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ABSTRACT

Magnetohydrodynamic (MHD) turbulence is a cross-field process relevant to many systems. A prerequisite for understanding these
systems is to constrain the role of MHD turbulence, and in particular, the energy exchange between kinetic and magnetic forms. The
energetics of strongly magnetized and compressible turbulence has so far resisted attempts to understand them. Numerical simulations
reveal that kinetic energy can be orders of magnitude higher than fluctuating magnetic energy. We solved this lack-of-balance puzzle
by calculating the energetics of compressible and sub-Alfvénic turbulence based on the dynamics of coherent cylindrical fluid parcels.
Using the MHD Lagrangian, we proved analytically that the bulk of the magnetic energy transferred to kinetic energy is the energy that
is stored in the coupling between the ordered and fluctuating magnetic field. The analytical relations are in strikingly good agreement
with numerical data, up to second-order terms.
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1. Introduction

Magnetohydrodynamic (MHD) turbulence is involved in a
plethora of physical phenomena (Biskamp 2003; Beresnyak
2019; Matthaeus & Velli 2011; Matthaeus 2021; Schekochihin
2020). The interplay between kinetic and magnetic energy is
important for understanding these processes (Goldstein et al.
1995; Ciolek & Basu 2006; Kirk et al. 2009; Oughton et al. 2013;
Matthaeus et al. 1983; Zweibel & McKee 1995); Schekochihin
et al. 2007; Cho & Lazarian 2002; Federrath et al. 2011. It is chal-
lenging to understand the energy exchange between kinetic and
magnetic forms because the MHD equations are nonlinear. For
this reason, several assumptions and approximations are usually
employed.

A widely employed approximation is the incompressibil-
ity of the gas (Sridhar & Goldreich 1994; Goldreich & Sridhar
1995), although this is only applicable to a limited number
of systems. Compressible MHD turbulence is more complex,
and additional energy terms contribute to the energy cascade.
One main difference in the energy cascade rate of incompress-
ible and compressible turbulence is that in the latter, the back-
ground magnetic field (B0) appears with leading-order terms
(Banerjee & Galtier 2013; Andrés & Sahraoui 2017). In con-
trast, the incompressible turbulence energy cascade is dominated
by the increments of the magnetic and velocity fluctuations, and
B0 only appears in higher-order statistics (Wan et al. 2012). This
result motivated the hypothesis that B0 might also appear in the
total (kinetic and magnetic) fluctuating energy of compressible
MHD turbulence (Andrés & Sahraoui 2017), whereas in incom-
pressible turbulence, the total fluctuating energy is dominated by
the fluctuating (second-order) kinetic and magnetic energy.

In incompressible and sub-Alfvénic turbulence, the fluc-
tuating magnetic energy is completely transferred to kinetic

energy, and the volume-averaged quantities are in equilibrium,
ρ〈u2〉/2 ∼ 〈δB2〉/8π, when turbulence is maintained in a steady
state. In contrast, direct numerical simulations of sub-Alfvénic
and compressible turbulence show that the volume-averaged
kinetic energy is much higher than the second-order fluctuat-
ing magnetic energy, ρ〈u2〉/2 � 〈δB2〉/8π (Heitsch et al. 2001;
Li et al. 2012a,b), and their relative ratio depends on the ampli-
tude of B0 (Andrés et al. 2018; Lim et al. 2020; Skalidis et al.
2021; Beattie et al. 2022b). The excess of the kinetic energy sug-
gests that B0 might provide additional energy to the fluid.

The role of B0 in the energetics can be intuitively under-
stood when we decompose the total magnetic field into a
background and a fluctuating component. In incompressible
turbulence, the fluctuating magnetic energy comes only from
the perturbations of the magnetic field, which are of second
order. However, in compressible turbulence, the background
field appears in the total fluctuating magnetic energy due to the
coupling between the background field and magnetic perturba-
tions (δB). The magnetic coupling, expressed as B0 · δB, can
only be realized in compressible turbulence (Montgomery et al.
1987; Bhattacharjee & Hameiri 1988; Bhattacharjee et al. 1998;
Fujimura & Tsuneta 2009) and is the dominant (first-order) term
of the fluctuating magnetic energy.

