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ABSTRACT
Hybrid beamforming (HBF) is a key enabler for millimeter-

wave (mmWave) communications systems, but HBF opti-

mizations are often non-convex and of large dimension. In

this paper, we propose an efficient deep unfolding-based HBF

scheme, referred to as ManNet-HBF, that approximately max-

imizes the system spectral efficiency (SE). It first factorizes

the optimal digital beamformer into analog and digital terms,

and then reformulates the resultant matrix factorization prob-

lem as an equivalent maximum-likelihood problem, whose

analog beamforming solution is vectorized and estimated ef-

ficiently with ManNet, a lightweight deep neural network.

Numerical results verify that the proposed ManNet-HBF ap-

proach has near-optimal performance comparable to or better

than conventional model-based counterparts, with very low

complexity and a fast run time. For example, in a simulation

with 128 transmit antennas, it attains 98.62% the SE of the

Riemannian manifold scheme but 13250 times faster.

Index Terms— mmWave, hybrid beamforming, massive

MIMO, deep learning, AI, deep unfolding.

1. INTRODUCTION

Millimeter-wave (mmWave) massive multiple-input multiple-

output (mMIMO) systems have emerged as a key enabler for

5G wireless networks with substantial improvements in the

system spectral and energy efficiency (SE/EE) [1]. In such

systems, hybrid beamforming (HBF) transceivers can main-

tain significant multiplexing gains with reduced numbers

of power-hungry radio frequency (RF) chains [2–5]. How-

ever, their design and optimization are challenging due to the

constant modulus constraints and the strongly coupled high-

dimensional variables. Conventional optimization techniques

such as Riemannian manifold minimization (MO-AltMin) [6]

and alternating optimization (AO) [7] show good performance

but are highly complex. Recently, the applications of deep

learning (DL) in wireless communications have attracted

much attention [8–11], ranging from signal detection, channel

estimation [12–16] to HBF designs [16–26]. Two typical DL

techniques, including purely data-driven DL and deep unfold-

ing, are generally applied. The former relies mainly on the

learning capability of deep neural networks (DNNs) [16–18]

or convolutional neural networks (CNNs) [19–22] to generate

HBF beamformers. This approach exhibits major limitations

due to its resource-constraints, high complexity, and black-

box nature [9,12–14,27]. Alternatively, in the deep unfolding

approach, both domain knowledge and DL capabilities are

leveraged to build explainable DL models that achieve per-

formance gains and are easier to implement [27–29]. Based

on this advantage, deep unfolding models have been pro-

posed [23–26] for HBF designs with reduced feedback and

improved convergence speed. However, these schemes are

still complex due to the operations of highly-parameterized

DNNs [23], multiple CNNs [25], or conventional projected

gradient ascent/descent with learned step sizes [24, 26].

Because a deep unfolding model is constructed by un-

rolling a principled mathematical-oriented algorithm into

layers of a DNN, its efficiency significantly depends on the

conventional algorithm. Motivated by this fact, we herein

propose a near-optimal low-complexity deep unfolded HBF

design based on Riemannian manifold optimization [6], re-

ferred to as ManNet-HBF. Unlike most of the existing DL-

aided HBF designs, ManNet-HBF is developed based on in-

vestigating the matrix factorization problem for HBF design

rather than the original SE maximization. This is efficient

in the sense that the complicated log-det objective function

is transformed into a simpler norm-squared form that admits

a maximum-likelihood (ML) type least squares (LS) solu-

tion. We first develop a lightweight DNN architecture called

ManNet to efficiently estimate the ML solution to the ana-

log beamformer. Then, the digital beamformer is obtained

using a closed-form solution. Our simulation results demon-

strate that with only several layers composed of element-wise

multiplications/additions, the ManNet-HBF scheme performs

comparably to conventional near-optimal complex algorithms

such as the MO-AltMin [6] and AO [7] schemes, in much less

time and with much lower computational complexity.

