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ABSTRACT

We present the first Bayesian method for tomographic decomposition of the plane-of-sky orientation of the magnetic field with the use
of stellar polarimetry and distance. This standalone tomographic inversion method presents an important step forward in reconstructing
the magnetized interstellar medium (ISM) in three dimensions within dusty regions. We develop a model in which the polarization
signal from the magnetized and dusty ISM is described by thin layers at various distances, a working assumption which should be
satisfied in small-angular circular apertures. Our modeling makes it possible to infer the mean polarization (amplitude and orientation)
induced by individual dusty clouds and to account for the turbulence-induced scatter in a generic way. We present a likelihood function
that explicitly accounts for uncertainties in polarization and parallax. We develop a framework for reconstructing the magnetized ISM
through the maximization of the log-likelihood using a nested sampling method. We test our Bayesian inversion method on mock data,
representative of the high Galactic latitude sky, taking into account realistic uncertainties from Gaia and as expected for the optical
polarization survey PASIPHAE according to the currently planned observing strategy. We demonstrate that our method is effective
at recovering the cloud properties as soon as the polarization induced by a cloud to its background stars is higher than ∼0.1% for
the adopted survey exposure time and level of systematic uncertainty. The larger the induced polarization is, the better the method’s
performance, and the lower the number of required stars. Our method makes it possible to recover not only the mean polarization
properties but also to characterize the intrinsic scatter, thus creating new ways to characterize ISM turbulence and the magnetic
field strength. Finally, we apply our method to an existing data set of starlight polarization with known line-of-sight decomposition,
demonstrating agreement with previous results and an improved quantification of uncertainties in cloud properties.
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1. Introduction

Studies of the interstellar medium (ISM) have relied on two-
dimensional (2D) projections on the sky until recently. With the
advent of sophisticated techniques and state-of-the-art facilities,
astronomy has entered a new realm in which the third dimension
can finally be accessed with accuracy, enabling the mapping of
the ISM in three dimensions (3D). Astronomers – and the pub-
lic – will soon be able to experience the Universe in 3D flying
through real-world data sets loaded in virtual environments.

Gaia data on stellar distances in particular (e.g., Gaia
Collaboration 2016; Gaia Collaboration 2021; Bailer-Jones et al.
2021) have allowed for the precise localization in 3D space of
more than one billion stars in our Galaxy through the accu-
rate determination of stellar parallaxes. Coupling measurements
of stellar parallaxes to reddening, Bayesian inversion methods
have already been successful at reconstructing 3D maps of the
dust density distribution (e.g., Green et al. 2019; Lallement et al.
2019; Leike & Enßlin 2019; Leike et al. 2020), leading to stun-
ning 3D images mapping the dust content of the ISM, in the
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Solar neighborhood from within the first tens of parsec and up to
much larger distances within the Galactic disk, already covering
a substantial fraction of the Galaxy (6000 × 6000 × 800 pc3 for
Lallement et al. 2019, 2022). Such 3D mappings of the ISM con-
tent are of great interest for several areas in astrophysics. They
shed new light on the dynamics shaping the Galaxy, breaking
degeneracies caused by 2D mapping on the 3D shapes of ISM
clouds and cloud complexes, their formation mechanisms, and
their history (e.g., Ivanova et al. 2021; Bialy et al. 2021; Rezaei
Kh. & Kainulainen 2022; Zucker et al. 2022; Lallement et al.
2022; Konstantinou et al. 2022). Ultimately, 3D images of the
dust content of the Galaxy could also help in the characteriza-
tion of Galactic foregrounds for observational cosmology and
extra-galactic astrophysics (e.g., Martínez-Solaeche et al. 2018).

Impressive as they may be, 3D reconstructions of the ISM
dust distribution are leaving out an important component of
the Galaxy: magnetic fields, which are ubiquitous in the ISM.
Magnetic fields are relevant in a variety of processes, from regu-
lating star formation (e.g., Mouschovias et al. 2006; Hennebelle
& Inutsuka 2019; Li 2021) to shaping large-scale structures in
the disk and the halo of the Galaxy (e.g., Beck 2015). Mag-
netic fields in the Galaxy also affect our ability to study the
Universe’s structure and history, from its first moments to its
later ages. Aspherical dust grains line up their shortest axis with
the ambient magnetic field (e.g., Andersson et al. 2015). As a
result, the thermal radiation emitted by those grains is polarized.
This emission constitutes the major limitation in cosmologists’
search for primordial B modes, the clear proof of primordial
gravitational waves from inflation, and cosmic birefringence in
the polarization of the cosmic microwave background (CMB;
e.g., BICEP2/Keck Collaboration & Planck Collaboration 2015;
Planck Collaboration XXX 2016; Planck Collaboration XI 2020;
Diego-Palazuelos et al. 2022). This emission also represents a
foreground in polarization studies of individual extra-galactic
objects (e.g., Pelgrims 2019).

Significant effort has been invested in the last two decades
to characterize the dust-polarized emission in order to disen-
tangle it from the cosmological signal. However, this task has
been proven to be very convoluted. Variations in dust spectral
emission distribution, either in the plane of the sky (POS) or
along the line of sight (LOS; Tassis & Pavlidou 2015; Planck
Collaboration Int. L 2017; Pelgrims et al. 2021; Ritacco et al.
2023), and unexpected signatures of the dust signal in polar-
ization power spectra (e.g., Planck Collaboration Int. XXXVIII
2016) – all rooted in the tight connection between dust clouds
and the magnetic field – add many layers of complexity. Various
sophisticated techniques are being developed to address these
problems. The most direct way of attacking them and of provid-
ing confident and accurate solutions requires 3D mapping of the
Galactic magnetic field in dusty regions (e.g., Hervías-Caimapo
& Huffenberger 2022; Pelgrims et al. 2022; Konstantinou et al.
2022; Huang 2022).

Accessing the LOS structure of the magnetic field from dust
emission alone is not feasible. Three-dimensional maps of the
dust distribution can help identify LOSs with several clouds
and place constraints on their respective significance; however,
those maps alone provide no information about the magnetic
fields permeating those clouds. While they can be combined
with maps of dust-polarized emission in a coherent analysis
to model the Galactic magnetic field (GMF) on large scales
(Pelgrims et al. 2020), they cannot provide significant informa-
tion on cloud scales, with perhaps some exceptions (e.g., Rezaei
Kh. et al. 2020).

Fortunately, there are other probes that make it possible
to infer the structure of the magnetized ISM in 3D. Among
those, the linear polarization of stars, measured from the near-
infrared (NIR) to the near-ultraviolet, is of particular interest,
and can be used to study and model the dusty and magnetized
ISM, from the smallest to the largest scales. While starlight
usually starts out unpolarized, the same aspherical dust grains
that are responsible for the polarized thermal emission induce
a polarization to it when partially absorbing it, due to dichroic
extinction (e.g., Andersson et al. 2015). Starlight polarization has
been related to the magnetic field and the ISM in the Galaxy
since its early observation (e.g., Hiltner 1949, 1951; Davis &
Greenstein 1951; Heiles 2000). In comparison to other probes
of the magnetized ISM, starlight polarization has the significant
advantage that it can provide direct 3D information as soon as
stellar distances are known. The potential of such 3D magnetic
tomography to recover information on the LOS structure of the
magnetic field has been demonstrated recently by Panopoulou
et al. (2019b) using data collected from the RoboPol polarimeter
(Ramaprakash et al. 2019), while correlation analysis of dust-
polarized emission at sub-millimeter wavelengths and starlight
polarization data has proven useful to locate the distance to
the dominant polarized dust emission component seen at high
Galactic latitude (Skalidis & Pelgrims 2019).

In recent years, several regions of the sky have been mapped
with a high density of stellar polarization measurements (> 100
stars per sq.degree), including a significant portion of the inner
Galaxy (in the NIR Clemens et al. 2020), as well as more diffuse
regions of the ISM (e.g., Panopoulou et al. 2019b; Skalidis et al.
2022). These data sets have paved the way to 3D mapping mag-
netic fields in the general ISM of the Galaxy (e.g., Pavel et al.
2012), far from the dense regions of star formation that had been
traditionally studied with large stellar samples (e.g., Pereyra &
Magalhães 2004; Sugitani et al. 2011; Marchwinski et al. 2012;
Santos et al. 2014; Franco & Alves 2015; Kwon et al. 2015;
Eswaraiah et al. 2017). In the near future, the PASIPHAE survey
(Tassis et al. 2018) and the SOUTH POL survey (Magalhães et al.
2005) will enable a leap forward by generating stellar polariza-
tion data for millions of stars, covering a large fraction of the sky.
In conjunction with measurements of stellar distances obtained
by Gaia, those data sets will pave the way for the characterization
of the dusty magnetized ISM in 3D. Since stellar polarization
traces the very same medium (magnetized dust) that produces
the dominant CMB polarization foreground, starlight polariza-
tion data may offer a unique independent means to model out
the polarization signal of the Galaxy, allowing the study of the
very first moments of the Universe.

The observed polarization of each single star is the inte-
grated effect of dichroic absorption from all interstellar clouds
lying between us and the star. For this reason, in order to derive
the complex 3D structure of the magnetized ISM from starlight
polarization data and stellar distances, we need to develop meth-
ods that invert this LOS integration. So far, no standard method
has been established in the literature to accomplish such a task in
an automated, Bayesian way. On the one hand, different ad hoc
methods have been considered (e.g., Andersson & Potter 2006;
Panopoulou et al. 2019b; Doi et al. 2021), but they are not eas-
ily scalable to large data sets since they are not well adapted for
automation and they do not allow for a straightforward, robust
estimation of the credible interval of the reconstruction. On the
other hand, methods developed for extinction data cannot be
used unaltered on starlight polarization data. The main reason is
that polarization is a pseudo-vector quantity. This implies that
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it cannot be described by a single scalar quantity – two are
needed: either the degree of polarization and polarization posi-
tion angle, or its linear Stokes parameters. Additionally, even if
contributions from individual clouds are additive (as is the case
for linear Stokes parameters in the case of low amounts of extinc-
tion), polarization increments can be either positive, negative,
or null. Because of these fundamental differences, dedicated,
specialized methods need to be developed for the problem of
starlight polarization tomography.

In this paper, we present such a specialized Bayesian method,
developed for the PASIPHAE survey, implemented in Python, and
now made publicly available for use by the community1. The
inversion method developed here works on a per line-of-sight
basis. We defer to future work for information on the extension
of the method, which must take the correlation of the solutions
in the plane of the sky into account.

In Sect. 2, we present our model for the distance depen-
dence of starlight polarization along sightlines of the diffuse
ISM, and we explain how we built our data equation and derived
the corresponding likelihood. In Sect. 3, we provide details on
the implementation of our Bayesian method and validate its per-
formance by applying it to two simple examples of mock data.
In Sect. 4, we present extensive testing of the performance of the
method in the low signal-to-noise (S/N) regime and identify the
method’s limitations. We apply the method to currently available
data in Sect. 5 and compare the results from our method to the
literature. We finally summarize and discuss our work in Sect. 6.
This paper contains two appendices. In Appendix A, we explain
the creation of the mock observations used for performance test-
ing, which are based on actual star samples, realistic estimates
of the uncertainties on stellar parallax and polarization, and that
rely on a complete toy model for the 3D structure of the ISM
along sightlines. In Appendix B, we explore our toy model of
the magnetic field geometry to gain intuition on the effects of
turbulence-induced fluctuations in the ISM on the polarization
observables.

2. Model, data equation, and likelihood

In this section, we lay the foundation for a model that describes
the distance-dependence of stellar polarization toward a sightline
of the diffuse ISM. We construct a generic data equation and
build the corresponding likelihood that relates model parameters
and star data. We first discuss the case of a single cloud along
the LOS and then proceed to the generalization to cases with
multiple-clouds.

2.1. Model: Thin-layer magnetized clouds

We model the LOS polarization induced by an individual cloud
to background stars as being dominated by a single thin polar-
izing dust layer at the cloud distance (dC). As already described
by many authors (e.g., Andersson et al. 2015; Hensley & Draine
2021; Draine & Hensley 2021), the polarization induced by a
dust cloud to the light of background stars depends on the dust
opacity at the frequency of observation, the polarizing efficiency
(which relates dust reddening E(B − V) to a maximum polariza-
tion fraction) and on the apparent 3D orientation of the magnetic
field (B) that permeates the cloud. The latter is described through
the inclination angle of the magnetic field lines with respect to
the POS (γB) as well as the position angle of the POS compo-
nent of the magnetic field (ψB). For a single star behind a cloud,

1 https://github.com/vpelgrims/Bisp_1/

with starlight intensity IV, the vector of its relative Stokes param-
eters in the visible (qV, uV) = (QV/IV, UV/IV) equals the cloud
polarization vector (qC, uC) given by(
qC
uC

)
= Pmax cos2 γB

(
cos[2ψB]
sin[2ψB]

)
. (1)

In this equation, in which we have neglected any possible source
of noise, Pmax ≈ 13% E(B−V), (Panopoulou et al. 2019a; Planck
Collaboration XII 2020) where the reddening E(B−V) generally
depends on the dust grain physical properties and on the col-
umn density. Using single-frequency starlight polarization only,
we have access to the position angle of the POS component of
the magnetic field (related to the electric vector position angle,
EVPA, of the stellar polarization) and to the magnitude of the
induced polarization, that is the degree of polarization: pC =
(q2

C + u2
C)1/2 (related to the degree of stellar polarization). The

latter is affected by the dust extinction, the dust polarizing effi-
ciency, the inclination of the magnetic field with respect to the
POS, and by possible LOS depolarization caused by turbulence
within the cloud.

If the distribution of dust and the magnetic field properties
were spatially homogeneous within a cloud, a single stellar mea-
surement would suffice to describe the polarization properties
it induces. Considering an ensemble of stars to constrain the
cloud polarization properties makes it possible to take advan-
tage of the number statistics and to sample the distance axis to
provide constraints on the cloud distance. The former is criti-
cal for the S/N regime that is expected at high Galactic latitudes
(Skalidis et al. 2018). Furthermore, observations of interstellar
dust reveal fluctuations in the dust distribution on a range of
scales (e.g., Miville-Deschênes et al. 2016) and fluctuations in
the density and the magnetic field are also expected as a result
of magneto-hydrodynamic (MHD) turbulence (e.g., Goldreich &
Sridhar 1995; Cho & Lazarian 2003; Heiles & Crutcher 2005).
Therefore, in order to obtain a realistic description of the polar-
ization properties of a cloud within a region, we consider an
ensemble of stellar measurements from LOSs within a finite cir-
cular aperture (called “beam” in the remainder of the paper)
toward the cloud. We describe the Stokes parameters induced by
the cloud to the ensemble of stars with a well-defined mean and
a measure of dispersion about that mean. We refer to this disper-
sion as intrinsic scatter, to distinguish it from other sources of
dispersion in the measurements, such as noise.

The intrinsic scatter has effects on polarization observables.
We explore these effects in Appendix B where we characterize
the variations produced by the intrinsic scatter on pC and on ψB;
or more generally in the (qV, uV) plane. In particular, we show
that 3D variations of the magnetic field can generate biases and a
nonzero cross term in the polarization plane. The biases are irrel-
evant in our case since we are interested in recovering the mean
values. The cross term, however, needs to be accounted for given
that it might reach a non-negligible fraction of the variance of the
Stokes parameters (qV, uV; Montier et al. 2015). Other sources
of variance in the polarization properties, such as fluctuations of
the dust extinction across the sky, may reduce the importance
of the off-diagonal element compared to the diagonal elements.
Nevertheless, we retain the off-diagonal terms in our analysis for
completeness.

As a first approximation, we assume that the turbulence-
induced variations generate a bivariate normal distribution about
the mean in the (qV, uV) plane. As a result, and in absence of
observational noise, our stochastic model for the vector of Stokes
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parameters of a star i in the background of a cloud is

mi =

(
qC
uC

)
+ G2(0,Cint)i, (2)

where qC and uC now denote the mean polarization values
induced by the cloud. We denote the mean Stokes vector of the
cloud as m̄ = (qC uC)†. G2(0,Cint)i is a random realization of
a 2D bivariate normal distribution centered on (0, 0) with the
2-by-2 covariance matrix, Cint. The latter encodes the variances
and covariances induced by sources of intrinsic fluctuations (e.g.,
turbulence) on the Stokes parameters. According to this generic
description, six parameters are necessary to describe the polar-
ization data of stars toward such a cloud: the distance of the cloud
(dC), the mean Stokes parameters (qV, uV) and three numbers to
characterize the intrinsic-scatter covariance matrix Cint.

