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Community Detection With Known, Unknown, or
Partially Known Auxiliary Latent Variables

Mohammad Esmaeili

Abstract—Empirical observations suggest that in practice,
community membership does not completely explain the
dependency between the edges of an observation graph. The
residual dependence of the graph edges are modeled in this paper,
to first order, by auxiliary node latent variables that affect the
statistics of the graph edges but carry no information about the
communities of interest. We then study community detection in
graphs obeying the stochastic block model and censored block
model with auxiliary latent variables. We analyze the conditions for
exact recovery when these auxiliary latent variables are unknown,
representing unknown nuisance parameters or model mismatch.
We also analyze exact recovery when these secondary latent
variables have been either fully or partially revealed. Finally, we
propose a semidefinite programming algorithm for recovering the
desired labels when the secondary labels are either known or
unknown. We show that exact recovery is possible by semidefinite
programming down to the respective maximum likelihood exact
recovery threshold.

Index Terms—Censored block model (CBM), chernoff-hellin-
ger divergence, community detection, exact recovery, graph

inference, latent variables, semidefinite programming (SDP),
stochastic block model (SBM).

I. INTRODUCTION

OMMUNITY detection refers to a clustering of the nodes

of a graph based on the observation of the edges. In many
applications, this involves identifying groups of nodes that are
more densely connected within the group than to nodes outside
the group. Community detection has many applications such as
finding like-minded people in social networks [1], exploration
of biomedical networks [2], improving link predictors and rec-
ommendation systems [3], [4], [5], and is also relevant to net-
work reconstruction problems [6], [7], [8], [9]. Community
detection has been widely investigated in the literature from
both theoretical and algorithmic perspectives. Community
detection is based on graph models such as the stochastic block
model and the censored block model [10], [11], [12], [13], [14],
[15], [16]. Several metrics are used in this field to characterize
the asymptotic behavior of the residual errors as the size of the
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graph grows, including correlated recovery, weak recovery,
almost exact recovery, and exact recovery [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26]. Among the various detection
techniques one can name spectral methods, belief propagation,
and semidefinite programming [27], [28], [29], [30], [31], [32].

In the graph models that have so far been studied for commu-
nity detection, the graph edges are generated independently con-
ditioned on the community labels. A brief survey of models that
are most closely related to the present work will be presented
shortly. However, in many practical community detection prob-
lems, the community labels do not fully explain the dependence
between the graph edges. In other words, in many graphs
encountered in practice, the graph edges conditioned on the
desired community labels are not statistically independent. This
happens when the structure of the graph is also influenced by
factors other than the community of interest. For example, one
may consider political affiliation communities on a social net-
work in a university campus, where the social network graph is
also influenced by other variables that may be unrelated to the
community label of interest, such as membership in intramural
and extramural activities. The nature and magnitude of the
dependence of the graph on these secondary or auxiliary factors
can have an effect on the performance of the community detec-
tion algorithm for the community label of interest. The present
study models and analyzes community detection in this scenario.

Toward that goal, this paper introduces secondary or auxiliary
latent variables in the graph model that are not subject to commu-
nity detection themselves, but influence the structure of the
graph. More specifically, we propose and employ a more general
version of the stochastic block model and censored block model
in which edges are independent conditioned on both the commu-
nity labels and a set of secondary latent variables. The secondary
or auxiliary latent variables represent a first-order model for the
residual dependence of the edges of the graph once the effect of
the community labels has been removed. Auxiliary variables are
independent of community memberships and may or may not be
observable. The auxiliary latent variable model is distinct from
side-information model [33], [34] where the side information
variables are directly observed and carry information about the
communities. Side information represents non-graph information
about communities, while auxiliary variables model the graph
connectivity patterns that are unrelated to the communities.

We investigate the exact recovery threshold for community
detection in the graphs with secondary latent variables. We
also analyze the effect on the performance of community detec-
tion when this secondary latent variable is fully or partially
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known. We also propose and investigate a semidefinite pro-
gramming algorithm for community detection with secondary
latent variables. Our analysis shows that exact recovery via
semidefinite programming is possible down to the respective
maximum likelihood exact recovery threshold, for both
unknown or known secondary latent variables.

In addition to addressing a novel problem, this paper also
provides a novel proof for bounding the summation of the mini-
mums of Poisson-distributed values from above and below via
Chernoff-Hellinger divergence. Our result (Lemma 1) elimi-
nates certain technical difficulties that existed in earlier proofs,
e.g., does not impose restrictions on the domain of Poisson dis-
tributions. This result is extended (Lemma 2) for the general
censored block model. Also, the analysis of exact recovery for
a graph generated based on two latent variables involves subtle-
ties in extracting the maximum likelihood estimator and ana-
lyzing its semidefinite programming relaxation, which go
beyond earlier works.

To put the model of this paper in perspective, we review
several community detection graph models whose nodes are
associated, beyond a scalar community detection label, with
some other variables too. The latent space model [35], [36],
[37] associates with each node a vector, often with small
dimension, containing variables that are latent in the model.
The graph edges are generated from a distribution that is
parameterized based on the distance between the latent vectors
of pairs of nodes, and the community is a scalar generated as a
function of each latent vector. The overlapping stochastic
block model [11], [38] recovers multiple independent, identi-
cally distributed, binary communities via observing a graph
whose edges are drawn independently conditioned on all the
community labels of the terminating nodes. An important dis-
tinction of overlapped communities from the present work is
that all communities must be recovered in the overlapped
model, therefore the overlapped model has significant similar-
ity with a multi-community model. In the overlapped model,
the multiple communities posses a structure that can be
exploited, compared with a general multi-community model.
Finally, there exists some work on combining non-graph
observation with graph observations [33], [34]; these works
have a superficial resemblance to the subsection in this paper
where the secondary latent variable is revealed. However, the
graph and the side information in [33], [34] are assumed inde-
pendent of each other conditioned on community labels, there-
fore the revealed side information in [33], [34] has no direct
influence on the graph. Thus, [33], [34] model a different phe-
nomenon and also have a different mathematical structure,
compared with the present work. In the interest of brevity, our
coverage of various community detection models is limited,
and the interested reader is referred to more comprehensive
coverage available, e.g.,in [11].

Notation: I is the identity matrix and J the all-one matrix.
S = 0 indicates a positive semidefinite matrix and S > 0
denotes a matrix with non-negative entries. ||.S|| is the spectral
norm and A;(.S) is the second smallest eigenvalue (for a sym-
metric matrix). [a,b] is a vector that is obtained by stacking
vectors a and b. (-, -) is the inner product and  is the element-

wise product. We abbreviate [n] £{1,...,n}. P(-) indicates
the probability operator and P(-) a probability distribution
which is identified by the choice of its variables whenever there
is no confusion. Random variables with Bernoulli and Bino-
mial distributions are indicated by Bern(p) and Bin(n,p),
respectively, with n trails and success probability p. Also, ran-
dom variables with Poisson distribution are indicated by P, (n)
with i trails and parameter A.

II. SYSTEM MODEL

We start by considering a two-latent variable model, and
assume the cardinality of both is finite. For notational conve-
nience throughout the paper, z, y are length-n vectors holding
latent variable values for the whole graph, while the latent var-
iables for any node v are represented with z,, y,. In our model,
we aim to discover z, therefore nodes that share the same
value for x are called a community. By micro-community, we
refer to the set of nodes in the graph that share the same value
for both latent variables z, 3. The matrix P denotes prior prob-
abilities

P;"_f — P(Iv =i,y = J)

For convenience and for avoiding tensor calculations, we fur-
ther define:

p2&vec(P).

For both the two-latent variable stochastic block model and
two-latent variable censored block model, the graph edges are
Bernoulli distributed, conditioned on the latent variables of
the two nodes terminating the edge. The conditional Bernoulli
parameters for an arbitrary edge are organized in a symmetric
matrix (), whose rows and columns are ordered in a manner
compatible with vector p. In other words, assuming the latent
variable x, has m, outcomes, then the probability of an edge
between two nodes with latent variable pairs taking values
(i,7) and (i, §') is given by the element of Q in row jm, + i
and column j'm, + 7.

We are interested in a regime where edge probabilities
diminish with the size of the graph n, in particular, in the
context of our model there exist a constant matrix @ such
that:

- logn

Q Q-

This assumption asymptotically guarantees a fully connected
graph.

Example 1: Consider a two-latent variable stochastic block
model with m, = 2 and m,, = 3. Then

. [Po,ﬂ B, Pﬂ.z]
Py P Pl
p=[Fo Ry P2 Pg P Pl
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Fig. 1.

(c) (d)

For each node, (a) both latent variables are unknown, (b) knowing the statistics of the graph, the community latent variable is recovered while the auxil-

iary latent variable is unknown, (c) the auxiliary latent variable is known while the first one is unknown, (d) knowing the statistics of the graph, the community

latent variable is recovered while the auxiliary latent variable is known.