2. SYSTEM MODEL AND DESIGN PROBLEM
We consider the downlink of a point-to-point mmWave

mMIMO system, where the base station (BS) and the mo-

bile station (MS) are equipped with Nt and Nr antennas,IC
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respectively. The BS sends signal vector s ∈ C
Ns×1 of Ns

data streams to the MS, with E
{
ssH

}
= INs

. An analog

precoder FRF ∈ C
Nt×NRF and a digital baseband precoder

FBB ∈ C
NRF×Ns are employed at the BS. Here, NRF is the

number of RF chains at the BS, Ns ≤ NRF ≤ Nt, and the

normalized transmit power constraint at the BS is given as

‖FRFFBB‖2F = Ns. We focus on the design of hybrid pre-

coders and assume that Nr is relatively small so that a fully

digital combiner V ∈ C
Nr×Ns is employed at the MS. The

post-processed signal at the BS is expressed as

y =
√
ρVHHFRFFBBs+VHn, (1)

where ρ denotes the average received power, n is an addi-

tive white Gaussian noise (AWGN) vector at the MS with el-

ements distributed as CN (0, σ2
n ), and H is the channel matrix.

Based on (1), the achievable SE for Gaussian symbols is

given by [6]

R = log2 det

(
INs

+
ρ

σ2
nNs

V†HFRFFBBF
H
BBF

H
RFH

HV

)
,

where (·)† denotes the matrix pseudo-inverse. We aim at de-

signing {FRF,FBB,V} to maximize R, which is challenging

due to the strong coupling among the variables. However,

given {FRF,FBB}, the optimal solution for V is the set of Ns

left singular vectors corresponding to the Ns largest singular

values of HFRFFBB. Therefore, we focus on the designs of

the hybrid precoders {FRF,FBB} in the sequel.

The SE maximization can be approximately achieved us-

ing the following design [6, 30]

minimize
FRF,FBB

‖Fopt − FRFFBB‖F (2a)

subject to
∣∣fRF

mn

∣∣ = 1, ∀m,n, (2b)

‖FRFFBB‖2F = Ns, (2c)

where fRF
mn is the (m,n)-th entry of FRF, and Fopt is the un-

constrained optimal digital precoder, given as Fopt = UΣ
1
2 .

Here, U contains columns as the Ns right singular vectors cor-

responding to the Ns largest singular values of H, and Σ is

a diagonal matrix with Ns water-filling power allocation fac-

tors on the diagonal. Eq. (2b) enforces the unit modulus con-

straints of the analog precoding coefficients, and (2c) ensures

the transmit power constraint at the BS. Problem (2) is a non-

convex matrix factorization problem, and joint optimization

of FRF and FBB is complicated due to the element-wise unit-

modulus constraint (2b). The MO-AltMin [6] and orthogo-

nal matching pursuit (OMP) [30] algorithms are two conven-

tional model-based approaches to solving (2). In the former,

FRF and FBB are solved by alternating between a Rieman-

nian manifold optimization and a LS problem. Such a nested

loop procedure is relatively complex and converges slowly

when the system dimensions are large. In contrast, the OMP

scheme requires only NRF iterations to construct FRF, which

has low complexity but unsatisfactory performance. We over-

come these challenges by proposing an efficient deep unfold-

ing approach next.

3. PROPOSED MANNET-HBF SCHEME

3.1. Main Idea
In the proposed approach we apply the decoupling method

of [7]. Specifically, we first optimize FRF with FBB given

and constraint (2c) omitted. Then we design FBB to meet the

constraint given the optimized FRF. Thus, we first consider

the following problem:

minimize
FRF

‖Fopt − FRFFBB‖2F , subject to (2b), (3)

where the quadratic form of the objective function is intro-

duced without affecting the solution. Let z̃ � vec(Fopt) ∈
C

NtNs×1, x̃ � vec(FRF) ∈ C
NtNRF×1, and B̃ � FBB ⊗

INt
∈ C

NtNs×NtNRF with ⊗ denoting the Kronecker prod-

uct. Then, the objective function in (3) can be re-expressed

as ‖Fopt − FRFFBB‖2F = ‖z̃− B̃x̃‖2. By denoting

z �
[
R(z̃)
I(z̃)

]
,x �

[
R(x̃)
I(x̃)

]
,B �

⎡
⎣R

(
B̃
)

−I
(
B̃
)

I
(
B̃
)

