paired-pulse facilitation that is relatively unchanged

by changes in inter-spike interval (Fig. 3B), and a vesicle

release latency following an AP (Fig. 3C) that is in agreement

with previously published experimental data (65). In addi-

tion, our model predicted a log-log ratio between extracellu-

lar calcium and transmitter release (also known as the

calcium-release ratio, or CRR; Fig. 3D) of �3, which is con-

sistent with experimental data (66–71).
Our healthy AZ model places VGCCs only �15 nm away

from the nearest synaptic vesicle (and the associated syt1/2

calcium sensors), which is similar to the estimated distance

between VGCCs and calcium sensors in fast-spiking hippo-

campal GABAergic interneurons (72, 73) and themature calyx

of Held (74, 75). Thus, our VGCC placement agrees with the

hypothesis that VGCCs are tightly coupled to docked synaptic

vesicles in the NMJ to mediate fast synchronous transmitter

release (76).

Constructing an MCell Model of LEMS-Modified AZs

We next sought to create a MCell model that would fit the
experimental electrophysiological characteristics seen in
LEMS-model mice by altering our model of healthy mouse
AZs described earlier. Initially, we altered our model of

healthy mouse AZs in an iterative manner based on the ex-
perimental evidence that LEMS reduces the number of P/Q-
type VGCCs in the AZs (22, 24), causes a compensatory up-
regulation of L-type VGCC subtypes outside of the AZs (24,

25), reduces the number of AZs (19), and disrupts the organi-
zation of AZ proteins in many of the remaining AZs (21). The
experimental results we sought to predict with our model
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Figure 3. Validation of our healthy mouse active zone (AZ) MCell model. A: plot of tetanic potentiation at 50 Hz. Our MCell model of the healthy mouse

AZs (red circles) closely matched experimental results (open circles). The tetanic potentiation seen in Lambert-Eaton myasthenic syndrome (LEMS)-

model mice (blue squares) is added for comparison. Experimental results for both LEMS and control tetanic potentiation were adapted from Tarr et al.

(26). B: plot of the short-term plasticity measured during a pair of action potentials expressed as the ratio of the magnitude of transmitter release after

the second pulse divided by the magnitude after the first pulse (paired pulse ratio) as the interstimulus interval is changed from 10 to 90 ms. The outputs

from the MCell model (gray circles) and the experimental data (black squares) both predict little change in transmitter release over differing interstimulus

interval. Experimental data are adapted from Laghaei et al. (17). C: the predicted latency of vesicle release following a single presynaptic AP is plotted

based on our MCell model (open bars) in comparison with the time course of release measured at the mouse neuromuscular junction (NMJ) (64) (gray

bars). D: plot of changes in transmitter release magnitude in our MCell model as the extracellular calcium concentration was varied. The log-log best fit
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2
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were a 50%–75% reduction in quantal content compared

with healthy control mice, and an increase in facilitation

over short trains of stimuli (2, 20, 25, 26, 77).

Removal of P/Q-Type Calcium Channels Alone Is

Insufficient to Reproduce LEMS Electrophysiology

Perineural recordings of calcium currents at the NMJs of

ex vivo nerve-muscle preparations from healthy and LEMS-

model mice indicate that calcium current from P/Q-type

VGCCs is only reduced by �30%–40% in LEMS-model mice

(22, 24). We found that randomly removing�40% (9 of 24) of

the P/Q-type VGCCs in our MCell model only reduced trans-

mitter release by 47%. This is close to the 50%–75% reduc-

tion of transmitter release seen in LEMS-model mice but did

not result in the magnitude of short-term synaptic plasticity

observed in LEMS (Fig. 4). These model predictions were

similar to the recorded effects of blocking 40%–60% of trans-

mitter release using 25 nM x-Agatoxin IVA in freshly dis-

sected NMJs from a healthy mouse (Fig. 4D). Removing

additional VGCCs resulted in a much greater reduction in

calcium current than the experimentally measured value of

a 30%–40% reduction (22, 24), but still did not result in the

magnitude of short-term synaptic plasticity present in LEMS

(Fig. 4C). It is clear from our ex vivo recordings of transmitter

release, and our model predictions, that a simple removal or

block of P/Q-type VGCCs is not sufficient to reproduce LEMS

effects.