In sub-Alfvénic and compressible turbulence, numerical data
show that B0 · δB stores most of the magnetic energy, and
that the kinetic energy approximately reaches equipartition with
the fluctuations of the coupling term (Skalidis & Tassis 2021;
Skalidis et al. 2021; Beattie et al. 2022a,b). Thus, the magnetic
coupling holds the key for understanding the energetics of
strongly magnetized and compressible turbulence. However,
there is still a lack of first-principle understanding of the role
of B0 · δB in MHD turbulence dynamics and how it contributes
to the averaged energetics.
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Fig. 1. Magnetized fluid consisting of multiple coherent cylindrical
fluid parcels. Red arrows show the initial magnetic field morphology.
Untwisted fluid parcels are elongated, `‖ � `⊥, and their motion is lon-
gitudinal along or perpendicular to B0. In sub-Alfvénic turbulence, the
motion of these fluid parcels can be decomposed into two independent
velocity components, parallel (black arrows) and perpendicular (orange
arrows) to B0.

We present an analytical theory of the role of the cou-
pling potential in the energy exchange of sub-Alfvénic and
compressible turbulence, which is encountered in systems
such as tokamaks (Strauss 1976, 1977; Zocco & Schekochihin
2011), in the interstellar medium (Mouschovias et al. 2006;
Panopoulou et al. 2015, 2016; Planck Collaboration Int. XXXV
2016; Skalidis et al. 2022), and the Sun (Verdini & Velli 2007;
Tenerani & Velli 2017; Kasper et al. 2021; Zank et al. 2022). We
write the Lagrangian of coherent flux structures (Crowley et al.
2022), which allows us to approximate turbulence properties
in a deterministic manner, and calculate analytically the energy
exchange between kinetic and magnetic forms as a function of
the Alfvénic Mach number (MA). We find remarkable agree-
ment between the analytically calculated energetics and numer-
ical data. We conclude that the majority of the fluctuating mag-
netic energy transferred to kinetic energy is provided by the cou-
pling between the background and the fluctuating magnetic field.

2. Model

We considered a turbulent fluid characterized by the commonly
employed properties: (1) spatial homogeneity, (2) infinite
magnetic and kinetic Reynolds number, and (3) time station-
arity. We considered that the fluid consists of coherent flux
tubes (e.g., Fig. 1 in Banerjee & Galtier 2013) (or fluid parcels)
with coordinates (r(t), φ(t), z(t)), as shown in Fig. 1. Cylindri-
cal coordinates are motivated by studies showing that the
properties of strongly magnetized turbulence are axi-
ally symmetric, with B0 being the axis of symmetry
(Goldreich & Sridhar 1995; Maron & Goldreich 2001). We
assumed the following initial conditions: (1) uniform temper-
ature, (2) uniform density, (3) no bulk velocity, (4) uniform
static magnetic field (B0 = B0ẑ), and (5) no self-gravity. We
henceforth adopt the following notation: z = `‖ and r = `⊥,
where `‖ and `⊥ denote parcel sizes parallel and perpendicular
to B0, respectively.

We perturbed the magnetic field of a coherent fluid structure

with a length scale ` =
√
`2
‖

+ `2
⊥ by δB` such that |B0| � |δB` |,

which applies to sub-Alfvénic turbulence. Magnetic perturba-
tions tend to redistribute the magnetic flux within a fluid. For
ideal-MHD (flux-freezing) conditions, the magnetic flux is pre-
served. Thus, the surface of the perturbed fluid parcel (S`) fol-
lows the magnetic field lines. The motion of the field lines,
and hence of S`, can be either parallel or perpendicular to B0
(Fig. 1): (1) Squeezing and stretching of S` along B0 leads to
parallel motions, ˙̀

‖ , 0. (2) Fluctuations of `⊥ lead to perpen-
dicular motions, ˙̀

⊥ , 0. Finally, (3) twisting leads to rotational
motions, φ̇ , 0. This naturally defines `‖ and `⊥ as the coherence
lengths of the perturbed volume parallel and perpendicular to B0
, respectively. We focused on large scales since coherent struc-
tures are prominent there (De Giorgio et al. 2017). We invoke
as a boundary condition a local environment beyond ` (pressure
wall).

