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ABSTRACT

It is common knowledge that the level of landscape heterogeneity may affect the performance of
remote sensing based land use/land cover classification. While this issue has been studied in depth
for land cover data in general, the specific relationship between the mapping accuracy and
morphological characteristics of built-up surfaces has not been analyzed in detail, an urgent
need given the recent emergence of a variety of global, fine-resolution settlement datasets.
Moreover, previous studies typically rely on aggregated, broad-scale landscape metrics to quantify
the morphology of built-up areas, neglecting the fine-grained spatial variation and scale depen-
dency of such metrics. Herein, we aim to fill this knowledge gap by assessing the associations
between localized (focal) landscape metrics, derived from binary built-up surfaces and localized
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data accuracy estimates. We tested our approach for built-up surfaces from the Global Human shift
Settlement Layer (GHSL) for Massachusetts (USA). Specifically, we examined the explanatory power
of landscape metrics with respect to both commission and omission errors in the multi-temporal
GHS-BUILT R2018A data product. We found that the Landscape Shape Index (LSI) calculated in
focal windows exhibits, on average, the highest levels of correlation to focal accuracy measures.
These relationships are scale-dependent, and become stronger with increasing level of spatial
support. We found that thematic omission error, as measured by Recall, has the strongest relation-
ship to measures of built-up surface morphology across different temporal epochs and spatial
resolutions. The results of our regression analysis (R> > 0.9), estimating accuracy based on land-
scape metrics, confirmed these findings. Lastly, we tested the generalizability of our findings by
regionally stratifying our regression models and applying them to a different version of the GHSL
(i.e. the GHS-BUILT-S2) and a different study area. We observed varying levels of model transfer-
ability, indicating that the relationship between accuracy and landscape metrics may be sensor-
specific, and is heavily localized for most accuracy metrics, but quite generalizable for the Recall
measure. This indicates that there is a strong and generalizable association between morphological
properties of built-up land and the degree to which it is “undermapped.”

1. Introduction , . : .
categorical spatial data is typically done by means of

In order to analyze the dynamics of human settlements
on Earth, researchers typically rely on multi-temporal,
remote-sensing-derived, gridded built-up surface data-
sets, such as the Global Human Settlement Layer
(GHSL, Pesaresi et al. 2013), the Global Rural-Urban
Mapping Project (GRUMP, Balk et al. 2005), the Global
Artificial Impervious Area dataset (GAIA, Gong et al.
2020), or the World Settlement Footprint Evolution
dataset (Marconcini et al. 2020a). In order to develop
an unbiased understanding of the human settlement
trends measured by these data, thorough knowledge
of the uncertainty inherent in these multi-temporal
datasets is crucial. The quantification of uncertainty in

map comparison, i.e. the comparison to an indepen-
dently compiled reference dataset of presumably
higher accuracy (FGDC (Federal Geographic Data
Committee) 1998), involving the creation of confusion
matrices and the derivation of accuracy metrics
(Fielding and Bell 1997). The accuracy assessment of
remote-sensing-derived land cover/land use data is not
straight-forward, for several reasons: (a) data accuracy
is a spatially varying phenomenon, and accuracy esti-
mates based on small samples, or aggregated to global
or region-specific estimates, may ignore the fine-scale
spatial non-stationarity of data accuracy (e.g. Strahler
et al. 2006; Foody 2007; Wickham, Stehman, and
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Homer 2018). (b) the accuracy metrics themselves may
be biased, as they can be sensitive to sample size (e.g.
Sim and Wright 2005; Bujang and Baharum 2017;
Champagne et al. 2014) or class imbalance (see
Rosenfield and Melley 1980; Wickham et al. 2010;
Akosa 2017; Shao, Tang, and Liao 2019; Radoux,
Waldner, and Bogaert 2020; Stehman and Wickham
2020). (c) The analytical unit at which an accuracy
assessment is conducted, may affect the results (e.g.
Pontius and Suedmeyer 2004; Pontius and Cheuk 2006;
Stehman and Wickham 2011; Zhu et al. 2013; Ye,
Pontius, and Rakshit 2018; Marconcini et al. 2020b),
and (d) the appropriate choice of the sample size and
distribution is critical to conduct an unbiased accuracy
assessment (Congalton 1988; Hashemian, Abkar, and
Fatemi 2004; Foody 2009; Stehman and Foody 2019).
Lastly, the choice of the geographic unit, or assessment
unit, for which accuracy metrics and the underlying
confusion matrices are established, is crucial as well
(e.g. Stehman 2009; Wardlow and Callahan 2014).

To account for the spatial variations in accuracy,
researchers have started to use spatially explicit
accuracy assessments, if reference data availability
and computing resources permit (e.g. Low et al.
2013; Khatami, Mountrakis, and Stehman 2017;
Waldner et al. 2017; Mitchell, Downie, and Diesing
2018; Morales-Barquero et al. 2019; Uhl and Leyk
2022b) which are based on locally constrained
confusion matrices (Foody 2007). Moreover, in
order to account for the scarcity of reference
data, their potentially resource-intensive creation,
researchers have developed a wide range of meth-
ods for predictive accuracy modeling of geospatial
data such as land cover data using a variety of
techniques and explanatory variables (e.g. Steele,
Winne, and Redmond 1998; Kyriakidis and Dungan
2001; Smith et al. 2003; Leyk and Zimmermann
2004, 2007; van Oort et al. 2004; Comber et al.
2012; Tsutsumida and Comber 2015; Zhang and
Mei 2016; Wickham, Stehman, and Homer 2018;
Mei et al. 2019; Ebrahimy et al. 2021; Cheng et al.
2021), while others have incorporated landscape
metrics (LSMs) in land cover data accuracy assess-
ments (Smith et al. 2002, 2003; Gu and Congalton
2020). Such studies typically focus on land cover
data in general, and have not been applied to
built-up surface data specifically.

In the specific case of built-up land datasets, accu-
racy assessments are often impeded by lack of
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reference data over large spatial extents (See et al.
2022), in particular for early points in time (Uhl and
Leyk 2022a). Moreover, as it is well-known that the
accuracy of remote-sensing-derived land use/land
cover data products is related to structural landscape
characteristics such as the level of landscape segrega-
tion or the patch size of urban land (Smith et al. 2002,
2003; Miick, Klotz, and Taubenbdck 2017). In the same
vein, Degen et al. (2018) show that the level of land-
scape heterogeneity affects the quantization of multi-
spectral remote sensing data such as Landsat data.
Previous research has shown that the accuracy of
built-up surface layers varies regionally (Klotz et al.
2016; Liu et al. 2020), and across the rural-urban con-
tinuum (Leyk et al. 2018; Kaim et al. 2022), which is
strongly related to morphological characteristics of
landscapes in general (Vizzari 2011; Vizzari and
Sigura 2013) and of settlements in particular (Cyriac
and Firoz C 2022).

However, it has not been explicitly studied which
morphological properties of settlements (as mea-
sured by landscape metrics) drive the accuracy at
which they are mapped. Likewise, there is no litera-
ture that examines how individual uncertainty com-
ponents (i.e. omission error, commission error) relate
to morphological characteristics of built-up areas. This
is the gap that this paper aims to fill. Knowledge of
these relationships will help the users of settlement
data (or of derived products such as fine-grained
population data (e.g. Florczyk et al. 2019) to critically
reflect on the data quality, and can guide data produ-
cers to improve data production pipelines, e.g. by
using adaptive sampling and classification strategies
based on the level of commission and omission errors
expected in a region characterized by a specific built-
up land morphology.

