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RESEARCH ARTICLE

Assessing the relationship between morphology and mapping accuracy of 
built-up areas derived from global human settlement data
Johannes H. Uhl a,b and Stefan Leykb,c

aCooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, Colorado, USA; bInstitute of 
Behavioral Science, University of Colorado Boulder, Boulder, Colorado, USA; cDepartment of Geography, University of Colorado Boulder, 
Boulder, Colorado, USA

ABSTRACT
It is common knowledge that the level of landscape heterogeneity may affect the performance of 
remote sensing based land use/land cover classification. While this issue has been studied in depth 
for land cover data in general, the specific relationship between the mapping accuracy and 
morphological characteristics of built-up surfaces has not been analyzed in detail, an urgent 
need given the recent emergence of a variety of global, fine-resolution settlement datasets. 
Moreover, previous studies typically rely on aggregated, broad-scale landscape metrics to quantify 
the morphology of built-up areas, neglecting the fine-grained spatial variation and scale depen
dency of such metrics. Herein, we aim to fill this knowledge gap by assessing the associations 
between localized (focal) landscape metrics, derived from binary built-up surfaces and localized 
data accuracy estimates. We tested our approach for built-up surfaces from the Global Human 
Settlement Layer (GHSL) for Massachusetts (USA). Specifically, we examined the explanatory power 
of landscape metrics with respect to both commission and omission errors in the multi-temporal 
GHS-BUILT R2018A data product. We found that the Landscape Shape Index (LSI) calculated in 
focal windows exhibits, on average, the highest levels of correlation to focal accuracy measures. 
These relationships are scale-dependent, and become stronger with increasing level of spatial 
support. We found that thematic omission error, as measured by Recall, has the strongest relation
ship to measures of built-up surface morphology across different temporal epochs and spatial 
resolutions. The results of our regression analysis (R2 > 0.9), estimating accuracy based on land
scape metrics, confirmed these findings. Lastly, we tested the generalizability of our findings by 
regionally stratifying our regression models and applying them to a different version of the GHSL 
(i.e. the GHS-BUILT-S2) and a different study area. We observed varying levels of model transfer
ability, indicating that the relationship between accuracy and landscape metrics may be sensor- 
specific, and is heavily localized for most accuracy metrics, but quite generalizable for the Recall 
measure. This indicates that there is a strong and generalizable association between morphological 
properties of built-up land and the degree to which it is “undermapped.”
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1. Introduction

In order to analyze the dynamics of human settlements 
on Earth, researchers typically rely on multi-temporal, 
remote-sensing-derived, gridded built-up surface data
sets, such as the Global Human Settlement Layer 
(GHSL, Pesaresi et al. 2013), the Global Rural-Urban 
Mapping Project (GRUMP, Balk et al. 2005), the Global 
Artificial Impervious Area dataset (GAIA, Gong et al. 
2020), or the World Settlement Footprint Evolution 
dataset (Marconcini et al. 2020a). In order to develop 
an unbiased understanding of the human settlement 
trends measured by these data, thorough knowledge 
of the uncertainty inherent in these multi-temporal 
datasets is crucial. The quantification of uncertainty in 