The flux freezing theorem is

dB`

dt
· S` = −B` ·

dS`
dt
. (1)

The cross section of the coherent volume perpendicular and par-
allel to B0 is S⊥,` = 2π`⊥`‖r̂, and S‖,` = π`2

⊥ẑ , respectively. The
cross section related to the rotational motion is Sφ,` = `‖`⊥φ̂. The
total magnetic field in cylindrical coordinates can be expressed
as B` = δB⊥r,` r̂ + δB⊥φ,`φ̂ +

(
B0 + δB‖,`

)
ẑ. From Eq. (1), we

obtain that when |B0| � |δB|, magnetic perturbations along S‖,`
are associated with a longitudinal motion such that

u⊥r,` ≡ ˙̀
⊥(t) = −

δḂ‖,`(t)
2B0 + δB‖,`

`⊥(t) ≈ −
δḂ‖,`(t)

2B0
`⊥,0, (2)

where we have considered that the initial dimension of the per-
turbed volume `⊥,0 is much larger than its perturbations. Along
S⊥,`, we find that

u‖,` ≡ ˙̀
‖(t) = −

(
δḂ⊥r,`(t)
δB⊥r,`(t)

−
δḂ‖,`(t)

2B0

)
`‖(t) ≈ −

δḂ⊥r,`(t)
δB⊥r,`(t)

`‖(t),

(3)

while the azimuthal velocity along Sφ,` is

u⊥φ,` ≡ φ̇(t)`⊥(t) ≈ −
(
δḂ⊥r,`(t)
δB⊥r,`(t)

−
δḂ⊥φ,`(t)
δB⊥φ,`(t)

)
`⊥(t). (4)

As a result of assuming |B0| � |δB|, we have obtained that
parallel and perpendicular motions are decoupled. The coupling
of parallel and perpendicular motions becomes inevitable when
|B0| ∼ |δB| (Eq. (3)).

In sub-Alfvénic turbulence, magnetic tension dominates
magnetic pressure (Passot & Vázquez-Semadeni 2003). The
high tension suppresses transverse oscillations due to the strong
restoring torques. Thus, twisting would have minimum con-
tribution to the dynamics (e.g., Longcope & Klapper 1997)
and motions would be mostly longitudinal (φ̇, δB⊥φ,` ≈ 0).
Since u⊥φ,` → 0, then due to Eqs. (3) and (4), `‖ � `⊥,
which implies that untwisted coherent structures are stretched
toward the B0 axis, which is consistent with the anisotropic
properties of sub-Alfvénic turbulence (Shebalin et al. 1983;
Higdon 1984; Oughton et al. 1994, 2013; Sridhar & Goldreich
1994; Goldreich & Sridhar 1995; Oughton & Matthaeus 2020;
Cho & Lazarian 2003; Yang et al. 2018; Makwana & Yan 2020;
Gan et al. 2022).
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For untwisted fluid parcels, the perpendicular component of
the magnetic fluctuations has a dominant radial component such
that δB⊥,` ≈ δB⊥r,`. From Eqs. (2) and (3), we derive

δB‖,`(t) ∝ −B0 log `⊥(t), (5)

δB⊥,`(t) ∝ `−1
‖ (t). (6)

The difference in the scaling is due to the Lorenz force by B0,
which affects perpendicular motions, while it has no effect on
parallel motions.

3. MHD Lagrangian of coherent structures

We write the Lagrangian for the perturbed volume. We place
the reference frame at the center of mass of the target volume,
hence there is no bulk velocity term in the Lagrangian. There-
fore, all the velocity components are due to internal motions
induced by magnetic perturbations. We focus on low plasma-
beta fluids1, which for sub-Alfvénic turbulence corresponds to
high sonic Mach numbers (Ms). The perturbed Lagrangian
(Newcomb 1962; Andreussi et al. 2016; Kulsrud 2005) of the
coherent cylindrical fluid parcel, with surface S`, can be split
into a parallel and a perpendicular term (Appendix A),

δL =

δL⊥︷              ︸︸              ︷1
2
ρ ˙̀2
‖ −

δB2
⊥,`

8π

 +

δL‖︷                            ︸︸                            ︷1
2
ρ ˙̀2
⊥ −

B0δB‖,`
4π

−
δB2
‖,`

8π

 . (7)

Due to Eqs. (2) and (3), δB‖,`, and δB⊥,` are generalized coor-
dinates of δL and `‖(t) = C/δB⊥,`(t) (Eq. (6)), where C is a
constant determined from the initial conditions. With this expres-
sion, we eliminate `‖ from the Lagrangian, which up to second-
order terms is separable into a parallel and a perpendicular part,
and is analytically solvable,

