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1 Introduction

Due to their unconventional magnetic and electronic properties, Ruddlesden-Popper (R-P)
ruthenates (Sr,Ca).+1Ru,Os,+1 are attracting increasing interest in the field of solid-state physics
and materials science !. Notably, CasRu207 is one of the few known polar metals (which are able
to retain a spontaneous electric polarization in the metallic state) 2. In its Bb2im crystalline form 2,
CazRu,07 exhibits a rich variety of physical phenomena, including temperature-dependent band
dispersion *, pressure-induced magnetic phase transition *, colossal magnetoresistance ’, strong
correlation, and pronounced spin-orbit coupling, making it a prototypical system to study the
effects of temperature on the electronic, magnetic, and transport properties of polar metals. Cooled
down below its Néel temperature of 56 K, CasRu207 becomes antiferromagnetic with spins aligned
along its a-axis (AFM-a). When further cooled down to 48 K, it undergoes a second magnetic
phase transition, where spins reorient along the b-axis (AFM-b); this transition is accompanied by
an isostructural phase transformation (corresponding to a contraction of the unit cell along its c-
axis) and by a sudden change in resistivity of semimetallic character (often interpreted as arising
from the opening of a pseudo-gap) >%*. Below 30 K, CasRu207 undergoes another phase transition

whereby it recovers its metallic temperature-dependent resistivity.

While first-principles calculations based on density functional theory (DFT) *!° have
demonstrated their accuracy in predicting lattice vibrations, electron excitations, and configuration
effects 1714 it is still an ongoing challenge to evaluate the transport properties of materials. For

instance, the calculations of electrical conductivities typically rely on the Boltzmann transport

15,16

theory which further needs the electron relaxation times whose values are generally on the

order of 10™1* 5 [24]. While the relaxation times can in principle be predicted based on electron-

5,17-19 20,21 under

electron scattering , or using the Bardeen-Shockley deformation-potential theory



the effective mass approximation together with phenomenological parameters 2>2, the majority

of DFT-based calculations 1>1%24 treat them as the scaling parameters.

This work reports the thermal and electrical properties of CazRu207 from first-principles
calculations based on density-functional theory. In this work, first-principles quasiharmonic
phonon calculations are carried out to understand the thermodynamic and electrical properties of
CazRu207. A tractable model is proposed to estimate the temperature dependence of the electron
relaxation time by correlating electron-relaxation times to the specific heat per mobile charge, as

initially suggested by the previous work 226,

2  Boltzmann transport theory
The electrical conductivity in the Boltzmann transport theory is written as

~ VkgT

Eq. 1

o

| ra-paed

where e is the elementary charge, where V' is the volume, 7' is the temperature, € the one-electron

energt, and Z(¢&) is the so-called the transport function '>16. E(¢) is a tensor with components

_ dk Eq. 2
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i
where a and £ are the indices labeling the cartesian axis, 7 is the one-electron band index, T;j is
electron relaxation time, and the electron group velocity vf* is the gradient of electron band energy

with respect to k, namely

10¢;(k) Eq. 3
n ok«

vi(k) =



3 A model to estimate the electron relaxation time based on Heisenberg uncertainty

principle

In this section, an attempt is made to propose a tentative model for estimating the electron
relaxation time and its temperature dependence based on the outputs from DFT calculations. The
initial schematic idea stems from a) the Heisenberg uncertainty principle as given in Eq. 4 below,
and b) the common believe that the thermal energy per mobile charge carrier is on the scale of
kgT. One may then guess that the electron relaxation time might be roughly on the scale of
h/(2kgT). Following this thought, at 300 K, one can obtain a relaxation time of 1.27x 1071* s
which is very close to the commonly assumed value of 1.0x 1071* s for the electron relaxation

time in literature '>16-%,

Next, we will formulate a procedure to calculate the electron relaxation time. We will
follow the constant electron relaxation time approximation, i.e., treat 7;; = T in Eq. 2. The
inspiration is from the Heisenberg uncertainty principle which imposes the lower limit for the

product between the measurable uncertainty of energy and the measurable uncertainty of time by
h
(Ag) - (At) > > Eq. 4

We propose the electron relaxation time can be thought as a kind of time fluctuation for an electron
transition from one state to another state. We therefore assume the electron relaxation time is

proportional to the measurable uncertainty of time, i.e., T o x(At), so that we have

h
(Ae)-T:xE Eq. 5



where x can be treated as a material constant and we found that x = 0.5 is a good choice for the
present example of CazRu207 and the FeNbSb half-Heusler (Rundong Wan, personal communication

2

on using the open source code ?’ which was developed based on the present work and forked from

BoltzTrap2 %).