categorical spatial data is typically done by means of 
map comparison, i.e. the comparison to an indepen
dently compiled reference dataset of presumably 
higher accuracy (FGDC (Federal Geographic Data 
Committee) 1998), involving the creation of confusion 
matrices and the derivation of accuracy metrics 
(Fielding and Bell 1997). The accuracy assessment of 
remote-sensing-derived land cover/land use data is not 
straight-forward, for several reasons: (a) data accuracy 
is a spatially varying phenomenon, and accuracy esti
mates based on small samples, or aggregated to global 
or region-specific estimates, may ignore the fine-scale 
spatial non-stationarity of data accuracy (e.g. Strahler 
et al. 2006; Foody 2007; Wickham, Stehman, and 
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Homer 2018). (b) the accuracy metrics themselves may 
be biased, as they can be sensitive to sample size (e.g. 
Sim and Wright 2005; Bujang and Baharum 2017; 
Champagne et al. 2014) or class imbalance (see 
Rosenfield and Melley 1980; Wickham et al. 2010; 
Akosa 2017; Shao, Tang, and Liao 2019; Radoux, 
Waldner, and Bogaert 2020; Stehman and Wickham 
2020). (c) The analytical unit at which an accuracy 
assessment is conducted, may affect the results (e.g. 
Pontius and Suedmeyer 2004; Pontius and Cheuk 2006; 
Stehman and Wickham 2011; Zhu et al. 2013; Ye, 
Pontius, and Rakshit 2018; Marconcini et al. 2020b), 
and (d) the appropriate choice of the sample size and 
distribution is critical to conduct an unbiased accuracy 
assessment (Congalton 1988; Hashemian, Abkar, and 
Fatemi 2004; Foody 2009; Stehman and Foody 2019). 
Lastly, the choice of the geographic unit, or assessment 
unit, for which accuracy metrics and the underlying 
confusion matrices are established, is crucial as well 
(e.g. Stehman 2009; Wardlow and Callahan 2014).

To account for the spatial variations in accuracy, 
researchers have started to use spatially explicit 
accuracy assessments, if reference data availability 
and computing resources permit (e.g. Löw et al. 
2013; Khatami, Mountrakis, and Stehman 2017; 
Waldner et al. 2017; Mitchell, Downie, and Diesing 
2018; Morales-Barquero et al. 2019; Uhl and Leyk 
2022b) which are based on locally constrained 
confusion matrices (Foody 2007). Moreover, in 
order to account for the scarcity of reference 
data, their potentially resource-intensive creation, 
researchers have developed a wide range of meth
ods for predictive accuracy modeling of geospatial 
data such as land cover data using a variety of 
techniques and explanatory variables (e.g. Steele, 
Winne, and Redmond 1998; Kyriakidis and Dungan 
2001; Smith et al. 2003; Leyk and Zimmermann 
2004, 2007; van Oort et al. 2004; Comber et al. 
2012; Tsutsumida and Comber 2015; Zhang and 
Mei 2016; Wickham, Stehman, and Homer 2018; 
Mei et al. 2019; Ebrahimy et al. 2021; Cheng et al. 
2021), while others have incorporated landscape 
metrics (LSMs) in land cover data accuracy assess
ments (Smith et al. 2002, 2003; Gu and Congalton 
2020). Such studies typically focus on land cover 
data in general, and have not been applied to 
built-up surface data specifically.

In the specific case of built-up land datasets, accu
racy assessments are often impeded by lack of 

reference data over large spatial extents (See et al. 
2022), in particular for early points in time (Uhl and 
Leyk 2022a). Moreover, as it is well-known that the 
accuracy of remote-sensing-derived land use/land 
cover data products is related to structural landscape 
characteristics such as the level of landscape segrega
tion or the patch size of urban land (Smith et al. 2002, 
2003; Mück, Klotz, and Taubenböck 2017). In the same 
vein, Degen et al. (2018) show that the level of land
scape heterogeneity affects the quantization of multi
spectral remote sensing data such as Landsat data. 
Previous research has shown that the accuracy of 
built-up surface layers varies regionally (Klotz et al. 
2016; Liu et al. 2020), and across the rural-urban con
tinuum (Leyk et al. 2018; Kaim et al. 2022), which is 
strongly related to morphological characteristics of 
landscapes in general (Vizzari 2011; Vizzari and 
Sigura 2013) and of settlements in particular (Cyriac 
and Firoz C 2022).

However, it has not been explicitly studied which 
morphological properties of settlements (as mea
sured by landscape metrics) drive the accuracy at 
which they are mapped. Likewise, there is no litera
ture that examines how individual uncertainty com
ponents (i.e. omission error, commission error) relate 
to morphological characteristics of built-up areas. This 
is the gap that this paper aims to fill. Knowledge of 
these relationships will help the users of settlement 
data (or of derived products such as fine-grained 
population data (e.g. Florczyk et al. 2019) to critically 
reflect on the data quality, and can guide data produ
cers to improve data production pipelines, e.g. by 
using adaptive sampling and classification strategies 
based on the level of commission and omission errors 
expected in a region characterized by a specific built- 
up land morphology.