δL⊥
(
δB⊥,`, δḂ⊥,`

)
≈

1
2
ρC2

δḂ2
⊥,`

δB4
⊥,`

−
δB2
⊥,`

8π
, (8)

δL‖
(
δB‖,`, δḂ‖,`

)
≈

1
8
ρ
δḂ2
‖,`

B2
0

`2
⊥,0 −

B0δB‖,`
4π

−
δB2
‖,`

8π
. (9)

We solve the Euler-Lagrange equations for δL‖ (Appendix B)
and δL⊥ (Appendix C) and derive the analytical solutions of
the velocity (u‖,`(t), u⊥,`(t)) and magnetic fluctuations (δB‖,`(t),
δB⊥,`(t)) of S`. We find that δB‖,` ∼ t2, u⊥,` ∼ t, and δB⊥,` ∼ t−1,
while u‖,` is set by the initial conditions (free streaming of the
gas). We used these analytical solutions in order to calculate the
averaged energetics of a strongly magnetized and compressible
fluid.

4. Energetics

The total energy of fully developed turbulence is stationary
because energy diffusion is balanced by injection. Time station-
arity enables us to approximate turbulence energetics with the
leading-order solutions that we obtained because our approxi-
mations preserve time symmetry, and thus energy is conserved.
The statistical properties of large-scale coherent structures accu-
rately approximate the volume-averaged turbulent statistical
properties. Thus, for an ergodic fluid (Monin & I’Aglom 1971;

1 The relative ratio of the thermal and magnetic pressure is the plasma
beta, which is defined as β = 2M2

A/M
2
S.

Galanti & Tsinober 2004), averaging the turbulent statistical
properties over the volume of the fluid at a given time step(
〈 f 〉V =

∫
V

f
)

is approximately equivalent to averaging over
multiple realizations of a typical large-scale coherent structure(
〈 f`〉T =

∫
T

f`
)
, hence 〈 f 〉V ∼ 〈 f`〉T , where f denotes an energy

term, and T corresponds to the coherent structure crossing time.
We next analytically compute the 〈 f`〉T energy contribution of
each Lagrangian term (Eq. (7)) and their relative ratios. Since
coherent cylindrical parcels are characterized by two differ-
ent coherence lengths `‖ and `⊥, they also have two different
crossing times: T‖ and T⊥, respectively. We compare the 〈 f`〉T
analytical energy ratios with the 〈 f 〉V numerical values. The
numerical results correspond to simulations of ideal isothermal
MHD turbulence without self-gravity, and turbulence is main-
tained in a quasi-static state by injecting energy with an exter-
nal forcing mechanism (Beattie et al. 2022b). These simulation
are forced with a mixture of compressible and incompressible
modes, but the driving modes do not affect the energetics of sub-
Alfvénic and compressible turbulence (Skalidis et al. 2021).

4.1. Kinetic energy

The total averaged kinetic energy (Ekinetic) of the coherent fluid
parcel with scale ` is

Ekinetic ≡
1
2
ρ〈u2

` 〉T =
1
2
ρ
(
〈u2
⊥,`〉T⊥ + 〈u2

‖,`〉T‖

)
≈

B0δB‖,max

6π
+
δB2
⊥,max

8π
.

(10)

The kinetic energy is dominated to first order by u⊥,`. Thus, the
average Alfvénic Mach number to first order is

MA ≡

√
〈u2
`
〉T

VA
≈

√
4δB‖,max

3B0
. (11)

4.2. Harmonic potential

From Eqs. (B.3) and (C.2), we find that 〈δB2
‖,`〉T⊥ = 7δB2

‖,max/15,
and 〈δB2

⊥,`〉T‖ = δB2
⊥,max/2. The total time-averaged harmonic

potential energy (Eharmonic) density is equal to

Eharmonic ≡
〈δB2

`〉T

8π
≈
δB2
‖,max

8π

(
7

15
+
ζ2(MA)

2

)
, (12)

where ζ = δB⊥,max/δB‖,max. Sub-Alfvénic turbulence is
anisotropic (Shebalin et al. 1983; Higdon 1984; Oughton et al.
1994; Goldreich & Sridhar 1995), with the anisotropy between
δB⊥ and δB‖ depending onMA (Beattie et al. 2020). To account
for this property, we assumed that ζ is a function ofMA. When
MA → 0, B0 suppresses any bending of the magnetic field
lines with the amplitude of δB‖ being larger than that of δB⊥
(Beattie et al. 2020), hence ζ → 0; this is also a consequence
of ∇ · B = 0 for anisotropic fluid parcels with `‖ � `⊥. For
MA → 1, fluctuations tend to become more isotropic, and hence
ζ →

√
2. These limiting behaviors are consistent with numerical

simulations (Beattie et al. 2020, 2022b).