Herein, we make use of a multi-temporal reference
dataset (i.e. the multi-temporal building footprint
dataset for 33 U.S. counties (MTBF-33, Uhl and Leyk
2022a), enabling the creation of historical snapshots
of built-up areas at fine spatial and temporal grain, for
relatively large, contiguous regions. Using this refer-
ence dataset, we conducted a spatially exhaustive,
localized accuracy assessment of the Global Human
Settlement Layer (GHS-BUILT R2018A, Florczyk et al.
2019) in the state of Massachusetts (USA), for the
epochs 1975 and 2014. Consistent to these multi-
temporal, continuous surfaces of localized data accu-
racy estimates, we calculated focal landscape metrics
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for a large sample of locations (N = 200,000 locations)
to characterize the morphology of built-up areas. We
used these data to (a) assess the association between
localized data accuracy and landscape metrics at fine
spatial grain, and over time, and (b) test the explana-
tory power of morphological characteristics of both
the reference data and the GHSL with respect to data
accuracy, using two different regression techniques.
Finally, we tested the sensitivity of our results to the
spatial support (i.e. the extent of the spatial sample
used for focal/localized accuracy and landscape
metrics computation) and to the assessment unit
(i.e. the spatial resolution of the grid in which accu-
racy and landscape metrics are computed). Moreover,
we analyzed the robustness of the relationships
between landscape metrics and accuracy by means
of domain adaptation (You et al. 2019) capabilities of
our regression models to a different dataset (i.e. the
GHS-BUILT-S2, Corbane et al. 2021) and to a study
area outside of Massachusetts, as well as by model
regionalization to the county-level within the state of
Massachusetts to assess the spatial variation of these
relationships.

This paper is structured as follows: In Section 2, we
discuss the data and methods used, in Section 3, we
present and discuss our results, and report our con-
clusions in Section 4.

2. Data and methods

In this section we introduce the used datasets and
preprocessing steps undertaken (Section 2.1), as well
as the methods used in the different parts of our
analyses (Section 2.2).

2.1. Data and preprocessing

This study is based on gridded built-up surface layers
from the GHSL project and on the multi-temporal
building footprint dataset for 33 U.S. counties
(MTBF-33, Uhl and Leyk 2022a).

2.1.1. Global human settlement layer (GHS-BUILT)

The GHS-BUILT R2018A dataset, which is derived from
Landsat and Sentinel-2 data, maps built-up areas at
a spatial resolution of 30 m, at a global extent, for the
epoch (i.e. years) 1975, 1990, 2000, and 2014 (Florczyk
et al. 2019, downloaded from https://data.jrc.ec.
europa.eu/dataset/jrc-ghsl-10007). We used this data

product, as the GHS-BUILT has been used in a range of
scientific studies of different disciplines (Ehrlich et al.
2021) and has been input to the multi-temporal
population datasets GHS-POP and the rural-urban
classification datasets GHS-SMOD (Florczyk et al.
2019). Moreover, GHS-BUILT R2018A makes use of
early Landsat 4 MSS data and thus, extends farther
back in time than related datasets such as the WSF-
evolution dataset, which dates back to 1985
(Marconcini et al. 2020a). The GHS-BUILT R2018A has
been created using a sequential approach, extracting
built-up areas in the most recent epoch (i.e. 2014) and
spatially constraining built-up areas in prior epochs to
the 2014 built-up mask. Note that Landsat 4 MSS data
were upsampled to 30 m resolution to be integrated
in this process (Corbane et al. 2019). For the two
epochs 1975 and 2014, we extracted binary surfaces
indicating built-up areas (1) and not built-up areas (0)
(Figure 1a,b).

For the domain adaptation analysis, i.e. to test
how regression models perform on data of
a different distribution than the one they were
trained on (Section 2.2.6), we employed the GHS-
BUILT-S2 dataset, which provides estimates of built-
up probability, in the range of 0-100, within
a 10x10m grid. GHS-BUILT-S2 has been created
from Sentinel-2 data acquired in 2018, using convo-
lutional neural networks (Corbane et al. 2021, down-
loaded from https://ghsl.jrc.ec.europa.eu/ghs_bu_
s2_2018.php). We used the data for a subset of the
city of Charlotte, North Carolina. For our accuracy
assessment, these continuous data needed to be
converted into binary, presence-absence surfaces.
To do so, we calculated the average built-up prob-
ability of the 10 m grid cells within 30x30m grid cells
(aligned and consistent to the GHS-BUILT R2018A
grid). We then applied a threshold of 50 to the built-
up probabilities to generate binary built-up surface
layers (Figure 1c), compatible to the GHS-BUILT
R2018A data. This was done for two reasons: (a) the
subsequent data processing requires binary, pre-
sence-absence surfaces, and (b) the original resolu-
tion of 10x10m is likely too fine-grained for direct
calculation of landscape metrics. A target resolution
of 30x30m generalizes the data such that meaningful
landscape metrics can be derived (e.g. a contiguous
patch of built-up surface should encompass the
roads separating the actual buildings within that
patch, and this may not be the case when using the
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Figure 1. Samples of the input data used in this study. Built-up surfaces from the GHSL R2018A data (a) in 1975, and (b) in 2014, for the
city of Worcester, Massachusetts, USA. Panel (c) shows the GHS-S2 built-up areas in 2018 for a subset of Mecklenburg County, North
Carolina. The bottom row displays the reference data derived from the MTBF-33 dataset for Worcester (d) in 1975, and (e) in 2014.
Panel (f) shows the MTBF-33 derived built-up areas for the North Carolina study area in 2016.

original resolution of 10x10m). Since the GHS-BUILT-
S2 data stem from a different sensor, have a different
resolution, processing strategy, encoding, accuracy,
and, most importantly, exhibit unique configurations
of built-up land patterns (and thus, unique combina-
tions of landscape and accuracy metrics), this dataset
and the derived landscape metrics represent differ-
ent joint data distributions than the GHS-BUILT
R2018A and the landscape metrics derived for
Massachusetts.

2.1.2. Gridded reference data

The reference dataset has been created from the
MTBF-33 vector building footprint data (downloaded
from https://doi.org/10.17632/w33vbvjtdy). MTBF-
33 contains over 6 million building footprint vector
geometries annotated with their construction year.
For each county in the state of Massachusetts, we
selected the MTBF-33 building footprints built-up by
1975, and 2014, respectively, and rasterized the vec-
tor data into the GHS-BUILT R2018A grid. To keep
resampling uncertainty to a minimum, we first ras-
terized the vector polygons into a binary grid of
2x2m, and then down-sampled this grid to the target
resolution of 30x30m, labeling all 30 m grid cells as

“built-up” if they contain at least one 2 m building
grid cell. A subset of these gridded surfaces is shown
in Figure 1d,e). For the domain adaptation analysis,
we carried out the same processes for the
Mecklenburg County (i.e. the city of Charlotte,
North Carolina) building footprints, but for the year
2016 only (Figure 1f).

