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ABSTRACT

Overlay cognitive radio (CR) networks include a primary and
cognitive base station (BS) sharing the same frequency band.
This paper focuses on designing a robust symbol-level pre-
coding (SLP) scheme where the primary BS shares data and
quantized channel state information (CSI) with the cognitive
BS. The proposed approach minimizes the cognitive BS trans-
mission power under symbol-wise Safety Margin (SM) con-
straints for both the primary and cognitive systems. We apply
the additive quantization noise model to describe the statis-
tics of the quantized PBS CSI and employ a stochastic con-
straint to formulate the optimization problem, which is then
converted to be deterministic. Simulation results show that
the robust SLP protects the primary users from the effect of
the imperfect CSI and simultaneously offers significantly im-
proved energy efficiency compared to non-robust methods.

Index Terms— cognitive radio, symbol-level precoding,
constructive interference, robust precoding, quantization.

1. INTRODUCTION

Cognitive radio (CR) systems must balance the interference
produced at the primary users (PUs) with the quality of ser-
vice (QoS) provided to the cognitive users (CUs) [1-3]. In
this paper, we employ symbol level precoding (SLP) to ad-
dress this issue. Instead of treating interference as a source of
degradation, SLP instead exploits it as a potential resource to
improve performance. SLP uses information about the trans-
mit symbols in addition to the channel state information (CSI)
to provide additional degrees of freedom that converts multi-
user interference into constructive interference (CI), moving
the received signals further from the symbol decision thresh-
olds [4,5]. CI-based SLP approaches are intended to increase
the distance or “Safety Margin” (SM) of the constructive in-
terference regions (CIRs) from the symbol decision bound-
aries to improve the symbol error rate [6-9]. Ideally, the SM
should be large enough to control the probability that noise or
other impairments will push the noise-free signal outside the
detection region; the larger the SM, the smaller the SER.

This work was supported by the National Science Foundation under
grants CCF-2008714 and CCF-2225575.

The performance of SLP is sensitive to imprecise CSI due
for example to errors introduced by channel estimation, quan-
tization, or latency-related effects [10—12]. Depending on the
SM, the imperfect CSI may even cause the noise-free received
symbols to fall outside the desired CIR. Consequently, robust
designs are needed that properly model the CSI and allow for
more intelligent CIR design. While robust designs for tradi-
tional MIMO or CR scenarios have been investigated [13—-16],
robust SLP schemes for CR have not. Prior work on robust
designs for SLP includes [6], which derived an SLP algo-
rithm suitable for imperfect CSI with bounded CSI errors, but
it is based on a multicast formulation that does not take full
advantage of the CI. The work described in [17, 18] consid-
ered a linear channel distortion model with bounded additive
noise and Gaussian-distributed channel uncertainties. They
designed robust SLP algorithms to minimize transmit power
subject to both CI and SINR constraints. While not focused
on CR, this prior work demonstrates that robust SLP designs
can be formulated to achieve a better balance between perfor-
mance and power consumption.

In this paper, we propose a robust CR SLP approach for
a CSI error model that accounts for quantization in the CSI
shared by the PBS. In particular, we focus on overlay CR
channels [2, 3] where the PBS shares with the CBS its quan-
tized CSI for the PUs and CUs, as well as its data intended
for the PUs. We use the additive quantization noise model
(AQNM) [19,20] to describe the quantization error, which has
been widely used in the analysis of quantized MIMO systems.
We formulate the problem of minimizing the CBS transmit
power while simultaneously satisfying SM constraints at both
the PUs and CUs within a certain probability. Then, we ap-
ply the Safe Approximation I method in [18] to reformulate
the intractable probabilistic constraints as deterministic con-
straints. To validate the effectiveness of our proposed robust
precoders, we conduct simulations assuming the PBS chan-
nel is quantized using the scalar Lloyd Max algorithm which
minimizes the average quantization noise power.

2. SYSTEM MODEL AND SLP

We consider a downlink CR network with an M_-antenna
CBS serving N, single-antenna CUs. The CBS shares the pri-
mary system spectrum in which an M-antenna PBS is com-
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municating with IV,, single-antenna PUs, as depicted in Fig. 1.
The direct primary and cognitive channels are respectively de-

noted by the flat-fading models H,, = [h;, h!
and H.. = [hqu
ference channels are defined as H,,. = [h,T)c,1 T hgc,Np} !

and H,, = [h,, h! NP]T, from the PBS to CUs
and the CBS to PUs, respectively.