4.3. Coupling potential

According to Eq. (10), B0 · δB contributes to Ekinetic since

Ecoupling ≡

B0

√
〈δB2

‖,`
〉T⊥

4π
≈

B0δB‖,max

6π
≈ Ekinetic, (13)
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to first order. This equation demonstrates that the energy stored
in the coupling potential is in equipartition with the averaged
kinetic energy when turbulence is sub-Alfvénic.

4.4. Energetics ratios

The Ekinetic/Ecoupling ratio is

Ekinetic

Ecoupling
≈ 1 +

9
16
M2

Aζ
2(MA). (14)

ForMA → 0, Ecoupling ≈ Ekinetic, while forMA → 1, Ekinetic &
Ecoupling. Ekinetic becomes higher than Ecoupling because u‖,` con-
tributes more to Ekinetic as MA increases. When MA → 1,
ζ ≈

√
2 , so that the Ekinetic/Ecoupling ratio in trans-Alfvénic tur-

bulence scales as

Ekinetic

Ecoupling
≈ 1 +

9
8
M2

A. (15)

Regarding the Eharmonic/Ecoupling ratio, we find that

Eharmonic

Ecoupling
≈

3
8

√
15
7
M2

A

(
7
15

+
ζ2(MA)

2

)
, (16)

which for the two limiting cases of ζ (MA) becomes

Eharmonic

Ecoupling
≈


0.25M2

A
, MA → 0

0.80M2
A
, MA → 1

. (17)

4.5. Comparison between analytical and numerical results

In Fig. 2 we compare the analytically calculated energy
ratios with numerical results from the literature (Beattie et al.
2022b). The lines correspond to the analytical relations for
Eharmonic/Ecoupling (Eq. (17)) and Ekinetic/Eharmonic (Eq. (15)),
while the colored points correspond to the numerical values.
The numerical data behave as predicted by the analytical rela-
tions. The scatter of triangles increases at higher MA because
thermal pressure starts becoming important there, and hence the
contribution of thermal motions to the kinetic energy increases.
In the limit of MA � 1, thermal pressure is subdominant and
β → 0. For MA = 1, we obtain that β → 0 when Ms � 1,
while when Ms . 1, β → 1. Thus, for trans-Alvfénic turbu-
lence, thermal pressure becomes important only for low Ms,
while at high Ms, it has a minor contribution to the energet-
ics. In our calculations, we neglected thermal pressure, and for
this reason, at MA = 1, triangles are consistent with the ana-
lytical ratio of Ekinetic/Ecoupling (blue line) when Ms ≥ 2, while
at lower Ms, the deviation between numerical and analytical
results increases because β, hence the relative contribution of
thermal pressure, increases. ForMA < 1, β � 1, and for this rea-
son, the numerical data agree perfectly with the analytical ratio
(blue line). Finally, when we account for the contribution from
both B0 · δB and δB2, the total energy stored in magnetic fluctu-
ations

(
Em,total = Ecoupling + Eharmonic

)
is very close to equiparti-

tion with kinetic energy, as shown by the red boxes.

5. Discussion and conclusions

Analytical calculations of strongly magnetized and compress-
ible (isothermal) turbulence show that B0 appears in the energy
cascade with leading-order terms (Banerjee & Galtier 2013;
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Eharmonic
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s

Fig. 2. Comparison between analytical and numerical results. The solid
and dashed thick black lines correspond to the Eharmonic/Ecoupling ratio
obtained analytically for MA → 0 (ζ = 0) and MA → 1 (ζ =

√
2),

respectively. Numerical data are shown with colored dots. The blue line
corresponds to the analytically obtained Ekinetic/Ecoupling ratio, while col-
ored triangles show the same quantities calculated from numerical data.
The red boxes correspond to Ekinetic/Em,total. The thin green line shows
the energy terms in equipartition. The color bar shows the sonic Mach
number (Ms) of the simulations.