2.2. Data equation

To write the data equation, we need to account for the fact that
a star at distance di may either be in the foreground (di < dC)
or in the background (di > dC) of the cloud. In the former case
no polarization is induced by the cloud and in the latter case the
star polarization will be given by the mean polarization of the
cloud plus one random realization of the intrinsic scatter. This
piecewise-constant behavior is implemented through the use of
the Heaviside function (H( ) = 1 if  > 0, 0 otherwise).

We further add a noise term (ni) to our stochastic model for
the Stokes parameters. We consider that the observational noise
which results from photon noise, instrumental polarization, and
on-sky instrumental calibration, is described by a bivariate nor-
mal distribution G2(0,Cobs) with covariance matrix, Cobs, where
the off-diagonal terms can be nonzero. Unlike the intrinsic scat-
ter, the covariance matrix corresponding to the observational
uncertainties is generally source dependent; it might depend on
the source’s brightness, for example. The variance and covari-
ance in the (qV, uV) plane result from both the intrinsic scatter
and the observational uncertainties. We consider them as inde-
pendent sources of Gaussian scatter in the polarization plane.
Therefore, for stars in the background of a cloud the covari-
ance matrices (Cint and Cobs) are summed. For stars that are not
background to a cloud, only the observational uncertainties are
relevant. The total covariance matrix thus takes the form:

Σi = Cobs,i +Cint H(di − dC). (3)

As a result, the data equation for the case of a single cloud along
the LOS is:

si = mi H(di − dC) + ni

=

{
m̄ + G2(0,Cint +Cobs,i)i if di > dC

0 + G2(0,Cobs,i)i otherwise,
(4)

where si is the vector of the measured Stokes parameters, di is the
distance of the star, and ni is the source-dependent noise term.
Denoting m̄i the mean polarization induced by any dust cloud
between us and the star and using Eq. (3), we thus write the
vector of measured Stokes parameters as a random draw of a
bivariate normal distribution with mean m̄i (with value either 0
or m̄) and 2-by-2 covariance matrix Σi:

si ← G2(m̄i,Σi) =
1

2π |Σi|1/2
exp

(
−

1
2
η†i Σ

−1 ηi

)
(5)

in which |Σi| = det (Σi) is the determinant of Σi and where
we have introduced ηi = si − m̄i with m̄i = 0 or m̄ depend-
ing on whether the star is in the foreground of background to
the cloud. In Eqs. (3) to (5), both the modeled mean and the
modeled covariance terms for the stellar polarization depend on
whether the source is in the foreground or the background of
the cloud.

2.3. Likelihood

The data equation (Eq. (4)) concerns only the Stokes parame-
ters of the stars. As explicitly written, our model for the Stokes
parameters relates to the distance of the stars which, in turn,
is also a measured quantity that comes with an uncertainty.
This source of uncertainty adds complexity to the problem that
we wish to solve, as distance uncertainties might impact the
model prediction for mi, in particular for those stars that are
near a cloud. Star distances are nowadays known with great
accuracy (e.g., Bailer-Jones et al. 2021) through their parallaxes
(ϖ) which, to good approximation, have Gaussian uncertainties
(σϖ). For this reason we choose to work in terms of paral-
laxes rather than distances, the two being related through the
inverse relation ϖ = 1/d where parallaxes are measured in arc-
seconds and distances in parsec. To account for this extra source
of complexity, we notice that the star distance entering the data
equation above should be the true distance of the star, and there-
fore we use the true parallax of the star in the following. We
modify the argument of the Heaviside function from (di − dC)
to (ϖC − ϖ

0
i ), in which ϖ0

i denotes the true parallax of a star.
We consider that the measured parallax (ϖi) is a random realiza-
tion of a Gaussian distribution centered on the true parallax with
uncertainty σϖi :

ϖi ← G(ϖ0
i , σϖi ) =

1
√

2πσϖi

exp
− (ϖi −ϖ

0
i )2

2σϖi
2

 . (6)

In this work, we assume that the measurements of the paral-
lax and of the optical polarization of stars are independent and
uncorrelated. Further, we assume that the Stokes parameters for
star polarization are functions of the true parallax of the star
through the generic data equation built in the previous section
(Eq. (4)). With these notations, the likelihood of the observa-
tional data point for star i with measured parallax ϖi and Stokes’
vector si takes the form:

P
(
ϖi, si |mi, Cint, ϖ

0
i , σϖi ,Cobs,i

)
= P

(
ϖi |ϖ

0
i , σϖi

)
P

(
si |mi, Cint, Cobs,i

)
=

1
√

2πσϖi

e
−

(ϖi−ϖ
0
i )2

2σϖi
2 1

2π |Σi|1/2
e−

1
2 ηi
†Σi
−1ηi (7)

where, in the last line, we explicitly write the parallax likeli-
hood as a 1D Gaussian with standard deviation equal to the
observational uncertainty and the polarization likelihood as a 2D
Gaussian with the total covariance matrix that accounts for both
the observational uncertainties and the contribution to intrinsic
scatter from the crossed cloud (Eq. (3)).

We are not interested in modeling the true parallax of the
star (ϖ0

i ). Instead we wish to marginalize over it to define the
likelihood of the cloud parameters given an observation for star
i. This marginalization allows us to separate the likelihood into
two parts, one corresponding to the background of the cloud and
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the other to its foreground as follows:

Li (ϖC, m̄,Cint)

=

∫ ∞

0
dϖ0

i P
(
ϖi, si |ϖ0

i , m̄i, Cint, σϖi , Cobs,i

)
=

∫ ϖC

0
dϖ0

i P
(
ϖi, si |ϖ0

i , m̄, Cint, σϖi , Cobs,i

)
︸                                                     ︷︷                                                     ︸

background

+

∫ ∞

ϖC

dϖ0
i P

(
ϖi, si |ϖ0

i , 0, σϖi , Cobs,i

)
︸                                            ︷︷                                            ︸

foreground

= P
(
si | m̄, Cint, Cobs,i

) ∫ ϖC

0
dϖ0

i P
(
ϖi |ϖ

0
i , σϖi

)
+ P

(
si | 0, Cobs,i

) ∫ ∞

ϖC

dϖ0
i P

(
ϖi |ϖ

0
i , σϖi

)
= P

(
si | m̄, Cint, Cobs,i

) 1
2

1 + erf

ϖC −ϖi
√

2σϖi


+ P

(
si | 0, Cobs,i

) 1
2

1 − erf

ϖC −ϖi
√

2σϖi

 . (8)

For a given sample of stars with polarization measurements
and with known parallaxes and uncertainties, and under the
assumption that the data are independent, the likelihood of
the cloud parameters for a given LOS is given by the product
of the likelihoods of the data points:

L (ϖC, m̄,Cint) =
Nstar∏
i=1

Li (ϖC, m̄,Cint) . (9)

This is the total likelihood function that we need to maximize to
constrain our model parameters given the data.

2.4. Multicloud case

The generalization of the single-cloud model to the case with
multiple independent clouds along the LOS is straightforward
(we take Nc to be the number of clouds along the LOS). We
consider that the Stokes parameters of a star in the background
of multiple clouds result from the addition of the contributions
from individual clouds. This approximation, which is correct in
the low polarization regime (e.g., Appendix B of Patat et al.
2010), is well motivated for translucent LOSs through the diffuse
ISM given that dust clouds can be considered as weak polariz-
ers. The validity of this approximation may need to be revised
for denser regions of the ISM, such as the Galactic plane or other
LOSs through very dense molecular clouds.

In this work, we assume the linearity of the polarization sig-
nal and defer to future work the addition of more complex cases.
Hence, in the low-polarization regime, the mean polarization
vectors (m̄[k]

i ) of clouds along the LOS are additive. The same is
true for the covariance matrices from the intrinsic scatter. Here,
we have introduced the superscript [k] to label clouds from [1] to
[Nc], for the nearest and the farthest cloud, respectively. As for
the case of a single cloud, the total covariance (Σi) on the Stokes
parameters for a star i depends on the observational uncertain-
ties and on the sum of all sources of intrinsic scatter intervening
along the LOS, from the star to the observer. Thus, assuming

Nc independent clouds along the LOS, the data equation for a
star i is:

si =mi + ni

= m̄i + G2 (0,Σi) , (10)

where

m̄i =
∑
j≤k

m̄[ j] and Σi = Cobs,i +
∑
j≤k

C[ j]
int , (11)

in which we implicitly assume that star i lies behind cloud [k]
and in front of cloud [k + 1], if k < Nc and behind all clouds if
k = Nc.

To determine the likelihood for the set of cloud parame-
ters given star data we marginalize over the true parallax of the
star. This step allows us to separate the likelihood into Nc + 1
terms, building the likelihood of a mixture model where the dif-
ferent terms correspond to a different (increasing) number of
foreground clouds:

Li

(
{ϖ[k]

C , m̄[k],C[k]
int }

)
= P0,i P

(
si = 0 |Cobs,i

)
+ P1,i P

(
si = m̄[1] |Cobs,i +C[1]

int

)
+ ...

+ PNc,i P

si = Nc∑
k=1

m̄[k] |Cobs,i +

Nc∑
k=1

C[k]
int

 . (12)

The coefficients Pk,i result from the integration of the probability
density function of the star parallax in the inter-cloud ranges of
parallax and take the form

Pk,i =
1
2

erf

ϖCk −ϖi
√

2σϖi

 − erf

ϖCk+1 −ϖi
√

2σϖi

 . (13)

Finally, from an ensemble of stars, the likelihood of the cloud
parameters for a given LOS is given by the product of the
likelihoods of the data points, as in Eq. (9).

3. The Bayesian inversion method: Implementation
and validation

In this section we first describe the implementation of our
maximum-likelihood method to decompose the polarization
properties of clouds along the LOS using stellar polarization
and distance. We validate our method using mock stellar data
sets based on a toy model of discrete clouds along the LOS and
explore the sensitivity of the log-likelihood with respect to the
different model parameters. We then provide a solution on how,
facing real observations, we can select the correct model, that
is, to choose the correct number of clouds that exist along a
sightline.

3.1. Implementation

To maximize the likelihood function and estimate the posterior
distributions of our model parameters we rely on a numerical
method. We choose to use the code dynesty (Speagle 2020) to
sample the parameter space using the nested sampling method
(Skilling 2004). This code has already proven to be powerful and
reliable in solving astrophysical problems similar to ours (e.g.,
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Zucker et al. 2019, 2022; Alves et al. 2020). The algorithm uses
sampling points (named ‘live points’ in dynesty’s definition)
to explore the parameter space in a dynamic nested sampling
scheme and estimate the posterior distributions on model param-
eters. It has two main advantages compared to other sampling
methods: first, it returns an estimate of the model evidence and
second, it includes a well-defined stopping criterion, suitable for
automation of the fitting process.

The code dynesty takes as input the function of the log-
likelihood that has to be maximized and the definition of
functions that implement our prior knowledge on the model
parameters. We implemented both uniform and Gaussian pri-
ors for the cloud parallaxes and cloud mean polarization. The
Gaussian priors are defined through their means and stan-
dard deviations while uniform priors are defined by their lower
and upper limits. We strongly recommend using flat priors
for the element of the covariance matrix encoding the effects
from turbulence. This is because the diagonal elements of the
matrix must be positive and can approach zero depending on
the (unknown) orientation of the magnetic field in 3D (see
Appendix B). In this case, the diagonal elements (Cint,qq and
Cint,uu) are first proposed independently in their respective ranges
and then the off-diagonal elements are drawn such that the semi-
positive-definiteness of the covariance matrix is guaranteed, that
is, Cint,qu is drawn from a uniform distribution in the range
(−

√
Cint,qq Cint,uu,

√
Cint,qq Cint,uu); excluding the limits. In the

case of multiple clouds, the prior function makes internally the
distinction between clouds, ranked by their distances. We have
hard-coded a lower limit on the number of stars that can exist
between two clouds. We fix this limit at five.

Given a set of data points {ϖi, si = (qV, uV)i} and corre-
sponding uncertainties (σϖi , Cobs,i), the log-likelihood function
that dynesty has to maximize is given by

log
[
L

(
{ϖ[k]

C , m̄[k],C[k]
int }

)]
= log

Nstar∏
i=1

Li

(
{ϖ[k]

C , m̄[k],C[k]
int }

)
=

Nstar∑
i=1

log
[
Li

(
{ϖ[k]

C , m̄[k],C[k]
int }

)]
(14)

which requires the number of clouds as an entry and where the
Li’s are given by Eq. (12). The number of clouds populating the
LOS is a priori unknown. We discuss in Sect. 3.5 how we intend
to determine it. We implemented the likelihood functions for up
to five clouds along the LOS. Even though the generalization of
the implementation to higher number of clouds is trivial we do
not deem it necessary given that only few LOSs at intermediate
and high Galactic latitudes are expected to show a large number
of components with significant contribution to the polarization
signal (Panopoulou & Lenz 2020).

3.2. Mock data for two example LOSs

To test our method we developed a simple but complete imple-
mentation of our layer model to generate mock data sets with
realistic number of stars, stellar distance and brightness distribu-
tions, and uncertainties both on parallax and polarization. This
implementation, which includes a self-consistent prescription for
the intrinsic scatter, is presented in detail in Appendix A.3. Our
toy model for generating stellar polarization has five free param-
eters per cloud: the cloud parallax (ϖC = 1/dC), the maximum
degree of polarization (Pmax), the inclination (γBreg ) and posi-
tion (ψBreg ) angles of Breg and, finally, the relative amplitude of

fluctuations in magnetic field orientation (Aturb). We draw the
reader’s attention to the fact that, apart from the cloud parallax,
these parameters are not the same as the model parameters enter-
ing our data equation. Additionally, our toy-model is stochastic
due to the presence of the intrinsic scatter. Therefore, as demon-
strated in Appendix B, the mean values of the Stokes parameters
of a cloud and the values characterizing the covariance induced
by the intrinsic scatter must be read from the simulated data
before observational noise in parallax and polarization are intro-
duced. To do so, we segment the ‘clean’ data sets at the input
cloud distance(s) and we estimate the mean and covariance of
the polarization induced by the cloud to the polarization of stars
behind the cloud (but in front of the more distant cloud, if any).
We refer to these estimates as the “true” values in the remainder
of this paper.

We show in Fig. 1 two examples of simulated data for a
single-cloud case (left) and a two-cloud case (right) applied
to a sample of stars typical to intermediate to high Galactic
latitudes for a circular sky area with a diameter of 0.5◦ (see
Appendix A.1). We show the relative Stokes parameters as a
function of distance modulus (µi = 5 log(di) − 5, where di is the
star distance in parsec). The top row shows the simulated data
before noise in parallax and polarization is added and the bottom
row shows the same simulated data sets when noise is added.
The parameter values used to generate both mock data from
our toy model (see Appendix A.3) are reported in Table 1. The
two-cloud LOS is chosen such that (i) the far-away cloud alone
induces about half the polarization of the nearby cloud alone, (ii)
that the presence of the far-away cloud is only clear in one of the
two Stokes parameters due to the POS orientation of B permeat-
ing the second cloud, and (iii) that there are at least 20 stars in the
background of each cloud. The simulated data sets include uncer-
tainties on stellar parallaxes based on Gaia performance (see
Appendix A), realistic uncertainties on individual Stokes param-
eters as expected for WALOP-N (the northern instrument that
will be used for the PASIPHAE survey) with 5 min of exposure
time (see Appendix A.4 and Fig. A.3), and include a prescription
for the intrinsic scatter. For completeness, we report in Table 1
the true values of the mean Stokes parameters and of the ele-
ments of the covariance matrix corresponding to the intrinsic
scatter corresponding to the two examples shown in Fig. 1. These
values correspond to the parameters entering our data equation
and, ultimately, should be retrieved from the application of an
inversion method to the data.

