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ABSTRACT

Overlay cognitive radio (CR) networks include a primary and

cognitive base station (BS) sharing the same frequency band.

This paper focuses on designing a robust symbol-level pre-

coding (SLP) scheme where the primary BS shares data and

quantized channel state information (CSI) with the cognitive

BS. The proposed approach minimizes the cognitive BS trans-

mission power under symbol-wise Safety Margin (SM) con-

straints for both the primary and cognitive systems. We apply

the additive quantization noise model to describe the statis-

tics of the quantized PBS CSI and employ a stochastic con-

straint to formulate the optimization problem, which is then

converted to be deterministic. Simulation results show that

the robust SLP protects the primary users from the effect of

the imperfect CSI and simultaneously offers significantly im-

proved energy efficiency compared to non-robust methods.

Index Terms— cognitive radio, symbol-level precoding,

constructive interference, robust precoding, quantization.

1. INTRODUCTION

Cognitive radio (CR) systems must balance the interference

produced at the primary users (PUs) with the quality of ser-

vice (QoS) provided to the cognitive users (CUs) [1–3]. In

this paper, we employ symbol level precoding (SLP) to ad-

dress this issue. Instead of treating interference as a source of

degradation, SLP instead exploits it as a potential resource to

improve performance. SLP uses information about the trans-

mit symbols in addition to the channel state information (CSI)

to provide additional degrees of freedom that converts multi-

user interference into constructive interference (CI), moving

the received signals further from the symbol decision thresh-

olds [4,5]. CI-based SLP approaches are intended to increase

the distance or “Safety Margin” (SM) of the constructive in-

terference regions (CIRs) from the symbol decision bound-

aries to improve the symbol error rate [6–9]. Ideally, the SM

should be large enough to control the probability that noise or

other impairments will push the noise-free signal outside the

detection region; the larger the SM, the smaller the SER.

This work was supported by the National Science Foundation under

grants CCF-2008714 and CCF-2225575.

The performance of SLP is sensitive to imprecise CSI due

for example to errors introduced by channel estimation, quan-

tization, or latency-related effects [10–12]. Depending on the

SM, the imperfect CSI may even cause the noise-free received

symbols to fall outside the desired CIR. Consequently, robust

designs are needed that properly model the CSI and allow for

more intelligent CIR design. While robust designs for tradi-

tional MIMO or CR scenarios have been investigated [13–16],

robust SLP schemes for CR have not. Prior work on robust

designs for SLP includes [6], which derived an SLP algo-

rithm suitable for imperfect CSI with bounded CSI errors, but

it is based on a multicast formulation that does not take full

advantage of the CI. The work described in [17, 18] consid-

ered a linear channel distortion model with bounded additive

noise and Gaussian-distributed channel uncertainties. They

designed robust SLP algorithms to minimize transmit power

subject to both CI and SINR constraints. While not focused

on CR, this prior work demonstrates that robust SLP designs

can be formulated to achieve a better balance between perfor-

mance and power consumption.

In this paper, we propose a robust CR SLP approach for

a CSI error model that accounts for quantization in the CSI

shared by the PBS. In particular, we focus on overlay CR

channels [2, 3] where the PBS shares with the CBS its quan-

tized CSI for the PUs and CUs, as well as its data intended

for the PUs. We use the additive quantization noise model

(AQNM) [19,20] to describe the quantization error, which has

been widely used in the analysis of quantized MIMO systems.

We formulate the problem of minimizing the CBS transmit

power while simultaneously satisfying SM constraints at both

the PUs and CUs within a certain probability. Then, we ap-

ply the Safe Approximation I method in [18] to reformulate

the intractable probabilistic constraints as deterministic con-

straints. To validate the effectiveness of our proposed robust

precoders, we conduct simulations assuming the PBS chan-

nel is quantized using the scalar Lloyd Max algorithm which

minimizes the average quantization noise power.