Andrés et al. 2018). This is in striking contrast to incompressible
turbulence, where B0 appears in higher-order terms (Wan et al.
2012). In the formalism presented here, the incompressible limit
is approximated when B0 · δB = 0. In this case, B0 does not
appear in the dominant Lagrangian terms, hence the averaged
kinetic energy would scale linearly with the fluctuating magnetic
energy, δu` ∼ δB` (or equivalently, MA ∼ δB`). However, in
agreement with previous works (Wan et al. 2012), our formalism
shows that B0 appears in the energetics of incompressible turbu-
lence because of the coupling between δB‖,` and δB⊥,` (Eq. (3))
when higher-order terms are considered.

For sub-Alfvénic and compressible turbulence, we find that
B0 · δB is the leading term in the dynamics, and as a result,
the scaling between velocity and magnetic fluctuations becomes
δu` ∼

√
B0δB`, or equivalently, MA ∼ δu`/VA ∼

√
δB`/B0,

which is supported by numerical data (Beattie et al. 2020). In
compressible and strongly magnetized turbulence, compression
and dilatation of the gas locally changes the energy cascade
rate (Banerjee & Galtier 2013). These local energy fluctuations
can only be realized in compressible turbulence and might be
related to the fluctuations of the B0 · δB potential. Our analytical
results prove that the total averaged magnetic energy transferred

to kinetic is equal to
(
2B0

√
〈δB2

‖
〉 + 〈δB2〉

)
/8π.

The consistency between our analytical relations and numer-
ical data is remarkable. It is not the first time that simple analyt-
ical arguments agree quantitatively with numerical simulations
of nonlinear problems (e.g., Mouschovias et al. 2011). However,
an analytical theory is always advantageous because it allows
us to achieve a deeper understanding of complex problems. For
this reason, the formalism we presented might offer new insights
into the energetics of strongly magnetized and compressible tur-
bulence. We hope that it motivates future works about the role of
magnetic couplings in the energy cascade.
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Appendix A: Lagrangian of coherent cylindrical
parcels

We used the MHD Lagrangian as derived by Newcomb
(Newcomb 1962) for isothermal magnetized fluids. The total
MHD Lagrangian is the sum of the kinetic and the total potential
energy of all the fluid elements within a volumeV,

L =

∫
V

(
1
2
ρu2 − Ps −

B2

8π
−

1
2
ρΦ

)
, (A.1)

where Ps is the thermal pressure, and Φ is the gravitational
potential. The equation of motion for magnetized turbulent fluids
is obtained from the stationary-action principle

(
δ
∫ t2

t1
dtL = 0

)
.

We focused on fluids in which magnetic pressure dominates ther-
mal pressure

(
B2/8π � Ps

)
, and we ignored self-gravity, Φ = 0.

Therefore, the dominant potential term in the Lagrangian is mag-
netic pressure. When we consider that the ensemble of the fluid
elements moves as a coherent cylinder (Fig. 1), then the integra-
tion of the Lagrangian takes place within the volume of the cylin-
der. In this case, the integrated Lagrangian terms correspond to
the kinetic and the magnetic energy of the cylinder. The per-
turbed Lagrangian of a cylinder is (using Eqs. 2, 3, and 4)

δL =
1
2
ρ`2

δḂ2
‖

4B2
0

+
δḂ2
⊥r

δB2
⊥r

 +
1
2
ρ`2
⊥

δḂ2
⊥φ

δB2
⊥φ

− 2
δḂ⊥r

δB⊥r

δḂ⊥φ
δB⊥φ


−

1
2
ρ`2
‖

δḂ⊥r

δB⊥r

δḂ‖
B0
−

δB2
‖

8π
+
δB2
⊥r

8π
+
δB2
⊥φ

8π

 − B0δB‖
4π

. (A.2)

For untwisted cylinders, all terms containing a φ component
are zero. Then, the Lagrangian contains only the parallel and the
perpendicular (longitudinal) components, which are generally
coupled due to the δḂ⊥rδḂ‖/(δB⊥rB0)`2

‖
term. For sub-Alfvénic

turbulence, this is a higher-order term because |B0| � |δB|. By
keeping the dominant (second-order) terms, we derived the total
perturbed Lagrangian of a coherent cylindrical structure, which
to leading order, can be expressed as the sum of two indepen-
dent parts (parallel and perpendicular to the background mag-
netic field, Eqs. 8 and 9).