For the remainder of this section, we use these two exam-
ples of mock starlight polarization data to explore the sensitivity
of our log-likelihood with respect to the different sampled
parameters and to validate our implementation.

3.3. 1D conditional posterior distributions

As a first test of implementation, we perform 1D likelihood
scans through the parameter space. This exercise also allows us
to study the sensitivity of the likelihood, and therefore of the
observables, to each model parameter individually. We present
in Fig. 2 the conditional log-likelihood curves corresponding to
the scans using the one-cloud LOS mock data shown in Fig. 1
(bottom left). We show in Fig. 3 the conditional probability
distribution function (PDF) corresponding to these scans. They
are not estimates of the 1D marginalized posterior distributions
obtained from a fit since all parameters are not varied during the
scans but are fixed to their true values. An actual fit to this partic-
ular simulated data set is performed in Sect. 3.4. The validation
of our method and its implementation for several realistic cases
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Fig. 1. Example of a single-cloud (left) and two-cloud (right) simulated data set. We show the stellar qV (green circles) and uV (blue diamonds)
Stokes parameters as a function of distance modulus (µi). Top and bottom panels show the same data set. Top panels do not include observational
noise (they are the “true” data points) while bottom panels do include uncertainties in both parallax and polarization (shown with errorbars). The
vertical red lines indicate the input distance modulus of the clouds. The horizontal green and dashed-purple lines indicate the input (cumulative)
mean Stokes parameters (qC and uC, respectively) before the inclusion of intrinsic scatter and observational noise, i.e., m̄i in Eq. (1).

Table 1. Setups for the simulated data set used in Sect. 3 and illustrated in Fig. 1.

Data set Cloud parameters “True” values

cloud # dC Pmax γB ψB Aturb qC uC Cint,qq Cint,uu Cint,qu
(pc) (%) (◦) (◦) − (%) (%) (%)2 (%)2 (%)2

Single-cloud
cloud 1 400 0.8 30 15 0.2 0.49 0.30 0.01 0.02 –0.01

Two-cloud
cloud 1 400 2.0 5 –15 0.2 1.56 –1.01 0.10 0.12 0.10
cloud 2 1300 1.0 15 45 0.2 0.00 0.91 0.17 0.18 0.16

No es. The labels of the parameters follow the notations given in the text.

will be presented in the Sect. 4 where the performance and the
limitations of the method will be assessed.

First, we note that the input parameter values always fall in
the interval where log(L) −max(log(L)) > −1 meaning that the
input values fall inside the approximated 68% credible interval.
Second, we see that the shapes of the conditional log-likelihood
curve, and of its corresponding conditional PDF, from the explo-
ration of the cloud distance shown in Figs. 2 and 3 are somewhat
surprising while the curves obtained for the other parameters
look quite conventional. The very reasons for the unconventional
shapes of the cloud-distance curves come from the unevenly dis-
tributed constraints (the stars) on the parallax (distance) space,
their unequal uncertainties along that axis, the smearing in the

foreground and the background that the latter can generate, and,
last but not least, the unequal constraining power of each star in
the fit since polarization uncertainties are unequal. A star with
large polarization uncertainties will constrain the fit less, and
thus the position of the cloud along the LOS, as compared to
a star with small polarization uncertainties. We illustrate part of
this complexity in Fig. 4 in which we repeat the top left panel of
Fig. 3 but where the true and observed parallaxes are indicated by
vertical segments. It is clear that the likelihood of having a cloud
with any distance between two distant constraints is constant
and that the steepness of the variations depends on the parallax
uncertainties. In general, standard statistics are not appropriate
for characterizing the posterior distributions on cloud distances
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Fig. 2. Curves of (log(L)−max(log(L))) corresponding to 1D likelihood scans through the parameter space for the mock data set with a single cloud
along the LOS. For each scan only the explored parameter varies, while all other parameters are kept fixed to their true values. The log-likelihood
(log(L)) is estimated at each point. The horizontal solid and dashed lines show the values of 0 and –1, respectively, providing an approximate
estimate of the location of the 68 per cent credible interval. In the top (bottom) row the vertical axis ranges from –40 to 5 (–7.5 to 0.3). The red
vertical line on each panel indicates the so-called true value reported in Table 1.
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Fig. 3. Conditional probability distributions ( ˜PDF) corresponding to the (log(L) −max(log(L))) curves in Fig. 2.

and dedicated metrics have to be considered to quantify success
and goodness of fit. We address this point in Sect. 4.2.

3.4. Sanity checks

We check that our implementation of the model and of the max-
imization of the log-likelihood (Eq. (14)) through the nested
sampling method is effective, by first applying our inversion
method to the single-cloud LOS data used above and using a
model with a single layer. We use 1000 live points, start with
loose uniform priors on all parameters (the same as used in
Sect. 4.3 and reported in Table 2) and sample the parame-
ter space until an uncertainty of about 0.1 is achieved on the
log of the model evidence Z (see Eq. (15)). Then the sam-
pling is stopped and the samples are post-processed to generate
1D and 2D marginalized posterior distributions of the model
parameters. The resulting histograms are shown on a corner plot
format (Foreman-Mackey 2016) in Fig. 5. In this example, the

obtained maximum likelihood value is log L̂ = 784.55 and the
evidence is Ẑ = 765.54 ± 0.18, all the input polarization-related
parameters are found within the 68% credible interval of the
estimated posterior distributions and 97% of the posterior on
cloud parallax is contained between the true parallaxes of the
two stars that directly bracket the input cloud parallax value. The
method, therefore, demonstrates high accuracy in this example.
We emphasize that not only do we recover the cloud distance and
the mean values of the Stokes parameters but also an accurate
estimate of the polarization covariance from the intrinsic scatter.

Similar conclusions are reached from the application of
our fitting method to the two-cloud LOS example presented
above using a model with two layers. In this case the priors
set for each cloud are the same as used for the single-cloud
LOS above and we use the same setup to analyze the data. We
show in Fig. 6 the posterior distributions reconstructed by our
fit for the parallaxes and Stokes parameters of the two clouds.
The Stokes parameters are found to be well within the 68%
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Fig. 4. Conditional probability distribution ( ˜PDF) corresponding to the
1D likelihood scan through ϖC for the one-cloud mock data set using
the one-layer model. The vertical (continuous) green and (dashed) pur-
ple segments indicate the true and observed distances of the stars,
respectively. The gray oblique lines link the two. The green horizontal
errorbars indicate the 68% confidence level on star distances obtained
from σϖi . The vertical red line indicates the input cloud parallax. Due
to randomization on parallaxes, some stars with very similar (true) par-
allaxes (green) are dispersed.

Table 2. Model parameters and range limits of uniform priors.

Cases Model parameters

cloud # ϖC qC uC Cint,qq Cint,uu
(mas) (%) (%) (%)2 (%)2

Sect. 4.3
cloud 1 [0.286, 10] [–2, 2] [–2, 2] [0, 1] [0, 1]

Sect. 4.4, 4.5.1, and 4.5.2
cloud 1 [1.667, 10] [–2, 2] [–2, 2] [0, 1] [0, 1]
cloud 2 [0.286, 3.334] [–2, 2] [–2, 2] [0, 1] [0, 1]

No es. Labels of the model parameters follow the notations given in the
text: ϖC is the cloud parallax, qC is the cloud’s mean Stokes parameter
q, uC is the cloud’s mean Stokes parameter u, Cint,qq and Cint,uu are the
diagonal elements of the intrinsic-scatter covariance matrix. In all cases,
the flat prior on Cint,qu, the off-diagonal element of the same matrix, is
defined by (−

√
Cint,qq Cint,uu,

√
Cint,qq Cint,uu) such that the semi-positive-

definiteness of the covariance matrix is guaranteed (thus, excluding the
limits). The parallax values of 0.286, 1.667, 3.334, and 10 correspond to
distance values of 3500, 600, 300, and 100 pc, respectively.

confidence interval of the estimated posteriors and 98% and 83%
of the posteriors on clouds’ parallaxes are contained between the
true parallaxes of the two stars that directly bracket the values
of their respective input-cloud parallaxes. We do not show the
full corner plot, including the constraints on the intrinsic scatter
parts, only because visualization of 12 parameters lead to poor
insights; the posterior distributions are similarly very good, all
true values falling within the 68% confidence interval of the esti-
mated posteriors. The very fact that the posterior on the parallax
of the second cloud appears less tight than that of the first cloud
makes sense given that the second cloud is farther away from the
observer where stars have larger uncertainties on their parallax
and are generally fainter, thus showing larger uncertainties on
Stokes parameters, than closer stars. Additionally, the presence
of foreground clouds (stars) add noise to the reconstruction of
the background cloud.

Figure 7 presents the estimated posterior distributions
obtained for cloud parallaxes. The shapes of the posterior dis-
tributions are well understood when parallaxes of surrounding
stars are considered, in a way similar to Fig. 4, illustrating the
inhomogeneous distribution of constraints along that dimension.

In Fig. 8, we reproduce the bottom panels of Fig. 1 where we
also represent the model evidences obtained from our maximum-
likelihood analysis of the data. Namely, for any distance in the
range spanned by the data stars, the (qV, uV) are estimated by
re-sampling the posterior distributions of the model parame-
ters. The modeled (qV, uV) are computed taking into account the
intrinsic scatter and the correlation that it induces between the
Stokes parameters. Given that our model is stochastic, we gen-
erate ten random draws for each of the 1000 sets of the model
parameters randomly extracted from the posteriors. This leads to
a bivariate distribution of (qV, uV) for any distance modulus. The
shaded areas span the ranges of [2.5, 97.5] (light) and [16, 84]
(dark) percentiles of the distributions for each µ. The medians
of the distributions are given by the continuous line. The figure
shows that that the data points and the model agree very well.

Another way of examining the agreement between data and
model is to look at the residuals of the data points (in the polar-
ization plane) as compared to the model predictions. Given that
our model is stochastic and that (i) the polarization must be
regarded as a bivariate quantity and (ii) measurement uncertain-
ties are heteroscedastic; we are interested in the distribution of
the Mahalanobis distances of the individual measurements in
the beam with respect to their respective modeled means and
computed with their respective total covariance matrices. The
distribution of the Mahalanobis distances squared is expected
to follow a χ2 distribution with two degrees of freedom. We
checked (not shown) that this is the case. Our distributions
of Mahalanobis distances have a median of about 1.4 and no
outliers are found.

3.5. Model selection

When dealing with real data, we generally do not know how
many dust clouds exist along the LOS. In our approach, the num-
ber of clouds is an implicit parameter of the model. We first
choose the number of clouds with which to model the data and
then perform the maximum-likelihood analysis of the data. The
latter provides an estimate of the posterior distributions on model
parameters, an estimate of the evidence and an estimate of the
maximum log-likelihood value. In itself, this approach cannot
assess the validity of the chosen model. However, if we fit differ-
ent models (i.e., with different input number of clouds) we can
compare the results and decide, based on statistical arguments,
which model is preferred by the data. This provides us with a
standalone method to infer the number of clouds along the LOS
and to proceed to its Bayesian decomposition in terms of dust
layers, using polarization data of stars with measured distances
only.

We consider two criteria to decide on the model that should
be preferred given the data. The first criterion is based on
the evidence returned by the nested sampling method (Skilling
2004) and the second is the Akaike information criterion (AIC;
Akaike 1974).

The evidence, directly estimated through the use of
dynesty, results from the integration over the full parameter
space (ΩΘ) of the likelihood of the model parameters (Θ) given
the data (multiplied by the prior on the model parameters π(Θ)):

Z ≡

∫
ΩΘ

dΘL(Θ) π(Θ). (15)
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Fig. 5. Performance of the one-layer model in fitting the single-cloud mock dataset. 1D and 2D marginalized posterior distributions for the
sampled model parameters obtained by log-likelihood maximization. The red lines indicate the true parameter values. Cloud parallax (ϖC) is
given in milli-arcseconds (mas), mean Stokes parameters (qC, uC) in per cent and the elements of the covariance matrix encoding the effect of the
turbulence-induced intrinsic scatter are given in per cent to the square (i.e., multiplied by 10,000). The dashed vertical lines indicate the 16, 50, and
84 percentiles of the 1D marginalized distributions and the values for the 68% confidence interval can be read from the title on each of the diagonal
panels.

For an ensemble of models, the “best” model is the one that
maximizes the evidence.

The AIC originates from information theory and is a mea-
sure of the amount of information that is lost by representing the
data by a given model. It is based on the maximum likelihood
value and includes a penalty for the number of model parameters.
For a model j with M parameters, if the maximum likelihood is
denoted by L̂ j, the AIC is given by:

AIC j = 2 M − 2 log(L̂ j). (16)

For an ensemble of models, the ‘best’ model is the one that min-
imizes the loss of information. The use of the AIC in model
comparison is also attractive as it makes it possible to quantify
the probability that a given model may minimize the information
loss in comparison to the model that actually minimizes it in our
data analysis experiment. Given a set of models {m}, the prob-
ability that model j minimizes the information loss is given by

Boisbunon et al. (2014):

P j|{m} = exp
(
(min

m
{AICm} − AIC j)/2

)
. (17)

In a conservative approach only models with small probabil-
ity (≲1%) should be disregarded. We use the above criteria in
Sect. 5.

4. Performance

In the previous sections, we have introduced a Bayesian method
to decompose the starlight polarization data in terms of inde-
pendent clouds along the LOS by maximizing a dedicated
log-likelihood function. We have demonstrated on two examples
that the method is effective in performing the decomposition and
in recovering the true values of the modeled data. In this section
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Fig. 6. Same as in Fig. 5 but showing a restricted sample of the model parameters of a two-layer-model fit to the two-cloud LOS shown in example
in Fig. 1. We show the estimated 1D and 2D marginalized posterior distributions only for the parallax and Stokes parameters of the 2 modeled
clouds.

we aim to investigate the performance of the method and iden-
tify the limits of its applicability for the case of PASIPHAE-like
observations.

The performance of the method at recovering cloud parame-
ters is expected to depend on: (i) the amplitude of the polariza-
tion signal that a given cloud induces to the light of background
stars, (ii) the number of stars effectively sampling a given cloud
(i.e., stars in the background of that cloud but in the foreground
of any potential farther one), (iii) the noise level of the stellar
polarization measurements, (iv) the precision on the star par-
allaxes (which is also dependent on the star distances), (v) the
degree of intrinsic scatter, and (vi) on the number of clouds along
the LOS.

To determine the performance of the method we need to
rely on a metric that quantifies the goodness of the fit in both
distance and polarization. Our metrics are introduced below,
after we introduce the simulated starlight polarization data which
rely on actual stellar magnitudes and parallaxes from Gaia.
Then, we study the performance of our method by applying
it to several single-cloud-LOS and two-cloud-LOS cases that

could be typical of LOSs at intermediate and high Galactic lat-
itudes that will be targeted by PASIPHAE. Finally we explore
the use of the criteria to select the most likely model to test
their efficiency.

We expect, and have checked (not shown), that the method
performs best when the polarization induced by the ISM is large
compared to the uncertainties in the stellar polarization (but still
within the weak polarization limit assumed for the diffuse ISM).
We therefore wish to test our method in conditions of low S/N
in polarization to determine its limitations. At intermediate and
high Galactic latitude (|b| > 30◦) the 80th percentile of the dis-
tribution of stellar polarization in Berdyugin et al. (2014) is at
about 0.3%. This value is also in broad agreement with the distri-
bution obtained from the extrapolation of the H I column density
of low-velocity clouds in those sky areas (calculated based on
the data by Panopoulou & Lenz 2020). Hence, to generate the
mock starlight polarization samples on which to apply our inver-
sion method, we explore the parameter space of our toy model
(see below and Appendix A.3) so that pC ranges from 0% to
about 0.3%.
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Fig. 7. Estimated posterior distributions forϖC1 (left) andϖC2 (right) in
[mas] with marked observed and input parallaxes of surrounding stars
with (dashed) purple and (continuous) green vertical segments, respec-
tively, similar to Fig. 4. Vertical red lines indicate the input parallaxes
of the clouds. As before, some stars with very similar (true) parallaxes
(green) are dispersed after randomization.