R
(
B̃
)
⎤
⎦ , (4)

with R(·) and I(·) representing the real and imaginary

parts of a complex vector/matrix, respectively, we can write

‖Fopt − FRFFBB‖2F = ‖z−Bx‖2. Let ai be the i-th ele-

ment of a real-valued vector a, and let S � {x ∈ C
2NtNRF×1 :

xi + jxNtNRF+i = x̃i, |x̃i| = 1, i = 1, . . . , NtNRF}. Then, S
consists of real-valued vectors whose corresponding complex

representations have unit-modulus elements, which are feasi-

ble for problem (3). With the newly introduced variables and

feasible set, the optimal solution to problem (3) admits the

LS problem similar to ML estimation in Gaussian noise as

xML = argmin
x∈S

‖z−Bx‖2 . (5)

In the deep unfolding technique, a DNN of L layers is

designed to mimic the projected gradient descent algorithm

to approximate xML. Specifically, let x� be the output of the

�-th layer of the DNN. From (5), x� can be produced as [31]

x� = Π�

(
x− δ�

∂ ‖z−Bx‖2
∂x

)
x=x�−1

= Π�

(
x�−1 − δ�B

T z+ δ�B
TBx�−1

)
, (6)

where δ� denotes a step size, and Π�(·) represents a nonlin-

ear projection operator mapping x�−1 to x�. The relationship

in (6) motivates a DNN model to learn xML wherein the out-

put of a given layer (i.e., x� in the �-th layer) results from

a nonlinear projection applied to the output of the previous

layer (i.e., x�−1 in the (� − 1)-th layer) and other given in-

formation, including B and z. The nonlinear projection is

performed with trainable parameters, including the weights

and biases of the DNN, and the activation function. In this

regard, the DNN can efficiently learn the projection and the

step size of the projected gradient descent algorithm. Applied

over multiple layers, the final output, i.e., xL, will be a good

estimate of xML as long as the DNN is well structured and

trained. Next, we develop such an efficient DNN architecture

refered to as ManNet.
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x�−1

BTB × −

BT z

u�−1

+

w�

�

b�

+
x̂�

ψt x�

Fig. 1. Detailed operation of sparse layer � of ManNet. Here, � represents

the Hadamard product of two vectors.

3.2. Proposed ManNet Approach
To configure ManNet, we denote u�−1 � BTBx�−1 −BT z
and expand (6) as

x� = Π� (x�−1 + δ�u�−1) . (7)

In this approach the classical gradient descent optimization is

learned by a DNN that performs nonlinear transformations,

avoiding computationally intensive tasks (e.g., line search of

the step size, computing the gradient) as required in conven-

tional Riemannian manifold optimization. As such, we pro-

pose ManNet as a network of L layers defined by (7) whose

goal is to learn xML. Its implementation is detailed next.

Remark 1 ManNet takes x�−1 and u�−1 as the input of the
�-th layer, and outputs x� as the result of the nonlinear trans-
formation Π�, as indicated in (7). Importantly, the i-th el-
ement of x� only depends on the i-th elements of x�−1 and
u�−1. Thus, only the nodes (or neurons) at the same vertical
level between layers are connected making ManNet a sparsely
connected DNN. We employ activation function [12]

ψt(x) = −1 +
1

|t| (σ(x+ t)− σ(x− t)) , (8)

where σ(·) is the rectified linear unit (ReLU) activation func-
tion, and t is a training parameter. This guarantees that the
amplitudes of the elements of x� are in the range [−1, 1], i.e.,
|xi| ≤ 1, i = 1, . . . , 2NtNRF. As a result, its correspond-
ing complex-valued representation x̃� has elements x̃�,i with
|x̃�,i| ≤

√
2. The final output of the DNN is then normalized

to produce a feasible solution satisfying constraint (2b).

Let w� and b� denote the weight and bias vectors of the

�-th layer of ManNet. A detailed network architecture illus-

trating the operation of each layer is shown in Fig. 1. We

employ the loss function

L =

L∑
�=1

log(�) ‖z−Bx�‖2 , (9)

which sums the total objective values of all L layers. The

DNN is trained to optimize the parameter set
{{w�,b�}L�=1, t

}
such that L is minimized, which also directly minimizes the

objective function in (5) at the network output � = L. It is

seen from the loss function (9) that training labels for FRF

are not required. Thus, the training method is unsupervised.