Appendix B: Solutions of δL‖
From the Euler-Lagrange equation of δL‖ , we obtain

δB̈‖,`(t) = −
(
δB‖,`(t) + B0

) 4V2
A

`2
⊥,0

, (B.1)

where VA = B0/
√

4πρ is the Alfvénic speed.
Initially, we compressed the perturbed volume perpendicular

to B0, then released it and allowed the compression to propagate.
For the initial conditions, we considered that u⊥,`(t = 0) = 0 and
δB‖,`(t = 0) = δB‖,max. We might have initiated the fluid parcel
at δB‖,`(t = 0) = −δB‖,max, but in that case, u⊥,`(t = 0) , 0. Solu-
tions of Eq. B.1 are harmonic, but are valid only for early times
because at later times, nonlinear interactions become important
and energy is diffused. Below, we consider the scenario of energy
diffusing due to the shock formation because we considered
highly compressible fluids. Without loss of generality, we can
consider any diffusive process.

From the jump conditions, we analytically obtained that
when Ms � 1, an isothermal shock perpendicular to B0 forms

when

δB‖ .
B0

2

(
M2

A − 1
)
. (B.2)

Thus, in sub-Alfvénic turbulence,MA < 1, magnetized shocks
form when δB‖ < 0, which means that δB‖ will never perform a
full harmonic cycle. Keeping the dominant term of the expansion
of the harmonic solutions (Eq. B.1), we derive that

δB‖,`(t) ≈ δB‖,max − 2B0
V2

A

`2
⊥,0

t2. (B.3)

The above solution through Eq. 2 yields

u⊥,`(t) ≈
2V2

A

`⊥,0
t. (B.4)

From Eqs. B.3 and B.4, we obtain that as the magnetic field of
the perturbed volume decreases, u⊥,` increases. When the shock
is formed, the perturbed volume instantaneously bounces off its
environment, which acts as a pressure wall (Basu et al. 2009).
At the post-shock phase, the motion is reversed and the coherent
volume will start contracting until until δB‖,` reaches a value of
+δB‖,max,p. The post-shock solutions are obtained from Eq. B.1
with initial conditions up(t = 0) > 0 and δB‖,p(t = 0) < 0, where
the subscript p denotes post-shock quantities. At the post-shock
phase, the solution of δB‖ is

δB‖,`(t) ≈ −δB‖,p + up(t = 0)t − 2B0
V2

A

`2
⊥,0

t2. (B.5)

At the post-shock phase, the magnetic field increases until
+δB‖,max,p, which is smaller than the initial magnetic field
increase (+δB‖,max) of the pre-shock phase because energy has
been dissipated by the shock (Park & Ryu 2019; Cho et al.
2022). When the perturbed volume reaches +δB‖,max,p, the veloc-
ity is zero, and the motion is reversed. Then, the volume starts
expanding until it again forms a shock. Overall, the perturbed
volume would perform damped oscillations until all the energy
is dissipated (Basu et al. 2009; Yang et al. 2021).

Fluids in nature are commonly assumed to be con-
stantly perturbed until turbulence reaches a steady state
(Krumholz & Burkert 2010; Kritsuk et al. 2017; Colman et al.
2022). Various driving mechanisms could maintain tur-
bulent energy in nature (Eswaran & Pope 1988; McKee
1989; Mac Low et al. 1998; Piontek & Ostriker 2007;
Elmegreen 2009; Krumholz & Burkhart 2016; Girichidis et al.
2016; Hanasoge et al. 2020; Iffrig & Hennebelle 2017;
Klessen & Hennebelle 2010; Elmegreen & Scalo 2004). In
our model, turbulent driving is equivalent to adding externally
kinetic energy to the perturbed volume, such that the initial
velocity at the post-shock phase, up(t = 0), is sufficient to
compress the perturbed volume until it reaches the maximum
compression it had in the pre-shock phase, δB‖,max,p ≈ +δBmax,‖.