2.2. Methods

Herein, we used the pre-processed GHS-BUILT layer as
test data and applied the MTBF-33 (Section 2.1) as refer-
ence data. Our method consisted of the following
steps: 1) Spatially explicit map comparison
(Section 2.2.1) and calculation of localized accuracy esti-
mates (Section 2.2.2), 2) the derivation of focal landscape
metrics of built-up areas from both the reference and
GHS-BUILT data (Section 2.2.3), 3) the correlation analy-
sis of localized accuracy and landscape metrics
(Section 2.2.4), 4) regression modeling (Section 2.2.5),
and 5) assessing the sensitivity of these results to the
spatial support, to the epoch, to the analytical unit, and
to the study area (Section 2.2.6). This workflow is shown
in Figure 2.
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Figure 2. Processing workflow for this study.

2.2.1. Spatially explicit, exhaustive accuracy
assessment

Based on the binary built-up presence/absence layers
(Figure 1) we applied a method for efficient, spatially
explicit accuracy assessment of categorical, gridded
data, as proposed in Uhl and Leyk (2022b). This
method first performs cell-by-cell map comparison
and generates three gridded surfaces, each one con-
taining a 1-hot encoding of one of the three relevant
agreement classes (i.e. true positives, false positives,
false negatives). Subsequently, the densities of each
agreement class within focal windows of varying size
(herein called the “spatial support”) are calculated.
Finally, these agreement class density surfaces are
stacked cell-wise to a three-band focal confusion
matrix composite, representing the localized (focal)
confusion matrix at each location (i.e. grid cell).
Moreover, we needed to account for potential effects
of positional uncertainty in our data, that may cause
misalignment between GHS-BUILT and reference
data, and could severely bias the thematic accuracy
estimates obtained at the “native” resolution of
30x30m (e.g. Congalton 2007; Gu and Congalton
2020). To mitigate such effects, we down-sampled
the binary GHS-BUILT and reference grids to blocks
of 3 x 3 pixels (i.e. corresponding to a resolution of
90x90m) and repeated the steps described above, for
the 90x90m grids, as well as for both epochs (i.e. 1975
and 2014). Finally, we expected our focal accuracy
estimates to be sensitive to the spatial support (Uhl

LSM + accuracy Data analysis

and Leyk 2022b), and thus, we used focal windows of
varying size s (1 km, 2.5 km, 5 km, and 10 km) to
compute the agreement class density surfaces.
Examples of the resulting confusion matrix compo-
sites for the different epochs, different levels of spatial
support, and analytical units will be discussed in
Section 3.4.

2.2.2. Focal accuracy measures

Based on the focal confusion matrix composites
holding the densities of relevant confusion matrix
elements TP (true positives), FP (false positives),
and FN (false negatives) (see Section 2.2.1), we
were able to efficiently calculate localized accuracy
estimates at the grid-cell level. We calculated two
thematic agreement metrics: Precision and Recall.
Recall indicates the probability of a reference ele-
ment being classified correctly, and is complemen-
tary to the omission error OE (error of exclusion),
and the precision indicates the probability of
a classified object being correct, and is comple-
mentary to the commission error CE (error of inclu-
sion) (Story and Congalton 1986):

TP
Recall = —— 1
A= TP AN (M
and
TP
Precision = —— 2
recision P+ Fp (2)



Besides these thematic agreement measures, we used
the absolute error (AE), a quantity agreement mea-
sure, which is independent from the spatial corre-
spondence of class labels within the focal windows.
AE is obtained as:

AE=(TP+FP) — (TP+FN)=FP—FN  (3)

Where TP + FP represents the built-up quantity
reported in GHS-BUILT, and TP + FN represents the
built-up quantity according to the reference data.
These built-up quantities (i.e. the amount of 30x30m
built-up grid cells per quadratic focal window of size
sxs, given in meters) can be converted into a measure
of built-up surface density (in %, herein called “built-
up density”), as follows

BUDENSger s[%] = 100 - 30% - (4)

(TP + FN)
s
Where s? is the area of the focal window (i.e. the
spatial support in m?). The GHSL-based built-up den-

sity is obtained as:

TP + FP
aP+FP) 5

BUDENSGHs. s[%] = 100 - 30% -
Herein, we used these built-up density estimates to
model the rural-urban continuum (Section 2.2.3). The
aforementioned separation of thematic and quantity
error has been proposed in a similar way by Pontius
and Millones (2011), and allows to measure the agree-
ment between test and reference data quantitatively,
while ignoring the thematic agreement at the grid cell
level. We used this strategy in regards to coarser-scale
applications where the precise locations of built-up sur-
faces are irrelevant, for example when combining fine-
scale built-up surface data with coarser population esti-
mates. Examples of the resulting surfaces of thematic
(i.e. precision and recall) and quantity agreement (i.e. AE)
will be shown and discussed in Section 3.1. Here it is
worth noting that the fourth category used in confusion
matrices (i.e. the true negatives) was not calculated as
none of the agreement or density metrics requires the
true negatives. Generally, for binary comparisons such as
built-up vs. not built-up grid cells, it is advised not to use
accuracy metrics that include the true negatives, as they
are the dominant class, in particular in sparsely built-up,
rural areas, and will yield inflated values, e.g. overall
accuracy (Rosenfield and Melley 1980; Stehman and
Wickham 2020), as shown in the context of built-up
land data in previous work (Uhl and Leyk 2022b).
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2.2.3. Focal landscape metrics

We used the software FRAGSTATS v4.2 (McGarigal,
Cushman, and Ene 2012) to calculate landscape metrics
describing the shape and spatial structure of contiguous
patches of built-up land within focal regions defined by
the four support levels. To keep computational efforts
manageable, we computed these metrics for a subset of
N = 200,000 locations (i.e. grid cells) within
Massachusetts (see Section 2.2.5, Appendix Figure 911).
While previous work suggests that particularly the size
of patches affects the classification accuracy (Smith et al.
2002, 2003; Klotz et al. 2016; Mick, Klotz, and
Taubenbdck 2017), we also assumed that certain shape
and fragmentation characteristics may drive classifica-
tion accuracy. Thus, we computed nine landscape level
measures and seven patch-level measures, for both
built-up areas from the GHSL and the reference data
(Table 1). To characterize the distributions of all patch-
level measures within the focal windows in Table 1, we
calculated mean (MN), area-weighted mean (AM), med-
ian (MD), standard deviation (SD), coefficient of variation
(CV), and range (RA), summing up to a total of 51 land-
scape metrics. As shown in Table 1, these commonly
used metrics cover a wide range of the morphological,
shape, and structure-related characteristics of built-up
areas that are assumed to affect the classification accu-
racy of the GHSL in different ways. For our Charlotte
study area, we calculated exhaustive surfaces of focal
landscape metrics, using grid and support levels consis-
tent to the focal accuracy surfaces. These focal land-
scape metrics were derived from both the reference
data and the GHS built-up areas for the four levels of
spatial support, as landscape metrics may be scale-
sensitive (Lustig et al. 2015; Frazier 2022). These surfaces
are discussed in Section 3.1. The surfaces of all 51 land-
scape metrics, derived from the reference data, for the
four support levels are shown in Appendix Figure 1022.

2.2.4. Correlation analysis

Using the consistent gridded layers of spatially corre-
sponding focal accuracy estimates and the focal land-
scape metrics we quantified the correlation between
GHS-BUILT data accuracy and the morphological char-
acteristics of the built-up areas. Specifically, we calcu-
lated Pearson’s correlation coefficient between the
landscape metrics and focal accuracy estimates
(Section 3.1), as well as between landscape metrics
and built-up density, since we assumed that built-up
density may be a good proxy for GHS data accuracy,
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Table 1. Landscape metrics used in this study include 9 landscape-level measures, and 7 patch-level measures. For each patch-level
measure, six summary statistics were computed. Source: McGarigal (2015).