T . .
hzc’ Np] . The corresponding inter-

M,

Fig. 1. Cognitive Radio System Model

The vectors s, = [Sp1 Sp2

- sp.n,) and s, =
]

[Se1 Sc2 *++ SeN,] contain the modulated signals to be
transmitted to the individual PUs and CUs. In this work we
assume for simplicity that all transmitted symbols are un-
correlated and drawn from a D-PSK constellation with unit
magnitude, i.e., s, € {s|s = exp(jn(2d + 1))/D, d €
{0,---,D — 1}} where | € {p,c} denotes the primary
or cognitive system, and m denotes the user index in the
corresponding system. The sets X = {1,---,N,} and
J ={1,---, N.} enumerate the PUs and CUs, respectively.
The idea of CI precoding can in principle be applied to any
constellation design [8], e.g., QAM or otherwise, but is most
easily formulated for the case of PSK signals. The received
signals at the PUs and CUs can be respectively written as

Yp = HppXp + HepXe + 1y ()
Ye = Hex.+ Hpcxp +n. (2)

where x, € CM»*! and x. € CM<*! are the transmitted sig-
nals at the PBS and CBS after precoding and power loading,
and n, ~ CN(0,021) and n. ~ CN(0,021) are additive
white Gaussian noise (AWGN) vectors.

For PSK constellations, it is not necessary that a given
user’s noise-free received signal r,,, = h,,x be close to its
corresponding constellation point s,,, in order to be decoded
correctly, as long as it lies in the correct decision region with a
given level of certainty. Thus, it is not necessary that all of the
inter-user interference be eliminated, since some interference
components could add constructively and push the received
symbol further into the decision region, making it more robust

T
pppr}

to noise and interference external to the system. Following the
approach of [7], we rotate the noise-free received signal by
the phase of the desired constellation symbol, £ s,,,, to obtain
Zm = TmSy,, in Which case the SM §,,, for user m can be
defined as

Om = R{zm}sin@ — |Z{zm }| cos b, 3)

where R{-} and Z{-} respectively denote the real and imagi-
nary part of a complex number.

3. POWER MINIMIZATION SLP IN CR

We first examine the case where the PBS shares its data and
perfect CSI with the CBS. The SM for the PUs and CUs is
constrained to be at least 52 and 62, and we focus on SLP
designs that minimize the transmit power at the CBS subject
to the SM constraints.

The rotated symbols at the PUs can be expressed as
Zpk = s;’krp,k = Bpp,kxp + flcp_,kxc 4)

- A - A
for k € K, where hy, = 57 hy,p, and hey, p = 57 hey ks
and the corresponding SM constraints are given by

Spse = R{zp} sinb — |Z{z, 1} cos® > 60 Vk € K. (5)
For any given complex vector x, we define the operator

R{x}sinf — Z{x} cosd

o
U(x) = {R{x} sinf + Z{x}cosf R{x}cosf —I{x}sinf
(6)
and denote
Hp, . = U(bypn),  HE, = Ohep). @

Using the following real-valued notation,

vol) Bl o

the constraint in eq. (5) can be simplified as
ﬁU

O X+ HY X > 001, VEeK. ©)

Similarly, the rotated symbols at the CUs are

Zej = Sz,jrc,j =heejxc + hpe jxp (10)
where ﬁcc’j = sy jhee j, and flpc’j = sy ihpe,j, with SM
constraints

HY % +H) %, >0y VjeJ. (11)

Given the above, the general SLP power minimization
problem with perfect CSI can be formulated as follows:

minimize 1% (12)
—HY HY 801,y
; e | ko< |2ee| ko — |“p 2N
subject to [_ 95] xcl gj Xp [5812NC (13)
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where HS, 2 U(diag(s})H,,), HS, 2 U(diag(s})H..),
HY, £ U(diag(s;)H,y), and HY, £ U(diag(s?)H,.). This
is a quadratic programming problem with linear inequality
constraints and can be efficiently solved.

