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Task-Constrained Motion Planning Considering
Uncertainty-Informed Human Motion Prediction
for Human–Robot Collaborative Disassembly

Wansong Liu , Xiao Liang , and Minghui Zheng

Abstract—While the disassembly of high-precision elec-
tronic devices is a predominantly labor-intensive process,
collaborative robots provide a promising solution through
human–robot collaboration. To ensure efficient yet safe col-
laboration, this article presents a new way to generate task-
constrained and collision-free motion for a collaborative
robot operating in a dynamic environment involving human
movement, which is traditionally challenging due to the
high degree of freedom of the corobot and the uncertainty
nature of human motion. We first establish a neural hu-
man motion prediction model with quantified uncertainty,
and then optimize the configuration of the robot online by
taking the human motion and uncertainties into considera-
tion. While such rationale is straightforward in nature, our
method explicitly quantified the uncertainty of the neural
human prediction model to further enhance the collabora-
tion safety, and integrated the quantified uncertainty into
the task-satisfied motion planning in real time to efficiently
conduct tasks. Extensive experimental tests and compari-
son studies have been conducted to validate the efficiency
and effectiveness of the proposed planning method.

Index Terms—Human motion prediction, human–robot
collaboration (HRC), motion planning, robot planning and
control.

I. INTRODUCTION

THERE has been an increasing amount of used high-
precision electronic products, such as hard drives, cell

phones, and computers. While the disassembly and recy-
cling of such used products are labor intensive, collaborative
robots provide a promising solution for such processes through

Manuscript received 15 January 2023; revised 20 March 2023; ac-
cepted 23 April 2023. Date of publication 29 May 2023; date of current
version 16 August 2023. Recommended by Technical Editor Zheng (AIM
FS TE) Chen and Senior Editor Qingze Zou. This work was supported
by the USA National Science Foundation under Grant 2026533. (Cor-
responding authors: Minghui Zheng; Xiao Liang.)

This work involved human subjects or animals in its research. The
author(s) confirm(s) that all human/animal subject research procedures
and protocols are exempt from review board approval.

Wansong Liu and Minghui Zheng are with the Mechanical and
Aerospace Engineering Department, University at Buffalo, Buffalo, NY
14260 USA (e-mail: wansongl@buffalo.edu; mhzheng@buffalo.edu).

Xiao Liang is with the Civil, Structural and Environmental Engineer-
ing Department, University at Buffalo, Buffalo, NY 14260 USA (e-mail:
liangx@buffalo.edu).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TMECH.2023.3275316.

Digital Object Identifier 10.1109/TMECH.2023.3275316

human–robot collaboration (HRC) [1]. To guarantee the safety
of human operators and the efficiency of the operation, the
motion planning algorithms need to be reliable and fast, and
usually require the robot to meet two types of constraints,
i.e., the workspace inequality constraints (e.g., maintaining
human–robot safety distance) and the task equality constraints
(e.g., following a particular path or completing an unscrewing
task) [2]. It is very challenging to satisfy such two constraints in
real-time planning due to the high degree of freedom (DOF) of
the manipulator and the uncertain and complex human motions
in HRC.

Motion planning is usually investigated based on girding
or sampling over the space. The grid-based methods, such as
the A* algorithm [3], usually suffer from exponentially in-
creased computational time as the manipulator’s DOF becomes
higher. The sampling-based methods, such as the probabilistic
roadmap [4] and the rapid exploring random tree [5], randomly
generate samples in the configuration space. They are good at
searching collision-free motion for the manipulator with high
DOF but not good at simultaneously satisfying additional con-
straints [6] induced by tasks in real applications, e.g., following
a particular task path [2] or maintaining a desired end-effector’s
orientation [7]. Their computational complexity would be signif-
icantly increased when incorporating such task constraints [8].
As abovementioned, planning task-constrained (TC) motion in
configuration space for high-DOF manipulator is not an easy
problem and it becomes even more challenging in HRC as the
free configuration space is varying in real time with respect to
complex human movements.