Metric type Metric name Short name Measured characteristic
Landscape/class Aggregation Index Al Disaggregation
level Landscape Division Index DIVISION Segregation
Landscape Shape Index LSI Shape complexity
Largest Patch Index LPI Dominance, connectivity
Number or Patches NP Segregation
Percentage of Like Adjacencies PLADJ Contiguity
Perimeter-area Fractal Dimension PAFRAC Shape complexity
Edge Density ED Compactness, shape complexity, segregation
Cohesion Index COHESION Connectivity
Patch level Contiguity Index CONTIG Contiguity
(MN, AM, MD, Fractal Index FRAC Shape complexity
SD, CV, RA) Patch Area AREA Size
Perimeter-Area Ratio PARA Shape complexity
Radius of Gyration GYRATE Extension
Related Circumscribing Circle CIRCLE Compactness
Shape index SHAPE Shape complexity

as previous work has shown (Leyk et al. 2018; Uhl and
Leyk 2022b).

2.2.5. Regression modeling

To further analyze the relationship between land-
scape metrics and accuracy, we assessed the explana-
tory power of landscape characteristics to estimate
built-up land mapping accuracy across different levels
of spatial support. We drew two subsamples of
N = 100,000 from the initial sample through random
selection, stratified by deciles of BUDENSggr (sample 1)
and BUDENSgHs, (sample II), respectively (Appendix
Figure 1131b,113). This stratification ensured that the
drawn samples are equally distributed across the
rural-urban continuum and kept computational
efforts feasible. For the locations in sample |, we com-
puted focal landscape metrics based on the built-up
patches in the reference data, and for the locations in
sample Il, we used the GHSL-derived built-up patches
to compute landscape metrics (Section 2.2.3). As
described above, we separately assessed thematic
accuracy and quantity agreement. These components
were further separated into omission and commission
errors. While the reference data alone are indepen-
dent from the test data (i.e. the GHSL), landscape
metrics (LSMs) derived from the reference data
(LSMggr) neither contain any information on commis-
sion errors in the test data, nor do GHSL-based land-
scape metrics (LSMgps) allow for inferring on omission
errors with respect to the reference data. For example,
a road in an uninhabited region is mistakenly classi-
fied as built-up area (i.e. false positive). As the refer-
ence data indicates only not built-up grid cells in that

region, the landscape metrics derived from the refer-
ence data will all be zero or not defined. Thus, the
regression model precision = f(LSMggg) will not be
able to explain the low precision, since all covariates
are zero. In other words, such a regression model
could only work in regions where the spatial distribu-
tions of test and reference data are similar, but would
fail in the areas that matter most, i.e. where extremely
high commission error occur. Computing an R? of
such a scenario would be unfair as we know a priori
that the covariates have limited explanatory power.
Thus, we used precision and recall as response
variables to be estimated based on the LSM¢ys and,
LSMggr respectively. Accordingly, we separated the
absolute error (Equation 3) into overestimation (OE)
and underestimation (UE) components as follows:

AE,AE>0
OE_{O,AESO (©)
0,AE>0
UE = { IAE|, AE < 0 )

Thus, we established four models: (a) Estimating the-
matic commission error, i.e. the precision of GHSL
given the reference data, based on the 51 GHSL-
derived landscape metrics:

PI’ECI'SiOI')GHSLhREF = f(LSMGHSL)
=aq - Ismgusin + ...+ a5y
- Ismgpsi 51 (8)

(b) Estimating quantity commission error, i.e. the OE
of GHSL given the reference data, based on the 51
GHSL-derived landscapemetrics:



OFEgtis.—rer = f(LSMgst)
=aq - Ismgusi + ... + dsq - Ismgys; 51

)

(c) Estimating thematic omission error, i.e. the recall of
GHSL given the reference data, based on the 51 refer-
ence-data derived landscape metrics:

Recallgpsi—rer = f(LSMger)
=ay - Ismpgeq + ... + asq - Ismpge 51

(10)

and (d) Estimating quantity omission error, i.e. the OE
of GHSL given the reference data, based on the 51
reference-data derived landscape metrics:

UEchst—rer = f(LSMpger)
=ay - IsSmpgeq + ...+ as1 - Ismpersy (1)

These models were implemented as classical
ordinary least squares (OLS) linear regression
models as baseline models, and were compared
to regression models using an AdaBoost regressor
(Freund and Schapire 1997; Drucker 1997), which
consists of an ensemble of shallow decision trees
("weak learners”). AdaBoost regression models
have shown promising performance in other
applications in the geosciences (e.g. Li et al.
2016; Belgiu and Dragut 2016). This comparison
was done in order to test whether complex (albeit
black box) machine learning models such as the
AdaBoost regressor are necessary to solve the
given regression problem, or if classical, and
more interpretable statistical models such as OLS
are sufficient. All models were tested using these
two techniques and separately for the four levels
of spatial support, in order to assess cross-scale
effects, yielding a total of 32 regression models
(Section 3.5). For the AdaBoost regression, we
performed hyperparameter tuning separately for
each response variable and support level. The
outcomes of this analysis will illuminate two ques-
tions: (a) What can landscape metrics derived
from the reference data tell us about omission
errors in built-up land reported in the GHS-BUILT
? (b) Can the GHS-BUILT itself be used to estimate
its inherent uncertainty (i.e. commission errors)?

2.2.6. Sensitivity analyses
In our analytical setup, there are four components
potentially affecting the performance of the
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regression models and the drawn conclusions. These
components include:

(1) The spatial support of localized accuracy esti-
mates and landscape metrics. To address that,
we carried out all regression models based on
the four levels of spatial support and compared
their results.

(2) The analytical unit (i.e. the grid cell size). As
mentioned before, positional uncertainty in
our data may cause misalignment between
the gridded GHS-BUILT and reference data,
and could severely bias the thematic accuracy
estimates obtained at the “native” resolution of
30x30m (Congalton 2007). Thus, we also com-
puted the landscape metrics and localized
accuracy estimates in coarser, 90x90m grids
and carried out the regression analysis accord-
ingly. This step is important because the effect
of positional uncertainty on thematic accuracy
estimates itself appears to depend on the land-
scape characteristics (Gu and Congalton 2020).

(3) The epoch or acquisition date. As GHS-BUILT
R2018A is a multi-temporal data product
(1975-2014) using multispectral data from var-
ious generations of the Landsat sensors as
input, the relationship between classification
accuracy and underlying landscape metrics
may vary over time, as the properties and cap-
abilities of the underlying sensors (Landsat
MSS, TM, ETM+, OLI) have changed over time.
Thus, we also computed the landscape metrics
and localized accuracy estimates based on the
1975 GHSL epoch, and on a 1975 snapshot of
the MTBF-33 reference data.