4. ROBUST SLP FOR STOCHASTIC CSI ERRORS

For the case where the PBS CSI error is due to quantization,
the quantized channels hgp . and h -,; shared by the PBS
can be described using a statistical model such as AQNM
[19, 20]. Here we assume the channels are Gaussian with
zero mean and covariances given by Ry, . = Bpl wm, and
Rp,., = 6.1 M, Using AQNM, the quantized CSI from the
PBS after rotation is expressed as

hgp k= @(Epp,k) ~ aphyp g + ﬁfp,k (14)

pc J = Q(hPCJ) acﬂpc’j + ﬁgc,j’ (15)

where Q(-) is a scalar quantization function applied component-

wise and separately to the real and imaginagy parts. The

vectors 1 = and n n® 2 denote the

A x _Q
pp,k T S_pykn Pe,j ] PCJ
zero-mean Gaussian- dlstrlbuted quantization noise vectors,
and are assumed to be uncorrelated with h,, ;. and hy. ;.

The scaling @ = 1 — p is an attenuation factor based on the

distortion p = % which in turn depends on the bit

resolution of the quantizer. For example, assuming an optimal
non-uniform Lloyd-Max quantizer, the value of p is given in
[21] for different bit resolutions b. The phase rotation does
not alter the covariance matrices of the quantization noise,
which are given by [19]

{ p('j} - acpCBCIM (16)

Based on eq. (14) and eq. (15), we can derive

R{ﬁ;?p,k} = aPpPBPIJVIIN

& s s
Hy, . = a,(H 5 —Np5) (17)
T [8) [8)
H), ; = a.(HyT - N2, (18)
_ [ 5
where @, = aH Qe ngk £ U(hfp k) ngk 2
Q U e Q.0 A 1y =Q
U( Dopk k) Hy ;= U(hpc,j)’ and N7 = O(n pcj) Substi-

tuting eq. (17) and eq. (18) for (13), we have

ap(HYS ~N9Dx, + HO %, > 601, Vk € £ (19)

pp,k pp.k
HY, %o+ @.(HYS — N9 %, > 6.1,V € . (20)

Pe,j pc,g

The constraints above are expressed in terms of the un-
known random quantization noise, and thus cannot be directly
enforced. Instead, we choose to pose the problem such that
the constraints are achieved with a certain probability. In par-
ticular, we rewrite (19) and (20) as follows:

P{, H® epeXe T H kxp apbyly > N?p’ikp} > (21)

P{ocHY, ;% + HEO%, — acdely > NOO%,} > vg, (22)

where P{ A} denotes the probability of event A, and {vy, v2} €
(0.5, 1] represent the probability thresholds. In the following

two subsections, we find expressions for the probabilities

in (21) and (22).

4.1. Primary System

It is easy to show that

E{N0) = Oaxan,.  Rgow = appplans, . (23)
1 — cos 20
BN (NG )" = Myapp, 5, [_ P 70

1
The vector q, 1, = ng WX, & B@k] is a bivariate correlated
’ p.k

Gaussian random vector with mean

E{qpsr} = E{NZ0%,} = E{NZO1%, = 02,1 (29)

and covariance

(26)

1 — cos 20
cos 20 1

P,
Rq, , = fapppﬁp [_

To simplify the notation, we define

1
04 & |Wpk
a0 12 = |: g’ :|
Pe wp,k
27)
which is affine in x.. Using the new notation, the chance
constraint (21) can be rewritten as

]P{Wp,k(kc) > qp,k} > 1. (28)

No explicit closed-form expression for this probability seems
possible, so we resort to a tractable approximation using the
following lemma, whose proof can be found in [22].

5 A 70 7Q.0
vak(Xc) = aPHcp,kXC + pr,kxp

Lemma 1. P{w, ;(X.) > quk} > v1 can be approximated
by the inequality

1
H »kXe t H kXP > npRép Lo+ ap6 1, 29)

where n 2 /2 erf ! (Qﬁ — 1).