Herein, we make use of a multi-temporal reference 
dataset (i.e. the multi-temporal building footprint 
dataset for 33 U.S. counties (MTBF-33, Uhl and Leyk 
2022a), enabling the creation of historical snapshots 
of built-up areas at fine spatial and temporal grain, for 
relatively large, contiguous regions. Using this refer
ence dataset, we conducted a spatially exhaustive, 
localized accuracy assessment of the Global Human 
Settlement Layer (GHS-BUILT R2018A, Florczyk et al. 
2019) in the state of Massachusetts (USA), for the 
epochs 1975 and 2014. Consistent to these multi- 
temporal, continuous surfaces of localized data accu
racy estimates, we calculated focal landscape metrics 
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for a large sample of locations (N = 200,000 locations) 
to characterize the morphology of built-up areas. We 
used these data to (a) assess the association between 
localized data accuracy and landscape metrics at fine 
spatial grain, and over time, and (b) test the explana
tory power of morphological characteristics of both 
the reference data and the GHSL with respect to data 
accuracy, using two different regression techniques. 
Finally, we tested the sensitivity of our results to the 
spatial support (i.e. the extent of the spatial sample 
used for focal/localized accuracy and landscape 
metrics computation) and to the assessment unit 
(i.e. the spatial resolution of the grid in which accu
racy and landscape metrics are computed). Moreover, 
we analyzed the robustness of the relationships 
between landscape metrics and accuracy by means 
of domain adaptation (You et al. 2019) capabilities of 
our regression models to a different dataset (i.e. the 
GHS-BUILT-S2, Corbane et al. 2021) and to a study 
area outside of Massachusetts, as well as by model 
regionalization to the county-level within the state of 
Massachusetts to assess the spatial variation of these 
relationships.

This paper is structured as follows: In Section 2, we 
discuss the data and methods used, in Section 3, we 
present and discuss our results, and report our con
clusions in Section 4.

2. Data and methods

In this section we introduce the used datasets and 
preprocessing steps undertaken (Section 2.1), as well 
as the methods used in the different parts of our 
analyses (Section 2.2).

2.1. Data and preprocessing

This study is based on gridded built-up surface layers 
from the GHSL project and on the multi-temporal 
building footprint dataset for 33 U.S. counties 
(MTBF-33, Uhl and Leyk 2022a).

2.1.1. Global human settlement layer (GHS-BUILT)
The GHS-BUILT R2018A dataset, which is derived from 
Landsat and Sentinel-2 data, maps built-up areas at 
a spatial resolution of 30 m, at a global extent, for the 
epoch (i.e. years) 1975, 1990, 2000, and 2014 (Florczyk 
et al. 2019, downloaded from https://data.jrc.ec. 
europa.eu/dataset/jrc-ghsl-10007). We used this data 

product, as the GHS-BUILT has been used in a range of 
scientific studies of different disciplines (Ehrlich et al. 
2021) and has been input to the multi-temporal 
population datasets GHS-POP and the rural-urban 
classification datasets GHS-SMOD (Florczyk et al. 
2019). Moreover, GHS-BUILT R2018A makes use of 
early Landsat 4 MSS data and thus, extends farther 
back in time than related datasets such as the WSF- 
evolution dataset, which dates back to 1985 
(Marconcini et al. 2020a). The GHS-BUILT R2018A has 
been created using a sequential approach, extracting 
built-up areas in the most recent epoch (i.e. 2014) and 
spatially constraining built-up areas in prior epochs to 
the 2014 built-up mask. Note that Landsat 4 MSS data 
were upsampled to 30 m resolution to be integrated 
in this process (Corbane et al. 2019). For the two 
epochs 1975 and 2014, we extracted binary surfaces 
indicating built-up areas (1) and not built-up areas (0) 
(Figure 1a,b).