(4) The study area and data product. Landscape
metrics may be very specific to the settlement
patterns in Massachusetts. Moreover, the GHS-
BUILT accuracy may be dependent of vegeta-
tion types, predominant roof material, and
potentially ambiguous spectral responses
between built-up and not built-up landscape
features. Moreover, cloud cover frequency
associated with a specific study area may also
affect the GHS accuracy in that area. To account
for that, we took two measures: First, we
applied our regression models developed
using the Massachusetts data to our Charlotte,
North Carolina study area. For that study area,
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which is also covered by the MTBF-33 reference
database, localized accuracy estimates and
landscape metrics were derived from the fine-
resolution  GHS-BUILT-S2  product (see
Section 2.1.1). Second, we subdivided our
Massachuetts study area into the 14 counties,
and established individual regression models
for each county. We then measured how well
each county-level regression model estimates
the focal accuracies in all other counties, in
order to test the spatial stationarity of the rela-
tionships between landscape metrics and accu-
racy, Moreover, we applied this concept to the
temporal domain, i.e. using regression models
trained in 2014 applied to the 1975 epoch, and
vice-versa.

In the subsequent analyses, we considered the 2014
epoch and the analytical unit of 30x30m as our base-
line scenario.

3. Results and discussion

In this section, we first illustrate the created focal
accuracy and landscape  metrics  surfaces
(Section 3.1), and describe the results of the correla-
tion analysis between focal accuracy estimates and
landscape metrics (Section 3.2), and the regression-
based accuracy models (Section 3.3). We then discuss
the sensitivity of correlation and regression analysis to
the GHS epoch (1975 and 2014) and to the analytical
unit underlying the spatially explicit accuracy assess-
ment and landscape metrics computation
(Section 3.4). Then, we describe the results of the
domain adaptation analysis, i.e. applying the regres-
sion models trained on GHS-BUILT R2018A in
Massachusetts to GHS-BUILT-S2 data in North
Carolina (Section 3.5). Lastly, we present the results
of regression model regionalization to the county-
level within Massachusetts to assess spatial variation
of the target relationships (Section 3.6).

3.1. Surfaces of agreement metrics and landscape
metrics

As discussed in Sections 2.2.1 to 2.2.3, we created
a variety of different raster datasets used for the spatially
explicit accuracy assessment and all further analyses. All
surfaces were created using four levels of spatial support

(i.e. focal windows of 1 km, 2.5 km, 5 km, and 10 km)
These surfaces include the focal density of confusion
matrix elements TP, FP, and FN (Figure 3a), the focal
densities of built-up surface derived from both, refer-
ence and test data (Figure 3b), the focal accuracy sur-
faces including precision, recall, and absolute error
(Figure 3c). The focal landscape metric surfaces are cal-
culated in the same grid, using the same focal window
sizes, derived from the reference data and from the
GHSL (see Figures 3d and e for some examples).

3.2. Correlation analysis

As a first step, we systematically analyzed the correla-
tion coefficients between each of the response vari-
ables, i.e. thematic commission error (precision),
quantity commission error (overestimation), thematic
omission error (recall), and quantity omission error
(underestimation), and all 51 landscape metrics (i.e.
9 landscape-based measures, and 6 summary statis-
tics for each of the 7 patch-based measures) used as
explanatory variables. Figure 4a shows the correlation
coefficients for these metrics (for patch-based mea-
sures, only the statistic with maximum average corre-
lation across all 16 models is shown, see Figure 1243
for the full matrix, and Figure 1354 for a more detailed
visualization of the relationships between landscape
metrics and selected accuracy measures). The land-
scape metrics are sorted by their average correlation
to all accuracy metrics at all support levels. We
observe the following: In average, the Landscape
shape index (LSI) exhibits the highest levels of corre-
lation to the accuracy measures under test. Among
the tested landscape metrics, highest levels of corre-
lation were found for the reference-based landscape
metrics (LSMggr) and recall, and lowest for UE. In many
cases, correlation increased with increasing spatial
support. As shown in Figure 4a, contiguity, disaggre-
gation, and connectivity measures of built-up land (Al,
PLADJ, COHESION, and CONTIG) are highly correlated
with recall, whereas quantity omission errors (i.e. UE)
are highly correlated with measures of shape com-
plexity (ED, LSI) but also with scatteredness (i.e. NP,
also ED). The GHSL-based landscape metrics (LSMgns)
highly correlated with commission error measures (i.e.
precision and OE) are the Shape index (SHAPE), Fractal
index (FRAC) and the GYRATE metric. They measure
shape complexity and extension, and yield higher
values e.g. where irregular road features are present,
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Figure 3. Continuous surfaces used in this study and the effect of spatial support: (a) density surfaces of grid cells for each thematic
agreement category (i.e. true positives — TP, false positives — FP, and false negatives — FN), (b) derived measures of built-up quantity
(measured in grid cells) derived from the reference data and the test data, (c) surfaces of focal, thematic and quantity agreement
measures, (d) selected focal landscape metrics (LSMs) derived from (d) the reference data, and (e) the GHS-BUILT-S2, including the
largest patch index (LPI), and the area-weighted mean of the Related Circumscribing Circle metric (CIRCLE_AM) and fractal index
(FRAC_AM). The rows represent the different levels of spatial support (i.e. focal window size). All data are shown for a subset of
Charlotte, North Carolina and based on the built-up areas shown in Figure 1c and f. A rank transform was applied to the continuous

surfaces before color-coding.

which are often incorrectly classified as built-up area
(i.e. representing commission errors). Thus, commis-
sion errors appear to be associated with the shape of
the GHSL built-up areas, whereas omission errors are
related to the contiguity and segregation of reference
built-up areas.

Moreover, we visualized the 51 landscape metrics
and the accuracy components in a two-dimensional
space defined by their cross-support correlation tra-
jectory with respect to quantity and thematic com-
mission error measures (i.e. OE and precision,
respectively), and quantity and thematic omission
error measures (i.e. UE and recall, respectively)
(Figure 4b). This way of visualizing the results
shows highest correlations between landscape

metrics and thematic omission error (i.e. recall) and
most of these metrics also are highly correlated to
thematic commission errors (i.e. precision).
Conversely, some of the quantity agreement mea-
sures exhibited higher levels of correlation to OE, but
low correlation to UE, indicating that structural prop-
erties of built-up areas determining the level of
quantity overestimation are different from those
that trigger underestimation.

3.3. Regression analysis

Furthermore, we visualized the performance of the
AdaBoost regression models generated for each of
the four scenarios (Section 2.2.6), separately for
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Figure 4. Estimating localized accuracy using regression analysis based on focal landscape metrics. (a) Pearson’s correlation
coefficients for the 16 most correlated landscape metrics, for each response variable and each level of spatial support. For patch-
based metrics, only the summary statistic is shown that yields the highest overall correlation, see Appendix Figure 1133 for the full
matrix; LSMs are sorted from top to bottom ascendingly by their average correlation across rows; (b) Correlation coefficients of the 51
landscape metrics in a bi-dimensional space of correlation to measures that characterize commission error (i.e. OE and precision;
x-axis) and omission error (i.e. UE and recall; y-axis), color-coded by accuracy type (i.e. thematic or quantity agreement); correlation
coefficients are shown for spatial support of 10 km, gray lines illustrate the cross-support trajectory for each LSM across the four levels
of spatial support; (c) shows the AdaBoost model performance in bi-dimensional spaces of RMSE and R? for the two models estimating
thematic errors, with each data point representing a different hyperparameter setting; (d) respective visualization for the two models
estimating quantity errors. Lines connect the R>-RMSE pairs for each hyperparameter combination across the levels of spatial support.

models estimating thematic accuracy (Figure 4c)
and quantity agreement (Figure 4d). These visuali-
zations show that for the optimal hyperparameters,
all four models yielded R? values of >0.9, when
using a spatial support of 10 km, indicating that
all four accuracy components can be explained
reliably based on the landscape metrics, within
focal windows of 10 km x 10 km. Visualizing
RMSE versus R? for each model revealed further
that there are increasing levels of R? as spatial
support increases. The opposite trends between
Figure 4 ¢ and d along the x-axis are due to the
absolute nature of the OE and UE quantity error

components, naturally increasing with increasing
spatial support. As can be seen, the best-fitting
models were achieved for estimating recall from
LSMger and for estimating OE from LSMgps.