2. SYSTEM MODEL AND SLP

We consider a downlink CR network with an Mc-antenna

CBS serving Nc single-antenna CUs. The CBS shares the pri-

mary system spectrum in which an Mp-antenna PBS is com-IC
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municating with Np single-antenna PUs, as depicted in Fig. 1.

The direct primary and cognitive channels are respectively de-

noted by the flat-fading models Hpp =
[
hT
pp,1 · · · hT

pp,Np

]T

and Hcc =
[
hT
cc,1 · · · hT

cc,Np

]T
. The corresponding inter-

ference channels are defined as Hpc =
[
hT
pc,1 · · · hT

pc,Np

]T

and Hcp =
[
hT
cp,1 · · · hT

cp,Np

]T
, from the PBS to CUs

and the CBS to PUs, respectively.

PBS

CBS

PU1

PU2

PUNp

CU1

CU2

CUNc

Mp

Mc

Hpp

Hcc

Hcp

Hpc

Fig. 1. Cognitive Radio System Model

The vectors sp = [sp,1 sp,2 · · · sp,Np
]T and sc =

[sc,1 sc,2 · · · sc,Nc ]
T contain the modulated signals to be

transmitted to the individual PUs and CUs. In this work we

assume for simplicity that all transmitted symbols are un-

correlated and drawn from a D-PSK constellation with unit

magnitude, i.e., sl,m ∈ {s|s = exp(jπ(2d + 1))/D, d ∈
{0, · · · , D − 1}} where l ∈ {p, c} denotes the primary

or cognitive system, and m denotes the user index in the

corresponding system. The sets K = {1, · · · , Np} and

J = {1, · · · , Nc} enumerate the PUs and CUs, respectively.

The idea of CI precoding can in principle be applied to any

constellation design [8], e.g., QAM or otherwise, but is most

easily formulated for the case of PSK signals. The received

signals at the PUs and CUs can be respectively written as

yp = Hppxp +Hcpxc + np (1)

yc = Hccxc +Hpcxp + nc (2)

where xp ∈ CMp×1 and xc ∈ CMc×1 are the transmitted sig-

nals at the PBS and CBS after precoding and power loading,

and np ∼ CN (0, σ2
pI) and nc ∼ CN (0, σ2

cI) are additive

white Gaussian noise (AWGN) vectors.

For PSK constellations, it is not necessary that a given

user’s noise-free received signal rm = hmx be close to its

corresponding constellation point sm in order to be decoded

correctly, as long as it lies in the correct decision region with a

given level of certainty. Thus, it is not necessary that all of the

inter-user interference be eliminated, since some interference

components could add constructively and push the received

symbol further into the decision region, making it more robust

to noise and interference external to the system. Following the

approach of [7], we rotate the noise-free received signal by

the phase of the desired constellation symbol, �sm, to obtain

zm = rms∗m, in which case the SM δm for user m can be

defined as

δm = R{zm} sin θ − |I{zm}| cos θ , (3)

where R{·} and I{·} respectively denote the real and imagi-

nary part of a complex number.

3. POWER MINIMIZATION SLP IN CR

We first examine the case where the PBS shares its data and

perfect CSI with the CBS. The SM for the PUs and CUs is

constrained to be at least δ0p and δ0c , and we focus on SLP

designs that minimize the transmit power at the CBS subject

to the SM constraints.