4.1. Simulated data

To study the performance of our inversion method we rely on
simulations of starlight polarization data. We construct realis-
tic stellar samples from the Gaia Universe Model Snapshot2
(GUMS) database. As fully described in Appendix A.1, we
obtain stellar distance and photometry data at high Galactic lati-
tudes within circular beams having two different diameters: 0.5◦
and 1◦. We apply two selection criteria based on stellar bright-
ness and S/N in parallax. We retain stars with SDSS r-band
magnitude r < 16 mag, which is the expected limiting magni-
tude of the PASIPHAE survey (Tassis et al. 2018). To ensure high
precision in stellar distance information, we keep stars with S/N
in parallax larger than five (ϖ/σϖ ≥ 5). The main characteristics
of the stellar samples are shown in Fig. A.1, after the application
of these selection criteria. We show the distributions of star dis-
tance (modulus) and SDSS r-band magnitude for a 1◦ beam and
a 0.5◦ beam.

To proceed further in the modeling of starlight polariza-
tion data for our performance tests, we select one sample per
beam size. We choose the samples with the mean number of
stars, sampling actual data at high Galactic latitudes. For each
star in the two samples we have estimates of the actual paral-
lax, parallax uncertainty, and magnitude in the SDSS-r band.
Then, applying our toy model (Appendix A.3) to these star sam-
ples we can generate simulated starlight polarization data with
realistic uncertainties for any desired setup of the magnetized
ISM. The latter is determined by the number of dust clouds
along the considered LOS and by five parameters per cloud (see
Appendix A.3). Two examples of simulated starlight polariza-
tion data obtained for a one-cloud and a two-cloud ISM setup
applied to the mean star sample within a beam of 0.5◦ in diameter
are shown in Fig. 1 with, however, a larger induced polarization
signal than for the performance tests carried out below.

4.2. Metric to assess the goodness of LOS decomposition

Our primary focus in the LOS decomposition of the starlight
polarization data is to retrieve the distance of the ISM clouds
along the LOS and to infer their mean polarization properties.

2 https://dpac.obspm.fr/gaiasimu/html/

The quality of any reconstruction should therefore focus on these
two aspects.

First, to quantify the accuracy with which we recover the
cloud parallaxes (distances), we have to deal with the nonreg-
ular – often multi modal – shapes of the posterior distributions.
In some cases, the cloud parallax at maximum-likelihood may
not correspond to the mode of the posterior distribution. This
becomes pathological once the cloud parallax at maximum log-
likelihood belongs to a peak of the posterior distribution that has
a small amplitude as compared to the dominant peak or when
the bulk of the posterior distribution is squeezed onto one of
the limits imposed by the prior. This may happen when the con-
straining power of the stars is not sufficient for the log-likelihood
hyper-surface to show a strong global maximum at maximum-
likelihood value; cases generally corresponding to weak ISM
polarization signal, or low star density around the dust cloud.
In such an occurrence, the fit fails and should be disregarded.

We found that (i) the relative difference between the cloud
parallax at maximum log-likelihood with the parallax of the clos-
est star to the input cloud, and (ii) the fact that the cloud parallax
at maximum log-likelihood appears in (one of) the main modes
of its posterior distribution are two criteria that jointly allow us
to assess the quality of our fit on ϖC in addition to the rejection
of fits with posterior distribution squeezed on one of the prior
limits. If the maximum-likelihood parallax value belongs to (one
of) the main modes, then the fit is valid and the relative differ-
ence tells us about the accuracy of the recovered cloud parallax.
To decide whether the maximum-likelihood parallax belongs to
a significant peak, we analyze the posterior distribution using
the peak-finder algorithm find_peaks of the Python library
Scipy which identifies all local maxima through simple com-
parison of neighboring values. Applying it to the marginalized
parallax posterior distribution we identify the peaks and their
boundaries (i.e., we find local maxima of the marginalized PDF
and the range between the two adjacent local minima of each
of those). We compute the fraction of the PDF corresponding
to each peak. If the fraction associated to the peak to which the
maximum-likelihood belongs is higher than a given threshold,
then we consider the peak as (one of) the dominant one(s) and
the fit as valid. We refer to this, and the detection of squeezed
posterior distribution on one of the prior limit, as the criterion
on ϖ̂C. We use a threshold of 0.5 in what follows and make sure
that our results do not depend sensitively on this choice.

Second, to quantify the accuracy with which we recover the
mean Stokes parameters of the clouds, we rely on the computa-
tion of the Mahalanobis distance of the true values with respect
to the bivariate posterior distributions of the cloud Stokes param-
eters. If c⋆ = (qC uC)† is the vector of true mean polarization of
the cloud, ĉ = (q̂C ûC)† is the value at maximum-likelihood, and
Σ̂ is the covariance matrix computed from the re-sampling of the
estimated posteriors, the Mahalanobis distance is given by:

dMaha(c⋆|ĉ, Σ̂) =
√

(c⋆ − ĉ)† Σ̂−1 (c⋆ − ĉ). (18)

It is also useful to introduce the Mahalanobis distance
between the bivariate posterior distribution on the cloud paral-
lax and the point (0, 0) of the polarization plane. This distance,
labeled dMaha(0|ĉ, Σ̂) obtained by substituting the true polariza-
tion of a cloud by zero, is a measure of the significance with
which a cloud polarization is detected given the data and the
sensitivity of the inversion method.

The distance dMaha(c⋆|ĉ, Σ̂) determines whether the “true”
Stokes parameters are located, and centered, within the respec-
tive bivariate distribution. However, if the reconstruction method
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Fig. 8. Representation of the model evidences obtained for the single-cloud LOS (left) and two-cloud LOS (right). The data points are the same
as in Fig. 1. The shaded areas illustrate the distributions of (qV, uV) obtained at every µ value through re-sampling of the posterior distributions
obtained from the maximum-likelihood analysis of the data, as explained in the text.

fails at recovering the cloud distance for example, the posterior
distributions estimated from the sampling method can become
arbitrarily large. In such a scenario, it is useful to consider
both the absolute Euclidean distance between the pair of Stokes
parameters at maximum-likelihood value and the corresponding
true values and the effective size of the estimated posteriors. We
use the Euclidean distance defined as

L2 =

√
(qC − q̂C)2 + (uC − ûC)2, (19)

and we infer the sizes of the posterior distributions on qC and
uC by considering the ratio (ξ) of the posterior sizes that are
expected in ideal cases to the measured sizes from the estimated
posteriors. If the cloud Stokes parameters were constrained only
from Nbg stars all with uncertainties of 0.1% (minimal value
in our simulated data), the expected size of the posterior is
(0.1 [%]/

√
Nbg). We call this estimate ideal in the sense that, in

addition to considering the smallest possible polarization uncer-
tainties, it neglects possible correlation between qC and uC, the
presence of intrinsic scatter, the presence of foreground stars -
which add noise to the reconstruction-, and scrambling along
LOS distance from parallax uncertainties. Within the low S/N
regime explored in this section, we found that the parameter

ξ = 2
0.1 [%]√

Nbg
√
σ̂qC σ̂uC

, (20)

where σ̂qC and σ̂uC denote the standard deviation (in %) of the
respective estimated posteriors, generally takes values around
unity for well-behaved fits and takes small values when the cloud
polarization is not well-constrained.

In summary, a reliable reconstruction of the ISM structure
along the LOS is expected if, simultaneously, we have a well
behaved posterior on cloud parallax with small relative differ-
ence (between the cloud parallax at maximum-likelihood and the
parallax of the star closest to the input), a low L2 distance and ξ
above a threshold which we choose to be 0.5.

4.3. One-layer cases

In this subsection we explore the behavior and the performance
of our inversion method for several cases of a single cloud along

the LOS. We made sure that our inversion method works equally
well for any position angle of the magnetic field and will not
make any distinction in what follows even though we let it vary
to generate our simulated data. We want to infer the power of our
method at recovering the cloud distance and at recovering the
Stokes parameters when the amplitude of the polarization sig-
nal varies, the distance of the cloud varies, and the amplitude
of the intrinsic scatter varies. For a given sample of stars, the
choice of cloud distance affects the number of stars in the fore-
ground and the background that are available to constrain the
model. The amplitude of the (mean) polarization signal depends
on both Pmax and γBreg and both should therefore be explored.
The amplitude of the intrinsic scatter directly affects the amount
of scatter in the (qV, uV) plane for background stars only.

Given a sample of stars, we choose the cloud distances such
that 90%, 70%, 50%, 30%, and 10% of the stars are in the
background of the cloud and hence, useful to constrain the polar-
ization properties of the cloud. The lower the fraction of stars
in the background ( fbg), the larger the distance of the cloud,
and the larger the parallax uncertainties of stars in the distance
neighborhood of the cloud. Thus, we expect larger relative differ-
ences in cloud parallax, and consequently larger L2 and smaller
ξ, at small fbg than at large fbg. In practice, however, this picture
may be changed due to the imposed prior on cloud parallax and,
in particular, due to the lower limit on which the cloud paral-
lax posterior may be squeezed. Those cases, that anyway do not
pass the criterion on ϖ̂C, may show small relative differences on
cloud parallaxes simply because of the limit of the prior on ϖC
is close to the input cloud parallax value. In such cases, though,
the posterior on the mean polarization Stokes parameter should
be broader than expected (i.e., showing low ξ values).

For a fixed level of intrinsic scatter with Aturb = 0.2 and the
mean star sample with a 1◦ diameter beam, and for all values of
fbg, we first study the impact of pC, the degree of polarization
induced by the cloud to background stars, on the quality of the
reconstruction of the ISM structure along the LOS. For this sam-
ple made of 345 stars the fbg cuts correspond to cloud distances
of about 270, 565, 790, 1050, and 1712 pc. To avoid mixing
possible dependence on Pmax and γBreg , we impose the regular
component of the magnetic field to be in the POS (γBreg = 0◦)
and only vary Pmax from 0.05% to 0.3% in steps of 0.05%.
We further consider 10 realizations for each pair of ( fbg, Pmax)
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varying the POS position angle of Breg. This generates a set of
300 simulated samples of starlight polarization data to which we
apply our inversion method. Each sample is analyzed through
our maximum-likelihood method using the one-layer model. We
consider relatively loose flat priors on the six parameters with
{qC, uC} ∈ [−2%, 2%], {Cint,qq, Cint,uu} ∈ [0, 10−4], |Cint,qu| ≤

10−4, and ϖC in the range corresponding to distances between
100 and 3500 pc. A value of {Cint,qq = 10−4 corresponds to an
intrinsic scatter of 1% on Stokes q. For convenience, the defini-
tions of these priors are repeated in Table 2. We consider 1000
live points and sample the parameter space until we reach a tol-
erance on the estimated log-evidence below 0.1. Generally in our
cases, this corresponds to an uncertainty on the log-evidence on
the order of one part per 10 000.

We subsequently analyze the posterior distributions, flag
reconstructions with odd posterior on ϖC (i.e., those not pass-
ing the criterion on ϖ̂C), and evaluate the three quantities with
which we intend to qualify the goodness of the reconstruction:
the relative difference between the ϖ̂C and the parallax of the
star that is nearest to the input cloud, the L2 distance between
(q̂C, ûC) and the true (qC, uC), and the parameter ξ which com-
pares the sizes of the posteriors on (qC, uC) with the ideal ones
(see above). For the reconstructions that pass the criterion on ϖ̂C,
we checked that there is no bias in the recovered mean polariza-
tion properties of the cloud; (q̂C, ûC) is always found close to the
input (qC, uC) within uncertainties.

We present in Fig. 9 our results on parallax relative differ-
ences (top), L2 (middle) and ξ (bottom) as a function of the
true pC for the five cloud distances corresponding to the five
fbg thresholds. The different colors indicate different fbg val-
ues, the solid lines connect the medians obtained for each fbg
at the different Pmax values (all fits). The scatters and offsets in
ptrue

C about multiples of 0.05% observed in the figure originate
from the presence of the intrinsic scatter. Filled (empty) symbols
indicate fits that pass (do not pass) the criterion on ϖ̂C.

As a general trend, we see that the performance on both cloud
distance and cloud polarization properties is generally good for
the cases with ptrue

C ≳ 0.1%. Below this threshold a significant
fraction of reconstructions lead to pathological posterior dis-
tributions on cloud parallax. In practice those reconstructions
should be disregarded. Pathological reconstructions also extend
to larger ptrue

C for cases corresponding to fbg = 10%. This is
due to both a lower number of stars to constrain the model
parameters and larger parallax uncertainties. Running the same
performance test using starlight polarization samples in the 0.5◦
diameter beam, we find that it is the number of stars in the
background of the cloud that is the dominant factor, as patho-
logical cases are found at larger fbg on the order of 30% in tested
cases (not shown). It is difficult to constrain the distance of a
(relatively) far away cloud beyond which only about 30 stars
provide constraints.

When ptrue
C ≳ 0.1%, the relative differences in cloud parallax

obtained for most of the reconstructions with well-behaved ϖC
posteriors are found below the level of 5% regardless of the cloud
distance. The Euclidean distances L2 indicate a good accuracy at
recovering the cloud mean polarization, with about 90% of the
valid reconstructions leading to an L2 below 0.05%. The larger
the fbg, the smaller L2, thus the more accurate the reconstruction.
This is an expected feature since for lower fbg, the reconstruc-
tions can be noisier due to both the presence of (an increasing
fraction of) foreground stars and a smaller amount of stars con-
straining the cloud polarization properties. This is also seen in
the ξ panel. For the valid reconstructions, the posterior distribu-
tions get larger (ξ decreases) when fbg decreases, thus lowering
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Fig. 9. Performance of the inversion method as a function of the true
polarization signal for different cloud distances, probed by the val-
ues of fbg, shown in the legend and given in per cent. The method is
applied to simulated data from the 1◦ aperture star sample (345 stars).
Top: relative difference between the cloud parallax at maximum log-
likelihood with the parallax of the closest star to the input cloud
(2 (ϖ̂C −ϖclosest)/(ϖ̂C +ϖclosest)). Middle: L2, distance between the true
and estimated mean polarization vector. Bottom: ξ, the ratio between
ideal and estimated posterior size on clouds’ Stokes parameters. Pmax
varies in multiples of 0.05%, γBreg = 0◦ and Aturb = 0.2 and 10 simu-
lated samples are obtained by varying ψBreg . For the same fbg, the solid
lines connect the median of the 10 reconstructions on simulated samples
with the same Pmax. Filled (empty) symbols correspond to fits that pass
(do not pass) the ϖ̂C criterion explained in the text.

the significance with which a cloud can be detected given the
data. The sizes of the posteriors on the Stokes parameters seem
to be well determined irrespective of ptrue

C as soon as the recovery
of the cloud distance is successful.

We show in Fig. 10, the significance of the detection of the
cloud defined as the Mahalanobis distance of the zero polariza-
tion with respect to the estimated posterior distributions on the
cloud polarization as a function of ptrue

C . As expected, the signif-
icance with which a cloud can be detected depends both on the
amplitude of the polarization signal that it induces to the back-
ground stars and on the fraction of stars in the background. The
larger the ptrue

C and the larger the fbg, the larger the detection
significance.
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Fig. 10. Significance of the cloud detection (dMaha(0|ĉ, Σ̂)) as a function
of the input cloud polarization and for the several fbg values corre-
sponding to the same reconstructions characterized through Fig. 9. The
horizontal lines indicate threshold values corresponding to detection
levels with 68%, 95%, 99%, and 99.98% probabilities of finding a dis-
tance lower than threshold. Symbol and color conventions are the same
as in Fig. 9.

We repeat the performance analysis presented above with a
level of intrinsic scatter given by Aturb = 0.1. Owing to the fact
that the intrinsic scatter is explicitly accounted for in the max-
imized log-likelihood, the performance on cloud parallax and
mean polarization is only slightly better in this case than in the
case of Aturb = 0.2.