These observations imply that landscape metrics
derived from the GHSL can reliably be employed as
explanatory variables for commission errors in the
absence of reference data, and the omission error
component of the accuracy of built-up land data is
highly affected by the level of spatial segregation
and contiguity of built-up areas, confirming prior
research results (e.g. Smith et al. 2002, 2003; Klotz
et al. 2016; Miick, Klotz, and Taubenbdck 2017).
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Table 2. Regression analysis results for the modeling of GHS accuracy based on landscape metrics, using AdaBoost regression and

Ordinary Least Squares.

AdaBoost Regressor L
Landscape metrics source data  Response variable  Spatial support [m] ~ Max. Depth ~ Num. Estimators R? RMSE R? RMSE
GHSL OE 1000 10 500 0.342 57.425 0377 55.198
2500 25 250 0.575 296.407  0.545 306.091
5000 25 500 0.800 722.664  0.653 940.203
10000 25 250 0949 1151.146  0.751  2531.439
GHSL Precision 1000 10 500 0.119 0.141  0.129 0.142
2500 25 250 0.412 0.116  0.342 0.123
5000 25 500 0.696 0.079 0447 0.108
10000 25 500 0913 0.039 0.539 0.090
Reference data UE 1000 10 500 0.268 37740 0.264 37.796
2500 25 500 0.550 107.468  0.442 120.762
5000 25 250 0.791 209.211  0.525 315.497
10000 25 500 0.909 358.610 0.511 838.903
Reference data Recall 1000 10 250 0.573 0.174  0.561 0.177
2500 25 500 0.819 0.119  0.781 0.133
5000 25 500 0.928 0.073 0857 0.104
10000 25 500 0.985 0.032 0.903 0.080

Overall, recall appears to exhibit the strongest asso-
ciation to LSMs, and those models exhibit the high-
est explanatory power. It is also worth noting that
while the machine-learning models (AdaBoost) con-
sistently outperform the OLS models in most cases,
OLS comes closest to the AdaBoost model perfor-
mance for estimating recall for large spatial supports
(Table 2).

1975

Support = 1km

Support = 10km

90m x 90m blocks

30m x 30m grid cells

..

3.4. Sensitivity to epoch and analytical unit

In the focal confusion matrix composites shown for
the epochs 1975 and 2014, and for the analytical units
of 30x30m and 90x90m (Figure 5), we observe inter-
esting differences in the relative proportions of TP, FP,
and FN instances (i.e. grid cells). For example, the RGB-
encoding of these relative proportions yields green-
yellow colors in the center of the map (i.e. the city of

2014

30m x 30m grid cells 90m x 90m blocks

Figure 5. Focal confusion matrix composites for systematically varied parameters used in this study: Top row shows (a) Focal confusion
matrix composites derived at a support level of 1x1km for analytical units of 30x30m, and 90x90m in 1975, and (b) in 2014,
respectively. The bottom row shows focal confusion matrix composites derived at a support level of 10x10km for analytical units of
30x30m, and pixel blocks of 90x90m, in 1975, and (d) in 2014, respectively. Focal confusion matrix composites are RGB-encoded, i.e.
the relative frequencies of the agreement categories are illustrated by the color tones. Specifically, true positives (TP) are represented
by the red channel, false positives (FP) by the green channel, and false negatives (FN) by the blue channel. Thus, the colors provide
a qualitative insight on the locally “dominating” agreement category and allows to visually detecting regions of high levels of
agreement (red) or disagreement (blue for omission, green for commission errors). Data shown for the city of Worcester,

Massachusetts, USA (cf. Figure 1).
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Worcester, Massachusetts) for the 30 m scenario, and
these areas turn red in the 90 m scenario, indicating
higher proportions of grid cells switching from false
positive to true positive when using a coarser analy-
tical unit. This effect could be due to actual misalign-
ments, which are mitigated by the 90 m aggregation,
or could be caused by actual false positives (e.g. roads
classified as built-up areas) nearby true positive grid
cells. Moreover, in Figure 5 we observe a blue fringe
around the city of Worcester in both 1975 scenarios,
indicating higher levels of omissions in the GHS-BUILT
epoch 1975 in peri-urban areas. These blue color
tones are less pronounced in the 2014 scenarios,
indicating a decrease of false negatives relative to
the other categories (TP, FP).

These observations imply that classification accu-
racy varies considerably across GHSL epochs, and that

the chosen analytical unit likely affects the magnitude
of the resulting accuracy measures. How do these
sensitivities affect the relationship between accuracy
and landscape metrics, as measured by their correla-
tion coefficients (Figure 4a, Appendix Figure 1133)?
To shed light on this question, we visualized the
correlation coefficients for all landscape and accuracy
metrics for the four scenarios (i.e. using epochs 1975
and 2014, respectively, at an analytical unit of 30 m,
and 90 m, respectively, see Appendix Figure 1355).
While the overall trends seem consistent across these
four scenarios, is the ranking of correlation coeffi-
cients, and thus the level of association between land-
scape and accuracy metrics consistent across
scenarios? We transformed the correlation coeffi-
cients for each scenario in percentile-based ranks
and visualized them in Q-Q plots (Figure 6).
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Figure 6. QQ-plots of correlation coefficients between accuracy metrics and LSMs, for the four scenarios i.e. different GHSL epochs (i.e.
1975 and 2014), and different analytical units (AU; i.e. 30 m, 90 m) used for the accuracy assessments.



The more spread the distributions in Figure 6 show,
the more does either the epoch or the analytical unit
(AU) affect the ranking of correlation coefficients. As
can be seen in Figure 6c, the correlation coefficients
between Recall and reference-data based landscape
metrics experiences the least spread, with the points
located nearby the main diagonal, indicating that the
order of how strong the associations between specific
landscape metrics and the Recall are, is largely inde-
pendent from the GHSL epoch and from the chosen
analytical unit. Conversely, the order of correlation
coefficients between overestimation and GHSL-
based landscape metrics is most affected by the
epoch and analytical unit of the underlying data
(Figure 6b).

The observed robustness of the correlation coeffi-
cients between individual landscape metrics and the
recall in the GHS-BUILT built-up areas across epochs
and analytical units is also reflected in the regression
analyses carried out for the four scenarios (Table 3).
The R? values of all regression models are relatively
stable across the four scenarios. However, the coeffi-
cient of variation across the R? values of the OLS
regression models that estimate recall using LSMggr
are considerably lower than for the other target vari-
ables. Importantly, the previously observed trend of
increasing model fit with increasing spatial support
(i.e. from 1 km toward 10 km) also persists when using
the 1975 epoch or accuracy estimates obtained at
90 m analytical units. When looking at the average
R? values across the models for each of the four
scenarios (bottom row of Table 3), we observed, on
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average, lowest model fits for the 1975 GHSL epoch
and using an analytical unit of 90 m. This drop in
model fit is most pronounced when using GHS-
based landscape metrics, indicating that the estima-
tion of commission errors based on the GHS-BUILT
alone is more difficult in 1975 than for the 2014
epoch.