Continually, we will formulate a procedure to calculate the energy uncertainty (Ae). For
the electron system, we assume that the energy uncertainty (Ae) is related to the energy

fluctuations {Ae)? as heat is randomly exchanged between the system and heat bath, i.e.,
(Ae)? = ((e — (eN?) Eq. 6
Furthermore, one knows that (Ae)? is related to the heat capacity of a particle, ¢, by

(o)) _ (Ae)?
T TTkaT2 T kgl?

Eq. 7

For the present case, ¢ will be the heat capacity per mobile charge carriers as rationalized in the

previous work 2°-26:2

_ca_{e—(eD?) _ (0e)

n kgT2  kgT?

Eq. 8

where ¢, is the electronic contribution to the specific heat, and

n:foo(l—f)fD(e)de Eq. 9

30-32

Where fis the familiar Fermi distribution and D(¢) is the electronic density-of-states given

by



dk Eq. 10
D(e) = [ D8~ el s
i
n in Eq. 9 can be considered as the number of the mobile charge carriers, or the number
of active electronic thermal carriers. Eq. 9 shows that the electronic states near the Fermi level

] 33,34

[(T) in Error! Reference source not found. contributes the most to the electric or thermal

conduction as it is dictated by the factor of (1 — f)f which mimics an interaction between
electron and hole states through f and (1 — f), respectively. In other words, the electron system
can be viewed as a system made up of mobile charge carriers which makes the main contributions

to the electronic heat conductivity, electronic heat capacity, and electric conductivity.

(¢) in Eq. 7 is the average band energy per mobile charge carrier defined as

1 a
(e) = Ef_ e(1—-f)fD(e)de Eq. 11

ce; in Eq. 7 can be calculated by

1 oo
o =7 f (o= (21— NFD(e)de Eq. 12

Finally, substituting Eq. 7 into Eq. 5, one gets

Eq. 13

Note that n and ¢,; can be calculated using Eq. 9 and Eq. 12, respectively.



4 Computational details

4.1 Electronic-structure calculations

DFT calculations are performed using the Vienna Ab-initio Simulation Package (VASP)
with considering spin-orbit interactions. The projected augmented wave method 3536. LDA "7
(local density approximation) functional is utilized to assess the electron and phonon properties.
To account for the strong correlation among the d electrons in Ru, the on-site Coulomb repulsion
of 1.2 eV is applied on the 4d orbitals using the Dudarev’s approach 38. The initial lattice
parameters are taken from experimental measurements | at 8 K and 50 K, respectively, which
correspond to the AFM-6 and AFM-a magnetic ordering. The optimization ofthe atomic positions
is carried out with a plane-wave cutoffof 650 eV, and the Brillouin zone is sampled using Gaussian
smearing with a 20 meV width on a 5x5x3 T-centered t-mesh. The energy and forces are
converged to be within 10-8 eV and 0.1 meV/A. After the self-consistent calculations, non-self-
consistent calculations are performed using denser t-mesh of 10x10x6 for more accurate electronic
energy eigenvalues to calculate the transport properties of electrons based on the Boltzmann

transport theory 15°16.

4.2 Computational implementation
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Figure 1. Computerization of workflow

The workflow for the computerization is given in Figure 1. To implement the formulism,
we modified the BoltzTrap2 code 2 by adding the functions to calculate the electron heat capacity
and effective charge carrier density as described in Eq. 7 and Eq. 9. To make sure the
computational accuracy at low temperature region, the mesh for the one-electron energy was
modified from uniformly sampling to a self-adapted sampling with denser mesh (1000 time) near
the Fermi energy by Gaussian distribution. The procedure for calculating the chemical potential of
electron was also revised by implementing the Brent’s method * to improve computational

efficiency.

The thermodynamic calculations are performed using the DFFTK package *° which has been
released to the public under the MIT software license. In addition to the routine calculations of
thermodynamic properties via the quasiharmonic approach (QHA) ' it has been implemented
in the DFTTK that any properties, as long as they depend on volume or stain, can be calculated
under a quasi-static approach via the predicted property-volume/strain relationship from the
QHA *42 Therefore, the effects of thermal expansion have been considered for calculating both

the electron relaxation time and the electrical conductivity.