For the domain adaptation analysis, i.e. to test 
how regression models perform on data of 
a different distribution than the one they were 
trained on (Section 2.2.6), we employed the GHS- 
BUILT-S2 dataset, which provides estimates of built- 
up probability, in the range of 0–100, within 
a 10x10m grid. GHS-BUILT-S2 has been created 
from Sentinel-2 data acquired in 2018, using convo
lutional neural networks (Corbane et al. 2021, down
loaded from https://ghsl.jrc.ec.europa.eu/ghs_bu_ 
s2_2018.php). We used the data for a subset of the 
city of Charlotte, North Carolina. For our accuracy 
assessment, these continuous data needed to be 
converted into binary, presence-absence surfaces. 
To do so, we calculated the average built-up prob
ability of the 10 m grid cells within 30x30m grid cells 
(aligned and consistent to the GHS-BUILT R2018A 
grid). We then applied a threshold of 50 to the built- 
up probabilities to generate binary built-up surface 
layers (Figure 1c), compatible to the GHS-BUILT 
R2018A data. This was done for two reasons: (a) the 
subsequent data processing requires binary, pre
sence-absence surfaces, and (b) the original resolu
tion of 10x10m is likely too fine-grained for direct 
calculation of landscape metrics. A target resolution 
of 30x30m generalizes the data such that meaningful 
landscape metrics can be derived (e.g. a contiguous 
patch of built-up surface should encompass the 
roads separating the actual buildings within that 
patch, and this may not be the case when using the 
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original resolution of 10x10m). Since the GHS-BUILT- 
S2 data stem from a different sensor, have a different 
resolution, processing strategy, encoding, accuracy, 
and, most importantly, exhibit unique configurations 
of built-up land patterns (and thus, unique combina
tions of landscape and accuracy metrics), this dataset 
and the derived landscape metrics represent differ
ent joint data distributions than the GHS-BUILT 
R2018A and the landscape metrics derived for 
Massachusetts.

2.1.2. Gridded reference data
The reference dataset has been created from the 
MTBF-33 vector building footprint data (downloaded 
from https://doi.org/10.17632/w33vbvjtdy). MTBF- 
33 contains over 6 million building footprint vector 
geometries annotated with their construction year. 
For each county in the state of Massachusetts, we 
selected the MTBF-33 building footprints built-up by 
1975, and 2014, respectively, and rasterized the vec
tor data into the GHS-BUILT R2018A grid. To keep 
resampling uncertainty to a minimum, we first ras
terized the vector polygons into a binary grid of 
2x2m, and then down-sampled this grid to the target 
resolution of 30x30m, labeling all 30 m grid cells as 

“built-up” if they contain at least one 2 m building 
grid cell. A subset of these gridded surfaces is shown 
in Figure 1d,e). For the domain adaptation analysis, 
we carried out the same processes for the 
Mecklenburg County (i.e. the city of Charlotte, 
North Carolina) building footprints, but for the year 
2016 only (Figure 1f).

2.2. Methods

Herein, we used the pre-processed GHS-BUILT layer as 
test data and applied the MTBF-33 (Section 2.1) as refer
ence data. Our method consisted of the following 
steps: 1) Spatially explicit map comparison 
(Section 2.2.1) and calculation of localized accuracy esti
mates (Section 2.2.2), 2) the derivation of focal landscape 
metrics of built-up areas from both the reference and 
GHS-BUILT data (Section 2.2.3), 3) the correlation analy
sis of localized accuracy and landscape metrics 
(Section 2.2.4), 4) regression modeling (Section 2.2.5), 
and 5) assessing the sensitivity of these results to the 
spatial support, to the epoch, to the analytical unit, and 
to the study area (Section 2.2.6). This workflow is shown 
in Figure 2.