3.5. Domain adaptation analysis

Finally, we investigated how our regression models
perfom when deployed on data from a different dis-
tribution. This is called domain shift, and models that
yield good results when performing a domain shift,
are capable of domain adaptation (You et al. 2019). To
do so, we applied the models trained on the GHS-
BUILT R2018A sample collected in Massachusetts, to
a region in Charlotte, North Carolina, where focal
accuracy and GHS-based landscape metrics were
obtained from the GHS-BUILT-S2 product (see
Sections 2.2.1 and 2.2.6). We visually compared three
accuracy surfaces: (a) the calculated accuracy surfaces
based on map comparison between GHS-BUILT-S2
and the MTBF-33 reference data, (b) the accuracy
surfaces as estimated by the regression model trained
on Massachusetts data (i.e. domain shift), and (c) the
accuracy surfaces as estimated by a regression model
trained on 80% of the data based on GHS-BUILT-S2 in
the Charlotte study area (i.e. no domain shift). These
surfaces are shown in Figure 7, for all target variables,
support levels, and for the two regression techniques.
As can be seen, the modeled accuracy surfaces using

Table 3. Regression results across the four spatial support levels for GHSL epochs 1975 and 2014, and for analytical units of 30 m and

90 m.
RMSE per analytical unit and epoch R? per analytical unit and epoch

LSM Spatial support Accuracy 30 m, 30 m, 90 m, 90 m, 30 m, 30 m, 90 m, 90 m, R? Coefficient of
source [m] measure 2014 1975 2014 1975 2014 1975 2014 1975 variation
GHS 1000 OE 90.999  93.864 9.241 11.622 | 0.298 0.245 0.191 0.114 0.320
GHS 2500 OE 372.065 390.618 37.702 49.065 0.421 0.362 0.247 0.203 0.284
GHS 5000 OE 1174696 1214789 122.756 139.083 | 0.464 0.427 0.201 0.279 0.313
GHS 10000 OE 833.944 2117.633 190.991 264.154 0.972 0.821 0.802 0.699 0.119
Reference 1000 UE 37.796  41.537 9.402 9.626 | 0.264 0.188 0.271 0.240 0.136
Reference 2500 UE 120.762 138.817  30.432 25.837 0.442 0.277 0.496 0.471 0.203
Reference 5000 UE 315497 362.587 83.073  67.511 0.525 0.372 0.589 0.533 0.159
Reference 10000 UE 838.903 895912 227.732 179.768 0.511 0.443 0.670 0.570 0.152
GHS 1000 Precision 0.128 0.122 0.163 0.196 | 0.363 0.383 0.298 0.258 0.153
GHS 2500 Precision 0.119 0.115 0.159 0.202 0.515 0.525 0.386 0.303 0.214
GHS 5000 Precision 0.099 0.099 0.134 0.189 | 0.591 0.580 0.461 0.282 0.259
GHS 10000 Precision 0.063 0.069 0.088 0.129 0.776 0.735 0.659 0.464 0.182
Reference 1000 Recall 0.177 0.184 0.203 0.237 | 0.561 0.526 0.480 0.391 0.130
Reference 2500 Recall 0.133 0.146 0.152 0.185 0.781 0.734 0.745 0.655 0.063
Reference 5000 Recall 0.104 0.116 0.119 0.147 | 0.857 0.822 0.841 0.770 0.040
Reference 10000 Recall 0.080 0.089 0.087 0.107 0.903 0.880 0.900 0.860 0.020
Average 0.578 0.520 0.515 0.443
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Figure 7. Results of the domain adaptation tests for OLS and AdaBoost regression. Best domain adaptation results are achieved for
estimating focal precision and recall using an OLS regression model at 10 km spatial support (highlighted in gray). Values are rank-

transformed; high values shown in yellow.

domain shift differ, in many cases, considerably from
the calculated surfaces. In some cases (e.g. OLS-based
recall modeling at a spatial support of 1 km and 5 km)
the resulting surfaces are even inverted, indicating
that the underlying relationships between specific
landscape metrics and data accuracy may be inverted
between the Landsat-based GHS-BUILT R2018A and
the GHS-BUILT-S2 product, in the analyzed study area.
Importantly, the OLS-based regression models per-
form the domain shift better at a spatial support of
10 km for most target variables, in particular for the
models estimating precision and recall measures (R?
of 0.42, and 0.46, respectively, highlighted in gray in
Figure 7). Poor performance for the overestimation
models is due to predominant built-up quantity
underestimation in our Charlotte study area, and the
resulting sparsity of focal regions where quantity
overestimation occurs, impede the successful
estimation.

Moreover, we observed that at a spatial support of
10 km, OLS-based models appear to outperform

AdaBoost regression models (e.g. three out of four
OLS models show - visually - acceptable domain
shift results at a support level of 10 km, whereas this
is not the case for any of the target variables using
AdaBoost regression). This is in contrast to the better
model fits of AdaBoost compared to OLS in Table 2,
and indicates that the AdaBoost models may be over-
fitted to the Massachusetts study area, whereas the
OLS-based models, despite exhibiting lower levels of
model fit in the Massachusetts study area, appear to
be more generalizable to other study areas, when the
spatial support is large enough.

These results indicate that the morphological land-
scape characteristics that drive the presence or
absence of thematic omission errors are largely iden-
tical for the GHS-BUILT R2018A and the GHS-BUILT-S2
product, given that sufficient spatial context is
provided.

While the presented analysis focused on the state
of Massachusetts, we calculated focal landscape
metric surfaces based on the MTBF-33 reference



data for all 33 counties covered by MTBF-33. In pre-
vious work, we showed that there are strong associa-
tions between GHSL data accuracy and the density of
built-up surface within a given spatial unit (Uhl and
Leyk 2022b). Thus, we calculated the correlation coef-
ficients between each landscape metric and built-up
density for each of the 33 counties, and for three
levels of spatial support (i.e. 1 km, 2.5 km, and 5 km,
see Appendix Figure 1466). As can be seen, across the
three levels of support, most landscape metrics exhi-
bit high positive of negative correlation with built-up
density, and these correlations are very consistent
across the 33 counties, out of which 19 are located
outside of the state of Massachusetts.

a Recall = f(LSMger)
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regionalization. Shown are matrices of R? values from OLS regression models
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3.6. Regional and temporal model generalization

We spatially stratified our data samples by county
(see county boundaries in Appendix Figure 2), and
established individual regression models for each
county, and then calculated the R? values of each
county-level model when estimating the accuracy
in all other counties. The results are a set of cross-
tabulated R? values for each of the four regression
models (Figure 8). Note that we only did this for
using OLS regression and for a spatial support of
10 km, as these models showed the best perfor-
mance in the previously discussed domain adapta-
tion analysis. As can be seen in Figure 8, R? values

Precision = f(LSMgys)

0.48 063 0.63

0.59 0.67 0.53
061 069 0.60
0.56 0.45

051 0.70 0.