To plan the TC motion for manipulators, existing studies,
e.g., [2] and [9], successfully formulated and solved such plan-
ning problems as optimization-based problems with constraints
in both task and configuration spaces. Wang et al. [10] used
artificial potential field methods to plan the manipulator trajec-
tory while satisfying desired constraints. In addition, to better
collaborate with human operators and enable the robot to take
action in advance, robotic planning may leverage the future
information of human motion. The authors in [11] and [12]
showed that robots can react earlier based on the knowledge
of the human behavior provided by the prediction model. Re-
cently, network-based models have shown effectiveness in the
prediction of long-term and complex motions. For example,
Li et al. [13] employed a long-term encoder to assist the network
in better learning the past’s motion. Mao et al. [14] proposed
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a network with an attention module to effectively exploit the
historical information of complex human actions. Furthermore,
recurrent neural network (RNN) has been widely leveraged for
human motion prediction considering its capability of capturing
the dependencies of the sequential motion data [15], [16], [17].
The past human motion characteristics memorized in the hidden
states of RNN are beneficial for improving the efficiency (e.g.,
the human moving intention [18]) and safety (e.g., the possible
occupied area [19]) in HRC. However, the RNN-based predic-
tion models employed in HRC do not explicitly quantify the
prediction model uncertainties.

It is worth noting that the predicted human motion should not
be blindly integrated into robotic planning [20]. For example,
during a collaboration, human operator’s motions have varia-
tions and may change in an irregular way due to its nonlinear
and stochastic nature. In this case, inaccurate predictions may
lead the robot to plan a dangerous trajectory. Therefore, exist-
ing studies using Gaussian mixture regression [21] or hidden
Markov model (HMM) [22] generated probabilistic distribution
over the future state of human operator based on the observation
of human past states, and quantified the uncertainty of human
motions as additional knowledge for robotic planning.

Importantly, besides the uncertainty derived from human mo-
tions, network-based prediction models also have uncertainties.
As highlighted in [23] and [24], uncertainty is a natural feature
of network-based models and needs to be explicitly considered
especially in human–robot close collaboration. It can be inter-
preted as the confidence level of these models regarding their
outputs [25]. If a human prediction model with large uncertainty
is treated accurately and blindly taken into robotic motion plan-
ning, it can be a potential threat to the human operator’s safety.
Cheng et al. [24] proposed a network to adaptively predict the
time-varying human behaviors and estimate the prediction un-
certainty. Franchi et al. [26] employed variational autoencoders
(VAEs) to learn the interaction and the latent distribution of
network parameters such that the uncertainty can be quantified.
Lakshminarayanan et al. [27] trained an ensemble of network
models, and measured the uncertainty based on the variance
between model outputs. However, VAEs may sacrifice accuracy
to impose the latent distribution prior while ensemble methods
may require significant computational costs to train, especially
with high-dimensional data [28]. Different from the ensemble
methods that generate an ensemble of network models, Monte
Carlo dropout sampling (MCDS) methods train a single model
and use random dropout masks to output a set of predictions [29].
Furthermore, such an approach is applicable to sequence predic-
tion problems (i.e., human motion prediction problems).

In this article, we present a new TC motion planning algo-
rithm considering uncertainty-informed human motion predic-
tion. Compared with the existing network-based human motion
prediction for the robotic planning in HRC, to the best of authors’
knowledge, instead of blindly relying on the prediction model,
this article is among the very first to explicitly quantify the
uncertainty of the neural prediction model as a danger zone
around the human arm and incorporate it into the high-DOF
collaborative manipulator planning when working with human.
We have conducted extensive experimental studies to validate
two advantages of our method: 1) larger safety margin with

Fig. 1. Risky collaborative disassembly scene in which the manipu-
lator and the human operator are conducting disassembly tasks col-
laboratively in close proximity. The manipulator is picking and placing
a disassembled component while the human operator is switching the
disassembly tool.

earlier manipulator’s response, and 2) convenient incorporation
regarding quantified prediction uncertainties.

The rest of this article is organized as follows. Section II
presents an overview of the proposed task-constrained planner
(TC-Planner). Section III details the human motion prediction
model and its uncertainty quantification. Section IV describes
our online reconfiguration algorithm. Section V presents ex-
tensive experimental studies and validation. Finally, Section VI
concludes this article.