TQoo Qox Qo2 Qoz Qoa QosT

Qo Q11 Q2 Q13 Qua Qs

Q:bﬂ Qoo Q21 Qoo Qa3 Qaa Qs
no|Qs0 Q31 Q32 Qi3 Q34 Q35

Quo Qa1 Q2 Qu3 Qsa Qu3

[ Q50 Q51 sz @53 @54 Qss)

In addition, we define the columns of weighted versions of
the matrix () as

¢*? £ diag(p)Q €jm, +i,

where ey, is the k-th canonical coordinate vector, and for con-
venience our notation of ¢(*7) emphasizes dependence on the
latent variable outcomes rather than matrix coordinates. Thus,
q'"7) is the column of diag(p)Q. This vector represents the rel-
ative frequency of edges connecting a node from the micro-
community (z,7) to all nodes of each micro-community
(including the same micro-community). Also, we define the
vector ¢ of size m, with entries

a(i‘j)i’ = Z Pf‘"j’ Q_-fmx-l—i.’jmr-i—é:
7

representing the relative frequency of edges, connecting a
node from the micro-community (i, j) to all nodes of micro-
communities with similar community latent variable.

For the two-latent variable censored block model, if an edge
exists between a pair of nodes, the sign of the edge (positive or
negative) is determined by a random variable drawn from a
Bernoulli distribution with a certain parameter. The Bernoulli
parameters for the positive sign of an edge are organized in a
symmetric matrix =, whose rows and columns are also ordered
in a manner compatible with vector p. Finally, for the censored
block model, we define similarly

59 2 diag(p) (5 Q) ejm i
and

~(1J) S ZR '
(‘J) A ZP'J’

Ex Q g i/ jma+i0

Q) Fme+i) jme+i

Remark 1: The censored block model in [28], [39] with
parameters a and £ is a special case of the general censored
model represented in this paper with

_|a a EZI-—E E]
Q‘[a a]’ - [5 1-¢)

III. EXACT RECOVERY UNDER OPTIMAL DETECTION

The main results of this part are represented in the context
of three scenarios, where the latent variable x is unknown and
the latent variable y is either known or unknown (for all nodes
in the graph) or partially known (for some nodes in the graph).
Fig. 1 shows graph realizations of a two-latent variable sto-
chastic block model with m, = 2 and m,, = 2. In each node,
the community latent variable is indicated by the color of the
inner circle, and the auxiliary latent variable is represented by
the color of a ring around the inner circle.

The Chemoff-Hellinger divergence is due to Abbe [24] and is
defined for two non-negative vectors a, b of the same dimension:

Div(a,b) 2 [ta,, + (1 =t)b—alb '] ()

te[[] 1]

This is a generalization of the Hellinger divergence and the
Chernoff divergence [11], [24]. In a manner similar to [11] we
present a lemma that bounds a summation of the minimums of
Poisson-distributed values.

Lemma 1: Leta,b € R, with a # b, and two positive sca-
lars p, p. For any Poisson multivariate distributions P, (d) and
Ps(d), define

I(a,b)2 )" min{P,(d)p, Ps(d)p}-

deZ
Then
I(a,b) < max{p, p}e "V,

. m 1 . . 1
I(a,b) > min{p, pYe™™*" [] = (af ti") ",
=1 &

where ¢* is the optimal parameter in the definition of Chern-
off-Hellinger divergence Div(a, b).
Proof: See Appendix A. |
Let D be a random variable vector representing the number
of edges that connect the node v to each micro-community.
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More specifically, D7) is an element of the D indicating the
number of edges connecting the node v to the micro-commu-
nity (¢, 7). For each node v, the proposed detection tests
hypotheses

H,; Ty = 1.
If v belongs to micro-community (%, ), then

it = =
D N Bln(ng"j’ y Qj’m;--l—i,’ﬁn::-l—i)'

In the regime where Q Qlﬂgﬁ the Binomial distribution can
be apprommated by a Poisson distribution with the same mean,
denoted ,\( 7) . Indeed, using Le Cam’s inequality, the total
viitiation distange between Bin(nP,/y, logn == Qmati/ jmats) and
P(P, 17 Qimyti/ jmetilOgN) asymptonca]]y goes to zero. Then

P(D =d|H;,y» = j) = HHP,\Q",J’) (d(g’jr)),
i f .7

where \57) = P17 Qyui/jme+logn.
Theorem 1: Under the two-latent variable stochastic block
model, all micro-communities are exactly recovered if and

only if

in Div(a® &) > 1
e iv(g*?,¢™") >

Proof: Tt follows from the exact recovery under the general
stochastic bock model or the general overlapping stochastic
block model. -4

Theorem 2: Under the two-latent variable stochastic block
model, when the latent variable y is revealed, exact recovery
of  is possible if and only if

¥1 2 min min Div(g®), ¢*9) > 1.
i ik

Proof: See Appendix B. L

Theorem 3: Under the two-latent variable stochastic block
model, when both latent variables are unknown, exact recov-
ery of = is possible if and only if

Yy 2 H}innﬁnDiv(ﬁ(*'f),fj(k‘j)) >1
i ik

Proof: See Appendix C. L

Now we present the following Lemma which is similar to
Lemma 1 and is crucial for the analysis of the censored block
model.

Lemma 2: Leta,b,d,b € R”', with a # bor d # b, and two
positive scalars p, p. For any Poisson multivariate distributions
Pa (d), Pb(d), Pﬁ (T.U), and Pg(w), define

I(a,b,4,6) 2 )" min{P,(d)Ps(w)p, Py(d)P;(w)p}-

dweZt

Then

I(a, b, &,b) <max{p, p}e L@ b,
I(a,b,a,b) >min{p, ﬁ}e—nw(imlmn
1

xH [(aid)” (6],

where ¢* is the optimal parameter in the definition of Chern-
off-Hellinger divergence Div([a, d], [b, b]).

Proof: See Appendix D. L

Let D and W be random vectors representing the positive
and negative edges that connect the node v to each micro-com-
munity, respectively. More specifically, D(*/) and W) are
elements of D and W indicating the number of positive and
negative edges connecting the node v to the micro-community
() §'), respectively. For each node v, the proposed detection
tests hypotheses

H; vy =1
If v belongs to micro-community (%, j), then

g " i
D(‘ st ) ~ B]_D(RP“!JI y (;'_"'. * Q)fnlr_'_,"‘:ﬁnr“),
W{{‘J )~ Bm(nR,’J’: ((1 T E) * Q_)j’mr+i,"jmr-|~£)'

In the regime where Q = Q2% the Binomial distribution can

n ?

be approximated by a Poisson distribution with the same
mean. The distributions of D and W can be approximated by
multivariate Poisson distributions P,\ and P; with the vec-
tor means A; j and X j» respectively. 'Iherefore 4
p(D — d: W= le‘i: Yv = j)
=P(D = d|H;, y, = j)P(W = w|H;, y, = j)

= [11IP,¢n @ )P s (@),
i F i i.J
where

o
A(.t."} ) = P S (l:l * Q)fmr+1"’jmr-l—'£10g L

XD = Byy((1-8) * Q) gt jms+i108 -

Theorem 4: Under two-latent variable censored block model,
all micro-communities are exactly recovered if and only if

Hilii. Div( id) plid)], (k.c)‘h(k.n) 5 1
(1.3)# (kD) ¢ hlo ]

Proof: See Appendix E. B

Theorem 5: Under the two-latent variable censored block
model, when the latent variable y is revealed, exact recovery
of z is possible if and only if

A minmin Div ([alid) RO (k) p k)
Vs—m;nﬂ‘;;ngW(Lq ), [gR9), B ])>1

Proof: See Appendix F. @
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Theorem 6: Under the two-latent variable censored block
model, when both latent variables are unknown, exact recov-
ery of x is possible if and only if

Y42 min ':3? i ([ o) {5tk kD ]) -
. 1

Proof: See Appendix G. in

Corollary 1: Assume z and y are unknown latent variables
for all nodes. We randomly reveal the latent variable y for
(1 — €)n nodes, where € € (0,1). This is equivalent to erasing
the latent variable y which is a known latent variable from a
node with erasure probability €. Define

log (1 —€)

lim loge
logn

N—00 ll'_)g T i

B & — lim

n—00

y ﬁ2é_

e Under the two-latent variable stochastic block model
exact recovery is asymptotically possible for latent vari-
able z if and only if

min(y; + By, ¥, + B2) > L.

e Under the two-latent variable censored block model
exact recovery is asymptotically possible for latent vari-
able z if and only if

min(y; + By, ¥4 + By) > L.

The results of this part generalize to M latent variables
without difficulty.

Remark 2: To prove the “if” part of all theorems in
Section III, a partial recovery algorithm is required before
applying a MAP estimator. For that purpose, the partial recov-
ery algorithm in [11] is adopted and modified to match the sce-
narios in this paper. Please see Appendix L.

IV. SEMIDEFINITE PROGRAMMING RESULTS

This section describes a semidefinite programming algo-
rithm for recovering the desired latent variable. The main
results of this part are represented in the context of two scenar-
ios, where the latent variable x is unknown and the latent vari-
able y is either known or unknown (for all nodes in the graph).
We consider z,y € {£1}" such that 71 = 0. Thus, the latent
variable x represents two equal-sized communities. The sam-
ple size of the latent variable y, represented by p £ %|{v €
[n] : ¥, = 1}/, is an unknown quantity.’