5 Results and discussions

5.1 Heat capacity and Debye temperature
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Figure 2. Heat capacities, electronic heat capacity coefficients, and Debye temperatures for the
AFM-b [(a), (b), and (c)] and AFM-a [(d), (e), and (f)] phases of CazRu207, respectively. The dots
are experimental data ***** The dashed lines in the heat capacity plot are for the calculated values
without considering the thermal electronic contributions. C/7'vs 72 plot represents the analysis of

the heat capacity at low temperature heat capacity.

The calculated heat capacities for the AFM-a and AFM-b phases of CazsRu207 are compared

L4344 in Figure 2. It shows excellent agreements between

with a collection of experimental data
the calculations and experiments except for the experimental spike around 48 K. A heat capacity

spike in the vicinity of a phase transition temperature is typical for structural phase transitions. The

thermal electronic contribution in Eq. 12 is separated from the lattice contribution as

Cp,lat+el = Ce t Cp,lat Eq. 14

Figure 2 shows that the electronic contributions are small.

Next, we investigate the behaviors of the heat capacity at low temperature region as routinely

performed ** via the form of C/7 vs 7%, namely,
Cppat+er/T =y + BT? Eq. 15

where y is the so-called electronic heat capacity coefficient *°, and based on the value of 8 one
can calculate the Debye temperature or vice versa the value of f can be determined once upon the

Debye temperature is known.

Approaching to the 0 K limit, we get the Debye temperatures of 492.4 K and 476 .4 K, for
the AFM-b and AFM-a phases, respectively. In comparison, the reported Debye temperature by

McCall et al. ** was 480 K based on fitting their measurements. Away from the low temperature

10



region, one can get the Debye temperature by fitting the calculated constant heat capacity from the
phonon approach utilizing the Debye formula for the heat capacity [246. Figure 2 shows that the

Debye temperatures are moderately temperature dependent.

At the low temperature limit, the calculated y’s by the present work are 0.23 mJ/mol-atom
and 0.90 mJ/mol-atom, for the AFM-A and the AFM-a phases, respectively. In particular, the value
0f0.23 mJ/mol-atom for the AFM-A phase agrees excellently with the calorimetric result reported
by Ke et al. 43 and is close to the value of0.28 mJ/mol-atom reported by Yoshida et al. \ whereas
it is one magnitude smaller than the value of'3.7 mJ/mol-atom as reported by McCall et al. 44 and

the value of 3.1 mJ/mol-atom by Gao et al. 47.

5.2 Calculated physical quantities from the electron density of states

1e20

AFM-b AFM-b
AFM-a AFM-a

.15 -0.10 -0.05 0.00 0.05 0.10 0.15
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Figure 3. Calculated electronic properties based on the electron density of states for the AFM-A
and AFM-a phases of CasRuyOy. (a) the electron density of states; (b) the density ofthe active
electronic thermal carriers; (c) cei/7z the electronic heat capacity per active electronic thermal

carriers; and (d) the relaxation time estimated using Eq. 13 based on cei/7z in Eq. 7.

Major thermal properties ofelectrons can be calculated from the electron density of'states 12.
The electron density of states (DOS) calculated for the AFM-A and AFM-a phases are illustrated
in Figure 3a. At the Fermi energy, the DOS for the AFM-A is roughly half of that ofthe AFM-a
phase. This ratio is quite similar to the measured ratio ofthe electrical conductivity § ofthe AFM-
A to the AFM-a phases. It is observed that the opposite behaviors § on the locations of Fermi
energies for the two phases, i.e., a dip structure for the AFM-A phase vs a peak structure for the
AFM-a phase at the Fermi energy. This observation could correspond to the experimental

suggestion ofthe appearance ofan insulating-like pseudo-gap 5.

Hereby want to reiterate the importance of concept of “mobile charge carriers” as given in
Eq. 9 which was introduced in a previous work 48. On one hand, it showed that only the electronic

states with energies around the Fermi level can contribute to the thermal properties, by a factor of

12



S(1-f) to the electron density of states as seen from Eq. 9, Eq. 11, and Eq. 12. As a matter of fact,
A(1-f) behaves quite like a Dirac delta function except a normalization factor when approaching to
low temperature. For the two AFM phases of Ca;Ru207, the calculated mobile charge carriers are
illustrated in Figure 3b which shows that the calculated densities of mobile charge carriers for the

two phases are nearly linear temperature dependent, typical for metallic materials.