We finally repeat our performance analysis using starlight
polarization data simulated from the mean star sample in a 0.5◦
diameter beam. The sample is made of 85 stars. The general
picture depicted above remains similar. However, the decreased
number of stars (a factor of about four) naturally implies a less
accurate and precise reconstruction of the ISM along the LOS.
The cloud parallaxes can be recovered with a relative differ-
ence lower than 15% for a majority of good reconstructions but
we found more reconstructions that do not pass the criterion
on ϖ̂C. The drop in precision is due to the loss in density of
stars that effectively sample the distance axis along the LOS.
In what concerns the polarization properties, only 55% (80%) of
the reconstructions that pass the criterion on ϖC and with ptrue

C >
0.1% show an L2 distance lower than 0.05% (0.1%). No bias is
observed and the sizes of the posteriors are well defined. Due
to the reduced number of stars (and the low polarization consid-
ered here) several reconstructions lead to cloud detections that
do not exceed the level of 2σ (dMaha(0|ĉ, Σ̂) ≳ 2.45). However, for
fbg ≥ 0.5 (corresponding to cloud distances lower than ≈750 pc)
and ptrue

C ≳ 0.1%, most of the reconstructions are successful and
the cloud is detected at high significance (dMaha(0|ĉ, Σ̂) > 4.12).

We now investigate the possible effects of the inclination
angle of the magnetic field with the POS on the performance
of our inversion method. For this purpose we create a new set
of simulated starlight polarization samples for the 1◦ diameter
beam. We fix Aturb = 0.2, explore the five thresholds in fbg, sam-
ple the inclination angle γBreg from 0◦ to 75◦ in steps of 15◦ and
adapt the Pmax values so that the observed pC values are similar
and approximately about 0.2% using Pmax = 0.2/ cos2(γBreg ) [%].
We generate 10 simulated samples for each pair of (γBreg , Pmax)
by varying ψBreg . As before, we then apply our inversion method
and study its performance. The results are shown in Fig. 11. For
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Fig. 11. Performance of the inversion method as a function of ∼γB, the
inclination angle of the magnetic field with respect to the POS. Con-
ventions are the same as in Fig. 9. In absence of intrinsic scatter the
abscissa would correspond to cos(γBreg ).

fixed fbg, the relative differences in parallax and the L2 distances
show very little dependence on the inclination angle. A mild
dependence is observed for ξ: the larger the inclination angle
the larger the size of the posteriors. However, the panels in L2
and ξ clearly demonstrate that it is the number of stars in the
background of the cloud that is decisive for the performance of
the inversion method. For a similar degree of polarization, a low
number of stars in the background of a far away cloud prevents
us from recovering the cloud parallax with great accuracy and
leads to loose constraints on its polarization properties. The lat-
ter is also seen in Fig. 12 where we show the significance with
which the polarization of the cloud is detected compared to zero.
A mild dependence of the significance as a function of the incli-
nation angle is observed although we made sure that the mean
degree of polarization is similar for all γBreg . The more the mag-
netic field is inclined on the LOS the less the significance of the
detection in the polarization plane. This is due to the fact that
the scatter in starlight polarization is larger for higher inclination
angles.

To summarize, for the case of a single cloud along the LOS
we find that our inversion method is effective in recovering
the cloud properties (parallax and mean polarization) when the
polarization signal induced by the cloud to background stars is
at least at the level of ≈0.1%. This threshold corresponds to the
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Fig. 12. Significance of the cloud detection in polarization as a function
of ∼ cos(γB). Conventions are the same as in Fig. 10.

minimum uncertainty in Stokes parameters of individual stel-
lar measurements that we introduce in our mock observations
to account for systematic uncertainties. Below this threshold
the cloud parallax is not well recovered and we only recover
loose constraints on the cloud polarization properties. Above
this threshold the cloud parallax is recovered with high accu-
racy which increases with both the amplitude of the polarization
signal and the fraction of stars in the background of the cloud.
The latter also implies that the distance of far away clouds is
generally recovered with less accuracy than for nearby clouds.
Meanwhile, useful distance (parallax) constraints can be placed
for all clouds nearer than about 750 pc even when considering
star samples in a 0.5◦ diameter beam. We find that as soon as the
cloud parallax is well recovered, the cloud polarization is recov-
ered without bias and detected with a significance that depends
on both the amplitude of the input polarization signal and the
number of stars in the background of the cloud. The precision
on cloud mean polarization can be as low as 0.05% for realistic
cases, owing to the number of constraining stars. We find that, for
fixed amplitude of induced polarization signal, the inclination of
the magnetic field with respect to the POS (within the investi-
gated range) does not affect the precision on the recovered cloud
mean polarization degree but slightly changes the significance
with which the polarization is detected. For realistic settings we
additionally do not find a strong dependence of the performance
of our method on the level of intrinsic scatter.

In conclusion, as soon as the polarization signal induced by a
cloud to background stars is larger than the minimum uncertain-
ties on individual polarization measurements and that at least
about 30 stars are in the background of the cloud, our inver-
sion method is effective in constraining the cloud parallax and
its mean polarization properties. When the polarization signal is
weaker or the number of background stars is smaller than that,
the data are too limited to allow for the presence of the cloud to
be identified with confidence. In these cases, the parameters are
poorly constrained leading to unreliable reconstructions. These
correspond to the pathological cases which we have shown how
to identify. For most of these cases, the AIC values correspond-
ing to a zero-layer model (i.e., no cloud along the LOS) are found
to be lower than the AIC obtained with the one-layer model,
suggesting no evidence for any cloud along the LOS given
the data.

4.4. Two-layer cases

In this subsection, we test the performance of the method at
recovering the structure of the magnetized ISM along the LOS
when there are two clouds. Specifically, we are interested in
exploring the limiting conditions that could lead to an imprecise
reconstruction. In this respect, for a fixed level of stellar polar-
ization uncertainties, we may generally expect that the overall
performance of our inversion method will depend on the respec-
tive distance of the two clouds (affecting the number of stars
in the foreground and the background of each cloud but also in
between the clouds), the relative amplitude and weakness of the
polarization signals as compared to noise and intrinsic scatter,
and possibly the difference in magnetic field orientations.

Given the results presented in the previous subsection we
might expect to be unable to recover the cloud properties (dis-
tance and polarization) when the far-away cloud has low polar-
ization and or large distance. The detection of this second cloud
may also be more difficult due to the additional scatter induced
by the presence of a foreground cloud that not only modifies the
zero-mean but also adds dispersion due to the intrinsic scatter.
The contributions from the intrinsic scatter in the two clouds
will also add for the stars in the background of the second cloud.
Additionally, in cases where there are too few stars in between
the two clouds or too few stars in the background of the far-away
cloud, we expect that cloud properties of the nearby cloud might
not be well retrieved because most of the polarization signal will
then be attributed to only one of the two clouds. Generally, if the
properties of one of the two clouds are not well recovered, this
will automatically affect the reconstruction of the second cloud
and therefore might compromise the overall reconstruction. We
attempt to assess and quantify any such dependencies in this sub-
section by applying our inversion method to simulated starlight
polarization data obtained from our toy model.

We narrow the range of possible ISM configurations by
focusing on most realistic sky conditions. We fix the distance
of the nearby cloud at 350 pc from the Sun. At high Galactic lat-
itudes, this corresponds roughly to the maximum distance of the
dusty and magnetized shell of the Local Bubble that surrounds
the Sun (e.g., Skalidis et al. 2018; Pelgrims et al. 2020) and there-
fore the maximum distance at which we expect a LOS to have
intersected the nearest cloud. In our star sample with 1◦ diame-
ter beam, this leads to about 55 and 290 stars in the foreground
and background of the nearby cloud, respectively. Additionally,
we fix the inclination angle of the magnetic field permeating
the nearby cloud to 30◦, fix its Pmax so that pC = 0.2% and
adopt a position angle of 22.5◦ to distribute equally the polariza-
tion signal over both Stokes parameters. According to the results
obtained in the previous subsection, the properties of such a
cloud are expected to be well recovered by our inversion method
if this cloud is alone along the LOS.

We add a second cloud along the LOS and vary its distance,
degree of polarization, and magnetic field position angle. We
choose to fix the distance of the second cloud so that 90%, 70%,
50%, 30%, and 10% of the stars in the background of the nearby
cloud are also background to the far-away cloud. The fraction of
stars in the background of the nearby cloud that are also back-
ground to the more distant cloud is denoted fbg2. Namely, the
second cloud is placed at distance of about 520, 685, 900, 1150,
and 1800 pc. The number of stars in between the two clouds are
respectively ∼30, 90, 145, 200, and 260. For each cloud distance,
we then vary the degree of polarization that the second cloud
induces to its background stars and the relative position angle of
the magnetic field in the far-away cloud with respect to the one
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Fig. 13. Performance of the inversion method to retrieve properties of
the distant cloud for two-cloud cases, as a function of pC2 and for all
fbg2 values. Conventions are the same as in Fig. 9 except that filled sym-
bols correspond to reconstruction in which both ϖC1 and ϖC2 pass the
selection criterion.

in the nearby cloud (∆ψ1,2) as follows: pC2 ranges from 0.1% to
0.25% in steps of 0.05%, and ∆ψ1,2 takes values from 0◦ to 150◦
in steps of 30◦. We fix the inclination angle of the magnetic field
in the far-away cloud to be zero. The level of intrinsic scatter in
both clouds is set to Aturb = 0.2. Lowering this value in one or
both of the clouds might result in slightly better performance.

We generate four random realizations of the simulation set-
tings just described. In total, we consider 480 configurations for
the magnetized ISM structure along the LOS, to each of which
corresponds a mock starlight polarization sample of 345 stars.
We apply our inversion method to each of these samples using
a two-layer model. For all cloud parameters, except for the par-
allax, we consider flat priors as used before. For the parallaxes
of the clouds, we define a flat prior so that the distance of the
nearby cloud can range from 100 to 600 pc and the distance of
the far-away cloud can range from 300 to 3500 pc. As before, we
use 1000 live points and we sample the parameter space until we
reach a tolerance on the estimated log-evidence below 0.1. Then,
we analyze the resulting posterior distributions and characterize
the results as before to infer the performance of the method.

In Fig. 13, we show the relative differences between the
parallax of the second cloud obtained at maximum-likelihood
value as compared to the parallax of the closest star to the input

cloud parallax, the L2 distances on second cloud mean polariza-
tion (LC2

2 ) and the ratio ξ of ideal-to-actual size of the posterior
distributions on mean polarization for the second cloud (ξC2).
Similarly to Fig. 9, we show the results for all values of fbg2,
the fraction of stars in the background of the nearby cloud that
are also in the background of the far-away cloud, and present the
data as a function of the true degree of polarization input to the
far-away cloud. In this case, the filled (empty) symbols corre-
spond to fits in which the posterior distributions of both cloud
parallaxes pass (do not pass) the ϖ̂C criterion.

We first notice that a large fraction of fits do not pass the joint
selection criterion on cloud parallaxes. In fact, while most of the
posteriors on ϖC1 pass the criterion (more below), about 45%
of the reconstructions lead to posterior distributions on ϖC2 that
do not pass it. Invalid posterior distributions generally appear for
large fbg2 values and for low ptrue

C2 values, irrespective of fbg2. As
soon as pC2 ≳ 0.1% and fbg2 ≲ 70%, the posteriors on cloud par-
allaxes are valid and lead to reasonable constraints for more than
75% of the cases (this is for the cases that we have investigated,
probing the limits of the method capabilities).

Generally, for both valid and invalid posterior distributions
on ϖC2, the parallax of the nearby cloud is well constrained
close to the input values. This is true except for a few cases
which correspond to large values of fbg2, pC2 ≳ pC1, and partic-
ular ∆ψ1,2 which make it impossible to differentiate the bivariate
distribution of (qV, uV) in the inter-cloud region from the bivari-
ate distribution in the background of the more distant cloud. In
such cases, because of the low number of stars sampling only the
nearby cloud (≈30), because of the high level of uncertainties in
individual polarization measurements, and because of the pres-
ence of the intrinsic scatter, the fit attributes all the polarization
to only one of the two clouds which turns out to be the nearby one
in order to account for the dispersion seen in the (qV, uV) plane.
When pC2 ≈ pC1, the cloud is placed much closer than the input
value when ∆ψ = 90◦ or much farther than the input value when
∆ψ = 0◦. The reason is that when ∆ψ ≈ 90◦, the mean polar-
ization of all the stars in the background of the second cloud
approximate zero while in the case ∆ψ ≈ 0◦ the majority of the
those stars have a degree of polarization around 0.4%. The cloud
distance is adapted to ensure the best compromise to minimize
the residuals of individual star polarization and thus, to maxi-
mize the likelihood. When the polarization of the second cloud
is lower, this dependence on ∆ψ tends to vanish simply because
the induced polarization is somewhat negligible as compared to
the polarization (and scatter) induced by the foreground cloud
which are loosely constrained by only 30 stars. The tendency to
drive the cloud parallax far away from the input value is thus not
significant and the parallax of the nearby cloud is found close to
its input value. In any case, when the second cloud is too close
to the nearby cloud, the second-cloud parallax is not well recov-
ered and it exhibits a pathological posterior. Such a fit should
therefore be disregarded.

For reconstructions that satisfy the ϖ̂C criterion for both
clouds, we find that the relative differences on ϖC1 are below
15% for 98% of the studied cases (or below 5% in 58% of the
cases) and that of ϖC2 are below 15% for 80% of the studied
cases (or below 5% in 60% of the cases). For the nearby cloud,
the Euclidean distances (LC1

2 ) between the true Stokes parame-
ters and those at maximum-likelihood differ by less than 0.05%
in degree of polarization in 90% of the cases (or below 0.1% in
99% of the cases) and the ξ values corresponding to these recon-
structions are generally at about one or greater. Thus we find
very good accuracy and precision on the retrieved mean polar-
ization of the foreground cloud. For the far-away cloud, the LC2

2
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are below 0.05% in 59% of the cases (or below 0.1% in 84%
of the cases) and the ξ values are lower than one but above 0.5
for 64% of the valid reconstructions (regarding the ϖ̂C criterion).
The fact that ξC2 is generally lower than ξC1 is related to the pres-
ence of the intrinsic scatter already induced by the nearby cloud
in addition to the one in the second cloud. We note that none of
these is accounted for in the ideal estimate of the posterior size
while computing the ξ ratio. Therefore we find that the mean
polarization properties of the far-away cloud are also generally
well retrieved as soon as pC2 ≳ 0.1% and if fbg2 ∈ [70%, 30%],
that is, if the number of stars in the inter-cloud region is large
enough and if there are not too few stars in the background of
the second cloud to constrain its properties.

In summary, we find that the inversion method works effi-
ciently for a large range of possible configurations of the
magnetized ISM with two clouds along the LOS. It fails at recov-
ering the ISM structure if the mean polarization of the second
cloud is comparable to the systematic uncertainty in the starlight
polarization (i.e., if pC ≈ 0.1%), if the number of stars in the
inter-cloud region is smaller than ≈30, or if the number of stars
in the background of the far-away cloud is lower than ≈30. In
those cases, the method generally leads to satisfying constraints
on the nearby cloud unless the magnetic fields in both clouds
are mostly parallel or perpendicular to each other and there are
too few stars (≲30) constraining the nearby cloud polarization
properties.

4.5. Test on model selection

Finally, for our tests of method performance, we want to explore
the use and relevance of our model selection criteria, using sta-
tistical evidence, the AIC, or both, to choose among the different
trial models (i.e., to choose how many clouds are on the LOS),
as described in Sect. 3.5. We limit our investigations to single-
and two-layer cases in the low polarization regime and defer
the exploration of more complex cases that might occur toward
denser ISM regions than those anticipated for the PASIPHAE
survey to further dedicated work.

We generate mock starlight polarization catalogs from the
star sample within the 1◦ beam, placing either one or two clouds
along the LOS as described below. We then apply our inversion
method testing the one-layer and the two-layer models one after
the other. We check the results of each reconstruction and flag
those with pathological posterior distributions on cloud parallax,
we record the evidence of the model given the data and estimate
the value of the AIC from the obtained maximum log-likelihood,
and finally proceed to model comparison.