064 041 076 048

068 066 0.56 0.76

070 022 071 055 ﬁ

Barnstable
Berkshire
Bristol
Dukes
Essex
Franklin
Hampden
Hampshire
Middlesex
Nantucket
Norfolk
Plymouth
Suffolk
Worcester

estimating accuracy

components from landscape metrics, trained on county A (x-axis) and then used for inference in county B (y-axis), for the following
accuracy metrics: (a) Recall, (b) Precision, (c) Underestimation component (UE), and (d) Overestimation component (OE). High R?
values in cells other than on the main diagonal indicate high regression model generalizability between counties.
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Table 4. Domain adaptation over time (OLS models, spatial

support of 10 km).

train/infer 1975 2014
Precision = f(LSMgs)

train/infer 1975 2014
Recall = f(LSMggp)

1975 0259 0.296 1975 0912 0923
2014 0.101 0.455 2014 0890 0942
OF = f(LSMgps) UE = f(LSMggp)

1975 0.584 0.625 1975 0208 0341
2014 0.493 0672 2014 —0174 0347

are generally highest on the main diagonal (i.e.
model trained and employed in the same county).
These R? values are largely in agreement with the
R? values for the state-level OLS regression models
at a spatial support of 10 km (cf. Table 2).
Interestingly, off-diagonal R? values are low for
most accuracy metrics, and for most counties,
except for Recall (Figure 8a) and, to some extent,
for OE (Figure 8d). This indicates that the relation-
ship between landscape metrics and Recall
(Figure 8a) exhibits highest levels of spatial statio-
narity, i.e. the morphological properties of built-up
areas contribute to the level of thematic omission
error in similar ways across our study area. A clear
exception is Suffolk County, where the city of
Boston is located: the relationship between LSMs
and recall is not found in any other Massachusetts
county. Conversely, the relationship found in
Worcester county seems to be most generalizable,
possibly because this county contains balanced
proportions of urban and rural regions. Thus,
while the relationship between accuracy metrics
and landscape metrics are highly localized, the
recall metric takes an idiosyncratic position, as
observed in Figure 8, and in line with the pre-
viously discussed findings (e.g. Table 2, Figures 4
and 6), underlining once more the strong and
generalizable association between morphological
properties of built-up land and the degree to
which it is “undermapped.”

Finally, we also tested the generalizability of the
accuracy-LSM relationship in the temporal domain
(i.e. setting up regression models using the 2014
epoch, and estimating accuracy in the 1975 epoch,
and vice-versa). We observed similar trends, i.e. higher
levels of generalizability over time for the Recall mea-
sure, and low levels for the other accuracy metrics
(Table 4).

4. Conclusions

In this article, we conducted a detailed assessment of
the relationships between morphological characteris-
tics of built-up surfaces (measured by means of land-
scape metrics), and the data accuracy of built-up areas
reported in the gridded, multi-temporal GHS-BUILT
R2018A dataset. We identified varying associations
between accuracy measures and morphological char-
acteristics of built-up areas, and relatively high expla-
natory power in the accuracy models, in particular
when estimating omission errors from landscape
metrics. These findings are useful to determine areas
where omission errors are expected to be high, and
could be incorporated into classifier training proce-
dures, in order to improve future settlement layers.
Moreover, some of the presented regression models
could be applied to existing built-up land data, to
identify regions where commission errors are
expected to be high, in the absence of reference
data, and could inform the sampling design of future
accuracy assessments.

While the tree-based AdaBoost regressor outper-
formed the OLS regression models in the “baseline
scenario” (i.e. for the epoch 2014, using the full analy-
tical resolution of 30x30m grid cells), our domain
adaptation analysis revealed that these AdaBoost
models likely overfitted to the Massachusetts study
area, as they performed poorly in the “unseen”
Charlotte study area. This important insight highlights
the importance of domain shift/domain adaptation
analyses when evaluating machine learning models.
Moreover, the poor performance in our domain adap-
tation analysis indicates that the relationships
between morphology and accuracy of built-up land
are highly regional, and not generalizable, except for
the Recall metric which exhibits higher levels of gen-
eralizability, across regions, and remains largely unaf-
fected by the choice of the underlying analytical unit.

Notably, both correlations and model fits
increased with the level of spatial support, indi-
cating that the choice of an appropriate level of
spatial support is crucial when creating and ana-
lyzing localized accuracy estimates and local land-
scape metrics. This effect is somewhat expected,
and can be attributed to the general case of the
Modifiable Areal Unit Problem (MAUP; Openshaw
1984). These trends across different spatial sup-
port levels underline the importance of scale-



related considerations in geospatial analyses.
However, which level of spatial support is appro-
priate for a specific purpose needs to be decided
for each individual case, taking into account the
tradeoff between model robustness (which
increases with increasing support level in this
study) on the one hand, and loss of spatial gran-
ularity on the other hand.

At this point it is important to mention that despite
the domain adaptation analysis presented in
Section 3.5, further work using a larger set of study
areas is required to formalize general guidelines on
the effects of landscape characteristics and GHS-
BUILT data accuracy. In particular, the temporal gap
of two years between the GHS-BUILT-S2 (from 2018)
and the MTBF-33 data (from 2016) may introduce
a small bias into our domain adaptation analysis.
However, as the Charlotte study area is located in
the inner part of the city, rather than in a peri-urban
area, it has not experienced substantial urban growth
between these two years, and thus, we believe that
this bias is of minor nature.

Importantly, in this work, we used landscape
metrics derived from the test and from the reference
data. Thus, the created regression models are of lim-
ited use for predictive uncertainty modeling, as the
reference data required to generate the explanatory
variables (i.e. the landscape metrics) could also be
used to perform the accuracy assessment by map
comparison rather than using the predictive model.
In future work, we will also test the use of completely
independent explanatory variables (e.g. land cover
data, census data) for the purpose of predictive uncer-
tainty modeling. An important limitation here is that
the spatial support of such predictive models needs
to be large enough (e.g. 10x10km), as we observed
rather weak associations at lower levels of spatial
support (e.g. 1xTkm). However, having accuracy sur-
faces based on a support level of 10x10km is still an
improvement over simple global accuracy estimates
neglecting spatial accuracy variations, as still many
studies do.

In future work, we will also focus on the application
of the described framework to different built-up sur-
face/settlement data products and we will analyze in
detail the sensitivity of landscape metrics to spatial
support, taking into account potential bias introduced
by the scale sensitivity of the landscape metrics them-
selves (see Lustig et al. 2015). While the relationships
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between landscape characteristics and data accuracy
have been studied in the case of land cover data in
general (Smith et al. 2002, 2003), and, in the case of
built-up land data (Klotz et al. 2016; Miick, Klotz, and
Taubenbdck 2017), this work demonstrated at unpre-
cedented depth, that the accuracy of remote-sensing
derived built-up land data products such as the GHS-
BUILT is affected by the morphology of the built-up
area patterns, but differently for commission and
omission error components. Concluding, this work
contributes to a better understanding of the spatial
structure and variation of the uncertainty inherent in
data products such as the GHS-BUILT R2018A, and
ultimately, to a more informed and reflected use of
such data products.
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Figure A1. Sampling locations (a) (N = 200,000) in the state of Massachusetts at which focal landscape metrics were computed, and
the subsamples at which regression analysis was carried out for (b) reference data based landscape metrics, and (c) GHSL-based
landscape metrics, of sample size N = 100,000 each. Black lines represent the boundaries of the 14 counties in Massachusetts.
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Carolina. Values are rank-transformed; high values shown in yellow.
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Figure A6. Correlation of the 51 landscape metrics and built-up surface density in 30 U.S. counties, for 1 km (top), 2.5 km (middle), and
5 km spatial support (bottom).
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