A. Two-Latent Variable Stochastic Block Model

We highlight the specifics of a two-latent variable stochastic
block model for the purposes of upcoming calculations. The
probability of an edge drawn between two nodes v, u is char-
acterized by four constants, gy, g;, g2, g3 such that:

! Note that semidefinite programming results in this section are obtained
for binary equal-sized communities, while the results of Section Il were more
general.

Bern(qo22) ¥ 2= Tu, Y =Yu
Ay ~ Bm‘ﬂ(mfﬁﬁ) 20 # T =Y

Bern(g=2%) if , =Ty, ¥ # Y

Bern(gs2E%) if Ty # Tus Yo # Yu

The corresponding matrix (), as defined earlier, in this case
will be:

9 ¢ G2 g3
g1 qo 43 Q2
Q= : (2)
¥ 43 o G
g G @1 qo

1) Recovering x When y is Known: In the first scenario,
given an observation of the graph A and y which corresponds
to the observed graph, the latent variable z, is recovered
exactly for each node v € [n]. In this part, y is considered as
an observation which helps the estimator to recover the
desired latent variable z. Let W 2y and BAW x A. Since
z is chosen uniformly over {z € {£1}" : 271 = 0}, the maxi-
mum likelihood estimator gives the optimal solution. For this
configuration, the log-likelihood is

T - 15
log P(A|z,y) = gl:rTBr : 8 Ez 2" Az + ¢,

where T £log (£22) and T 2 log (££), as n — co and c is a

constant. Considering the constraints, the maximum likelihood
estimator is,

# =argmax T} 27 Br + TyaT Ax
r
subject to x; € {£1}, i€ [n]
zT1 =0, (3)

which is a non-convex optimization problem. Let Z = zz7.
Reorganizing (3),
Z = argmax (Z, T\ B + T A)
z
subject to Z = zz’
Zi=1, i€ [ﬂ]

(z,))=0. “
By relaxing the rank-one constraint on Z, we obtain the fol-
lowing semidefinite programming relaxation of (4):

2= arg max (Z,T\B + TrA)

subject to Z =0
Zi=1, 1€ [n]
(Z,))=0. (5)

For convenience define
o, 2  1—p 2
m(q.0) 2 5 (v — V&)’ +—5= (V& — V&),

where q £ [q, ¢1, @2, @3]-
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Theorem 7: Under the two-latent variable stochastic block
model with binary alphabet where the latent variable y has
been revealed, if

{nl(q,p) ol when p<0.5
n(q,1=p) >1 when p > 0.5

then the semidefinite programming estimator is asymptotically
optimal, i.e., P(Z = Z*) > 1 —o(1). Also, if

{m(q, fi) BCal | when p<0.5
m(q.1—p) <1 when p > 0.5

then for any sequence of estimators Z ]P(Zn =27%)—0.

Proof: See Appendix H. Ll

2) Recovering x When y is Unknown: Given an observa-
tion of the graph A, the aim is to exactly recover = while both
latent variables = and y are unknown latent variables. It is
assumed that the estimator does not know anything about the
auxiliary latent variable y, which its prior distribution is uni-
form over {y : y € {£1}"}. Notice that z is drawn uniformly
from {z € {+1}" : 71 = 0}. The log-likelihood of A given
rand yis

log P(Alz,y) = (A 2" )y + 22" Az + 2y Ay + ¢,

A 043 Alpe (D92 A oo (9091
where T) 2 log (2), Tr£log (JL2), and T3£log (21, as
n — oo and c 18 a constant. Then

log P(A|z) oc log Y P(Alz,y)
y

T; T
odog ) Th (Avaa gt Az Ay
y

T+ T
= 1T3 QzTA$+Z;A4.j.

+log 3 B e i v a4, 5 4
y

Applying the log-sum-exp approximation, the maximum like-
lihood estimator is

# = argmax z! Az
T
subject to z; € {*1}, i€ [n]
271=0, (6)
that is a non-convex optimization problem. Let Z = zx”.
Reorganizing (6) yields

Z = argmax (Z, A)
z

subject to Z = za”
Ziy = 1, i€ [‘I"I]
(Z,)) =0. @)

Relaxing the rank-one constraint on Z, we obtain the follow-
ing semidefinite programming relaxation of (7):

Z = argmax (Z, A)
z

subject to Z =0
Z,'f = 1, 1 E [ﬂ]
(Z,)) =0. (8)

For convenience define

1 2
m(q,p) £ 5 (\/r;mp +q2(1—p) — Varp + g3(1 — p)) :

Theorem 8: Under the two-latent variable stochastic block
model with binary alphabet, if

min{ny(q, p),m2(q,1 — p)} > 1,

then the semidefinite programming estimator is asymptotically
optimal, i.e., P(Z = Z*) > 1 — o(1). Also, if

min{n,(q, p),12(q,1 - p)} < 1,

then for any sequence of estimators 2. P(ZATl =Z*) — 0.

Proof: See Appendix J.

Remark 3: The results of Theorems 7 and 8 are consistent
with Theorems 2 and 3, respectively.

Remark 4: The constraint 71 = 0 that has been considered
for this part results in a well-defined phase transition threshold
for exact recovery of latent variable . In general, x may be a
random variable which is drawn uniformly from {z € {+1}" :
zT1 = (2p, — 1)n}, where p, 2 1|{v € [n]: 2, = 1}|. Then
#T1 = 0 is substituted by 271 = (2p, — 1)n in semidefinite
programming relaxations (5) and (8). Also, due to the robust-
ness of semidefinite programming, an approximation of p,
can be replaced for recovering the latent variable x. Investigat-
ing the constraint 271 = (2p, — 1)n and the robustness of
semidefinite programming are beyond the scope of this paper.

B. Two-Latent Variable Censored Block Model

We highlight the specifics of a two-latent variable censored
block model for the purposes of upcoming calculations. Let
P(k;qo,€) be a discrete probability density function with
parameters gy > Oand £ € [0,1] as,

] 1
P(k; q0,€) %éqo%ﬁlk =)= (1= E)qo%ﬁlkﬂL 1]
+ (1 — o log n)‘slk],

n

where § is Dirac delta function. The probability of an edge
drawn between two nodes v, u is characterized by constants
q0,q1,492, 93 and 6 such that:

P(k;qp,1-¢) if
P(k;q1,€) if
P(k; g2, €) if
P(k;qs, ) if

Ty =Ty, Yp = Yu
Ty # Tur Yo = Yu
B Y
Ty F Tuy Yo F Yu

Ay~
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The corresponding matrix @, as defined earlier, is the same
as (2). Also, in this case, the corresponding matrix = will be:

(=4 ¢ g
¢ : &)

1) Recovering x When y is Known: Given an observation
of the graph A and y which corresponds to the observed graph,
the latent variable z, is recovered exactly for each node v €
[n]. In this part, y is considered as an observation which helps
the estimator to recover the desired latent variable x. Let

RATA+T(A*W)+Ti(Ax Ax W) + Th(Ax A),

where 7" 2 ]og (%) and W 2 yy”. Since  is chosen uniformly

over {z € {£1}" : 271 = 0}, the maximum likelihood esti-
mator gives the optimal solution. Similar to Section IV-Al, it
can be shown that the semidefinite programming relaxation of
maximum likelihood estimator for this configuration is

Z = argmax (Z, R)
z
subject to Z =0

Ziyi =1,

(Z,)) =0.
For convenience define

i€ [n]
(10)

gé [(1 —§)QO:§QI:EQ2:5"J’3]:
h2[¢g,(1—&)a,(1— &, (1-E)g]

Theorem 9: Under the two-latent variable censored block
model with binary alphabet where the latent variable y has
been revealed, if

{Hl(ﬁ;ﬂ)+ﬂ1(hap) >1 when PSO5
n(gl—p)+mth,1—p) >1 when p > 05

then the semidefinite programming estimator is asymptotically
optimal,ie., P(Z = Z*) > 1 — o(1). Also, if

{fh(gsﬂ)"i’fh(hsﬂ) <1 when p <05
m(gl—p)+mth,1-p) <1 when p > 05

then for any sequence of estimators Z,,, P(Z, = Z*) — 0.
Proof: See Appendix K. ®
2) Recovering x When y is Unknown: Given an observa-

tion of the graph A, the aim is to exactly recover x while both

latent variables x and y are unknown. It is assumed that the
estimator does not know anything about the auxiliary latent
variable y, which its prior distribution is uniform over {y : y €

{£1}"}. Notice that x is drawn uniformly from {z € {£1}" :

#71 = 0}. Similar to Section TV-A2, it can be shown that for

this configuration the semidefinite programming relaxation of

the maximum likelihood estimator is

Z = argmax (Z,TA + Ty(A % A))
z
subjectto Z >0
Zy=1,
(Z,]) =0.

i€ [n]
(1)

Theorem 10: Under the two-latent variable censored block
model with binary alphabet, if

min{ﬂ?(g: p) F 7?2(1‘, p): ']'2(8} = P) + f}'g(h, I— p)} > ]-:

then the semidefinite programming estimator is asymptotically
optimal, ie., P(Z = Z*) > 1 — o(1). Also, if

min{?:@(g} p) s g q?(h: P):fh(g: L— p) + f:"2(111 I — p)} < 1:

then for any sequence of estimators 7 P(Zﬂ =2Z%)— 0.
Proof: See Appendix L. u
Remark 5: The results of Theorems 9 and 10 are consistent

with Theorems 5 and 6, respectively.