4.5.1. One-cloud mock samples

We first consider the case when one dust cloud is introduced
along the LOS. We use our toy model to produce the set of mock
starlight polarization samples. We fix the distance of the cloud
at 350 pc, impose a ptrue

C ≃ 0.2% with γBreg = 30◦, and a level of
intrinsic scatter given by Aturb = 0.2. We then vary the position
angle of the magnetic field from 0◦ to 162◦ in steps of 18◦ and
finally generate 10 random realizations of each setup. In total,
this makes 100 mock samples.

When using the one-layer model, we find that all reconstruc-
tions are valid in terms of the shape of the posterior distribution.
Only 12 reconstructions from the two-layer model are valid in
this respect, i.e., that posteriors on both ϖC1 and ϖC2 pass the
selection criterion, implying that the one-layer model should
already be favored against the two-layer model in 88% of cases.

We find that the evidence is higher for the one-layer model
than for the two-layer model in all cases. 20% show an AIC
lower for the two-layer model than for the one-layer model but
the probability that, among the two tested models, the one-layer
model actually minimizes the loss of information never goes
below 36%. However, when limiting ourselves to the 12 sam-
ples for which we obtain valid reconstructions with the two-layer
model, the AIC values are always lower for the one-layer model
than for the two-layer model. The probability that, instead, the
two-layer model actually minimizes the loss of information
(P2L|{1L,2L}) reaches a value as high as 20% for one case but
more than half (a quarter) of the samples show this probabil-
ity below the 5% (1%) threshold. We check that for the cases
with P2L|{1L,2L} ≳ 1% the significance of the far away cloud does
not reach the 2σ-detection threshold (i.e., dMaha(0|ĉ, Σ̂) < 2.45 in
all cases), meaning that the contribution to polarization from the
model-retrieved far-way cloud is compatible with zero.

4.5.2. Two-cloud mock samples

We consider mock samples with two clouds along the LOS. The
first cloud is fixed at 350 pc distance from the Sun and has pC1 ≃

0.2% with an inclination angle of 30◦ and Aturb = 0.2, as for the
1-cloud mock samples used above. The POS position angle of the
magnetic field in the nearby cloud (ψBreg ) is fixed at 22.5◦. The
second cloud is placed at a distance such that fbg2 = 70%. This
corresponds to a distance of about 685 pc which implies that only
about 90 stars are located in the inter-cloud region, thus directly
constraining the nearby cloud’s polarization properties. We fix
the inclination angle to 0◦, vary ∆ψ1,2 from 0◦ to 150◦ in steps
of 30◦ as before, and consider two values for the far-away cloud
polarization: pC2 ≃ 0.15% and 0.2%. We consider 10 random
realizations of each setup making a total of 120 mock samples;
60 for each pC2 value. According to previous tests, we know
that a significant fraction of runs with pC2 ≃ 0.15% will end
with pathological posteriors cloud parallaxes but that this frac-
tion should decrease, but not vanish, for pC2 ≃ 0.2% as inferred
from Fig. 13.

In the cases with pC2 ≃ 0.15%, we find that only 24 out of
60 trials lead to nonpathological posterior distributions of the
cloud parallaxes. This implies that due to the low polarization
induced by the second cloud (with respect to the level of noise
and intrinsic scatter), we could detect the presence of the cloud
in only about 40% of the cases. However, out of the 24, 23 have
evidence higher for the one-layer model than for the two-layer
model. According to the evidence, the two-layer model is to be
favored in only one case out of 60. On the other hand, the AIC
values are lower for the two-layer model than for the one-layer
model (thus favoring the two-layer model) for 20 cases out of the
24 and the probability that instead the two-layer model should
actually minimize the loss of information is higher than 1%, and
as high as 10% for the four remaining cases. The comparison of
the AIC values thus suggests that the two-layer model is to be
favored in more than 80% of the cases that pass the selection
criterion on ϖC. The hypothesis of a two-layer model is never
rejected in those cases.

In the case with pC2 ≃ 0.2%, we find that 44 out of 60 trials
lead to nonpathological ϖC posterior distributions. Out of 44,
14 exhibit an evidence larger for the one-layer model than for the
two layer-model, thus suggesting that the one-layer model is to be
favored in about 30% of the valid reconstructions. However, the
AIC values indicate that the one-layer model has to be preferred
in only one case out of 44 and yet, for this case, P2L|{1L,2L} > 5%
which implies that the possibility for a two-layer model cannot be
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disregarded. Therefore, while the evidence favors the two-layer
model in only about 70% of the cases that pass the criterion on
ϖC, the AIC criterion does it in more than 97% of the cases and
never rejects the hypothesis of a two-layer model.

4.5.3. Conclusion

When testing the one-layer and two-layer models on mock sam-
ples generated with a 1-cloud model, we find that both the
evidence and the AIC criterion favor the one-layer model. Hints
for the presence of a spurious second cloud (corresponding to
case where P2L|{1L,2L} ≳ 1%) may be encountered in less than
10% of the cases but none exhibit a significant detection in the
polarization plane.

When testing the one-layer and two-layer models on mock
samples generated with 2-clouds in both regimes where patho-
logical reconstructions are dominant and subdominant, we find
that comparison of AIC values is more sensitive to the presence
of a second cloud than is the comparison of the evidences as
it never leads to the rejection of the correct model but instead
favors the correct model for a very large fraction of the cases
that pass the ϖ̂C selection criterion.

As a result, to select between models (number of clouds
along the LOS), and after we disregard reconstructions with
pathological posterior distributions, we prefer the use of the AIC
values rather than the evidences. The comparison of the AIC val-
ues never suggests rejecting the correct model. It might, however,
suggest spurious detection in some cases which, however, do not
lead to an erroneously significant detection of a cloud.

We performed those tests in the low-polarization regime with
a somewhat high level of scatter. We expect our conclusions
to hold and the performance to improve when the polarization
induced by intervening clouds increases with respect to the level
of scatter in the polarization data (for example, a deeper sur-
vey than assumed here, or for regions of the sky with higher
polarization).

5. Application to observational data

In this section we apply our Bayesian inversion method to exist-
ing observations of stellar polarization toward the two LOSs with
known number of clouds presented by Panopoulou et al. (2019b).
We first describe the data, then apply our method, and finally
discuss our results in comparison with the previously obtained
decomposition.

5.1. Archival polarization data in two LOSs of the diffuse ISM

Panopoulou et al. (2019b) demonstrated that it is possible to per-
form a tomographic decomposition of the POS magnetic field by
combining a large number of stellar polarization data obtained
with the RoboPol polarimeter (Ramaprakash et al. 2019) and
Gaia distances. They selected two neighboring LOSs in the
diffuse ISM which have different number of clouds along the
LOS, as determined by their H I spectra. One sightline exhibits
two distinct peaks (velocity components) corresponding to two
clouds overlapping on the POS (2-cloud region). The other sight-
line exhibits a single prominent peak (1-cloud region). They
obtained stellar polarimetry for ∼100 stars in each of these 0.32◦-
wide circular regions, and were able to recover the polarization
properties of each cloud separately.

We choose to work with this data set as it is the only one, to
the best of our knowledge, that approaches the expected spatial
density of stellar measurements of the PASIPHAE survey in the

Fig. 14. (qV, uV) − µ plane for the polarization data in Panopoulou
et al. (2019b). Top and bottom panels correspond to their 1-cloud and
2-cloud regions, respectively. The relative Stokes parameters qV’s are
shown by dark green circles and the uV’s are shown by blue diamonds.
Vertical and horizontal errorbars show the 68% confidence level on
measurements on polarization and distance modulus, respectively. For
visualization purposes we omit to show two stars at distance modulus
1.6 and 18.6 in the 1-cloud region.

optical, while targeting the diffuse ISM. We caution that despite
this similarity, the aforementioned data set is not directly rep-
resentative of the kind of data expected from PASIPHAE, for the
following reasons. First, the selected regions in Panopoulou et al.
(2019b) are at intermediate latitude, with mean stellar polariza-
tion of ∼2%, thus a factor of several higher than the average
polarization expected at high Galactic latitudes. Second, their
observing strategy did not mimic a survey with fixed expo-
sure time, so that the uncertainties do not reflect exactly those
expected by PASIPHAE. Nevertheless, the aforementioned data
set remains the most appropriate one to test our Bayesian method
and compare directly to the results of the existing tomographic
decomposition presented in Panopoulou et al. (2019b).

In Fig. 14, we show their data in the (qV, uV) − µ plane, also
showing uncertainties in both polarization and parallaxes (prop-
agated to distance moduli). As noted in this previous work, the
stellar data show systematic differences in the stellar polarization
properties between the two regions, as a result of differences in
the ISM across the sky (e.g., dust column density).

5.2. Results and comparison to previous work

We apply our inversion method to those two regions separately,
trying models with one to three layers. We use flat priors on our
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Table 3. Statistics for model comparison from inference of data in Panopoulou et al. (2019b).

1-Cloud LOS 2-Cloud LOS

Model Ẑ log L̂ AIC P j|{m} (%) Ẑ log L̂ AIC P j|{m} (%)

1-layer 671.1± 0.2 688.7 –1365.4 100 757.6± 0.2 775.0 –1538.0 100
2-layer 661.1± 0.3 690.6 –1357.1 1.5 750.8± 0.2 780.1 –1536.3 42.5
3-layer 655.6± 0.3 686.9 –1337.8 1.0 × 10−4 743.9± 0.6 777.4 –1518.9 6.9 × 10−3

six parameters. In the case of multiple clouds, our implementa-
tion choice guarantees that these are at least five stars in between
two successive clouds. In the initialization of the flat priors, we
further impose that all cloud parallaxes must lie in the parallax
ranges defined so that the cloud’s minimum distance is 100 pc
and a cloud’s maximum distance is such that there are at least
ten stars in the background. The limits on cloud parallax thus
depend on the studied sample. The limits defining the parameter
space of the polarization are rather arbitrary. We set a large range
for the mean Stokes parameters of the clouds, from –5% to 5%,
and consider that the elements of the intrinsic-scatter covariance
matrix can go as high as 0.8 × 10−4 for the diagonal elements
(this corresponds to a standard deviation on individual Stokes
at the value of almost 1%). Again, internally, the prior function
ensures that C2

int,qu < Cint,qq Cint,uu for the covariance matrix to
be invertible. The resulting statistics are given in Table 3 and we
discuss the results for each region next.

5.2.1. 1-cloud region

The values of the AICs obtained for the set of tested models
inform us that the one-layer model is preferred by the data in
the sense that it minimizes the loss of information. The proba-
bility P j|{m} that the two-layer model is actually the model that
should minimize the loss of information takes the value of 1.5%
and that probability for the three-layer model is negligible. That
is, there might be an indication for a second cloud in the data of
the 1-cloud region but it is marginal. Assuming there is a sec-
ond cloud along that LOS, the data is not sufficient to make the
significance of the second cloud to show up. However, we have
seen in Sect. 4.5 that such a low value might point to spurious
detection. It is therefore safe to conclude that there is most likely
only one cloud along this LOS.

The analysis of the posterior distributions of the best model
leads to the following results for the cloud. The distance of the
cloud is 382.7+10.9

−23.8 pc and the Stokes parameters are (qC, uC) =
((1.21± 0.05)%, (−1.70± 0.05)%). Here, to summarize the pos-
terior distributions, we report the medians of the distributions
and their 16 and 84 percentiles. By re-sampling the posterior dis-
tributions of the Stokes parameters we obtain the distributions of
degree of polarization and position angle characterized by: pC =
(2.09 ± 0.05)% and ψB = (−27.2 ± 0.7)◦. These values are fully
consistent with those obtained by Panopoulou et al. (2019b) for
their 1-cloud region (dC ∈ [346, 393] pc, pC = (2.04 ± 0.04)%
and ψB = (−27.5 ± 0.6)◦.

For this fit, the parameter values corresponding to the
maximum-likelihood are well centered in the distributions, with
dC = 380.9 pc and (qC, uC) = (1.21–1.71%) . As we have seen in
the previous section, situations with significant offsets between
parameter values at maximum-likelihood and posterior distribu-
tions may happen when the data are not sufficient enough to

Table 4. Summary of posteriors on cloud parameters obtained for the
2-cloud region.

Parameter 1-Layer 2-Layer

cloud 1 cloud 1 cloud 2

dC (pc) 370.1+15.7
−12.1 371.2+15.5

−12.7 2329.0+358.1
−426.2

qC (%) 1.00 ± 0.05 0.96 ± 0.06 0.21 ± 0.18
uC (%) −1.28 ± 0.04 −1.33 ± 0.05 0.19 ± 0.11
pC (%) 1.62 ± 0.04 1.64 ± 0.05 0.32+0.15

−0.12
ψC (◦) −26.0 ± 0.9 −27.1 ± 1 20.6+18.3

−12.6

No es. Values indicates the median of the posterior distributions and the
uncertainties are computed from the posteriors and indicate the offset
from the median to the 16 and 84 percentiles. pC and ψC are built from
posteriors on qC and uC. We show results obtained with the 1-layer and
2-layer models only.

provide strong constraints on the cloud distance. This is not the
case here.

5.2.2. 2-Cloud region

According to our Bayesian inversion method, the one-layer
model is the model preferred by the data available for the 2-cloud
region. Both the evidence and the AIC criteria agree, as reported
in Table 3. However, the probability that the two-layer model
actually minimizes the loss of information is very large (≳40%)
and therefore we cannot reject the hypothesis that a second cloud
exists along this LOS. The probability that the three-layer model
minimizes the loss of information is negligible. The fact that
both the evidence is smaller and the AIC is larger for the two-
layer model than for the one-layer model, likely results from the
fact that (i) fewer stars sample the second cloud and (ii) the sig-
nal of the second cloud is weak as compared to the signal of the
dominant cloud and close to the noise level.

Summary statistics on the cloud model parameters are given
in Table 4 for the case of the one-layer and two-layer model.
For the fits obtained with the one- and two-layer models, the
parameter values corresponding to the maximum-likelihood are
well centered in their respective posterior distributions. We have
dC1 = 369.2 pc and (qC1, uC1) = (1.00–1.28%) for the one-layer
model and dC1 = 360.2 pc and (qC1, uC1) = (0.93–1.33%) and
dC2 = 2380.0 pc and (qC2, uC2) = (0.30–0.14%) for the two-layer
model. The fits and the results are robust and the data are suffi-
cient to generate relatively stable and significant extrema in the
log-likelihood hyper-surface. Therefore, we conclude that it is
somewhat likely that there are two clouds in the 2-cloud region.
The fact that the best-fit parameters of the nearby cloud from
the two-layer model and those from the one-layer model are
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Fig. 15. Posterior distributions for the cloud distance modulus (top) and
cloud mean polarization (bottom) obtained for the 1-cloud region while
fitted with the one-layer model (blue) and for the 2-cloud region while
fitted with the two-layer model with posteriors in green and dark red
for the nearby and faraway cloud, respectively. The contours indicate
the 1, 2, and 3σ confidence levels. The values obtained by Panopoulou
et al. (2019b) are reported, using purple horizontal bands for the distance
modulus on the top panel and errorbars to report polarization in the
bottom panel using the same colors as for the confidence contours we
obtain. Values for the 2-cloud region correspond to their distance cut
that maximizes the detection of the faraway cloud.

very similar demonstrates that the polarization signal is domi-
nated by the nearby cloud. This explains why there is no absolute
strong evidence for a second cloud and that the one-layer model
is ranked first according to the AIC and evidence criteria.

Our method returns results that are consistent with those
obtained by Panopoulou et al. (2019b). To study the 2-cloud
region, they fixed the nearby cloud distance at 360 pc, found
that the far-away cloud distance that maximizes the detec-
tion is dC2 ≈ 1700 pc to which they assigned an uncertainty
of ±440 pc. Using dC2 ≈ 1700 pc, they found that the nearby
and faraway cloud polarization properties were (pC1, ψBC1 ) =
((1.65 ± 0.04)%, (−27.3 ± 0.8)◦) and (pC2, ψBC2 ) = ((0.28 ±
0.07)%, (36 ± 8)◦), respectively.