The most important quantity came into the expression for electron relaxation time in Eq. 13
is the electronic heat capacity per effective mobile charge carriers, namely c.;/nin Eq. 7. The
calculated c,; /n’s for the two phases of CazRu207 are plotted in Figure 3c. It shows that the values
of ¢, /n’s are roughly constants. This can be understood in terms of the Lorenz number which is
a factor of kg /e? to c,;/n as we proved in a separate work 2°. Last, plotted in Figure 3d is the
estimated electron relaxation time based on Eq. 13 using x=0.5 which is found to be a good fit to

match the electrical resistivity measured by Yuan et al. >.

Theoretically, the electron relaxation time was mostly analyzed in terms of the rates of

49,50

impurity, acoustic phonon, and polar phonon scattering as well as electron-electron

scattering >!7"1°. The resulting electron relaxation time (z) in Eq. 13 could be considered as an
effective estimate incorporating all these scatterings in an average way.

In a separate work 2%, we proved that c./nin Eq. 7 is related to the Lorenz number >!:>

by a factor of kg/e?. Considering the fact that the Lorenz number was weakly temperature

53-56

dependent which was especially true for metallic materials , 1t was observed from Eq. 13 that

the relaxation time by the present work was virtually inversely proportional to the temperature.

22,57

This temperature proportionality is the same with the recent works, such as refs. report T =

Cn~Y/3 /T where n is the doping level, and C is a fitting parameter, Wilson and Block’s result for

metals °%°° the Umklapp process reported in ref. °°, and Ziman’s results 662

13



5.3 Calculated physical quantities from the transport electron density of states
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Figure 4. The calculated conductive properties for the AFM-b (solid lines) and AFM-a (dashed
lines) phases of CazRu207. (a) the transport density of states of electron as defined in Eq. 16; (b)-
(e) the Mott the energy-dependent differential electrical conductivity at 10, 50, 90, and 300 K,
respectively; and (f) the electrical resistivity. The diamonds in (f) are the experimental dc electrical

resistivity reported by Lee et al. 8.

The transport electron density of states is a fundamental quantity to calculate almost all

15,16

key kinetic properties of electrons once the electron relaxation time is known. According to

the BoltzTrap2 code 2, the transport electron density of states are defined as

1 N 8 dk Eq. 16
o) =5er|[ D vra0sf 10 86— etk g
i
where mathematical operator tr means to find the trace of a tensor. The calculated transport
electron density of states for the two phases of CazRu207 are illustrated in Figure 4a. Compared

>8 is more evident in the

with the plot of the DOS’s given in Figure 3a, the pseudogap behavior
plot of transport electron density of states, i.e. a deep dip structure for the AFM-b phase vs a

shallow structure for the AFM-a phase at the Fermi energy, attributed to the significant differences

of the electron group velocities between the two phases.

With the transport electron density of states and the electron relaxation time in hand, we
can now investigate the electrical conductive properties and understand the 7-dependent gapping °.

According to the Cutler-Mott theory ©, the electrical conductivity is formulated as

® Eq. 17
azf o'(e)de q

15



where ¢’(€) is a kinetic coefficient called the energy-dependent differential electrical conductivity

which is related to the transport density of states in Eq. 16 by

Eq. 18
o'(e) = 1

eZ
oy (= e

Again, it is observed that only the electronic states with energies around the Fermi level can
contribute the electrical conductive properties dictated by the factor of f{1-f). In Figure 4b-e, we
choose 7=10, 50, 90, and 300 K to demonstrate the evolutions of the calculated ¢’(¢) for the two

phases of CazRu207.

Finally, the calculated electrical resistivities (the inverse of the conductivity given in Eq.
17) of the AFM-b and AFM-a phases for CazsRu207 are compared with experiment ® in Figure 4f.
Note that a fair comparison with experiment should be only made up to the Néel temperature of

56 K. By experiment *%, above 56 K CasRuz07 is paramagnetic which is not handled in the

2

present work.

6 Summary

First-principles calculations based on density functional theory are carried out for the
AFM-b and AFM-a phases of CazRu207. For the thermodynamic properties at finite temperature,
the lattice vibration was handled by phonon approach, and the thermal electron excitation was
treated by Mermin’s finite temperature DFT approach. For the electron transport properties, the
Boltzmann transport equation was solved using the BoltzTraP2 code. The calculated heat

capacities agree well with experimental data. Furthermore, a model for estimating the electron

16



relaxation time was proposed so that one can estimate the temperature dependence of the electrical
conductivity. The approach has been implemented in the BoltzTraP2 code. Application of the
model to the AFM-b and AFM-a phases of CazRu207 gives rise to promising results when

compared with experiment for the temperature dependences of the electrical conductivity.
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