II. OVERVIEW OF THE PROPOSED TC-PLANNER

In this section, we will
1) briefly explain the collision risk when a human and a robot

are working closely on disassembly tasks,
2) introduce variable notations and definitions used in this

article, and
3) give an overview of the proposed TC-Planner.

Fig. 1 illustrates a risky scene in which the manipulator and
the human operator are performing disassembly tasks collab-
oratively in close proximity. The human arm locates in the
manipulator’s moving direction, which would trigger a collision.
To follow the given path as well as avoid physical injury to the
human operator, the manipulator needs to find a safe alternative
configuration with the same end-effector’s position to replace the
current dangerous configuration. If the manipulator could know
the human arm’s motion in advance, the manipulator would
respond earlier to the future human motion resulting in larger
safety margin.

The position of the manipulator’s end-effector in e-
dimensional task space is denoted as x ∈ Re. We use θ ∈ Rq

to denote the manipulator configuration in q-dimensional joint
space, and M(θ) ∈ Re to stand for the area occupied by the
manipulator with the configuration θ in the task space. Forward
kinematics maps the manipulator configuration θ in the joint
space to the end-effector’s position x in the task space using the
following equation:

x = F (θ) (1)

where F ∈ � denotes the forward kinematics. Suppose the
maniulator’s end-effector follows a given path x = [x1, . . . ,
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Fig. 2. Overview of the proposed TC-Planner and its implementation. The inverse kinematics is first used to initialize the next-step configuration
of the manipulator. Meanwhile, the uncertainty-informed human motion prediction is obtained and the minimum distance between the robot and
the human operator is checked. If the manipulator configuration is dangerous to the human operator in the near future, our online manipulator
reconfiguration algorithm would select a safe alternative configuration. Finally, the next collision-free configuration, either θt or θ∗t , is sent to the real
manipulator.

xt, . . . , xT ] ∈ Re×T , where xt is the end-effector’s position at
t time step. The corresponding manipulator configurations are
denoted as ϑ = [θ1, . . . , θt, . . . , θT ] ∈ Rq×T .

Denote the area occupied by the human arm in the task space
as O = H(va, vb, ph) ∈ Re, where va ∈ Re and vb ∈ Re are
normalized bone vectors standing for the upper arm and forearm
directions, respectively, ph indicates the anthropometric param-
eters, e.g., bone length and radius of upper arm and forearm, and
H(•) is a nonlinear mapping function to calculate the occupied
area in the task space. Note that the prediction in this article
is denoted with ∧. The human arm motion in the task space is
defined as follows.

1) The observed human motion at time t: Ot =
[Ot−N+1, . . . , Ot]∈Re×N , where Ot = H(vat , v

b
t , ph),

and N is the time horizon of the observation.
2) The predicted human motion at time t: Ôt =[Ôt

1, . . . ,

Ôt
m, . . . , Ôt

M ]∈Re×M , where Ôt
m=H(v̂at+m, v̂bt+m,

ph), m is the prediction index, and M is the time horizon
of the prediction.

3) The predicted human motion informed by the model
uncertainty at time t: Ôu

t = [Ôt,u
1 , . . . , Ôt,u

m , . . . , Ôt,u
M ]∈

Re×M , where u indicates the prediction model uncer-
tainty.

Moreover, we use d(•) to denote the task-space-based min-
imum distance between the manipulator and the human arm,
which will be used to assess the collision risk and serve as the
safety index for human. The minimum safety distance is denoted
as α.

Fig. 2 illustrates the overview of our proposed approach. First,
we use the inverse kinematics to initialize the next-step configu-
ration of the manipulator. Meanwhile, the uncertainty-informed
prediction Ôu

t is obtained and the minimum distance is checked
using d(•). If the manipulator configuration θt is dangerous to
the human operator in the near future, our online manipulator
reconfiguration algorithm would select an alternative configura-
tion θ∗t based on the reconfiguration effort and safety checking.
Finally, the next collision-free configuration, either θt or θ∗t , is
sent to the real manipulator.