The rotated symbols at the PUs can be expressed as

zp,k = s∗p,krp,k = h̃pp,kxp + h̃cp,kxc (4)

for k ∈ K, where h̃pp,k � s∗p,khpp,k and h̃cp,k � s∗p,khcp,k,

and the corresponding SM constraints are given by

δp,k = R{zp,k} sin θ − |I{zp,k}| cos θ ≥ δ0p , ∀k ∈ K . (5)

For any given complex vector x, we define the operator

�(x) �
[R{x} sin θ − I{x} cos θ −R{x} cos θ − I{x} sin θ
R{x} sin θ + I{x} cos θ R{x} cos θ − I{x} sin θ

]
(6)

and denote

H̃�

pp,k = �(h̃pp,k), H̃�

cp,k = �(h̃cp,k). (7)

Using the following real-valued notation,

x̌p =

[R{xp}
I{xp}

]
, x̌c =

[R{xc}
I{xc}

]
, (8)

the constraint in eq. (5) can be simplified as

H̃�

pp,kx̌p + H̃�

cp,kx̌c ≥ δ0p12 ∀k ∈ K . (9)

Similarly, the rotated symbols at the CUs are

zc,j = s∗c,jrc,j = h̃cc,jxc + h̃pc,jxp , (10)

where h̃cc,j � s∗c,jhcc,j , and h̃pc,j � s∗c,jhpc,j , with SM

constraints

H̃�

cc,j x̌c + H̃�

pc,jx̌p ≥ δ0c12 ∀j ∈ J . (11)

Given the above, the general SLP power minimization

problem with perfect CSI can be formulated as follows:

minimize
x̌c

‖x̌c‖2 (12)

subject to

[
−H̃�

cp

−H̃�
cc

]
x̌c ≤

[
H̃�

pp

H̃�
pc

]
x̌p −

[
δ0p12Np

δ0c12Nc

]
(13)
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where H̃�
cp � �(diag(s∗p)Hcp), H̃�

cc � �(diag(s∗c)Hcc),

H̃�
pp � �(diag(s∗p)Hpp), and H̃�

pc � �(diag(s∗c)Hpc). This

is a quadratic programming problem with linear inequality

constraints and can be efficiently solved.

4. ROBUST SLP FOR STOCHASTIC CSI ERRORS

For the case where the PBS CSI error is due to quantization,

the quantized channels hQ
pp,k and hQ

pc,j shared by the PBS

can be described using a statistical model such as AQNM

[19, 20]. Here we assume the channels are Gaussian with

zero mean and covariances given by Rhpp,k
= βpIMp and

Rhpc,j
= βcIMp

. Using AQNM, the quantized CSI from the

PBS after rotation is expressed as

h̃Q
pp,k = Q(h̃pp,k) ≈ αph̃pp,k + ñQ

pp,k (14)

h̃Q
pc,j = Q(h̃pc,j) ≈ αch̃pc,j + ñQ

pc,j , (15)

where Q(·) is a scalar quantization function applied component-

wise and separately to the real and imaginary parts. The

vectors ñQ
pp,k � s∗p,kn

Q
pp,k and ñQ

pc,j � s∗c,jn
Q
pc,j denote the

zero-mean Gaussian-distributed quantization noise vectors,

and are assumed to be uncorrelated with h̃pp,k and h̃pc,j .

The scaling α = 1 − ρ is an attenuation factor based on the

distortion ρ = E{‖h−hQ‖2}
E{‖h‖2} , which in turn depends on the bit

resolution of the quantizer. For example, assuming an optimal

non-uniform Lloyd-Max quantizer, the value of ρ is given in

[21] for different bit resolutions b. The phase rotation does

not alter the covariance matrices of the quantization noise,

which are given by [19]

R{ñQ
pp,k} = αpρpβpIMp

, R{ñQ
pc,j} = αcρcβcIMp

. (16)

Based on eq. (14) and eq. (15), we can derive

H̃�

pp,k = ᾱp(H̃
Q,�
pp,k − ÑQ,�

pp,k) (17)

H̃�

pc,j = ᾱc(H̃
Q,�
pc,j − ÑQ,�

pc,j ), (18)

where ᾱp = 1
αp

, ᾱc = 1
αc

, H̃Q,�
pp,k � �(h̃Q

pp,k), Ñ
Q,�
pp,k �

�(ñQ
pp,k), H̃

Q,�
pc,j � �(h̃Q

pc,j), and ÑQ,�
pc,j � �(ñQ

pc,j). Substi-

tuting eq. (17) and eq. (18) for (13), we have

ᾱp(H̃
Q,�
pp,k − ÑQ,�

pp,k)x̌p + H̃�

cp,kx̌c ≥ δ0p12, ∀k ∈ K (19)