Disrupting AZ Structural Organization Decreases

Transmitter Release and Increases Facilitation

Not only does LEMS reduce the current through P/Q-type

VGCCs, but freeze-fracture electron microscopy reveals that

LEMS also disrupts the normally well-organized structure of

the AZs, reducing the number of well-organized AZs by

70%–85% (19, 21). These studies also found that LEMS causes

a large number of clusters of intramembranous particles to

appear [which are likely highly unorganized AZs (21)], out-

numbering the remaining well-organized AZs.We first inves-

tigated the impact of structural disorganization of the AZs

alone in our model by moving the position of P/Q-type

VGCCs relative to docked synaptic vesicles. We found that

simply moving the VGCCs 5, 10, or 15 nm further away from

the synaptic vesicles in the AZ, without removing any

VGCCs, reduced transmitter release by 22%, 40%, or 56%

respectively (Fig. 5, A and B). Although moving the location

of VGCCs had similar effects on themagnitude of transmitter

A

B

C

D

Figure 4. The effects on transmitter release magnitude and short-term plasticity after simply removing presynaptic voltage-gated calcium channels

(VGCCs). A: MCell model diagram depicting six active zones (AZs) that contain docked synaptic vesicles (black spheres), VGCCs (open dots), and the

random removal of nine VGCCs (X). B: plot of transmitter release (normalized to the control healthy model) predicted by the MCell model as various num-

bers of VGCCs are removed. The gray bar indicates the range of transmitter release reduction observed in the mouse passive transfer model of

Lambert-Eaton myasthenic syndrome (LEMS) adapted from Refs. 2, 20, 25, 26, and 77. C: plot of tetanic potentiation at 50 Hz in healthy control experi-

mental results (open circles), LEMS passive transfer model mice (blue squares), our MCell model of the healthy mouse AZs (red circles), and after remov-

ing 9, 16, 18, and 20 VGCCs from our model of 6 AZs that contains a total of 24 VGCCs (dotted lines). Experimental results for both LEMS and control

tetanic potentiation were adapted from Tarr et al. (26). D: experimental recording of short-term synaptic plasticity (tetanic potentiation) from healthy con-

trol neuromuscular junctions (NMJs) (open circles) and after blocking 40%–60% of transmitter release magnitude using 25 nm x-Agatoxin IVA (open

squares).
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release as removing calcium channels, moving the loca-

tion of VGCCs had a much larger impact on short-term
synaptic facilitation than simply removing VGCCs (Fig.
5C). These results predict that the disorganization of the
AZs structure plays an important role in determining the
LEMS pathological phenotype with respect to the control
of transmitter release at the NMJ (reduced magnitude of
transmitter release and a large increase in short-term syn-
aptic facilitation).

Based on the results regarding moving the position of
VGCCs, we sought to use this approach in combination with
a reduction in the number of P/Q-type channels in the AZ to
create a more complete LEMS MCell model. To create this
model, we randomly removed 9 of 24 P/Q-type VGCCs in
our six AZ model and then moved the remaining P/Q-type
VGCCs an additional 5, 10, or 15 nm away from the AZ (Fig.
6A). We found that this model resulted in a 57%, 69%, and
77% reduction in transmitter release compared with con-
trol when VGCCs were moved 5, 10, and 15 nm respectively
(Fig. 6B), which is a close fit for the experimentally meas-
ured values of transmitter release recorded from LEMS-
model mice. When 9/24 VGCCs were removed and the
remaining VGCCs were moved 15 nm away from the AZ,
we also observed a large increase in short-term synaptic
facilitation to a level similar to the facilitation observed in
LEMS passive transfer experiments in mice (Fig. 6C).

Building a More Complete LEMSModel

Previously, it has been reported that LEMS-mediated
changes at the synapse include not only the loss of VGCCs
and the disruption in the organization of the AZ proteins,
but also fewer total AZs (19, 21), as well as a compensatory
upregulation in the expression of L-type VGCCs (25).
Although it is known that L-type VGCCs can be upregu-
lated in LEMS passive transfer mouse models and con-
tribute to the regulation of transmitter release, little is
known about their number and location relative to the
AZs. However, it is hypothesized that they do not localize
with the AZs because they lack the necessary synaptic
protein interaction site (78–80). Furthermore, buffer
experiments have shown that the contribution of L-type
VGCCs to transmitter release in LEMS is blocked by low
concentrations of fast calcium buffer, placing them out-
side of the AZ (25, 81). Therefore, we sought to add L-type
VGCCs to a model of the LEMS synapse that included
fewer total AZs, as well as removing some P/Q-type
VGCCs and disrupting the organization of the remaining
AZs. To accomplish this more complete LEMS model, we
removed two of the six AZs in our model, and to model an
increase in L-type current and its effect on transmitter
release, we simply placed additional VGCCs on each side
of the remaining AZs an additional 25 nm beyond the
double rows of proteins in our AZ model (Fig. 7A). In our
MCell models, we used the same channel gating scheme
(Fig. 1D) for all VGCCs, but for simplicity we will herein
refer to VGCCs in our model placed inside the AZs as P/Q-
type and VGCCs placed further outside the AZs as L-type.
Cav1 (L-type) channels expressed in neurons have been