Fig. 3. Human motion prediction model: the temporal arm pose of
observation Ot is the input of the LSTM cell, FCL indicates the fully
connected layer, and FCL outputs the predicted arm motion Ôt.

III. TC-PLANNER: UNCERTAINTY-INFORMED HUMAN

MOTION PREDICTION

This section presents that we 1) use an RNN with long short-
term memory (LSTM) structure to predict the arm motion, and
2) quantify the prediction model uncertainty based on Bayesian
interface.

A. Human Motion Prediction Model

In this section, we will present details on the architecture of the
human motion prediction model. We use the RNN with LSTM
structure to capture the temporal coherence of the human motion
during collaborative disassembly tasks due to the advantage of
LSTM gates in storing and forgetting motion’s characteristics.

Fig. 3 illustrates the prediction framework, including the
structure of the LSTM cell. The cell state cmemorizes the motion
information and is updated iteratively. The sigmoid function σ
and the tanh function tanh are applied to determine what motion
characteristics need to be ignored, added, or outputted. The
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hidden state h is the input of a fully connected layer (FCL).
The future human motion Ôt is obtained using the following
equation:

Ôt = LSTM(Ot,W) (2)

where W is the weights of the prediction model.

B. Uncertainty Quantification of Prediction Model Based
on Bayesian Approximation

This section describes the details of the uncertainty quan-
tification using MCDS. We interpret applying dropout in a
neural network as a Bayesian approximation of a Gaussian
process model over the network weights [29]. A Gaussian
prior distribution is applied over the weights of our prediction
model, i.e., p(W), and a likelihood p(Ôt|Ot,W) is defined to
capture the prediction process. In this case, we could acquire
the predictive distribution p(Ôt|Ot) once the posterior distri-
bution p(W|Ot, Ôt) is obtained. Unfortunately, the posterior
p(W|Ot, Ôt) is intractable. But we could use a variational infer-
ence to approximate a distribution q(W) that is close to the true
posterior distribution, and this is achievable by minimizing the
Kullback–Leibler divergence between these two distributions.
To connect the approximation inference with dropout training,
the variational distribution q(W) for each layer of the prediction
model is defined with some parameters that can be optimized.
Sampling from q(W) would be equivalent to applying dropout
on each layer of the prediction model. Considering that the
network training is also beneficial for optimizing q(W) [30],
the prediction model uncertainty at test time using MCDS is
denoted as follows [25], [29]:

u ≈ 1
K

K∑

k=1

LSTM(Ot,Wk)
T LSTM(Ot,k,Wk)

− ETE (3)

where u = [u1, . . . , um, . . . , uM ] is the predictive variance,
which reveals the less confidence of the prediction and is re-
garded as the uncertainty of the prediction model, W represents
the model weights, which are based on a certain dropout proba-
bility and fitted to q(W), K is Monte Carlo sampling size, Ot,k

indicates the kth sample at time t, andE stands for the predictive
mean, where E ≈ 1

K

∑K
k=1LSTM(Ot,Wk).

Fig. 4 shows the framework of the uncertainty quantification.
First, the observed human motion at time t is the input of the mo-
tion prediction model. Next, an LSTM-based prediction model
outputsK samples using MCDS. Then, we quantify the variance
of the future bone directions. Eventually, we use the predictive
mean E to stand for the predicted arm poses, and the quantified
uncertainty is represented by the blue dangerous area around the
human arm. The next m-step uncertainty-informed prediction at
time t is denoted as follows:

Ôt,u
m = H∗(v̂at+m, v̂bt+m, ph, um, β)

where H∗(•) is the uncertainty-informed mapping function,
and β is a user-defined z-score [31] used in experimental tests.
Theoretically, the quantified dangerous area would disappear if

Fig. 4. Uncertainty quantification of the human prediction model and
refinement of human motion prediction based on the modeling uncer-
tainty: the black dots indicate the observed joint positions, the red dots
stand for the mean predicted joint positions, and the blue areas are the
dangerous zones defined based on the network uncertainty.

the prediction model uncertainty is zero (i.e., Wk are the same
all the time). However, in real cases, the essential point of the
uncertainty quantification, i.e., model weights Wk, cannot be
constant due to the random dropout. Therefore, the uncertainty
is necessary to be quantified and embraced into robot motion
planning.