5.2.3. Results comparison

In Fig. 15, we present and compare the posterior distribu-
tions for the cloud distance modulus and the cloud mean

polarization that we obtain with the one-layer model applied to
the 1-cloud region and the two-layer model applied to the 2-
cloud region. For comparison we also report the values obtained
by Panopoulou et al. (2019b). It is seen that their results are com-
patible with our posterior distributions. The confidence intervals
that we derive from our marginalized posterior distributions are
larger than their uncertainties. This is true in particular for the
polarization parameters of the faraway cloud. The reason is that
our estimates include any possible correlation between param-
eters of the model while their estimates are conditional to the
choice of both cloud distances.

We thus conclude that even applied to actual data, the method
that we have developed makes it possible to perform a tomo-
graphic decomposition of the magnetized ISM in dusty regions.
We emphasize that at no time did we rely on the a priori assump-
tion that there are one or two clouds along the given LOSs. This
shows that our inversion method is a standalone method in the
sense that it can be used blindly on stellar polarization and dis-
tance data, and independently of any other observable, and lead
to a reliable decomposition of the ISM signal along the LOS.

6. Conclusions and discussion

Starlight polarization is a direct tracer of the orientation of the
POS component of the magnetic field in the dusty ISM. When
combined with measurements of stellar distances, starlight polar-
ization has the potential to allow for a 3D reconstruction of the
magnetized ISM in dusty regions. In this paper, and motivated
by the forthcoming leap forward in available stellar polarization
data from the PASIPHAE survey, we have aimed to develop a
robust method to perform such a 3D reconstruction.

We have developed a Bayesian method to reconstruct
the POS magnetized ISM structure along the LOS through
maximum-likelihood analysis of the stellar data alone. Our
method, which relies on a generic model in which dust clouds
have a thickness along the LOS smaller than the typical separa-
tion between stars, accounts for uncertainties in stellar parallaxes
and in the Stokes parameters. It further accounts, in a model-
independent way, for the intrinsic scatter that is expected from
turbulence within individual clouds. We obtained a likelihood
that accounts for all sources of noise and scatter and imple-
mented it in Python. Our code depends on the nested sampling
code dynesty to maximize the log-likelihood function, con-
struct the posterior distributions of the model parameters, and
estimate the evidence. The code, named BISP-1, for Bayesian
Inference of Starlight Polarization in one dimension (along
distance), is made public.

We tested our Bayesian inversion method on mock starlight
polarization data obtained from a self-consistent toy model. We
have demonstrated that our method is effective at recovering
the cloud properties as soon as the polarization signal induced
by a cloud to its background stars is higher than ∼0.1%. When
the minimum (systematic) uncertainty on observed stellar polar-
ization is assumed to be at the level of 0.1% (in the degree
of polarization) and the induced polarization is at a similar
level, we found that ≈30 stars in the background of a cloud are
required to place useful constraints on the cloud properties. The
larger the induced polarization signal is, the better the method’s
performance, and the lower the number of required stars. In
addition, to accurately recover the distances and the mean polar-
ization properties of clouds, we found that our method also
makes it possible to constrain the parameters characterizing
the turbulence-induced intrinsic scatter. This might open new
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avenues in the characterization of the ISM turbulence and esti-
mation of the magnetic field strength. We will explore those
avenues in future works.

We have further demonstrated that our Bayesian inversion
method efficiently recovers cloud properties (distance and polar-
ization) when applied to the actual data sets that were first used
to demonstrate that starlight polarization, coupled to distance
measurements, can be used to decompose the magnetized ISM
signal as a function of distance (Panopoulou et al. 2019b). We
obtained results that are fully consistent with those from the orig-
inal study but within a robust Bayesian framework which allowed
us to build proper posterior distributions on our model parame-
ters of our reconstruction and, therefore, to put our results on
a more solid footing. With this application we have shown that
our method can work independently and blindly on star data to
reconstruct the structure of the magnetized ISM. For example,
we need not rely on external data to inform the method on the
number of components along the LOS. This demonstrates the
strength of our method, as well as the great potential of starlight
polarization as a direct and fully independent probe to the 3D
structure of the magnetized ISM.

Modifications of the sampling method implemented in this
work are possible and could lead to speeding up the calculations.
An example is a profiled-likelihood method that would estimate
on the fly, and from the data, a certain number of the six free
parameters per cloud. For example, the parameters related to the
intrinsic scatter could be estimated from the scatter of the data
points and their observational uncertainties once the cloud dis-
tances are fixed. The main advantage of such an implementation
is the reduction of computing time owing to the reduction of the
parameter-space dimensions. The main disadvantages are that
the log-likelihood hyper-surface is no longer homogeneously
sampled, preventing reliable estimates of the statistical evidence
of a given model (number of clouds along the LOS), and that no
proper posterior distributions of the parameters estimated on the
fly can be safely reconstructed. We postpone the exploration of
such alternative implementations to future work.

In its current implementation, our Bayesian inversion method
relies on the dust-layer model that we have introduced. We expect
for our model assumptions to hold for small beam sizes, so that
any variations in the magnetic field and dust density do not
vary appreciably. However, since a minimum number of stars
is required to constrain the dust-cloud characteristics effectively,
a minimum beam size is determined by both the true distribu-
tion of stars in space and the distance and multiplicity of clouds
in the beam. While the analysis presented here focused on two
beam sizes, we note that the minimum beam size allowed likely
varies with sky position. One likely must evaluate, on a case-by-
case basis, the trade-off between increasing the number of stars
(widening the beam) and minimizing the variations in the ISM
properties on the sky.

Furthermore, although the conceptual dust-layer model is
supported by current observations of the high latitude sky, we
must keep in mind that it might fail to account for all dust along
a sightline and that careful analyses of the results and residu-
als will be mandatory, as it is generally the case in Bayesian
modeling (Romero-Shaw et al. 2022). If, in the future, our sim-
ple layer-model prescription fails to fit the data, the underlying
model will have to be changed, perhaps to be replaced by a
smoother function of the LOS distance. In such a case, the
generalization of the formalism that we have laid out will be
straightforward and somewhat simpler than for the step model
that we have assumed in this paper.

Finally, we must note that we have implicitly assumed in this
paper that the polarization of stars is due to the magnetized ISM,
only. However, stars of certain types may show intrinsic polariza-
tion, likely related to the existence of a circum-stellar disk where
planets form or other asymmetries in the object (e.g., Cotton
et al. 2016; Gontcharov & Mosenkov 2019). These stars usu-
ally show a higher degree of polarization than neighboring stars
with unrelated position angles. In its current implementation, our
method does not account for these intrinsically polarized stars.
Therefore, to apply our decomposition method, the input stellar
sample must have first been cleaned from potentially intrinsically
polarized stars. Various techniques can be used for this purpose
such as sigma clipping. Alternatively, in a Bayesian framework,
we could consider constructing a likelihood of a mixture model
in which the polarization of a star would have a probability of
being due to the ISM or of being intrinsic given some of the
star’s properties. Such an approach to deal with outliers has been
implemented in Zucker et al. (2019) to estimate the distance of
molecular clouds based on the measured stellar extinction. How-
ever, we must defer such efforts to future work, given that basic
statistical information on these sources (e.g. number density of
intrinsically polarized stars per sky location) is currently lack-
ing, and will only be known with the data from future unbiased
surveys.
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Appendix A: Mock starlight polarization data

To test and validate the inversion method presented in this paper
we developed a pipeline to generate mock samples of starlight
polarization data. Our simulation pipeline has the main follow-
ing characteristics: (i) it makes use of star samples extracted
from the Gaia data to guarantee realistic distributions of star
distances, number density, brightness, etc., (ii) it relies on a self-
consistent implementation of the thin-layer dust-cloud model
discussed in Sect. 2 and presented below which includes a pre-
scription for the intrinsic scatter, and finally (iii) it computes
and propagates to the simulated stellar polarization data real-
istic uncertainties as expected for the PASIPHAE survey. These
three parts are described in the rest of this Appendix. We further
explore our toy-model to simulate the polarization signal from
the magnetized ISM in Appendix B.

Our simulation pipeline works as follows. First, we choose a
sample of stars in a small-aperture beam and extract parallaxes,
parallax uncertainties and apparent magnitudes. Second, we sim-
ulate the stellar polarization measurements for any chosen setup
of the magnetized and dusty ISM and estimate the polariza-
tion uncertainties. We ‘observe’ the stars by randomly drawing
the Stokes parameters and parallaxes within their respective
uncertainties.

A.1. Star samples from the Gaia Universe Model Snapshot

We seek to create realistic samples of stellar photometry and
distance, based on the expected sky footprint of the PASIPHAE
survey. In this section we discuss how we generate and choose
representative samples of stars from the GUMS database.

A.1.1. Mock stellar catalog generation

To obtain realistic samples of stellar parameters (photometry,
distances) for the high Galactic latitude sky, we use the GUMS
database (Robin et al. 2012) associated with Gaia Early Data
Release 3 (EDR3, Lindegren et al. 2021), which provides some
photometric information as well as parallaxes. We begin by
selecting sightlines toward each of the HEALPix Nside = 4 pixels
at high Galactic latitude (with |b| > 60◦). We then query the Gaia
archive within a circular region centered on each of the afore-
mentioned pixels, with two different radii of 0.5◦ and 0.25◦. For
ease of computation, we exclude very faint stars with G > 18.5
within the query. This brightness cut is later superseded by a
stricter cut based on our derived r band photometry, as explained
next. We thus obtain 24 samples of stars for each selected beam
size.

Next, we wish to compute realistic uncertainties for the par-
allax and polarization of each star. The GUMS query returns the
V − I color, the V-band absolute magnitude MV , the extinction
AV , the apparent magnitude in the G-band, the Gaia broadband
color GBP and the barycentric distance, d, in parsec. We deter-
mine the parallax errors as a function of G-band magnitude
based on EDR3 performance (Lindegren et al. 2021). We use
the quoted median parallax error per bin of G of their table 4
(5-parameter solution sources) and create an interpolating func-
tion. Each star is thus assigned a true parallax by inverting
the distance and converting to units of milli-arcseconds (mas)
and an uncertainty based on its G band magnitude. The esti-
mation of uncertainties in the polarization measurements from
PASIPHAE relies on (a) SDSS r-band photometry and (b) the
expected performance of the survey. We derive r-band magni-
tudes in the following section and briefly discuss the dependence

of the uncertainty in the stellar Stokes parameters on r-band
magnitude in Appendix A.4.

The stellar properties of the samples cover a broad range of
apparent magnitudes, parallaxes and S/N in parallax (Fig. A.2,
left, shows a representative sample of size 1◦). We tailor the stel-
lar samples to the expected limiting brightness of the PASIPHAE
survey, by applying a cut of r < 16 mag. The total number of
stars per sample (post-cut) varies in the range [225, 414] and [64,
118] for the 1◦ and 0.5◦ beams, respectively. For ease of computa-
tion, we choose one representative sample for each beam size on
which to apply our analysis. The representative sample for each
beam is that which has a total number of stars (post-brightness-
cut) close to the average number of stars of the ensemble of
sightlines. We further limit the samples to stars with a S/N in
parallax higher than 5.

As shown in Fig. A.1 (left), the distribution of stellar
parallaxes (distances) peaks at ∼1 mas (1000 pc), but this is
brightness-dependent (see Fig. A.2, right). As one would expect,
our brightness cut limits the number of stars at small parallaxes
(large distances). We also note there is a less intuitive selection
bias that results from our choice to use stars with ϖ/σϖ > 5.
Fig. A.2 shows the line of ϖ/σϖ = 5 in two different planes
(SNRϖ vs. ϖ and r vs. ϖ). As seen in the right panel, imposing
the S/N cut results in a parallax-dependent brightness selection:
stars to the left and top of the dashed line are excluded from
our analysis. Our samples miss some faint and nearby stars. This
is the result of the dependence of the parallax error on stel-
lar brightness. In other words, the limiting magnitude of star
samples analyzed in this work is parallax-dependent.

A.2. Derivation of stellar r-band photometry given GUMS
outputs

We must determine the apparent magnitude in the SDSS-r band.
This requires some manipulation of different color transforma-
tions of the photometric data provided by GUMS. We begin by
computing the apparent magnitude in the V band:

mV = MV + 5 log(d) − 5 + AV . (A.1)

We can connect the SDSS photometry with Gaia G band pho-
tometry using the relations from Jordi et al. (2010), as initially
referenced by the GUMS paper (Robin et al. 2012):

G −GBP = − 0.1703 − 1.0813 (r − i)

− 0.1424 (r − i)2 + 0.0271 (r − i)3, (A.2)

where the uncertainty of the coefficients is σ = 0.1. We solve
this equation for the color r − i. We can then use the color
transformations by Jordi et al. (2006):

(i − I) = (0.247 ± 0.003) (R − I) + (0.329 ± 0.002) (A.3)
(r − i) = (1.007 ± 0.005) (R − I) − (0.236 ± 0.003) . (A.4)

Solving the second expression for (R − I) and substituting for
(R − I) in the first expression, we obtain:

(i − I) = 0.0578 + 0.245 (r − i) + 0.329 . (A.5)

Using the color (r − I), we substitute (i − I) from the previous
expression and we solve for mr:

mr − mI = (r − I) = (r − i) + (i − I) (A.6)
mr = mI + (r − i) + 0.0578 + 0.245 (r − i) + 0.329. (A.7)
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We finally obtain an expression for SDSS r-band apparent
magnitude:

mr = mI + 1.245 (r − i) + 0.3868, (A.8)

where mI = mV − (V − I) can be computed from the V − I color
provided in GUMS.

A.3. ISM polarization signal: A toy model

Both the 3D orientation of the magnetic field and the dust density
distribution are expected to vary within a cloud, at least to some
extent, due to compressible MHD turbulence. These two effects
induce a spread in the polarization signal of stars in the back-
ground of a cloud (the intrinsic scatter). This is implemented by

considering the signal part to be made of two components: a reg-
ular component and a stochastic component. To build intuition
on the effect of intrinsic scatter on the Stokes parameters, we
simplify the problem and only implement the scatter that arises
from fluctuations in the 3D geometry of the magnetic field. We
defer a treatment of fluctuations in the dust distribution to future
work. Hence, for a given cloud, a single value of the maximum
degree of polarization (Pmax) is used to model the polarization
signal of all background stars (Eq. 1). On the contrary, both the
inclination angle and the position angle of the magnetic field are
considered to vary from star to star because of fluctuations in
magnetic field geometry.

We model the total 3D magnetic field as the sum of a reg-
ular component (Breg) and a stochastic one (Bsto). We consider
Breg to be uniform within a cloud and to have a norm of unity.
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We model Bsto through 3D Gaussian realizations of white noise.
That is, the stochastic component is built from realizations of 3D
isotropic random vectors obtained from sampling an independent
normal distribution for each of its three components. Assuming
a large sample of random realizations for Bsto we estimate the
sample rms and use it to normalized all the random draws. The
distributions of the norms of Bsto have a standard deviation of
one. To reach a statistically stable normalization of Bsto, the rms
evaluation should be performed for a sufficiently large sample of
realizations. We use at least 1000 realizations. Finally, we model
the 3D total magnetic field as the sum of a regular (Breg) and a
stochastic component:

Btot ∝ Breg + Aturb Bsto , (A.9)

where Aturb quantifies the amplitude of the stochastic component
with respect to the regular one. A different realization of Bsto
is attributed to each star in the sample. As a result, to each star
corresponds a different inclination and position angle. Therefore,
by virtue of Eq. (1), different values of the Stokes parameters are
obtained only from fluctuations in the 3D geometry of the mag-
netic field. We emphasize that the parameter Aturb used above
should not be confused with the turbulent-to-mean magnetic
field ratio used in methods to estimate the strength of the mag-
netic field (e.g., Skalidis & Tassis 2021). Aturb is a metric of the
statistical fluctuations of the magnetic field geometry in 3D and
is model dependent. We find in Appendix B that values in the
range 0.1 to 0.3 may be representative of clouds at intermediate
and high Galactic latitudes.

To summarize, our toy model has five free parameters per
cloud: the cloud parallax (ϖC = 1/dC), the maximum degree
of polarization (Pmax), the inclination (γBreg ) and position (ψBreg )
angles of Breg and, finally, the relative amplitude of fluctuations
in magnetic field orientation (Aturb). We notice that, apart from
the cloud parallax, these parameters are not the same as the
model parameters entering our data equation (Eq. 10) and, there-
fore, are not the parameters being sampled in the maximization
process.