Note that if supervised training were used, it would require

implementation of a conventional HBF scheme to obtain

the training labels, which would dramatically increase the

training complexity.

Algorithm 1 ManNet-HBF

Input: H,Fopt, ManNet’s trained parameters
{{w�,b�}L�=1, t

}
.

Output: FRF,FBB.

1: Initialize F
(0)
RF and F

(0)
BB based on the OMP scheme.

2: Obtain z, x, and B based on (4).

3: for � = 1 → L do
4: Construct the input: u�−1 � BTBx�−1 −BT z.

5: Apply weights: x̂� = w� � x�−1 + b�.

6: Apply the activation function: x� = ψt(x̂�).
7: end for
8: Reconstruct the complex RF precoding matrix FRF from xL.

9: Obtain FBB based on (11).

Table 1. Computational complexity of the proposed ManNet-HBF scheme

compared with conventional MO-AltMin, AO, and OMP approaches.

HBF schemes Complexity per iter. No. iter.

ManNet-HBF O(8N2
t N

2
RF) (real) L

MO-AltMin O(2N2
t NRFNsI

in
MO) (complex) I in

MOI
out
MO

AO O(2N3
t NRF) (complex) NtNRFIAO

OMP O(N2
t NRFNs) (complex) NRF

3.3. Proposed ManNet-HBF Algorithm
Once the offline training process is completed, ManNet

is readily applied for online HBF design. The overall deep

unfolding-enabled HBF scheme is summarized in Algorithm

1. Steps 1–2 are used to initialize the algorithm, wherein the

low-complexity OMP scheme is applied to generate the initial

analog and digital precoders. After that, ManNet executes

steps 3–7 to construct the outputs of each layer. Note that only

element-wise multiplications between the weight and input

vectors are required, as seen in step 5 and Fig. 1. The final

output of ManNet, i.e., xL, is reconstructed as the feasible

solution to FRF in step 8. More specifically, let

x�
i =

xL,i + jxL,i+NtNRF

|xL,i + jxL,i+NtNRF
| , i = 1, . . . , NtNRF,

which satisfies (2b), with xL,i being the i-th element of xL.

Then, FRF is obtained as FRF = vec−1([x�
1, . . . , x

�
NtNRF

]T ),
where vec−1(·) reshapes a vector of size NtNRF × 1 to form

a matrix of size Nt ×NRF.

With FRF obtained, define H̃ = HFRF and Q = FH
RFFRF.

Then, the digital precoder design problem can be written as

maximize
FBB

log2 det

(
INs

+
ρ

σ2
nNs

H̃FBBF
H
BBH̃

H

)
(10a)

subject to trace
(
QFBBF

H
BB

)
= Ns, (10b)

which has the well-known water-filling solution:

FBB = Q− 1
2 ŨΓ̃, (11)

where the columns of Ũ are taken from the right singular

vectors corresponding to the Ns largest singular values of

H̃Q− 1
2 , and Γ̃ is a diagonal matrix whose elements are de-

fined by the power allocated to the Ns data streams [7]. In

Algorithm 1, FBB is obtained in step 9.

Table 1 presents the per-iteration complexity and the

number of iterations of Algorithm 1 compared with those of

MO-AltMin [6], AO [7], and OMP [30]. First, these com-
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Fig. 2. Normalized training loss of ManNet with Nr = NRF = Ns = 4,

Nt = {64, 128}, and L = {6, 7}.
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Fig. 3. SE performance of ManNet-HBF with Nr = NRF = Ns = 4,

Nt = {64, 128}, and L = {6, 7}.