shown to have slightly slower activation kinetics as com-
pared with Cav2 (N and P/Q-type) (82), which may reduce
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Figure 5. The effects on transmitter release magnitude and short-term

plasticity after simply moving presynaptic voltage-gated calcium channels

(VGCCs) away from docked synaptic vesicles. A: MCell model diagram

depicting six active zones (AZs) that contain docked synaptic vesicles

(black spheres), VGCCs (open dots), and the movement of all VGCCs

away from synaptic vesicles by 5, 10, and 15 nm. B: plot of transmitter

release (normalized to the control healthy model) predicted by the MCell

models shown in A as VGCCs are moved 5, 10, or 15 nm away from

docked synaptic vesicles. The gray bar indicates the range of transmitter

release reduction observed in the mouse passive transfer model of

Lambert-Eaton myasthenic syndrome (LEMS) adapted from Refs. 2, 20,

25, 26, and 77. C: plot of tetanic potentiation at 50 Hz in healthy control

experimental results (open circles), LEMS passive transfer model mice

(blue squares), our MCell model of the healthy mouse AZs (red circles),

and after moving VGCCs 5, 10, or 15 nm within our model of six AZs that

contains a total of 24 VGCCs (dotted lines). Experimental results for both

LEMS and control tetanic potentiation were adapted from Tarr et al. (26).
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the percentage of available channels activated during brief

action potentials. As such, we may have slightly overesti-

mated the impact of L-type channels in our models. To quan-

tify the changes in the magnitude of transmitter released

during a single action potential, we compared the total

release from the entire segment of the nerve terminal shown

in Fig. 7A (4 AZs) with the total transmitter release from a

control segment of the nerve terminal shown in Fig. 2A (6

AZs). We found that within our modified LEMS synapse

model with fewer VGCCs and disrupted AZ organization, the

removal of two of six AZs and the addition of L-type VGCCs

resulted in a 54%, 58%, or 64% reduction in transmitter

release from the nerve terminal segment in Fig. 7A when P/

Q-type VGCCs were moved 5, 10, or 15 nm respectively, as

compared with healthy control nerve terminal segment

shown in Fig. 2A. These predicted reductions in transmitter

release levels were all within the range of the experimentally

measured reductions in quantal content in LEMS (Fig. 7B).

We also observed an increase in facilitation from this model,

but the magnitude was less than that observed in electro-

physiological recordings form LEMS passive transfer NMJs

(Fig. 7C). These results show that removing some P/Q-type

VGCCs, disrupting AZ organization, removing some AZs, and

positioning two additional L-type VGCCs adjacent to remain-

ing AZs was not sufficient to predict all of the transmitter

release effects observed in LEMS. More information about

the L-type channel expression and position within the nerve

terminal might be required to more accurately predict their

contribution to the pathophysiology in LEMS. However, it is

also possible that LEMS patient serum contains antibodies to

other presynaptic proteins that contribute to the LEMS

pathophysiology.

Passive Transfer of LEMS to Mice Results in Reduced

Synaptotagmin-2 Immunoreactivity at the NMJ

In addition to VGCCs, patients with LEMS have been

shown to produce antibodies against synaptotagmin (9,

12), which is known to be a critical presynaptic regulator of

transmitter release. We examined the effects of passive

transfer of LEMS to mice on synaptotagmin immunoreac-

tivity at the mouse ETA NMJ. We initially tested antibod-

ies to syt1 and syt2 on control NMJs but found that the syt1

antibody did not provide a reliable stain of the presynaptic

motor nerve terminal (data not shown). On the other hand,

the syt2 antibody provided a robust and reliable stain for

the presynaptic nerve terminal (Fig. 8). Therefore, for this

study, we restricted our analysis to staining using the syt2

antibody. When comparing control and LEMS passive

transfer tissue, syt2 immunoreactivity was significantly

reduced by �39% within the NMJ (Fig. 8) as defined by

overlap with the counterstain a-bungarotoxin-Alexa 594,

which defines the postsynaptic acetylcholine receptor

region [syt2 values in arbitrary units (means ± SE): control =

60.4± 22.85, n = 33 NMJs; LEMS = 36.8± 12.8, n = 32 NMJs].

In addition, at LEMS NMJs there was significant syt2

staining that was not confined to the a-bungarotoxin-

Alexa 594 stained NMJ region, but this was not present to

the same degree in control NMJs (Fig. 8; syt2 values out-

side of BTX stained regions of the NMJ in arbitrary units

(means ± SE: control = 18.23 ± 5.87, n = 33 NMJs; LEMS =
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Figure 6. The effects on transmitter releasemagnitude and short-term plastic-

ity after a combination of moving presynaptic voltage-gated calcium channels

(VGCCs) away from docked synaptic vesicles and randomly removing 9 of 24

VGCCs from the six active zone (AZ) model.A: MCell model diagram depicting

six AZs that contain docked synaptic vesicles (black spheres), VGCCs (open

dots), and the movement of all VGCCs away from synaptic vesicles by 5, 10,

and 15 nm, coupled with the random removal of nine VGCCs (X). B: plot of

transmitter release (normalized to the control healthy model) predicted by the

MCell models shown in A. The gray bar indicates the range of transmitter

release reduction observed in the mouse passive transfer model of Lambert-

Eaton myasthenic syndrome (LEMS) adapted from Refs. 2, 20, 25, 26, and 77.