V. DISCUSSION & NUMERICAL RESULTS

It is illuminating to review the flow of the development of
the achievability results througout this paper:
1) Calculate the Lagrangian of the corresponding
optimization
2) Extract the dual optimal solution based on the Lagrange
multipliers
3) Show that Z = Z* is primal optimal solution
4) Show that Z = Z* is unique
5) Extract the conditions under which the dual optimal
solution holds
The converses follow the following sequence:
1) Extract the maximum likelihood estimator
2) Extract the conditions under which the maximum likeli-
hood estimator fails
To give a pictorial view of some results of the paper, we
plot some results in the context of the two-latent variable sto-
chastic block model represented by (2) and two-latent variable
censored block model represented by (2) and (9). For ease of
notation, we define

y1 2min{n(q, p),m(q,1 - p)},
Va é1'-‘*1‘11{71'2(‘]: p),n2(q,1 — P},
ys 2 min{n; (g, p) + n1(h, p), m1(g, 1 — p) + n1(h,1 - p)},
Ys 2 min{n,(g, p) + no(h, p), n2(g, 1 — p) + no(h,1 - p)}.

For the two-latent variable stochastic block model, Figs. 2
and 3 show the exact recovery region for recovering the latent
variable = when the secondary latent variable y is either
known or unknown. The curves in these figures are based on
the obtained results in Theorem 7 and Theorem 8. These fig-
ures encompass several curves plotted for different values of
qo. g1, g2, g3 in (2), and p. At each figure, we consider fixed
values for g, g2, g3 and vary the values of gy and p. A compar-
ison between the curves in Figs. 2 and 3 clarifies the role of the
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T4 72

9

Fig. 2. [Exact recovery region of z in the context of (2), with go =3,
q=g=L1

25 T T 7 T
—e—1, p= 0.3

— p=03

Ty p=04
— T 0= 04
—e—T p=05

b|—=—7,p=05

Exact Recovery Region

9

Fig. 3. Exact recovery region of z in the context of (2), with g1 = g =
g3 =1

revealed latent variable y for recovering the desired latent var-
iable x.

For the two-latent variable censored block model, Figs. 4
and 5 show the exact recovery region for recovering the latent
variable = when the secondary latent variable y is either
known or unknown. The curves in these figures are based on
the obtained results in Theorem 9 and Theorem 10. These fig-
ures consist of several curves plotted for different values of gp,
G1» @2, g3 1n (2) and p, while £ = 0.1 in (9). At each figure, we
consider fixed values for &, qi, g2, g3 and vary the values of g
and p. A comparison between the curves in Figs. 4 and 5 clari-
fies the role of the revealed latent variable y for recovering the
desired latent variable x.

To gain an understanding of the scope of our asymptotic
results, under the conditions of Figs. 2 and 4, we performed
several simulations on 10* graph realizations with various
graph sizes obtained from the proposed models in Section II.

Gy

Fig.4. Exact recovery region of x in the context of (2) and (9), with § = 0.1,
g=3adg =g@=1

25F
Exact Recovery Region

%

Fig.5. Exact recovery region of x in the context of (2) and (9), with £ = 0.1,
andg; =g =g =1.

The obtained average error probability (AEP) is around 10~°
in the regimes just inside the region of exact recovery, and
around 1072 in the regimes just outside the region of exact
recovery. The details of these simulations are represented in
Tables I and II. At each simulation, we consider fixed values
for g1, g2, g3 and vary the values of gy, p, and n.

VI. CONCLUSION

This paper presents and analyzes a new generalization of the
stochastic and censored block models in which, in addition to
the latent variable representing community labels, there exists
another (secondary) latent variables that are not part of commu-
nity detection. These secondary latent variables may be known,
unknown, or partially known. This model represents commu-
nity detection problems where the community labels alone does
not explain all the dependencies between the graph edges.
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TABLE 1 TABLEII
SEMIDEFINITE PROGRAMMING OPTIMIZATION OF (8) AND (10), SEMIDEFINITE PROGRAMMING OPTIMIZATION OF (8) AND (10),
WITHp =3.qi=q3=1,AND p=0.5 WITHg: = 3.1 = ¢z =1, AND p = (.3

| BSBM | BCBM | BSBM | BCBM
y n Y n
| o AEP | g ¢ AEP | AEP | @ ¢ AEP
Known 100 7 38x10°2%2| 4 01 67x10°2 Known 100 | 10 76x1072 | 7 01 4.1x102
Known 200 | 7 24x1072 | 4 01 49x10°2 Known 200 | 10 51x1072 | 7 01 31x102
Known 300 | 7 19x10°2 | 4 01 36x102 Known 300 | 10 3.0x1072 | 7 01 23x10?
Known 400 | 7 15x1072 | 4 01 25x10°2 Known 400 | 10 21x1072 | 7 01 18x10°2
Known 500 | 7 11x1072 | 4 01 16x10"2 Known 500 | 10 13x1072 | 7 01 13x10°?
Known 100 | 9 81x107% | 6 01 4.6x107° Known 100 | 12 67x107% | 9 01 39x10°5
Known 200 | 9 59%x107% | 6 01 32x10°% Known 200 | 12 51x107% | 9 01 25x107°
Known 300 | 9 42x107% | 6 01 24x10°° Known 300 | 12 36x107% | 9 01 1.8x10°°
Known 400 | 9 28x%x107% | 6 01 1.7x10°° Known 400 | 12 25x107° | 9 01 1.2x107°
Known 500 | 9 18%10°% | 6 01 12x10"%° Known 500 | 12 16x107° | 9 01 1.0x10°%
Unknown 100 | 8 57x1072 | 5§ 01 56x10°2 Unknown 100 | 11 43x1072 | 8 01 42x10°2
Unknown 200 | 8 41x1072 | 5 01 39x10"2 Unknown 200 | 11 33x10"2 | 8 0.1 29x10°2
Unknown 300 | 8 27x1072 | 5§ 01 25x10°2 Unknown 300 | 11 24x1072 | 8 01 20x10°2
Unknown 400 | 8 18x10°2 | 5 01 16x10°2 Unknown 400 | 11  1.7x10°2 | 8 01 13x102
Unknown 500 | 8 13x1072| 5 01 11x10°2 Unknown 500 | 11 12x1072 | 8 01 1.0x102
Unknown 100 | 10 6.2x10°% | 7 01 63x10°% Unknown 100 | 13 42x10°% | 10 01 4.8x10°°
Unknown 200 | 10 44x1075| 7 01 40x10°5 Unknown 200 | 13 26x107% | 10 01 33x10°°
Unknown 300 | 10 33x10°% | 7 01 23x10°% Unknown 300 | 13 1.7x10°% | 10 01 22x10°%
Unknown 400 | 10 23x1075| 7 01 17x10°% Unknown 400 | 13 13x107% |10 01 15x10°5
Unknown 500 | 10 14x107% | 7 01 13x10°% Unknown 500 | 13 1.1x107% | 10 01 1.0x10"%

We investigate the exact recovery threshold for these models  Notice that
under maximum likelihood detection, and also analyze a semi-

definite programming algorithm for recovering the desired Z I—[(ﬂfwff?}_t)dVE atbl~t _
latent variable under the two-latent variable stochastic block i d;!
model and the two-latent variable censored block model for +
both scenarios.
Then
S i I(a,b) < max{p, p}e~ Dol +1-0b—alt}™] (12)

Proof of Lemma 1: Define

m o\ (1) For the value of { that maximizes the right-hand side of
fl)a H (—‘) elt—Dlai—b) inequality (12), we have
i=1 \&i
ao211 (z)”‘em_m_ > min{Pa(dp, Po(d)p} < max{p, ple D).
=1 \ & wZy
Foranyt € [0,1], Notice that t* satisfies
in{P,(d)p, Py(d)p n oy \EH
Lfezfmrmn{ (d)p, Py(d)p} 11 (E) o
o il A
<max{p,p} 3 min{Pu(d), Py(d)}
ez} Then at the optimal #*,
— " & —_ 3 _ g — !.' 1_! - A
_ma,x{p,p}axp( Z[tag + (1 —t)b; —a;b; ) Z mindP. (Do D 5
2 deZm
(@bl gt s .
x > 1= e min{Ai(®). 20} >min{p,p} 3 min{P.(d), Py(d)}
acZp i ' deZm

* *
.b:.l_t'. )ﬂf b}—t
1

117
atb "]

Both f;(¢) and f>(¢) are monotonic and % is a positive con-

stant (does not depend on t), thus min{ f1, f>} is also monotonic
int. Since fi(1) = f2(0) = 1, for all £ we have:

min{f; (¢), f2(¢)} < 1.