H̃�

cc,jx̌c + ᾱc(H̃
Q,�
pc,j − ÑQ,�

pc,j )x̌p ≥ δc12, ∀j ∈ J . (20)

The constraints above are expressed in terms of the un-

known random quantization noise, and thus cannot be directly

enforced. Instead, we choose to pose the problem such that

the constraints are achieved with a certain probability. In par-

ticular, we rewrite (19) and (20) as follows:

P{αpH̃
�

cp,kx̌c + H̃Q,�
pp,kx̌p − αpδ

0
p12 ≥ ÑQ,�

pp,kx̌p} ≥ v1 (21)

P{αcH̃
�

cc,j x̌c + H̃Q,�
pc,j x̌p − αcδc12 ≥ ÑQ,�

pc,j x̌p} ≥ v2, (22)

where P{A} denotes the probability of event A, and {v1, v2} ∈
(0.5, 1] represent the probability thresholds. In the following

two subsections, we find expressions for the probabilities

in (21) and (22).

4.1. Primary System

It is easy to show that

E{ÑQ,�
pp,k} = 02×2Mp , R

˜NQ,�
pp,k

= αpρpI2Mp , (23)

E{ÑQ,�
pp,k(Ñ

Q,�
pp,k)

H} = Mpαpρpβp

[
1 − cos 2θ

− cos 2θ 1

]
.(24)

The vector qp,k � ÑQ,�
pp,kx̌p �

[
q1p,k
q2p,k

]
is a bivariate correlated

Gaussian random vector with mean

E{qp,k} = E{ÑQ,�
pp,kx̌p} = E{ÑQ,�

pp,k}x̌p = 02×1 (25)

and covariance

Rqp,k
=

Pp

2
αpρpβp

[
1 − cos 2θ

− cos 2θ 1

]
. (26)

To simplify the notation, we define

wp,k(x̌c) � αpH̃
�

cp,kx̌c + H̃Q,�
pp,kx̌p − αpδ

0
p12 �

[
w1

p,k

w2
p,k

]
(27)

which is affine in x̌c. Using the new notation, the chance

constraint (21) can be rewritten as

P{wp,k(x̌c) ≥ qp,k} ≥ v1. (28)

No explicit closed-form expression for this probability seems

possible, so we resort to a tractable approximation using the

following lemma, whose proof can be found in [22].

Lemma 1. P{wp,k(x̌c) ≥ qp,k} ≥ v1 can be approximated
by the inequality

αpH̃
�

cp,kx̌c + H̃Q,�
pp,kx̌p ≥ ηpR

1
2
qp,k12 + αpδ

0
p12 (29)

where η �
√
2 erf−1

(
2
√
v1 − 1

)
.

4.2. Cognitive System

The constraint in (22) for the cognitive system can be found

in an identical fashion. We define

qc,j � ÑQ,�
pc,j x̌p �

[
q1c,j
q2c,j

]
wc,j(x̌c) � αcH̃

�

cc,jx̌c + H̃Q,�
pc,j x̌p − αcδc12 �

[
w1

c,j

w2
c,j

]
,

which is affine in x̌c. Using the new notation, the constraint

(22) can be rewritten as P{wc,j(x̌c) ≥ qc,j} ≥ v2. Like the

technique used for the primary system, we define w̄c,j(x̌c) �
R

− 1
2

qc,jwc,j(x̌c) and q̄c,j � R
− 1

2
qc,jqc,j . The following lemma,

whose proof is identical to that of Lemma 1, can be obtained.
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Fig. 2. (a) Throughput of CUs; (b) Transmit Power at CBS; (c) EE at CBS vs. SM at the CUs.