C: plot of tetanic potentiation at 50 Hz in healthy control experimental results

(open circles), LEMS passive transfer model mice (blue squares), our MCell

model of the healthy mouse AZs (red circles), and after moving VGCCs 5, 10,

or 15 nm and randomly removing nine VGCCs within our model of six AZs that

contains a total of 24 VGCCs (dotted lines). Experimental results for both

LEMS and control tetanic potentiation were adapted from Tarr et al. (26).
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22.65 ± 5.15, n = 32 NMJs). The significance of this extrasy-

naptic staining is unknown but may represent some as-
pect of LEMS pathology in mice. Since this staining was
outside the AZs, it was not something that our models
could address. Overall, these data confirm that LEMS
patient antibodies can reduce NMJ syt2 immunoreactivity
in mouse passive transfer neuromuscular tissue. Finally,
we also observed a significant decrease in BTX intensity at
LEMS NMJs relative to control NMJs [BTX values in arbi-
trary units (means ± SE): control = 83.91 ± 4.86, n = 33
NMJs; LEMS = 58.83 ± 2.25, n = 32 NMJs]. These data con-
firm that LEMS patient antibodies can reduce NMJ syt2
immunoreactivity in mouse passive transfer neuromuscu-
lar tissue and lead us to examine the impact of reduced

fast synaptotagmin calcium sensors within our MCell AZ

models of LEMS. This change in BTX staining intensity

was unexpected since most patients with LEMS are not

thought to have compensation in postsynaptic sensitivity

(83), although rare cases have been reported of antibodies

to postsynaptic acetylcholine receptors, which is often

interpreted as a mixed diseases presentation of LEMS

with myasthenia gravis (84–88).

Loss of Fast-Synaptotagmin-like Sensors Can Predict

the LEMS Phenotype in Our AZ Models

To examine the impact of reduced fast-synaptotagmin

sensors in silico, we reduced the number of fast syt1/2-like

calcium sensors in our healthy mouse model to test our pre-

diction that loss of syt1/2-like calcium sensors was sufficient

to predict the transmitter release and short-term synaptic

plasticity changes seen in LEMS-model mice. We sequen-

tially reduced the number of syt1/2 sensors on the bottom of

the docked synaptic vesicles in our model and found that

removing four or five out of the six syt1/2-like calcium sen-

sors (Fig. 9, A and B) was sufficient to match the magni-

tude of transmitter release deficit seen in LEMS model

mice (Fig. 9C). However, removing four of the six syt1/2-

like calcium sensors resulted in a greater increase to

short-term synaptic facilitation than seen in LEMS-model

mice (Fig. 9D). Removing five or six of the six syt1/2-like

calcium sensors resulted in a much higher level of short-

term synaptic facilitation (data not shown), due to the

increased reliance on the slower synaptotagmin 7 sensors

for transmitter release. Although we were not able to pre-

dict some of the typical seropositive LEMS-mediated elec-

trophysiological results by simply removing syt1/2, these

results may need to be interpreted based on the differen-

ces between patients with seropositive and seronegative

LEMS clinical data (1). Seronegative patients do not have

as great a reduction in the CMAP (a measure of the num-

ber of muscle cells that are firing action potentials after

nerve stimulation), which could reflect a smaller reduc-

tion in transmitter release than is present in seropositive

patients (1). Furthermore, seronegative patients have a smaller
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Figure 7. The effects on transmitter release magnitude and short-term

plasticity after a combination of moving presynaptic voltage-gated calcium

channels (VGCCs) away from docked synaptic vesicles, removing two

active zones (AZs), randomly removing 6 of 16 remaining P/Q-type

VGCCs, and adding 2 L-type VGCCs outside the remaining AZs within our

model. A: MCell model diagram depicting four AZs (after removing 2; large

“X”) that contain docked synaptic vesicles (black spheres), VGCCs (open

dots), and the movement of all VGCCs away from synaptic vesicles by 5,

10, and 15 nm, coupled with the random removal of 6 VGCCs (X), and the

addition of 2 L-type VGCCs (black dots) outside of the remaining AZs. B:

plot of total transmitter release from the entire nerve terminal segment

containing four disease model AZs (normalized to the control healthy

model nerve terminal segment that contains 6 healthy AZs) predicted by

the MCell models shown in A. The gray bar indicates the range of transmit-

ter release reduction observed in the mouse passive transfer model of

Lambert-Eaton myasthenic syndrome (LEMS) adapted from Refs. 2, 20,

25, 26, and 77. C: plot of tetanic potentiation at 50 Hz in healthy control

experimental results (open circles), LEMS passive transfer model mice

(blue squares), our MCell model of the healthy mouse AZs (red circles),

and after moving VGCCs 5, 10, or 15 nm, randomly removing six VGCCs

from the remaining four AZs, and the addition of L-type VGCCs outside

the AZ area (dotted lines). Experimental results for both LEMS and control

tetanic potentiation were adapted from Tarr et al. (26).
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incremental response to muscle contraction (postexercise
facilitation) and a smaller incremental response to high-fre-
quency stimulation of themotor nerve (1). As such, in seroneg-
ative patients, short-term synaptic facilitation might be
smaller. Taking these observations into consideration, the re-
moval of one or two syt1/2 calcium sensors on each docked
synaptic vesicle in our MCell model, which results in a smaller
reduction in the magnitude of transmitter release and a
smaller increase in short-term synaptic facilitation than is
expected for the seropositive condition (Fig. 9), might be con-
sidered a reasonable fit for the seronegative condition.

Because all patients with LEMS, including seronegative
patients, have autoantibodies to a variety of AZ proteins,
we next investigated the impact of the removal of syt1/2 in
combination with a disruption in AZ structure that might
be mediated by autoantibodies to other presynaptic pro-
teins (Fig. 10). We found that we could closely predict
LEMS-like effects on the magnitude of transmitter release
and short-term synaptic facilitation if we moved AZ cal-
cium channels 5, 10, or 15 nm away from synaptic vesicles
while also removing between one and three syt-1 proteins
from our models (Fig. 10, B–G). Again, if seronegative
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points are normalized to the average syt2 intensity of the control NMJs stained on the same day. I: comparison of syt2 intensity outside the boundary of

the BTX stain shows a significant increase in LEMS NMJs in a 10 pixel perimeter, which is equal to a 690 nm perimeter around BTX stained NMJs. Data

inG, H, and I are means ± SE; ��P< 0.01, ����P< 0.0001. Scale bar in F is 10 lm and applies to A–F.
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patients have smaller effects on the magnitude of trans-

mitter release and short-term synaptic facilitation, as
compared with seropositive patients, then our model
results after removing only one syt1/2 calcium sensor and

moving AZ P/Q-type calcium channels only 5 nm away
from docked synaptic vesicles might be considered a rea-
sonable fit based on clinical observations (1). Taken to-

gether, these results suggest that antibodies against fast
synaptotagmin sensors (or syt1/2 since we did not distin-

guish between these two triggers for fast synchronous
transmitter release in our models) may be sufficient to
cause LEMS-like effects on transmitter release, either

alone or when combined with mild AZ disruption, even in
the absence of anti-VGCC antibodies.

A LEMSModel That Includes All Presynaptic Changes
Investigated Earlier

Patients with LEMS are likely to have autoantibodies to
several presynaptic proteins, and this could include P/Q-

type VGCCs and syt1/2, although a comprehensive charac-
terization of all of the antigens in patients with LEMS has

not been carried out. We considered it possible that a

model that included reductions in VGCCs and syt1/2

might recapitulate the pathophysiology of LEMS more

accurately than our previous models. Therefore, we next

created a model that combined all our previously investi-

gated LEMS-induced changes, including the removal of

two of six AZs, a reduction in P/Q-type VGCCs among the

remaining AZ, disorganization in AZ structure, the addi-

tion of L-type VGCCs outside of the remaining AZs, and a

reduction in the number of syt1/2 calcium sensors on

docked synaptic vesicles (Fig. 11). Using this approach, we

performed a parameter sweep of both distance of VGCC

disruption as well as the number of syt1/2 calcium sensors

removed. We found that several different combinations of

these parameters could closely predict LEMS effects on

both transmitter release magnitude and short-term syn-

aptic facilitation (Fig. 11, B–G), suggesting that variation

of these parameters in LEMS-model mice could explain

both LEMS pathophysiology and the range of experimen-

tal results seen in LEMS-model mice in response to serum

from different patients with LEMS.
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Figure 9. The effects on transmitter release magnitude and short-term plasticity of sequentially removing synaptotagmin-1/2 (syt1/2) calcium sensor pro-

teins from the bottom of the docked synaptic vesicles in our six active zone (AZ) model. A: MCell model diagram depicting the removal of two syt1/2 pro-

teins from the bottom of a synaptic vesicle (X) in our model. B: MCell model diagram depicting six AZs that contain docked synaptic vesicles (black

spheres), voltage-gated calcium channels (VGCCs) (open dots), and the removal of two syt1/2 proteins (X) from each docked synaptic vesicle. C: plot of

transmitter release (normalized to the control healthy model) predicted by the MCell models shown in B. The gray bar indicates the range of transmitter

release reduction observed in the mouse passive transfer model of Lambert-Eaton myasthenic syndrome (LEMS) adapted from Refs. 2, 20, 25, 26, and

77. D: plot of tetanic potentiation at 50 Hz in healthy control experimental results (open circles), LEMS passive transfer model mice (blue squares), our

MCell model of the healthy mouse AZs (red circles), and after removing various numbers of syt1/2 proteins from docked synaptic vesicles (dotted lines).