£ 1-t*
—a; b‘i

(a) : £
ijn{‘p,ﬁ}e—Dl\"'(u,b) H (ﬂ't e
i

®) ] il e il
Susni e O [ )
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where (a) holds because

> min{P,(d), Py(d)} > min{P,(d"), Ps(d")},

deZ?

a’’b}~"", and (b) is due to Stir-
—n+1

where d* is defined by df £

ling’s approximation n! < n"te forany n > 1. il

APPENDIX B

Proof of Theorem 2: We aim to recover x, when y, is
known. Given a realization of D and y,, our goal is to mini-
mize the error probability by selecting the most likely hypoth-
esis, 1.e.,

argmaxP{HJD = d: yv}:

or equivalently, since d, y, are known observations,

arg;rlax P(len yt.‘)p{Ht: y‘r..'}}

which is the maximum a posteriori (MAP) detector, which we
rewrite:

argmax P(d|H;, y,) Py, (13)

Solving (13) requires m, — 1 pairwise comparisons of the
hypotheses. From this viewpoint, if

P(d|H;,yo) Py, < P(d|Hy, yo) Pry,, (14)

then a pairwise comparison will choose Hj over H;. Now
assume the correct hypothesis is H;, and denote by B;; the
region of D for which (14) is satisfied, i.e., H; has a worse
metric compared with H;. Also denote by B; the region for D
where the overall MAP decoder is in error. The dependence of
error regions B;; and B; on y, is implicit. Then the probability
of error

P, = ZP{D € Bi|H;, yu} Piy,- (15)
Since B; C UiBi,
P, <) "P{D € Bi|Hi, %} Pig,-
i ki
From the earlier Poisson assumption P(d|H;,y,) = Py (d)
it follows that:
m‘ln{PAa,y,_, (d) i\ },’I)Ak,y,_, (d)Pk‘?J‘u} 5
P Ao (d) Fi,, when D € B;;
lp’\k,yg (d) Pk,yu when D € B(k.
Therefore, substituting into the union bound:
P.< Zzzmn{a (d) P,y P, (@) Pig,}-  (16)

i k=i

For bounding the error probability (16), it suffices to find an
upper bound for

ZM{P’\%W d) ‘deAk‘y.. (d) Pry, }-

(17
It follows from Lemma 1 that
Pe < Z Zmax{ (R Pk‘yu}e_Div(Ai‘””’Ak‘y"}
_ i E 1~ DV (gl g5 o(1) 18)
i k>i

We now bound the error probability of decoding rule (13)
from below. Since

> P{D € Bu|H;,yx} < (m — 1)P{D € B;|H;, 1},
P

(19)

substituting (19) into (15) yields

1 i
P2>—— ZZP{D € Bul Hiy o} Py, = 5

% ZZZM{’P/\W

i k=i

L S‘UTP/\ky d)Pk,sm}

Then it suffices to find a lower bound for (17) to bound the error
probability from below. It follows from Lemma 1 that

o~ DIV(Ai 4, M)

P> Z Z dmin{P,y,, P, }(logn)™2

i k>i

=3y - Div(gtw) 5wy o)

i k>i

(20)

where ¢ is a constant and rn is the number of elements in vec-
tor d, i.e., the product of alphabet sizes of x, and y,,. The lower
and upper bounds (18) and (20) imply that the true hypothesis
is recovered correctly if Div(gl*#), ¢*®)) > 1, for a given y,
and any i# k. This means that a known latent variable
restricts the number of pairwise comparisons. Then under the
two-latent variable stochastic block model in which the latent
variable y is known, and the latent variable x is unknown,
exact recovery is possible for z if and only if

min min Div(gl, ¢*9)) > 1
t

; ey

APPENDIX C

Proof of Theorem 3: We aim to recover x, when y, is
unknown, given a realization of D for node v. For this setting
the MAP detector is

argmax P{H,|D = d},
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or equivalently,
argmaxZHP(Zd{”}|Hnyv) i (22)

Solving (22) requires m, — 1 pairwise comparisons. In these
comparisons, if

ZHP(Zd{”)lH"y”) % i
o
< ZHP(Zd(E‘J)lHk? yﬂ) Pk.ym (23)
w1 i

then we conclude hypothesis H; is ruled out, ie., z, #1,
because another hypothesis H}. has a better metric. Denote by
B;. the region of D for which H; has a worse metric compared
with Hy, i.e., the region for D in which (23) is satisfied. Also
denote by B; the region for D where the overall MAP decoder is
in error. The error probability of MAP decoder (22) is given by

P, ZZ;P(DG Bi| H;, 9o } P - (24)
Since B; C UgBjz, via the union bound,
> P{D € Bi|H;, .} Py,
w
< 3" P{D € B|H;, yo} Piy.- (25)

LTI

Using the Poisson approximation and the additive property of
Poisson distribution:

i) 2 [TP( 309
i \G
= H'P u‘;) (Zd“‘ﬂ).

J
Therefore,
]JllIl{I(d, ir yv)ﬂ‘yu ] I(d: k} y'U)Pk‘Sm}
_ { I(d,i,y,)P,, when D e By
~ \ I(d, k,ys)Pry, when D€ B’

Substituting (25) into (24) yields
P.<) > P{D € BylH;, 3} Py,

i kA W

= ZZZZ min{I(d, i,Ys)Piyy, 1(d; k, o) Piy, }- (26)

i k=i w

For bounding the error probability (26) from above, it suffices
to find an upper bound for

Z min{f(d, i‘: yt‘)ﬁ‘ym I(dr k: yv)Pk,y;_.}'

deZ

27)

Applying Lemma 1 yields

RTINS e s

i ki ow

(28)

We now bound the error probability of decoding rule (22) from
below. Notice that

Y _P{D € BulH;y,} < (mz — ))P{D € BilHi,uu}. (9
kAi

Subs{ituﬁng (29) into (24) yields

1
is Yo 1 Pigy
i kA W HPiy my — 1
% ZZZZM{I(d yﬂ id.furf(dr k: yﬂ)Pk‘yu}-
i k>i Wy

Then it suffices to find a lower bound for (27). Applying
Lemma 1 yields

P> Z Z Z 7y~ DIV (64 gkw) ) po(1)

i k>i %

(30)

The lower and upper bounds (28) and (30) imply that the true
hypothesis is recovered correctly if Div(g®), g@%%)) > 1 for
any 7 # k and any y,. Then under two-latent variable stochas-
tic block model in which both latent variables xz,y are
unknown, exact recovery is solvable for z if and only if

minmin Div (3%, %) > 1.
i itk

(3D
il
APPENDIX D
Proof of Lemma 2: Define
Pa(d)Pa(w)
102 (o)

o ()

f(t} éPa (d)ipb (d)l_tpu“ (w)tpﬁ(w)l—t
For any t € [0, 1],
Z min{ P, (d)Pa(w)p, Ps(d)Ps(w)p}
dwed!

< max{p,p} Y min{Pu(d)Pa(w),Ps(d)P;(w)}

Fm
d‘weiﬂ+

>l + (1 - 0 — a8

x cxp(— Z[t&,- +(1—t)b — a:&}—‘D, 32)

where the last inequality holds because min{ f; (¢), f2(#)} < 1,
and

< max{p,ﬁ}mm( -
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(ﬂ.tbl_) iB afpl-t (ﬂ.tbl t)w —aﬁﬁ}"

5 - =1

dwezm i

For the value of ¢ that minimizes the upper bound of (32), we
have

I(a,b,d,b) < max{p, p}eDivlad i),

(i

Notice that t* satisfies

)™
i}
i=1 \
Then at the optimal ¢*,

> min{P,(d)Pa(w)p, Py(d)Py(w)p}

duweZ

!,*51 —t*

b_) ea‘i—[ﬁ“‘&i—&i —E
a;

> min{p,p} ) min{Pu(d)Pa(w), Ps(d)Ps(w)}

d‘mEZT
(a) wron i g
> min{p, p}e~ —Div([a.a],[b8)
B pl—t*
tp1—itya; b i
& H(ﬂ‘i BT )N N g
* p1—*
. a; b~
* -t
D R
. H s

(0 -$

> min{p, p}e”

Div([a,a,[b.8]) l
I;I e? [(a,
where (a) holds because

> min{P,(d)Pa(w), Ps(d

dweZ?