IV. TC-PLANNER: MANIPULATOR RECONFIGURATION

This section presents the details of our reconfiguration algo-
rithm. We 1) employ forward kinematics to construct a database
that is capable of providing configuration candidates based on
the end-effector’s position, and 2) integrate the uncertainty-
informed future motion into a reconfiguration algorithm such
that the robot can take reactions in advance.

A. Reconfiguration Database Construction

In this section, we describe how the reconfiguration database
is constructed. A manipulator can reach the same end-effector’s
position with different (infinite) configurations due to its kine-
matic redundancy. We utilize such a property of the manipulator
to construct a database offline. The database is capable of provid-
ing a set of configuration candidates based on the end-effector’s
position xt in real time when facing a potential collision.

To generate sufficient robot configurations, we first limit
each joint’s range, and then divide each joint range based on a
specific interval δ. In this case, the total number of the generated
configuration depends on the value of δ. Equation (1) is applied
to calculate the end-effector’s position based on different joint
angle combinations. The last link’s transformation is calculated
using Denavit–Hartenberg matrix. By classifying the configu-
rations that lead to the same end-effector’s position within a
task space error tolerance Δ, different configuration candidate
sets Θ are generated. The number of configuration candidates
may be different for each end-effector’s position. The database
is utilized in the way shown in Fig. 5. If a potential collision
is identified, the current end-effector’s position xt would be the
input of the database. All the elements of the corresponding
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Fig. 5. Construction of the reconfiguration database: each Θ stands
for the set of configuration candidates that leads to the same x in the
task space, and the manipulator selects one configuration to replace the
previous one.

Fig. 6. Uncertainty-informed reconfiguration framework.

configuration candidates set Θt lead to xt, and one of them
would be the new manipulator configuration.

B. Manipulator Reconfiguration Incorporating Future
Human Motion and Uncertainty

The previous section briefly introduces the construction and
capability of the configuration database. The provided config-
uration candidates enable the manipulator to follow the given
path. However, since not every configuration candidate for the
human worker is safe, selecting a collision-free configuration
from the database to protect the human worker is still a chal-
lenge. Therefore, we develop an algorithm to select the optimal
configuration θ∗t from Θt based on the joint change effort of the
manipulator and the minimum safety distance α. To enable the
manipulator to change the configuration in advance, the future
motion obtained by the prediction model needs to be considered
in the selection of the alternative configuration. In addition,
given the prediction model may show less confidence (i.e., high
predictive varianceu) in forecasting arm’s motion, the quantified
uncertainty is taken account into the selection as well.

Fig. 6 presents the framework of uncertainty-informed recon-
figuration. The details are illustrated as follows.

1) When the reconfiguration is required, the database pro-
vides the configuration candidatesΘt based on the current
end-effector’s position xt.

2) To minimize the joint change effort, our algorithm first
evaluates the root-mean-square error (RMSE) between
the risky joint configuration θt and each element of Θt,
and next rank elements of Θt starting from the candidate
with the minimum RMSE.

Fig. 7. Experimental setup. The experimental test consists of a collab-
orative robot UR5e, a human operator, a Vicon motion capture system,
two used hard disks, a tool box, and a container. The human operator’s
motion is represented by the orange curves: 1) grasping one screwdriver
from the desk, 2) moving over the robot and dropping the screwdriver
to the tool box, 3) picking a new screwdriver and disassembling the
hard disk on the desk, and 4) returning the screwdriver back to the tool
box. Simultaneously, the manipulator picks a disassembled component
and places it to the container following the given green path. The Vicon
cameras are used to capture human motion in real time.

3) Simultaneously, the prediction model takes the observed
motion Ot at the current time step, and generates the
predicted motion Ôt.

4) By applying MCDS, the predictive variance u regarding
as the prediction uncertainty is quantified based on the
Bayesian inference, and converted to the dangerous zone
around the future human arm pose.