Experimental results for both LEMS and control tetanic potentiation were adapted from Tarr et al. (26).
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In Silico LEMS AZModels Predict the Effects of the

Currently Approved Treatment for LEMS

The current FDA-approved treatment for LEMS is 3,4-

diaminopyridine (3,4-DAP) (89–91). 3,4-DAP is a potas-

sium channel antagonist that indirectly increases calcium

flux into the nerve terminal by broadening the AP, which

increases the probability that VGCCs in the terminal open

during an AP (45). It has been shown to be effective in

increasing transmitter release in LEMS-model mice (26)

and partially alleviating muscle weakness in patients with

LEMS (92–95). However, 3,4-DAP has dose-limiting side
effects, and its effectiveness can vary greatly between

patients such that up to 70% of patients with LEMS require
other treatments, such as immunotherapy, in combination

with 3,4-DAP (96, 97).
To our knowledge, no studies to date have investigated

potential mechanistic differences in the effectiveness of 3,4-
DAP on seropositive and seronegative LEMS. However, one

study on patients with a congenital syt2 mutation found that

Figure 10. The effect on transmitter release magnitude and short-term plasticity of simultaneously removing synaptotagmin-1/2 (syt1/2) proteins and mov-

ing voltage-gated calcium channels (VGCCs) in our six active zone (AZ) model. A: MCell model diagram depicting six AZs that contain docked synaptic

vesicles (black spheres), VGCCs (open dots), the removal of two syt1/2 proteins (X) from each docked synaptic vesicle, and the movement of VGCCs

away from docked synaptic vesicles. B–D: plots of transmitter release (normalized to the control healthy model) predicted by the movement of VGCCs

5, 10, or 15 nm away from docked synaptic vesicles in combination with removing various numbers of syt1/2 proteins from docked synaptic vesicles. The

gray bar indicates the range of transmitter release reduction observed in the mouse passive transfer model of Lambert-Eaton myasthenic syndrome

(LEMS) adapted from Refs. 2, 20, 25, 26, and 77. E–G: plots of tetanic potentiation at 50 Hz in healthy control experimental results (open circles), LEMS

passive transfer model mice (blue squares), our MCell model of the healthy mouse AZs (red circles), and after moving VGCCs 5, 10, or 15 nm and remov-

ing various numbers of syt1/2 proteins from docked synaptic vesicles (dotted lines). The effects of removing 1–3 syt1/2 proteins are shown as removing

additional syt1/2 proteins resulted in tetanic potentiation that far exceeded the experimental LEMS results (blue squares). Experimental results for both

LEMS and control tetanic potentiation were adapted from Tarr et al. (26).
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treatment with 3,4-DAP provided only slight improvements

in symptoms with no measurable change in initial CMAP,

although slight improvements were detected with single-

fiber EMG (98). In comparison, 3,4-DAP was shown to

increase CMAP in patients with seropositive LEMS (99).

Thus, we used our seronegative and seropositive LEMS

models to investigate whether the particular LEMS-induced

changes in the AZ could play a role in determining the effec-

tiveness of 3,4-DAP treatment. We tested the effects of a clin-

ically relevant concentration (1.5 lm) of 3,4-DAP on our

MCell models by replacing the AP waveform in the simula-

tions (Fig. 1A) with the average AP waveform from voltage-

Figure 11. The effects on transmitter release magnitude and short-term plasticity in a Lambert-Eaton myasthenic syndrome (LEMS) model that incorpo-

rates all of the hypothesized changes to the neuromuscular junction (NMJ) active zones (AZs). A: MCell model diagram depicting the removal of 2 AZs

(large “X”), removing 6/16 P/Q-type voltage-gated calcium channels (VGCCs) (medium “X”) from the remaining AZs, moving the remaining P/Q-type

VGCCs away from docked synaptic vesicles (5, 10, or 15 nm; open circles), removing various numbers of synaptotagmin-1/2 (syt1/2) proteins from the bot-

tom of the docked synaptic vesicles (small “X”), and adding 2 L-type VGCCs outside of the remaining AZs (black dots). B–D: plot of transmitter release

from the entire nerve terminal segment containing four disease model AZs (normalized to the control healthy model nerve terminal segment containing