> min{Pq(d")Ps(w"), Py(d")Ps(w")},

Pi(w)}

where d* is defined by df 2a!'b!~"" and w* is defined by

w2 b1t and (b) is due to Stirling’s approximation n! <

n+he-m+1 for anyn > 1. n
APPENDIX E

Proof of Theorem 4: We aim to recover both x, and y, for
node v, given a realization of D and a realization of W. Our
goal is to minimize the error probability by selecting the most
likely hypothesis, i.e.,

argmax P{H,;|D = d,W = w},

]

where
H;z: @y =4y =4
The maximum a posteriori (MAP) detector is rewrite as

argmax P(d,w|H;;)P,; (33)
i,j

@) (b6,

297

Solving (33) requires m,m, — 1 pairwise comparisons of the
hypotheses. From this viewpoint, if

P(d: le"‘.'f)R‘j = P(d: lekJ)PkJ:

then a pairwise comparison will choose Hy; over H; ;. Now
assume the correct hypothesis is H; ;. Similar to the proof of
Theorems 2 and 3, it can be shown that the probability of error
for recovering the true hypothesis is bounded from above and
below by controlling

Y min{P,, (d)

daw

PX;\,-( w)P, j, Py, (d)P5 (w) P}

Ak‘i
It follows from Lemma 2 that

P.< Z Z max{P, > PkI}g—DiV([A-xJ‘/{sJ]‘[AkJ~Xk;])

thk>ijl>j

= ZZH_

Lk>ijl>]

Div([gli9),¢9)], gD g®D]) +o(1) (34)

and

P> Z Z dmm{RJ:Pki} —Div(in ;& 1 e Arg])

T]’l
Lk>igl>] (logn

-S>

k>l

Div ([g:9) h6] [g®D 4&DT) 1 o(1) 35)

where ¢’ is a constant and m is the number of elements in vec-
tor d, i.e., the product of alphabet sizes of x, and y,. The lower
and upper bounds (34) and (35) imply that the true hypothesis
is recovered correctly if Div([g(*9), R3], [g®H RED]) > 1,
for any (%,j) # (k,l). This means that under the two-latent
variable censored block model all micro-communities are
exactly recovered if and only if

min Div( g9, )], g% R0
(#.4) (k1) ([9 bl ])

APPENDIX F

Proof of Theorem 5: We aim to recover x, when y, is
known. Given a realization of D, a realization of W, and y,,
our goal is to minimize the error probability by selecting the
most likely hypothesis, i.e.,

argmax P{H;|D =d,W = w,y,},

or equivalently,

argmax P(d|H;, yo) P(wlH:, ) Py, (36)
which is the MAP detector. Solving (36) requires m, — 1 pair-
wise comparisons of the hypotheses. Similar to the proof of
Theorem 2, it can be shown that the error probability of find-
ing true hypothesis is bounded from above and below by con-
trolling
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me{PAw,, (d)P/\‘ (w)P,yu!,’DAkyg (d)P,\k (w) Py, }-

d,w
It follows from Lemma 2 that

P<Y Y max{P,, Py, e DV Wi g, Ai))

i k>i
= Z Z n_Div({g(ﬁw)‘h(i-w)]‘[g(k@u)‘h(k#u)])w(]). (37)
i k>
and
e~ DIV gy A g b Ak A i)
P. > TRTHEE T N T STHEY ST
Z;-: ; (log n)*
_ ZZ n_DN (i.-vuJ,;,(i.w)]‘[g(kwu)‘htk&u)])ﬂ.(l}1 (38)
ik
where ¢ £cmin{ P, , P, } is a constant and m is the num-

ber of elements in vector d. The lower and upper bounds (37)
and (38) imply that the true hypothesis is recovered correctly
if Div([gli®), hEw)] [gkw) p*w)]) > 1, for a given y, and
any ¢ # k. This means that a known latent variable restricts
the number of pairwise comparisons. Then under the two-
latent variable censored block model in which the latent vari-
able y is known, and the latent variable z is unknown, exact
recovery is possible for « if and only if

mgnrman([g(“’) RG], (g5, h(kJ}])
J ik
APPENDIX G

Proof of Theorem 6: We aim to recover z, when y, is
unknown, given a realization of D and a realization of W for
node v. For this setting the MAP detector is

argmax P{H;|D = d, W = w}.

For convenience define

I(d,w,i,y,) & HP(Zd(EJ} Zw(tg)lH yv)

i
where 3~ w(%) and 3, d9) are independent given H; and y,.
Then the MAP detector rewrite as

argmax Z I(d, w,i,y,) Py, - (39)
¥ W

Solving (39) requires m, — 1 pairwise comparisons. In these
comparisons, if

Z I(dn w, i, yv)Pi,yL. < Z I(d: w, k: yﬂ)Pk‘yﬂr

o o

then we conclude hypothesis H; is ruled out, ie., z,# 1,
because another hypothesis ;. has a better metric. Notice that
using the Poisson approximation and the additive property of
Poisson distribution, I(d, w, i,y,) can be reorganized as

1w i) =[] Py /\UJ,(ZM)

J Ly
X || Py~ 0 ( w(td }) :
g (S

Similar to the proof of Theorem 3, it can be shown that the
error probability of recovering the true hypothesis is bounded
from above and below by controlling

Z ]Il_l'Il{I(d, w, ir yt})Pi‘yu: I(d: w, k: yﬂ)Pk,y;_. } .
d,wEZT

Applying Lemma 2 yields
i Z Z Z n_Div([g(i.yu)‘ﬁ(i-w)]‘{g(k‘w)‘ﬁ(kw)])w(u

i k=i we

(40)

and

P Z Z Z n—DiV({g“’yﬂ),ﬁ(i'ﬁ‘”)]‘[_z}(k*ﬂ),ﬁ("‘ﬁ"”)])w{l)_

i k=i Wy

(41)

The lower and upper bounds (40) and (41) imply that the true
hypothesis is recovered correctly if Div([gliw), hliwe)], [glkw)
h:)]) > 1 for any i # k and any y,. Then under two-latent
variable censored block model in which both latent variables
x, y are unknown, exact recovery is solvable for z if and only if

mrng Div([_a{f‘j),;;(«uj)],[g(m}?g{m]) s 1.
J %

APPENDIX H

Proof of Theorem 7: We begin by stating sufficient con-
ditions for the optimum solution of (5) matching the true
labels z*. L

Lemma 3: For the optimization problem (5), consider the
Lagrange multipliers

A, D*=diag(d}), S".

If we have

S* - D* + )\*J _T]B—T')A,
S* =0,
Ao (S*) > 0,
FzF =0,
then (\*, D*, S*) is the dual optimal solution and Z = z*z*7
is the unique primal optimal solution of (5).
Proof: Let D =diag(d;), A € R, and S > 0 denote the

Lagrangian of (5). For any Z that satisfies the constraints in (5),
we have

(a)
Ti(B, Z) + To(A, Z) <L(Z,5°,D*,\") = (D", 1)
Qs — M+ T1B+ TrA, Z*)

91(B, 2*) + Ty(A, 2%),
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where (a) holds because (S*, Z) > 0, (b) holds because Z;; =
1 for all i € [n] and S* = D* + A*J —T1 B— ThA, and (c)
holds because S*z* =0 and z*71 = 0. Therefore, Z* =

*z*T is an optimal solution of (5). Now, assume Z is another
optimal solution. Then

(8*,2) =(D* + ] —T1B—-T3A, Z)
OBt £ X BB —Tal, 2%) = (85, 2%) =0,
where (a) holds because (T3 B + Tz A, Z*) = (1B + TrA, Z),
Zt=17Z;=1forall i€ [n], and {J,Z*) = (J,Z) = 0. Since

Z > 0,and S* > 0 while its second smallest eigenvalue A (S*)
is positive (since S*2* = 0), Z must be a multiple of Z*. Also,
since Z;; = Z}, = 1foralli € [n], we have Z = Z*. B
We now show that S* = D* + A*] — T1B — T, A satisfies
other conditions in Lemma 3 with probability 1 — o(1). Let

=T ZBHzJI, + T ZA,J (42)

j=1

Then D*z* = Ty Bx* + Th Az* and based on the definition of
S* in Lemma 3, S* satisfies the condition S*z* = 0. It remains
to show that S* = 0 and A\2(S*) > 0 with probability 1 —
o(1). In other words, we need to show that

P{ inf vS* > 0} >1-o(1), (43)
vlat,[[vl|=1

where v is a n x 1 vector. Then for any v such that v"z* = 0
and |jv] = 1,

vI'S*v = vT D*v+ AT Jv — Tyw' (B — E[B])v
— Ty (A — E[A])v — Tiw E[Blv — ThvTE[AJ]v
> mind + Mo — T4 B ~ E[B]|

— Ts||A — E[4]|| = T1v" E[Blv — Txv" E[A]w.

Notice that

T_[UTE[B]'U + TQUTE[A]'U :é [Ticr + TQCQ]UTWU

1

+ Z[T]Cg + T2C4]UT(Z * W)'U
1

+ Z[Tl c1 + Theo) UTJU

logn

(T +Ta)go—— g

where

Y

c1 i(‘m @+ aq —aq),
lo

Czéi(%+fJ2+Q1+fi'3)
i

< (@0 —@— @ +a),

lD
C4éT(q(1+Q2—Q1+G’3)-

Lemma 4: For any ¢ > 0, there exists ¢,/ ¢” > 0 such that
for any n> 1, ||A— E[]| < ¢"y/Iogn and ||B—E[B]| <
¢’v/log n with probability at least 1 — n~°.