4.2. Cognitive System

The constraint in (22) for the cognitive system can be found
in an identical fashion. We define

INEXTORS) A ql-
qe,j 2N ’.‘XP: [q%q

1
- W, ;

wei(%e) = OJCH?CJXC + Hpcj — el ly = [ 53} ,
We,j

which is affine in X.. Using the new notation, the constraint

(22) can be rewritten as P{w. ;(X.) > q.;} > vs. Like the

technique used for the primary system, we define W, ;(%.) =

_1 _1
Rq.;We (%) and Qe £ Rq.;9c,j- The following lemma,
whose proof is identical to that of Lemma 1, can be obtained.
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Fig. 2. (a) Throughput of CUs; (b) Transmit Power at CBS; (c) EE at CBS vs. SM at the CUs.

Lemma 2. P{w, ;(X.) > Q. ;} > vs can be approximated
by the inequality

SO L Q.U 3
acHCC»ij + Hpc’,j Xp > nCRgIC,j 1 + a656127

(30)

where 1. = ﬂerfl (2,/1}2 — 1) is a preset constant.

4.3. Robust SLP Design

We can now formulate the robust SLP algorithm with the
probabilistic constraints below, which again is a quadratic
program with linear inequality constraints.

3D

minimize ||%.||?
Xe
. i . ~0.0 . 1

subject to aszcjp_’kxc + Hz?z;,kxp > npR4, 12 + apéglg

- Q.0 3
acHg, jXc + Hpc:j Xp > NeRq, ;12 + acdels

Vk € KandVj € J.

5. NUMERICAL RESULTS

In this section, we assess the performance of our proposed
power-minimizing SLP (PMSLP) approach. Monte-Carlo
simulations are conducted over 1000 independent channel
realizations with a block of 7" = 100 symbols. The channels
H,, H., H, and H.. are composed of i.i.d. Gaus-
sian random variables with zero mean and unit variance,
and the PBS channel is assumed to be quantized using an
optimal non-uniform Lloyd-Max quantizer [21]. The com-
plex Gaussian noise is assumed to have the same power
(o0p = 0. = 1) for all PUs and CUs. The PBS transmission
power is P, = 10 dBW. Both the PBS and CBS are assumed
to have M, = M. = 8 antennas and the number of PUs and
CUs are both set at N, = N. = 4. The preset SM at the
PUs is (52 = 1.5. We further assume zero-forcing precoding
at the PBS and QPSK modulation. We use energy efficiency
(EE) to quantify the power-performance trade-off between
the robust and non-robust designs, which defined as the ratio

0
Preset §

(b) (©)

17 1.8 1.9 2 14 1.5 1.6 1.7 1.8 1.9 2
Preset 5°
c

between the throughput 7 [23] and the transmit power per

channel, i.e., EE = +—"—.
Tx[[%c[?

Fig. 2(a) shows the throughput of the CUs as a function
of the SM threshold at the CUs (§°), assuming either b = 2 or
b = 3 quantization bits per channel coefficient and different
probability constraints. We see that the CUs reap benefits
from the robust SLP design, achieving significantly higher
throughput. However, in Fig. 2(b) we see that as the preset
89 increases, the CBS with robust SLP requires more power
to meet the SM constraint than the non-robust SLP. For a
fair comparison, we plot the EE at the CBS in Fig. 2(c). It
is clear that the larger the SM or the higher the quantization
resolution, the higher the EE. When b = 3,52 = 1.7, the
EE of the robust SLP is approximately 10 times greater than
that of the non-robust SLP. To quantify the performance gain
that comes from the interference exploitation, we also im-
plemented a block level precoding method like ZF method
in [5], and found that a safety margin greater than 1 could
only be obtained when the transmit power is greater than
200 W/symbol. Moreover, unlike the proposed approach, the
throughput and EE is near O in this scenario.

6. CONCLUSION

In this paper, we designed a robust SLP algorithm for over-
lay CR systems with the goal to minimize the CBS transmit
power and simultaneously ensure the QoS (here, the SM) of
both the PUs and CUs. Unlike traditional precoding tech-
niques, we use SM constraints instead of SINR or BER met-
rics in order to exploit CI. With the CSI error described using
AQNM, we construct a probability-constrained problem and
derive an approximate deterministic formulation. The numer-
ical results demonstrate that our robust SLP scheme can ef-
fectively deal with quantized CSI to maintain an acceptable
QoS at both the PUs and CUs.
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