Due to projection effects, and since the inclination angle is
positively defined, the mean inclination angle of the total mag-
netic field may generally be larger than the inclination angle of
the regular magnetic field given as input. In general this results
in a depolarization of the cloud signal which may be stronger in
one of the two polarization channels (Stokes qV or uV) depending
on the position angle ψB. Therefore, in addition to producing a
scatter in the polarization plane, the stochastic component in the
3D magnetic field geometry induces a bias in the mean Stokes
parameters. We further explore our toy model in Appendix B
with a particular emphasis on the bias and the covariance that
magnetic-field fluctuations produce. Here, we note that the bias
is not physical and simply originates from the construction of
our model. What matters, and what should be modeled from real
observations, are the mean values of the Stokes parameters of a
cloud and the dispersion around these means.

A.4. Realistic noise

Once the polarization signal from the input ISM setup is
attributed to each star in the sample, we add noise in both
polarization and parallax. We take the values of parallax uncer-
tainties from our samples of stars derived from the Gaia data
(Appendix A.1) and the star parallaxes are simply randomized
within their uncertainty range following Gaussian distributions.
To give realistic uncertainties on the Stokes parameters of

σ
q V
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]

Stellar Magnitude in SDSS-r Band [mag]

Fig. A.3: Uncertainties on individual measurements of the rel-
ative Stokes parameters in SDSS-r band as a function of star’s
magnitude as expected from PASIPHAE’s northern instruments
(WALOP-N) for 5 minutes and 15 minutes exposure times shown
with solid blue and dashed purple lines, respectively.

starlight polarization, we rely on current expectations of the
performance of the WALOP-N instrument to be used for the
PASIPHAE survey in the northern hemisphere. The observational
uncertainties, which can be estimated from the optical modeling
of the WALOP-N instrument (Maharana et al. in prep.), depend
primarily on the magnitude of the stars in the observation band
(SDSS-r band) and on the exposure time. To take into account
instrumental systematics, we add to our observational uncer-
tainty budget a contribution of 0.1% to the two relative Stokes
values qV and uV (see Maharana et al. 2020; Maharana et al.
2021; Maharana et al. 2022; Anche et al. 2022). Therefore, for
each star, an estimate of the observational uncertainty is obtained
and used to randomize the Stokes parameters obtained from the
ISM configuration. The randomization of qV’s and uV’s is per-
formed independently. The uncertainty in the Stokes parameters
as a function of star magnitude is shown in Fig. A.3 for two typi-
cal exposure times. Examples of mock starlight polarization data
obtained for a five minutes exposure time, for a beam of 0.5◦ cir-
cular diameter, and a median number density are shown in Fig. 1
for the cases of one and two clouds along the LOS.

Appendix B: Polarization observables and intrinsic
scatter

For the purpose of this work we have developed and imple-
mented a toy model, described in Sect. A.3, that allows us to
generate mock observations based on the multilayer magnetized
ISM paradigm described in Sect. 2. In particular, our implemen-
tation makes it possible to account for a source of intrinsic scatter
in the simulated data. We expect such scatter to exist because of
small-scale variations in the ISM, that generically result from
turbulence. Generally fluctuations are expected in both density
distribution and magnetic field geometry but dust grain proper-
ties, dust temperature, etc. could also vary on small scales. In our
modeling, and as described in Sect. A.3, we only consider fluc-
tuations in 3D geometry of the magnetic field and thus ignore
fluctuations in dust density distribution or other properties that
may affect the value of the maximum degree of polarization Pmax
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(see Eq. 1). In this appendix we explore our toy-model imple-
mentation to gain intuition on the effects of the intrinsic scatter
on the Stokes parameters for different levels of intrinsic scat-
ter (controlled through the value of Aturb – see Eq. A.9) and for
several combinations of the inclination angle (γBreg ) and position
angle (ψBreg ) of the regular component of the magnetic field. In
the adopted polarization convention (IAU), qV is maximum for
ψBreg = 0◦ and zero at ψBreg = 45◦ where uV is maximum.

We begin by considering the relative Stokes parameters nor-
malized by the value of Pmax. Therefore, in the absence of a
stochastic component, the degree of polarization varies from 0
to 1 for the case of magnetic field pointing toward the observer
(γBreg = 90◦) to the case where the magnetic field lies in the POS
(γBreg = 0◦). From geometrical considerations, we expect that the
effect of the addition of a stochastic component on the values of
the Stokes parameters qV, uV will depend on the chosen value
of Aturb, on γBreg , and possibly on ψBreg . To infer such depen-
dence, we want to consider different orientations of the regular
magnetic field as seen from the observer.

We consider the following setup. We place an observer above
the pole of the northern hemisphere (b ≥ 0◦) of a HEALPix
map with Nside = 2 (Górski et al. 2005). This map contains
28 pixels to which correspond 3D orientations with colati-
tude and longitude coordinates. The former corresponds to the
inclination of the magnetic field line with respect to the POS
and latter to the position angle in the POS. By construction,
these orientations are symmetric in longitude and therefore only
half of the points do show different Stokes parameters given
the definition of the polarization; ψB is a two-circular quan-
tity defined in the range [0◦, 180◦). Hence, we drop half of
the northern hemisphere and thus consider 14 combinations of
(γBreg , ψBreg ). To each, corresponds a pair of (qV, uV) at position
cos2 γBreg (cos[2ψBreg ], sin[2ψBreg ]) in the polarization plane (see
Eq. 1). Those positions are shown as red crosses in Fig. B.1.
These crosses correspond to the Stokes parameters that would
be observed for all background stars if the magnetic field was
made of the regular component only. Then, we add the stochas-
tic component in magnetic field geometry according to Eq. A.9.
This creates variations about those values. Example of variations
obtained in the polarization plane for Atrub = 0.1 is shown in
Fig. B.1.

For most of the 14 configurations, the 2D scatter produced
in the polarization plane cannot be considered as resulting from
two independent normal distributions; the correlation coefficient
is not zero in general. Instead, configurations with the regular
magnetic field close to the POS are significantly asymmetric.
Interestingly, depending on the position angle, the correlation
coefficient can take large values. For example, in the case of
γ = 0◦ and ψ = 22.5◦, the correlation coefficient is close to −1.
The more the regular magnetic field points to the observer, the
more the scatter becomes symmetric in qV and uV.

At this stage, we notice that fluctuations in dust density distri-
bution, or any other ISM parameters affecting the value of Pmax,
would add radial scatter on this plot. These would then reduce
the possible asymmetry and therefore would reduce the value
of the correlation coefficient. From the shape of the 2D scatter
seen in Fig. B.1 we may conclude that modeling the effect of the
intrinsic scatter through the characterization of a bivariate nor-
mal distribution with given covariance matrix is a fair approach
which should be general enough to cover a large class of models
of sources of fluctuations in the magnetized ISM. This motivates
our choice while writing the model equation in the main text (see
Sect. 2). From this point, we therefore consider that the polariza-
tion signal in the (qV, uV) plane, mean and intrinsic scatter, can
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Fig. B.1: Examples of scatter produced in the (qV, uV) plane
by the addition of a stochastic component to a regular magnetic
field for different inclination and position angle of the latter and
for Aturb = 0.1. Fourteen configurations are shown, as explained
in the text. The red crosses indicate the (qV, uV) obtained for
Aturb = 0 (regular field only). The scatter around each cross
shows a 2D histogram of 10,000 realizations of (qV, uV) values
obtained with the addition of the stochastic component. We note
that the (qV, uV) are normalized by Pmax.
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Fig. B.2: Scatter in EVPA as a function of Aturb. For each value
of Aturb, 105 realizations of Btot are computed. The Stokes
parameters are computed and polarization position angles deter-
mined and compared to the polarization vector corresponding
to the regular component only. The standard deviation of the
polarization angle difference is then computed and plotted
against Aturb. We carry the analysis for γBreg = 0◦, 30◦ and 60◦.

be self-consistently described by a bivariate normal distribution
centered on the mean polarization and with a covariance matrix
potentially having a nonzero off-diagonal element.

A scatter in the (qV, uV) plane corresponds to scatter in the
degree of polarization and in the EVPA. The scatter in EVPA
is thought to inform on the degree of turbulence in clouds
and to be related to the amplitude of the magnetic field (e.g.,
Skalidis & Tassis 2021), at least when the magnetic field lies
mostly in the POS. We explore the dependence of the scatter
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Fig. B.3: Distributions of qV/Pmax corresponding to various
inclination angle and amplitude of the intrinsic scatter. We carry
the analysis out for γBreg = 0◦, 30◦, and 60◦ and Aturb ∈ [0, 1].
For each value pair, 105 realizations of Btot are computed and
qV is evaluated. The continuous lines show the mean of the dis-
tribution for γBreg = 0◦, 30◦, and 60◦ in blue, orange and green,
respectively. The shaded areas indicate the range span between
percentiles 16 and 84 of the distribution. The dashed lines indi-
cate the qV/Pmax values obtained when no stochastic term is
added in the magnetic field.

in EVPA as a function of the parameter Aturb. Because of pro-
jection effects, we carry this analysis for three values of γBreg

(0◦, 30◦, 60◦). Our results are reported in Fig. B.2. The EVPA
scatter increases linearly at low values of Aturb, then the increase
slows down until the EVPA scatter reaches saturation. The larger
the angle of inclination, the greater the rate of increase and thus,
breakup and saturation occur at lower values of Aturb. Given that
there is currently a lack of starlight polarization data for dif-
fuse sightlines, there is not much observational constraints on
the scatter in EVPA and, hence, on the value that Aturb may
take. In small angular regions toward denser clouds or denser
sightlines, authors report values of the EVPA scatter to range
from few degrees up to about fifteen degrees (Soler et al. 2016;
Planck Collaboration Int. XXXV 2016; Panopoulou et al. 2016;
Skalidis et al. 2022), also consistent with numerical simulations
of the ISM in sub- and trans-Alvénic regimes (e.g., Skalidis et al.
2021). We assume that those values are representative to our
case. Therefore, we choose values of Aturb in the range 0.1 to
0.3 to be representative of degree of intrinsic scatter we may find
at intermediate and high Galactic latitude, in general, from our
future survey.

In Fig. B.3, we show distributions of the Stokes parameter
qV (normalized to Pmax) as a function of Aturb and for the same
three inclination angle values studied before. We show the mean
(continuous lines) and the interval between percentiles 16 and 84
(shaded areas) of the distributions. We see that depending on the
inclination angle there might be a nonzero difference between
the mean of the distributions and the values corresponding to the
regular field only (dashed lines). This is a bias that purely results
from projection effects. This bias is larger for small inclination
angles (i.e., magnetic field close to the POS) than for large incli-
nation angles and vanishes when the field lines point toward the
observer. The same figure is obtained for Stokes uV but with a
position angle rotated by 45◦. This result is consistent with what
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Fig. B.4: Dependence of Cint,qq (blue) and Cint,qu (purple) as a
function of γBreg and for three values of the position angles:
ψBreg = 0◦ (dashed lines), ψBreg = 22.5◦ (dashed-dotted lines),
and ψBreg = 45◦ (dotted lines). A value of Aturb = 0.2 is chosen
here. The elements of the covariance matrix are given in units of
P2

max. A value of 0.01 corresponds to a polarization uncertainty
(σq or σq) of 10 per cent of Pmax.

Hu & Lazarian (2023) obtained from numerical simulations of
incompressible MHD turbulence in molecular cloud.

In the following we explore the effects of the intrinsic scatter
on the element of the covariance matrix of the (qV, uV) pairs
that it generates. In particular, we are interested in exploring the
dependence on the inclination and position angle of the regular
magnetic field and on the dependence with the amplitude of the
stochastic component relative to the regular one.

In Fig. B.4, we present the evolution of Cint,qq and Cint,qu
as a function of γBreg , for the three position angles ψBreg =
0◦, 22.5◦, and 45◦ and for Aturb = 0.2. We do not show Cint,uu,
as it is identical to Cint,qq but for a position angle rotated by 45◦.
We see that the covariance-matrix elements are nontrivial but
certainly trigonometric functions of the inclination angle. The
cross term vanishes when ψBreg = 0◦ or any multiple of 45◦ (i.e.,
when either qV or uV is zero). If fluctuations in magnetic field
geometry were the only sources of intrinsic scatter, a detailed
analysis of the covariance-matrix elements from observational
data points could potentially lead to constraints on inclination
angle of the magnetic field with respect to the POS. This infor-
mation is generally not accessible from dust-related polarization
observables and providing a direct access to it would constitute
a breakthrough in dust studies of the magnetized ISM. How-
ever, as we have already noticed, other sources of fluctuations are
expected in the turbulent ISM and they directly affect the values
of Pmax, adding a certainly non-negligible contribution to Cint,qq
and Cint,uu and reducing the relative importance of Cint,qu, thus
bringing some complexity to the situation depicted in Fig. B.4.
While future work will be necessary to clarify whether those
sources of scatter can be disentangled, we note that other sources
of complication will come from both observational noise and
from the a-priori unknown value of Aturb.

Finally, we address the question of the significance of the
intrinsic scatter and how it compares to observational uncertain-
ties for a large range of Aturb values and for different inclination
and position angles of the regular component of the magnetic
field. For this investigation we consider a sample of 100 stars in

A164, page 28 of 30



V. Pelgrims et al.: LOS tomography of the dust polarization sky

the background of a cloud. We fix our observational uncertainty
on the polarization as σp = σq = σu = 0.2% and we fix a degree
of polarization of the cloud to be pC = 0.6% in absence of scat-
ter. We thus change the value of Pmax to compensate for change
of γBreg .

For each set of (Aturb, γBreg ,ψBreg ) values we can generate
simulated Stokes parameters (i) computed only from Breg, (ii)
computed with Btot for specified Aturb and (iii) with the addition
of the observational noise. For each simulated data set we esti-
mate the total covariance matrix of the Stokes parameters and
the contributions from the observational and from the intrinsic
scatter taken separately. Denoting Ctot, y = Cobs, y + Cint, y with
 , y being either q or u, we can measure the different terms in our
simulations and thus compare the relative amplitude of the differ-
ent contributions. We perform this exercise for 10,000 simulated
data sets to build distributions of the elements of the covari-
ance matrix. The result is shown in Fig. B.5 in which, for each
matrix element taken separately and for each of their contribu-
tions (noise and intrinsic scatter), we show how the distributions
change as a function of Aturb by reporting the median and the
interval between 16 and 84 percentiles as shaded areas.

The relative importance of the contribution from the intrinsic
scatter with respect to the contribution from the noise to the total
scatter in the data points is well demonstrated by the different
panels of Fig. B.5. Depending on the exact setup of the ISM and
amplitude of the stochastic component in the magnetic field, the
data scatter can be dominated either by the intrinsic scatter or by
the noise. Keeping in mind that this also depends on the S/N level
which we have fixed to ≈3 for individual measurements, we see
that the contribution from the intrinsic scatter exceeds the noise
contribution in at least one of the polarization channels when
Aturb ≳ 0.3 and that this threshold reduces when γBreg increases.
When either or both the amplitude of the cloud polarization gets
lower or the overall uncertainty on individual star measurements
gets larger, this threshold goes to lower Aturb values (not shown
in the figure).
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Fig. B.5: Comparison of the contributions from the observational noise and from the intrinsic scatter to the different elements of the
covariance matrix as a function of the amplitude of the stochastic component and for different configurations of Breg. We show the
total elements of the covariance matrix (solid lines) along with the contribution from the noise (dashed lines) and from the intrinsic
scatter (dotted lines). Blue, green and orange correspond to Cint,qq, Cint,uu and Cint,qu respectively. The lines and shaded areas show
the median and 16 and 84 percentile of the values obtained while repeating the analysis for 10,000 simulations in which both the
noise and the intrinsic scatter vary. In this simulation we have set preg = 0.6% and σp = σq = σu = 0.2% corresponding roughly to
a S/N of 3 for the individual star polarization measurement.
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