Proof: The proof is similar to the proofs [39, Thoerem 9]
and [32, Thoerem 5]. &

Lemma 5: With probability at least 1 —n 5,

v (Z % W)v < y/logn,
oW < Jlogn + (2p — 1) Ju+ 2|2p — 1|4/nlogn.

Proof: Since —|v;| < vy < |v;|, by applying the Chernoff
bound we have

P(vTy — E[vTy] > y/logn) < n2

Since E[oTy] = (2p—1)0™1 and [o71] < [|o]l,]|1, = v/,
with probability converging to one,

(v"y)* < logn + (2p — 1)*0"Jv + 2/v"1||20 — 1|\/logn
<logn + (20 — 1)*v"Jv + 2|2p — 1|{/nlogn.

Similarly, since E[}_, z;yiv;] = 0 and —|v;| < ziyiv; < |vil,
applying the Chernoff bound yields v (Z * W)v < \/Iﬁgn
with probability converging to one.

_ _logn
Lemma 6: For § = g

P(m.ln d: > 5) > 1 —pl-n@erot) _ pl-m(gi-p}to(l)

i€n]

Proof: The proof is achieved by applying the Chernoff
bound and taking the union bound. o
Notice that p <0.5 implies 7:(q,p) < m:(q,1—p) and

p > 05 implies 7,(q,p) > m(q,1 —p). Then min;d} >
logn
loglogn

{m(q,p) 2 1 when p<0.5 -

m(q,1—p) >1 when p > 0.5

Let \* > 1[Ti¢; + Theo](2p — 1)°. Therefore, applying Lem-
mas 4, 5, and 6, we get that if (44) holds, then

— (Tid + Tac")\/logn

logn
+(T1+T2)q{]% >0,

logn

7

ST ot
v vz loglogn

and the first part of Theorem 7 follows.

To prove the second part, since =* has a uniform distribu-
tion over {z € {+1}" : 271 = 0}, maximum likelihood esti-
mator minimizes the error probability among all estimators.
Then we need to find when the maximum likelihood estimator
fails. Let e(i, H) £ 3,4y Aij(Tayiy; + T3). Define the events

1

F 2 {?él(':_g(e(i,c;) —e(i,C3)) < —2},

F, =t {mm(e("l:c;) =C e(hcn) < _2}1
ieCy
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where C} ={ve[n]:2;=1} and Ci={ve[n]:a =
—1}. Then P(ML fails) > P(F; N F,). Thus, it suffices to
show that with high probability P(F;) — 1 and P(F) — 1.
Here we just prove that P(F;) — 1, while P(F;) — 1 is
proved similarly. By symmetry, we can condition on C] being
the first 5 nodes. Let 7 denote the set of first [—,—_! nodes of
Ci. Then

min(e(i, C7) ~ efi, C3)) < min(e(i, ) (G, C3)
<min(e(i, Cy \ 7) —e(i, (3))
+1:?€E}Txe(i,T).
Define the events

El_%{rgtéijpe(i,ﬂ < 5—2},
Egé{ném(( CT\'T) — 64, ))g—a}.

It suffices to show that P(E;) — 1 and P(E>) — 1, to have
P(Fy) — 1.Foranyie 7,

e(i,T)= (I +T)X; + (Ta — T1) X5,
where X; ~ Binom(|7 |, gologn/n) and X5 ~ Binom(|7],
glogn/n).
Lemma 7: [28, Lemma 5] When S ~ Bin(n, p), for any
r>1,
e\ Tnp
. & —np
P(S > rp) < (r) e
From Lemma 7,
5—2)1 AT
=5 e ]
P02 5mr) < (i)
2(T1 + Tz) ATy + T3 )eqo
<n —2+a(l}
]D 2—§
gn AT,
Pl X; > <
( * _2|T2 T ) _( 4|1 - Tllﬂqz)
< n—2+a{1)_

Since|T2 —T1| > QandT7 +T15 > 0,

P(e(i,T) > 8- 2)

SPUT+ D)X+ 6 =T X > 8= 2) <m 29,

Using the union bound yields P(E;) > 1 — n~ (1), There-
fore, P(E;) — 1 with high probability.

Lemma 8: [34, Lemma 15] Let {S1,...,S,,} be a sequence
of i.i.d. random variables, where m — n = o(n). Then for any
i € Randv > 0 we have

m 2
(ZS} >;L—v) > min e s I”"M(t]( —%),

i=1

where M(¢) is the moment generating function of Z =
>, Si and Z is a random variable distributed according to
%f_—} with variance o7

Lemma 9: Lete(i,H) £ 3, Aij(T1yiy; + T2). Define

B2 {ei,C; \ T) (i, C}) < —8}.

Then

p(Eé) > poml(@e)+o(l) 4 g —migl-p)to(1)

Proaof: The proof is achieved by applying Lemma 8 and the
Chernoff bound. ]
Applying Lemma 9 yields

P(E;) =1- ][It -P(&)]
ieT

—mi(qu1-p)+o(1) 171

>1— [1 % . n—m(q‘p)+ﬂ(1):|

[ e_nl—nr (g 1=p)+o(l) _pl-ni(g.e)+e(l)

Recall that p<0.5impliesn;(q, p) <1,(q,1 — p)andp > 0.5
implies 7,(q, p) > n,(q,1 — p). When p < 0.5, if n,(q, p) <
1 then P(E») — 1. When p > 0.5, if n,(q,1 — p) < 1 then
P(F5) — 1 and the second part of Theorem 7 follows.

APPENDIX [
PARTIAL RECOVERY ALGORITHM

In this paper, the partial recovery algorithm in [11] is
employed with few changes to make it compatible for each Sce-
nario. For the two-latent variable stochastic block model we
can directly use the partial recovery algorithmin [11]:

A.  The Two-Latent Variable Stochastic Block Model With
Known Auxiliary Latent Variable y:

1) Cluster nodes according to the value of the auxiliary
latent variable y, call them auxiliary clusters.

2) Extract submatrices of P and Q representing each
value of y, call them P and Q).

3) Separately in each auxiliary cluster, use respective sub-
matrices P*) and Q*) to construct a partial recovery
estimator of communities x, and find the community

estimate for all members of each cluster.

B. The Two-Latent Variable Stochastic Block Model With
Unknown Latent Variable y:

1) Use matrices P and @ to construct a partial recovery
estimator of all micro-communities.

2) Cluster nodes with the same community variable repre-
senting each value of x.

For the two-latent variable censored block model, we need a
new variant of the partial recovery algorithm in [11]. In the
new variant, the vertex comparison algorithm in [11] is used
twice for each pair of nodes. First, the algorithm is employed
using the eigenvalues of diag(p)(Z * Q). For this case, if the
two nodes belong to the same community, the output of the
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algorithm is 1; otherwise it returns 0. Then, the algorithm is
employed using the eigenvalues of diag(p)((1 — E) * Q). For
this case, if the two nodes belong to the same community, the
output of the algorithm is 0; otherwise it returns 1. If the outputs
are not equal, we are able to determine reliably whether the two
nodes belong to the same community. If the outputs are equal,
another pair of nodes are selected to repeat the partial recovery
algorithm.

C. The two-Latent Variable Censored Block Model With
Known Latent Variable y:

1) Cluster nodes according to the value of the auxiliary
latent variable y, call them auxiliary clusters.

2) Extract submatrices of P, Q, and Z representing each
value of y, call them P¥) and Q¥), and E(*).

3) Separately in each auxiliary cluster, use respective sub-
matrices P(k}, Q”‘), and Z* to construct a partial recov-
ery estimator of communities , and find the community
estimate for all members of each cluster.

D. The two-Latent Variable Censored Block Model With
Unknown Latent Variable y:

1) Use matrices P, ), and = to construct a partial recov-
ery estimator of all micro-communities.

2) Cluster nodes with the same community variable repre-
senting each value of z.

Remark 6: When y is known, for each auxiliary latent vari-
able y, definitions 4 and 5 in [11] are restated based on the new
matrices P*), Q¥), and E*). Using these new matrices, the
vertex comparison algorithm, the vertex classification algo-
rithm, the unreliable graph classification algorithm, and the
reliable graph classification algorithm in [11] are exploited
separately. When y is unknown, these definitions and algo-
rithms are followed from matrices P, Q, and =.

APPENDIX J

Proof of Theorem 8: We begin by deriving sufficient condi-
tions for the semidefinite programming estimator (8) to pro-
duce the true labels z*. &

Lemma 10: The sufficient conditions of Lemma 3 apply to
semidefinite programming (8) by replacing

S'=D"+X]- A
Proof: The proof is similar to the proof of Lemma 3. L

It suffices to show that S* = D* + A*J — A satisfies other
conditions in Lemma 10 with probability 1 — o(1). Let

n
* gICE
df = E Ajjzi ]
=1

Then D*z* = Az* and based on the definition of S* in
Lemma 10, S* satisfies the condition S§*z* = (. It remains to
show that S* > 0 and X2(S*) > 0 with probability 1 — o(1),

i.e., (43) holds. For any v such that v"z* = 0 and ||v|| = 1,

v §*v = vT D*o + Mo Jv — vT (A — E[A])v — v E[A]v
> mind! + ANv"Jv — | A — E[4]|| — vTE[A]v.