6 healthy AZs) predicted by the movement of VGCCs 5, 10, or 15 nm away from docked synaptic vesicles in combination with the other changes

described in A. The gray bar indicates the range of transmitter release reduction observed in the mouse passive transfer model of LEMS adapted from

Refs. 2, 20, 25, 26, 77. E–G: plot of tetanic potentiation at 50 Hz in healthy control experimental results (open circles), Lambert-Eaton myasthenic syn-

drome (LEMS) passive transfer model mice (blue squares), our MCell model of the healthy mouse AZs (red circles), and after moving VGCCs 5, 10, 15 nm

and the other LEMS-induced changes described in A (dotted lines). The effects of removing greater than three syt1/2 proteins are shown because

removing additional syt1/2 proteins resulted in tetanic potentiation that far exceeded the experimental LEMS results (blue squares). Experimental results

for both LEMS and control tetanic potentiation were adapted from Tarr et al. (26).

NMJ AZ CHANGES IN LEMS

1272 J Neurophysiol � doi:10.1152/jn.00404.2022 � www.jn.org
Downloaded from journals.physiology.org/journal/jn at Carnegie Mellon Univ (132.174.253.119) on September 27, 2023.



imaging recordings of the presynaptic terminal of the mouse

NMJ in the presence of 1.5 lm 3,4-DAP (Fig. 1, B and C) (45).
Experiments on LEMS-model mice generated using

patient serum from seropositive patients found that 1.5 lm

3,4-DAP increased the quantal content of the LEMS-weak-

ened NMJ terminals 1.84-fold (26). This result was accurately

recapitulated by our best seropositive LEMS MCell models

(Fig. 11), which predicted a 1.80- to 1.82-fold increase in trans-

mitter release from the 1.5 lm 3,4-DAP-modified AP wave-

form compared with the control AP waveform. The

seronegative MCell models (which included the same

number of VGCCs as control, though these channels were

displaced and there were fewer syt1/2-like sensors; Fig. 10)

also saw similar increases in transmitter release from the

1.5 lm 3,4-DAP-modified AP waveform compared with the

control AP waveform (1.81-fold increase). These results

suggest that current FDA-approved treatments for LEMS

will work for both seronegative and seropositive patients.

DISCUSSION

Here, we have refined a computational model of a healthy

mouse NMJ AZ. We then explored the impact of modifying

this model based on physiological data collected in the

mouse passive transfer model for the neurological disease

LEMS, which attacks the AZ. We demonstrated that by rear-

ranging our healthymousemodel based on findings from ex-

perimental studies in LEMS-model mice, we were able to

construct models of seropositive and seronegative LEMS-

modified AZs that predicted the electrophysiological effects

of LEMS (reductions in transmitter release and enhanced

short-term synaptic facilitation). Finally, we tested the

impact of AP waveforms broadened by 3,4-DAP and found

that our seronegative and seropositive LEMS models pre-

dicted similar responses to this FDA-approved treatment

(3,4-DAP).

Disruption of the AZ Structure Is Essential to Reproduce

the Pathophysiology of Seropositive LEMS

The electrophysiological effects of LEMS on NMJ trans-

mitter release are often ascribed entirely to a loss of P/Q-type

VGCCs. However, this simplified notion of LEMS ignores

freeze-fracture electron microscopy findings that reveal a

significant dysregulation in the organization of transmem-

brane proteins within many of the AZs. Early freeze-fracture

electron microscopy studies in human patients with LEMS

(19) and LEMS-model mice that had been injected with low

doses of human LEMS serum daily for several weeks (19)

resulted in a large increase in the number of disorganized

clusters of intramembranous particles at LEMSNMJs. A later

study, which instead created LEMS-model mice by injecting

a high dose of IgG three times daily for two days, again found

an increase in the number of disorganized clusters as well as

the presence of partially disrupted “abnormal” AZs. The

authors of this study suggested that these abnormal AZs were

an intermediate stage between the normal well-organized AZ

and the highly disorganized cluster, and this implied that the

clusters were actually highly disorganized AZs (21).
Our model suggested that removing 40% of the P/Q-type

VGCCs [as suggested by recordings of calcium currents in

LEMS-model mice (22, 24)] only reduced transmitter release

by 47%. This is a lesser reduction of transmitter release than

the 50%–75% reduction seen in LEMS (25). We also found

that moving the location of VGCCs within the AZ by 5, 10, or

15 nm away from the docked synaptic vesicles created a

greater reduction in transmitter release than removing 40%

of the VGCCs. Based on these computational results and the

level of disorganization seen in freeze-fracture electron mi-

croscopy of LEMS NMJs, we hypothesize that the disorgani-

zation of the normally well-ordered structure of AZs, beyond

the simple removal of VGCCs, is an essential component of

the pathology of seropositive LEMS.