We considered an external driver, which ensured that
δB‖ fluctuations, and hence energy, were maintained in a
quasi-static state. In addition, we considered that the fluid is
ergodic (Monin & I’Aglom 1971; Galanti & Tsinober 2004).
For ergodic fluids, δB‖,` are characterized by ballistic profiles,
δB‖,` ∝ t2, and as we argue below, they bounce between
+δB‖,max and −δB‖,max within a characteristic timescale T⊥ ≈
4`⊥,0V−1

A

√
δB‖,max/2B0.

When we initially compressed the magnetic field of the per-
turbed volume along B0, then `⊥ decreased due to Eq. 5. This
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forced the surface of the environment of the perturbed vol-
ume to increase by equal amounts. Thus, the +δB‖,max initial
increase of the magnetic field of the perturbed volume causes
the magnetic field of the environment to decrease by −δB‖,max
due to flux freezing. If the fluid is ergodic, then different fluid
parcels correspond to different oscillation phases of the tar-
get fluid parcel (Monin & I’Aglom 1971; Galanti & Tsinober
2004). Therefore, the −δB‖,max of the environment corresponds
to the maximum decrease in magnetic field strength of the tar-
get volume. Nonlinear effects can break the symmetry between
+δB‖,max and −δB‖,max, but ergodicity is only weakly broken
when B0 , 0 (Shebalin 2013).

The perturbed volume would spend most of its time in the
compressed state because the velocity is minimum there. On the
other hand, the velocity of the fluid parcel is maximum when
δB‖,` < 0, and hence the fluid parcel would spend minimum time
there. As a result, the majority of fluid parcels at a given time
would be compressed (δB‖,` > 0) due to ergodicity, which is
verified by numerical simulations (Beattie et al. 2022b).

Appendix C: Solutions of δL⊥

From the Euler-Lagrange equation of δL⊥, we obtain

δB̈⊥,`(t)δB⊥,`(t) − 2δḂ2
⊥,`(t) +

δB6
⊥,`

(t)

4πρC2 = 0. (C.1)

For |B0| � |δB|, the sixth-order term above can be neglected,
and then the solutions are straightforward. The total pressure
of the fluid exerted by δB⊥ is transferred to parallel motions
(Eq. 3), hence ρu2

‖,max/2 = δB2
⊥,max/(8π). We derive the following

solutions:

δB⊥,`(t) ≈
f B0

1 ± t/T‖
, u‖,`(t) ≈ ± f VA, (C.2)

where `‖(t = 0) = `‖,0, f = δB⊥,max/B0 � 1, and T‖ = f V−1
A `‖,0.

In the above equations, the signs depend on the initial conditions.
Initially, we considered that δB⊥,`(t = 0) = δB⊥,max, and u‖,`(t =
0) = u⊥,max, which leads to positive signs.

If the initial velocity along B0 were zero, then both u‖,` and
δB⊥,` would remain static. The coupling of parallel and perpen-
dicular motions (Eq. 3) would induce parallel motions when
δḂ‖,` , 0, even if u‖,`(0) = 0. However, because we have
neglected the coupling of motions, we initiated u‖,` from the ini-
tial conditions.

From Eq. 6, we obtain that the free streaming of the per-
turbed volume causes `‖ to expand or contract as

`‖(t) ≈ `‖,0

(
1 ±

t
T‖

)
. (C.3)

As the target fluid parcel expands, its environment along the
B0 axis contracts, provided that the fluid has fixed boundaries.
Due to the expansion of the target volume, the initial velocity
of the environment would be −u‖,max, which causes a negative
sign in the denominator of Eq. C.2, and hence δB⊥,` increases
in the environment. On the other hand, δB⊥,` in the target vol-
ume stops increasing when t = T‖ because δB⊥,` in the environ-
ment becomes infinite. In sub-Alfvénic flows, |B0| � |δB⊥|, so
that this infinity should be treated as an asymptotic behaviour
of δB⊥,`: there is a physical limit above which δB⊥,` cannot
grow. After T‖, the motion is reversed and the environment starts
expanding along B0, causing the target volume to contract with
δB⊥,` growing as 2 δB⊥,`(t) ≈ f B0/(2 − f VA`

−1
‖,0t) until it reaches

δB⊥,max.

2 This solution is obtained by considering that the initial conditions
in the reversed motion of the fluid parcel are δB⊥,`(0) = δB⊥,max/2,
u‖,`(0) = −u‖,max, and `‖(0) = 2`‖,0. These values correspond to the
solutions of Eqs. C.2 and C.3 for t = T‖.
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