Notice that

—TE[Aly = — l[C]TJTWU — v Ju— c3v” (Z x W)y

logn
+ 4o g
Lemma 11: For § = =281,

p(min &> 3) S 1 — plom(@eio(l) _ 1-nal-pHal)
in d; >6) >

Proof: The proof is achieved by applying the Chernoff

bound and the union bound. L
Using Lemma 11, min;d! > ﬁl‘ﬂ’o’é—n with probability con-

verging to one, ﬁmln{ng(q p):ma(q.1—p)} > 1.Let X* >
tla(@p—1) ® + ¢3). Applying Lemmas 4, 5, and 11, we get

that when mm{rh(q, ):ma(q,1—p)} > 1,
; logn
T g% B = et = Kbt
v S'v loglogn \/logn—i-qn >0

and the first part of Theorem 8 follows.

To prove the second part, it suffices to find when the maxi-
mum likelihood detector fails. The events Fy, F,, E;, Fs, and
E, are the same as we defined them in the proof of Theorem 7.
Also, the definitions for C}, C3, and 7T remain valid for this
part. Then P(ML fails) > P(F} N F;). Here we just prove that
P(F) — 1, while P(F2) — 1 is proved similarly. By symme-
try, we can condition on C7 being the first 4 nodes. Then

min(e(i, C}) — e(i, C3)) <min(e(i, C) — e(i, C3)
ieCy ieT
+ maxe(i,7),
ieT
where e(i,H) £ 3.4 Ay. For i€ 7, e(i,T) = X; + Xo,

where X, ~ Binom(|7]|,glogn/n) and X; ~ Binom(|7|,
g:logn /n). It follows from Lemma 7 that

I
6 ng'ﬂ 6 1_‘2 _2_'_0(1}
2 KA <
P(Xl 2 1) (299’0 (2 1)) =" ’
p(x, >3 1)< (&2 (2_, 1_%< ~2+0(1)
b= %eqy \2 Ll :

Then P(e(i, T) > 8 — 2) < n~2°(1). Using the union bound,
P(Ei) > 1 —n~*°(). Therefore, P(E;) — 1 with high

probability.
Z jeH At‘f’

Lemma 12: Whene(i, H) £
P(E;) > n2(ae)+e(1) f ne(@1-p)+o(1)
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Proof: The proof is achieved by applying Lemma 8 and the
Chernoff bound. L
Applying Lemma 12 yields

P(By) =1-[][1 - P(E)]
i€T
17|
55 (L [1 — p2(@p)+o(l) _ n—nz(q‘l—p}w(l}}

S ez E_ﬂl—nz(w)w(l)_,,l-nz(q,l—p)m(l)

Therefore, if min{n,(q, p),n,(q,1 — p)} < 1then P(Ey) —
1 and the second part of Theorem 8 follows.

APPENDIX K

Proof of Theorem 9: The proof is similar to the proof of
Theorem 7. Here we just mention the proof outlines and
important Lemmas for brevity. The following Lemma declares
the sufficient conditions for the optimum solution of (10)
matching the true labels z*. i

Lemma 13: For the optimization problem (10), consider the
Lagrange multipliers

X, D =diag(d}), S".
If we have

S*=D"+ X*J —R,
S* >0,
A2(S%) > 0,
S*z* =0,

then (\*, D*, §*) is the dual optimal solution and Z = z*z*T
is the unique primal optimal solution of (10).
Proof: The proof is similar to the proof of Lemma 3. i
Let

n n
d; =T Z Ayjxir] + TZ AijyiyiziT;
=1 =1

n n
+T Z A?J-yiyj:z}:r: +T Z Afj:r;:r:.

= =

Then D'z*=TA+T(AxW)+Ti(A*xAx W)+ Th(A=*
A) and based on the definition of S* in Lemma 13, S* satisfies
the condition S*z* = 0.

_ _ logn
Lemma 14: Foré—ﬁﬁjﬁ,

P(min > 3) > 1 — pl~n@e)-n(he)+o(1)

i€[n]
— pl-migl-p)-m(h1-p)+o(1)

Proof: The proof is achieved by applying the Chernoff
bound and taking the union bound. L

Similar to the proof of Theorem 7, using Lemma 14, it can
be shown that S* = 0 and A2(S*) > 0 with probability 1 —
o(1) if

{ﬂl(&ﬂ)*’ﬂl(h”ﬂ) > 1 when p<05
n(g1—p)+n(h,1-p) >1 when p > 05

To prove the second part, we start to find when the maxi-
mum likelihood estimator fails. To this end, let

e(i,H) £ Z Aij(Tyiy; + T) + A?j(let'yj +To).
jeH

The definition of events Fy, F5, Ey, and E; in the proof of
Theorem 7 are used to show that with high probability
P(F) — 1 and P(F;) — 1. Also, the definitions for C}, C3,
and 7 remain valid for this part. We prove that P(F;) — 1,
while P(F;) — 1 is proved similarly. To show that P(F;) —
1, we must have P(E;) — 1 and P(E3) — 1. It can be shown
that P(E;) > 1 — n~'+o(1) without difficulty.

Lemma 15: Let Ej2{e(i,Ci\T)—e(i,C}) < -8}
Then

P(E;) = ﬂ_m{g\p}_ﬂl(h‘p}ﬂ(l)

4 pmlgl-p)-ni(hl-p)to(l)

Proof: The proof is achieved by applying Lemma 8 and the
Chernoff bound. it
Applying Lemma 15 yields

P(E2) =1 - [[iL - P(5)]

>1— e_fp-n(gﬁ)—m(h‘p)w(l)_n—m(g-l—p)—m(h‘l —p)+o(1)

Recall that p < 0.5 implies

1.(8,p) +m(h,p) < m(g,1—p) —m(h,1-p),
and p > 0.5 implies

(8, ) +mi(h, p) > n1(g, 1 — p) +my(h, 1 - p).

When p < 0.5, if 1,(g, p) +n;(h, p) < 1, then P(Ey) — 1.
When p>0.5, if n,(g,1—p)+n(h,1—p) <1, then
P(E5) — 1 and the second part of Theorem 9 follows.

APPENDIX L

Proof of Theorem 10: The proof is similar to the proof of
Theorem 8. Here we just mention the proof outlines and
important Lemmas for brevity. The following Lemma declares
the sufficient conditions for the optimum solution of (11)
matching the true labels z*. &

Lemma 16: For the optimization problem (11), consider the
Lagrange multipliers

A% Df=dbgldl), 5%
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If we have

S* = D* 4 X*J — TA — Ty(A+ A),
STE e
A (S7) > 0,
Sta* =0,

then (\*, D*, §*) is the dual optimal solution and Z = z*z*7
is the unique primal optimal solution of (11).
Proof: The proof is similar to the proof of Lemma 3. L}
Let

n n
; S CoE ok SO
d; —TZA,J:B“?-:B* +T22Afj:zjzi.
=1 j=1

Then D*z* = TA+ T5(A * A) and based on the definition of
S* in Lemma 16, S* satisfies the condition S*z* = 0.
Lemma 17: For § = 280,
P(mjnie[r:] d > 5) ) - nl—m2(8:.p)—m (h,p)+o(1)
— pl-n2(gl-pl—na(h,1-p)+o(1)

Proof: The proof is achieved by applying the Chernoff
bound and taking the union bound. L

Similar to the proof of Theorem 8, using Lemma 17, it can be
shown that S* > 0 and A2(S*) > 0 with probability 1 — o(1)
if

min{ny(g, o) + nz(h, ), m(g, 1 — p) + mp(hy 1 —p)} > 1.

To prove the second part, we start to find when the maxi-
mum likelihood estimator fails. To this end, let

e(i,H)2 ) TA; + TA},
JEH

The definition of events Fi, Fs, Fy, and E5 in Theorem 7 are
used to show that with high probability P(F;) — 1 and
P(F;) — 1. Also, the definitions for Cj, C5, and 7 remain
valid for this part. We prove that P(F;) — 1, while P(F;) —
1 is proved similarly. To show that P(F}) — 1, we must have
P(F;) — 1 and P(E) — 1. It can be shown that P(E;) >
1 —n~ () without difficulty.

Lemma 18: Let E, = {e(:,C; \ T) — e(3,C5) < —8}. Then

P(E}) > n @) -na(bp+o(l)

+ n (8 1-p)—na(h1-p)+o(l)

Proof: The proof is achieved by applying Lemma 8 and the
Chernoff bound. &
Applying Lemma 18 yields

P(E;) =1 - [][1 - P(E})]
teT
% e B_Trﬂz(ﬁﬁ)—’?z(h@)‘m(l)_n’ﬂzts-l—ﬁ)"?z(h‘l —p)+o(1)

If

303

miﬂ{fh(g: p) + HQ(h: p)}HZ(g: 1= p) =+ HZ(h: 1— p)} < ]-}

then P(E») — 1 and the second part of Theorem 10 follows.
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