5) Eventually, our algorithm successively checks the safety
of elements in Θt using the dangerous area of the next M
step (i.e., Ôt,u

M ). The optimal configuration θ∗t is selected
as long as the safety distance requirement is satisfied, i.e.,

d(M(θ∗t ), Ô
t,u
M ) > α. (4)

Algorithm 1 describes detailed implementation steps of our
algorithm. Overall, the proposed algorithm has two advantages:
1) Our algorithm selects the robot configuration based on the
end-effector’s position, which inherently satisfies the task con-
straint. 2) The efficiency is improved by eliminating the neces-
sity of the online task-configuration-space conversion such that
the expensive conversion cost is replaced by the cheap selection
cost.

V. EXPERIMENTAL TESTS AND RESULTS

A. Experimental Setup

1) Experimental Platform: Fig. 7 illustrates the experimental
setup and a disassembly scenario, in which a human operator is
doing tasks following the orange curves, and a collaborative
robot, UR5e, is doing tasks following the green end-effector’s
path. We use the Vicon camera system to capture the movement
of the human arm. The minimum safety distance is defined as
α = 0.01 m.

2) Prediction Model Training and Uncertainty Quantification:
We collected 130 trajectories for the human arm motion. All
trajectories are converted to normalized bone vectors. In total,
70% is used to train the RNN-based prediction model, 15% is
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Fig. 8. Experimental test result. The subfigures in the top show the task execution based on the current human arm motion (TE-A), (b) shows
the human arm is over the robot while the robot moves vertically, which triggers the first reconfiguration, and (e) displays the robot moves
horizontally to the human arm, which triggers the second reconfiguration; the subfigures in the bottom present the task execution based on
the future uncertainty-informed arm motion (TE-B), (a*) indicates that a collision has been detected based on the future arm’s position, which
triggers the first reconfiguration, and (d*) indicates the start moment of the second-reconfiguration. The experimental video is available at:
http://zh.eng.buffalo.edu/PaperDemo/TCPlanner.mp4.

Algorithm 1: Online Reconfiguration.

used for validation, and the remaining is used for testing. The
observation horizon N and prediction horizon M are both set to
be 50 implying that we predict the human motion of the next 2 s.
Using MCDS with 10% dropout probability, the variance of the
predicted bone vectors is obtained. We combine the variance
with the anthropometric data ph and z-score β = 2 (covering
95% of samples) to generate the dangerous area around the hu-
man arm. The dangerous area is varying during the experimental
tests due to the update of the observed motion.

3) Reconfiguration Database: To construct the database of-
fline, we first specify the joint range of the UR5e from -180◦

to 180◦, and then determine the value of the joint change in-
terval δ to be 4◦, and the configurations that lead to the same
end-effector’s position based on the tolerance Δ = 0.01 m are
classified and stored as a cell. Note that a small δ indicates that
the waypoint cell would have more configuration candidates to
be selected. But if the value of δ is too small, it may require
more computation when constructing the configuration database

Fig. 9. Joint angle comparison between the two cases (TE-A and TE-
B), and the red dash line indicates the start instant of the manipulator
reconfiguration. (a) Joint angles of the UR5e during the TE-A. (b) Joint
angles of the UR5e during the TE-B.

offline and the huge database may not be loaded due to the lim-
itation of the computer memory. Therefore, we choose δ = 4◦.
In this case, the average number of configuration candidates in
the waypoint cell is more than 1000, and the database can be
successfully loaded when doing online planning. In addition, to
reduce database size and lookup time, we specify the range of the
end-effector’s position based on the specific task, allowing for
the elimination of unneeded cells. Eventually, a total of 357 911
waypoint cells are included in the final database, and the final
database size is 6.9GB.

B. Experimental Test Results

1) Task Execution Comparison: The manipulator is execut-
ing a one-piece disassembly task on a used hard disk. To better
explain the experimental test results, we denote the task execu-
tion based on the current arm motion as task execution (TE)-A,Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 27,2023 at 21:13:24 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 10. Actual prediction errors and the quantified joint uncertainties, and they show high correlation. (a) Prediction errors of elbow and wrist
joints. (b) Quantified uncertainties of elbow and wrist joints prediction.