pared schemes require CMO-AltMin = I in
MOI

out
MOO(2N2

t NRFNs),
CAO = NtNRFIAOO(2N3

t NRF), and COMP = NRFO(N2
t NRFNs)

complex operations, respectively. Here, I in
MO, Iout

MO, and

IAO denote the number of inner and outer iterations for

MO-AltMin and the number of iterations for AO, respec-

tively. Algorithm 1 has a total complexity of CManNet-HBF =
COMP + CManNet, where CManNet = LO(8N2

t N
2
RF) real opera-

tions, dominated by the computation in step 4. The required

number of iterations is fixed as L, the number of network

layers. Note that BTB and BT z need to be computed only

once and do not change over the layers, and that ManNet

requires only element-wise vector multiplications/additions

(see step 5), which explains its low complexity. In general,

L 	 Nt and L 	 I in
MOI

out
MO, while L is of the same order as

NRF. For example, with Nt = 128, Nr = Ns = NRF = 4,

ManNet needs only L = 7 layers, whereas our simulations

show that I in
MOI

out
MO = 648 to achieve a convergence tolerance

of 10−3. Thus, it is clear that CManNet-HBF 	 CMO-AltMin,

CManNet-HBF 	 CAO, and CManNet-HBF ≈ 2COMP.

4. SIMULATION RESULTS
Here we provide numerical results to demonstrate the per-

formance of ManNet-HBF. We assume scenarios with Nr =
NRF = Ns = 4, Nt = {16, 64, 128, 256}, and various num-

bers of layers for ManNet: L = {4, 6, 7, 10}. The channel re-

alizations are generated as in [6]. Specifically, we assume the

Saleh-Valenzuela model for the channel H, with the numbers

of clusters and paths and the average power of each cluster be-

ing set as 5, 10, and 1, respectively, and we assume that the az-

imuth/elevation angles of departure/arrival follow a Laplacian

distribution with a uniformly distributed mean over [0, 360◦)
and an angular spread of 10◦. ManNet is implemented us-

1632 64 128 256
0

5

10

15

20

1632 64 128 256
10

15

20

25

30

35

Fig. 4. SE performance and run time of ManNet-HBF with Nt ∈ [16, 256],
Nr = NRF = Ns = 4, and SNR = 10 dB.

ing Python with the Pytorch library and a Tesla V100-SXM2

processor. For the training phase, a decaying learning rate of

0.97, an initial learning rate of 0.0001, and t = 0.1 are used.

For comparison, we consider optimal fully digital beamform-

ing (DBF), MO-AltMin [6], AO [7], and OMP [30].

We first show the loss obtained in (9) during training Man-

Net with Nt = {64, 128} in Fig. 2. It is seen for both cases

that the loss decreases and essentially converges after about

1500 epochs. Furthermore, OMP allows a better convergence

compared with the random initialization. As the loss function

(9) also measures the objective in (3), the convergence of the

training loss reflects the ability of ManNet to solve (3).

In Figs. 3 and 4, we show the SE and run time of

ManNet-HBF. While the AO and MO-AltMin methods are

near-optimal, the OMP approach exhibits a significant per-

formance loss in all the considered scenarios. On the other

hand, ManNet-HBF achieves almost the same performance

as MO-AltMin for all SNR and Nt. For example, at 10
dB SNR and Nt = 128, it attains 98.51%, 98.62%, and

129.29% of the SE achieved by AO, MO-AltMin, and OMP,

respectively. ManNet-HBF is further shown to be the fastest

approach among the near-optimal schemes in Fig. 4(b) with

a run time of only 0.001 s, which is about 196 and 13250
times faster than AO (1.96 s) and MO-AltMin (13.25 s), re-

spectively, at Nt = 128. In particular, its time complexity

gain is more significant when Nt increases. This show that

ManNet-HBF achieves a remarkable complexity reduction

with only a marginal loss in performance compared to the

conventional approaches.

5. CONCLUSION
The nonconvexity and high-dimensional variables have im-

posed significant challenges to HBF designs in the literature,

which have usually required cumbersome iterative proce-

dures. We have overcome these difficulties by proposing the

efficient ManNet-HBF scheme based on unfolding Rieman-

nian manifold minimization. In this scheme, the lightweight

ManNet produces the analog precoder with only several lay-

ers and sparse connections in each, which explains the com-

putational and time efficiency of the ManNet-HBF scheme.

Our extensive simulation results have demonstrated that the

ManNet-HBF has superior performance with lightweight

implementation, low complexity, and fast execution.
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