LEMS and Short-Term Synaptic Plasticity

LEMS is characterized by an increase or increment in the

compound muscle action potential (CMAP) recorded from a

patient’s hand muscle following a short exercise period. This

CMAP increment is caused by short-term synaptic facilita-

tion at the NMJ. Following LEMS passive transfer to mice

and subsequent electrophysiological recordings from NMJs,

the specific magnitude and time course of the development

of tetanic potentiation can vary (25, 26, 100). This variability

in the time course of tetanic potentiation can be affected by

a variety of factors, including the particular patient serum

used for the passive transfer to mice (as different patients

have different titers of specific autoantibodies), the number

of days of injection (which could alter the specific alterations

to the AZ), and the frequency and duration of tetanic nerve

stimulation. The variability in tetanic potentiation recorded

from dissected muscles from mice after LEMS passive trans-

fer is consistent with the variability in the CMAP increment

recorded from different patients (1, 26). In this report, we

compared tetanic potentiation in our model results with

prior data reported from our laboratory (26). These data

were chosen as they were representative of what has been

reported by others, but in comparing model results after

various AZ manipulations, an exact match with the magni-

tude and time course of tetanic potentiation was not con-

sidered essential. The goal of these modeling studies was

to closely approximate the general effects on short-term

synaptic plasticity previously recorded from the NMJ after

LEMS passive transfer in mice.

VGCC Antibodies and LEMS

Our results, along with the findings of other studies on

seronegative LEMS, suggest that anti-VGCC antibodies are

not necessary for LEMS. In addition, other evidence suggests

that anti-VGCC antibodies alone may also not be sufficient

for LEMS. Recent studies have found that tests for the pres-

ence of P/Q- and N-type VGCC antibodies have low sensitiv-

ity for detecting LEMS and produce a large number of false

positives (101–103). Furthermore, rats injected with peptides

or recombinant proteins to various VGCC domains were

reported to have a reduction in quantal content, but only by

�30% (104, 105), and this result has been difficult to repro-

duce in other laboratories (personal communication). These

findings suggest a possibility that although antibodies to P/

Q-type VGCCs play an important role in a majority of LEMS

cases, they may require cooperation with antibodies target-

ing other AZ proteins to cause the clinical symptoms of

LEMS.
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The reported compensatory expression of L-type VGCCs in

LEMS model mice that contribute to the control of transmit-

ter release at diseased synapses (25) has several implications.

First, L-type VGCCs are not expected to localize within the

AZ because these VGCCs do not contain the synaptic protein

interaction site thought to be important for AZ localization

(78). Their increased presence in the nerve terminal near AZs

may lead to a slower contribution of extra calcium ions fol-

lowing action potential activity due to this more distant loca-

tion and their slower kinetics of gating (82). Our models

predicted only a minor influence of these channels on trans-

mitter release (compare Figs. 6 and 7).
The multi-antibody hypothesis for LEMS may be sup-

ported by the disruption of the normally well-organized

structure of the intramembranous particles comprising AZs

seen in human patients with LEMS and LEMS passive-trans-

fer mice (19, 21). The AZ contains numerous interconnected

structural and functional proteins (106, 107), and it is possi-

ble that autoantibody mediated removal of P/Q-type VGCCs

could result in damage to the AZ structure that would result

in some level of functionally significant disorganization.

Furthermore, both P/Q-type VGCC knockout mice and N-

type VGCC knockout mice have shown a reduction in the

number of AZs (108). However, the LEMS-mediated disrup-

tion in the organization of AZs is perhaps a much greater

level of damage to the AZ structure than one would expect

from the removal of the number of P/Q-type VGCCs neces-

sary to cause the reduction in P/Q-type calcium current seen

in LEMS (22, 24).
Interestingly, the protein laminin b2 has been found to be

essential for the expression of P/Q-type VGCCs in the AZs

(71), and the interaction of laminin b2 and VGCCs is essential

for the organization of the AZs (108, 109). Antibodies against

the laminin b2-binding domain on P/Q-type VGCCs have

been identified in patients with LEMS (110, 111). If an autoan-

tibody attack on P/Q-type VGCCs can impact other AZ pro-

teins attached to the VGCCs and subsequent disruption of

the AZ organization, then there is also the possibility that

antibody-mediated removal of other AZ proteins could indi-

rectly result in the disorganization of VGCCs. In addition,

antibodies to synaptotagmin proteins have also been identi-

fied in LEMS and may lead to a disruption of AZ organiza-

tion. The results of our modeling motivate an in-depth

characterization of antibodies present in patients with LEMS

(both seronegative and seropositive) and the impact of these

antibodies on AZ organization.
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