TABLE I
DETAILS OF TC-PLANNER COMPUTATIONAL PROCESS

and the task execution based on the future uncertainty-informed
arm motion as TE-B. TE-A is illustrated in Fig. 8(a)–(g). The
manipulator first starts changing its configuration in Fig. 8(b)
as the manipulator moves to the arm vertically. The second
reconfiguration is shown in Fig. 8(e) in which the manipulator
moves to the arm horizontally. TE-B is illustrated in Fig. 8(a*)–
(g*). The subfigure (a*) indicates the start moment of the first
reconfiguration since the collision has been detected based on the
future arm’s position, and the subfigure (d*) shows the moment
of the second reconfiguration. In general, the manipulator
is capable of responding earlier to avoid close proximity by
integrating future human motion into the robot motion planning.

The average computational time of each section in TC-Planner
is given in Table I. We use the Flexible Collision Library in
MoveIt to quickly provide collision-checking results, and our
reconfiguration algorithm only requires a cheap selection cost
since the connection between the task space and the configura-
tion space is built by the database offline. Table I also gives the
computational time of the uncertainty quantification based on
different values of sampling size K. A larger K (e.g., K = 20)
implies that more prediction samples would be covered in the
uncertainty quantification, which enhances the accuracy of the
uncertainty estimation during the online planning. But the corre-
sponding computational time would also increase (e.g., 1.12 s),
which limits the efficiency of the online planning. Therefore,
we select K = 10 to balance the accuracy of the prediction
estimation and the computational cost. The 0.48 s computational
time could be appropriately utilized in robot motion planning
since the prediction horizon is 2 s. Fig. 9(a) and (b), respectively,
presents the joint angles of the UR5e during TE-A and TE-B.

The red dash line indicates the start instant of the manipulator
reconfiguration. With human motion prediction, the manipulator
is able to act in advance, i.e., 1.9 instead of 3.4 s and 10.1 instead
of 11.6 s.

In general, as long as the prediction model is trained based on
diverse motions and the training hyperparameters are well tuned,
the network prediction and the quantified uncertainties could
be reasonably accurate and reliable when facing unseen human
motions. Therefore, the proposed method could still be utilized
to plan collision-free manipulator trajectories based on different
human motions in human–robot collaboration scenarios.

2) Prediction Errors and Uncertainties Comparison: To bet-
ter understand and highlight the significance of the uncertainty
quantification, we compare the joint uncertainties and the predic-
tion errors regarding the positions of the elbow and wrist joints.
The joint uncertainty is defined as the β-based variance with
respect to the mean predicted joint position, and the prediction
error is defined as the distance between the mean predicted joint
position and the ground truth.

Fig. 10 illustrates the prediction errors and the joint uncer-
tainties of eight motions (400 arm poses) randomly selected
from the test dataset. The prediction error and joint uncertainty
are represented using star and dot symbols, and they are highly
related to each other. Actually, given that we cannot obtain future
ground truth of arm pose at the current time step, it is impossible
to obtain the prediction error during a task execution. On the
other hand, the uncertainty can serve as an alternatively useful
information due to the high correlation of them. Therefore, it is
beneficial for quantifying the uncertainty of the prediction model
to prevent human from physical injury from those predicted arm
poses with less accuracy.

VI. CONCLUSION

This article presents a new TC-Planner for the manipulator
such that it can work closely, safely, and collaboratively with the
human operator on the disassembly of high-precision electronic
devices. The TC-Planner explicitly incorporates the human mo-
tion prediction model and the modeling uncertainties into our
manipulator reconfiguration algorithm, and efficiently generates
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collision-free motions while keeping the original end-effector’s
path. The quantified uncertainty can be an additional safety
indicator in HRC. Such a planner is experimentally validated
in a collaborative disassembly scenario: it shows that the robot
can respond to the human’s motion earlier, and avoid collision
with human with enlarged safety margin, while simultaneously
working on disassembly tasks.

Considering that the current and future human arm positions
can be, respectively, obtained by the Vicon system and the pre-
diction model, future studies can focus on developing repulsive
potential fields based on the danger zone, and incorporating
the developed repulsive potential fields into the online planning
of the robot trajectory to guarantee the safety in human–robot
collaboration scenarios.
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