Lemma 2. P{w̄c,j(x̌c) ≥ q̄c,j} ≥ v2 can be approximated
by the inequality

αcH̃
�

cc,jx̌c + H̃Q,�
pc,j x̌p ≥ ηcR

1
2
qc,j12 + αcδc12, (30)

where ηc =
√
2 erf−1

(
2
√
v2 − 1

)
is a preset constant.

4.3. Robust SLP Design

We can now formulate the robust SLP algorithm with the

probabilistic constraints below, which again is a quadratic

program with linear inequality constraints.

minimize
x̌c

‖x̌c‖2 (31)

subject to αpH̃
�

cp,kx̌c + H̃Q,�
pp,kx̌p ≥ ηpR

1
2
qp,k12 + αpδ

0
p12

αcH̃
�

cc,jx̌c + H̃Q,�
pc,j x̌p ≥ ηcR

1
2
qc,j12 + αcδc12 ,

∀k ∈ K and ∀j ∈ J .

5. NUMERICAL RESULTS

In this section, we assess the performance of our proposed

power-minimizing SLP (PMSLP) approach. Monte-Carlo

simulations are conducted over 1000 independent channel

realizations with a block of T = 100 symbols. The channels

Hpp, Hcp, Hpc and Hcc are composed of i.i.d. Gaus-

sian random variables with zero mean and unit variance,

and the PBS channel is assumed to be quantized using an

optimal non-uniform Lloyd-Max quantizer [21]. The com-

plex Gaussian noise is assumed to have the same power

(σp = σc = 1) for all PUs and CUs. The PBS transmission

power is Pp = 10 dBW. Both the PBS and CBS are assumed

to have Mp = Mc = 8 antennas and the number of PUs and

CUs are both set at Np = Nc = 4. The preset SM at the

PUs is δ0p = 1.5. We further assume zero-forcing precoding

at the PBS and QPSK modulation. We use energy efficiency

(EE) to quantify the power-performance trade-off between

the robust and non-robust designs, which defined as the ratio

between the throughput τ [23] and the transmit power per

channel, i.e., EE = τ
T×‖x̌c‖2 .

Fig. 2(a) shows the throughput of the CUs as a function

of the SM threshold at the CUs (δ0c ), assuming either b = 2 or

b = 3 quantization bits per channel coefficient and different

probability constraints. We see that the CUs reap benefits

from the robust SLP design, achieving significantly higher

throughput. However, in Fig. 2(b) we see that as the preset

δ0c increases, the CBS with robust SLP requires more power

to meet the SM constraint than the non-robust SLP. For a

fair comparison, we plot the EE at the CBS in Fig. 2(c). It

is clear that the larger the SM or the higher the quantization

resolution, the higher the EE. When b = 3, δ0c = 1.7, the

EE of the robust SLP is approximately 10 times greater than

that of the non-robust SLP. To quantify the performance gain

that comes from the interference exploitation, we also im-

plemented a block level precoding method like ZF method

in [5], and found that a safety margin greater than 1 could

only be obtained when the transmit power is greater than

200 W/symbol. Moreover, unlike the proposed approach, the

throughput and EE is near 0 in this scenario.

6. CONCLUSION

In this paper, we designed a robust SLP algorithm for over-

lay CR systems with the goal to minimize the CBS transmit

power and simultaneously ensure the QoS (here, the SM) of

both the PUs and CUs. Unlike traditional precoding tech-

niques, we use SM constraints instead of SINR or BER met-

rics in order to exploit CI. With the CSI error described using

AQNM, we construct a probability-constrained problem and

derive an approximate deterministic formulation. The numer-

ical results demonstrate that our robust SLP scheme can ef-

fectively deal with quantized CSI to maintain an acceptable

QoS at both the PUs and CUs.
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