Figure 1. Samples of the input data used in this study. Built-up surfaces from the GHSL R2018A data (a) in 1975, and (b) in 2014, for the 
city of Worcester, Massachusetts, USA. Panel (c) shows the GHS-S2 built-up areas in 2018 for a subset of Mecklenburg County, North 
Carolina. The bottom row displays the reference data derived from the MTBF-33 dataset for Worcester (d) in 1975, and (e) in 2014. 
Panel (f) shows the MTBF-33 derived built-up areas for the North Carolina study area in 2016.
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2.2.1. Spatially explicit, exhaustive accuracy 
assessment
Based on the binary built-up presence/absence layers 
(Figure 1) we applied a method for efficient, spatially 
explicit accuracy assessment of categorical, gridded 
data, as proposed in Uhl and Leyk (2022b). This 
method first performs cell-by-cell map comparison 
and generates three gridded surfaces, each one con
taining a 1-hot encoding of one of the three relevant 
agreement classes (i.e. true positives, false positives, 
false negatives). Subsequently, the densities of each 
agreement class within focal windows of varying size 
(herein called the “spatial support”) are calculated. 
Finally, these agreement class density surfaces are 
stacked cell-wise to a three-band focal confusion 
matrix composite, representing the localized (focal) 
confusion matrix at each location (i.e. grid cell). 
Moreover, we needed to account for potential effects 
of positional uncertainty in our data, that may cause 
misalignment between GHS-BUILT and reference 
data, and could severely bias the thematic accuracy 
estimates obtained at the “native” resolution of 
30x30m (e.g. Congalton 2007; Gu and Congalton 
2020). To mitigate such effects, we down-sampled 
the binary GHS-BUILT and reference grids to blocks 
of 3 × 3 pixels (i.e. corresponding to a resolution of 
90x90m) and repeated the steps described above, for 
the 90x90m grids, as well as for both epochs (i.e. 1975 
and 2014). Finally, we expected our focal accuracy 
estimates to be sensitive to the spatial support (Uhl 

and Leyk 2022b), and thus, we used focal windows of 
varying size s (1 km, 2.5 km, 5 km, and 10 km) to 
compute the agreement class density surfaces. 
Examples of the resulting confusion matrix compo
sites for the different epochs, different levels of spatial 
support, and analytical units will be discussed in 
Section 3.4.

2.2.2. Focal accuracy measures
Based on the focal confusion matrix composites 
holding the densities of relevant confusion matrix 
elements TP (true positives), FP (false positives), 
and FN (false negatives) (see Section 2.2.1), we 
were able to efficiently calculate localized accuracy 
estimates at the grid-cell level. We calculated two 
thematic agreement metrics: Precision and Recall. 
Recall indicates the probability of a reference ele
ment being classified correctly, and is complemen
tary to the omission error OE (error of exclusion), 
and the precision indicates the probability of 
a classified object being correct, and is comple
mentary to the commission error CE (error of inclu
sion) (Story and Congalton 1986): 

Recall ¼
TP

TP þ FN
(1) 

and 

Precision ¼
TP

TP þ FP
(2) 

Figure 2. Processing workflow for this study.
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Besides these thematic agreement measures, we used 
the absolute error (AE), a quantity agreement mea
sure, which is independent from the spatial corre
spondence of class labels within the focal windows. 
AE is obtained as: 

AE ¼ TPþ FPð Þ � TP þ FNð Þ ¼ FP � FN (3) 

Where TP + FP represents the built-up quantity 
reported in GHS-BUILT, and TP + FN represents the 
built-up quantity according to the reference data. 
These built-up quantities (i.e. the amount of 30x30m 
built-up grid cells per quadratic focal window of size 
sxs, given in meters) can be converted into a measure 
of built-up surface density (in %, herein called “built- 
up density”), as follows 

BUDENSREF;s %½ � ¼ 100 � 302 �
TP þ FNð Þ

s
(4) 

Where s2 is the area of the focal window (i.e. the 
spatial support in m2). The GHSL-based built-up den
sity is obtained as: 

BUDENSGHSL;s %½ � ¼ 100 � 302 �
TP þ FPð Þ

s
(5) 

Herein, we used these built-up density estimates to 
model the rural-urban continuum (Section 2.2.3). The 
aforementioned separation of thematic and quantity 
error has been proposed in a similar way by Pontius 
and Millones (2011), and allows to measure the agree
ment between test and reference data quantitatively, 
while ignoring the thematic agreement at the grid cell 
level. We used this strategy in regards to coarser-scale 
applications where the precise locations of built-up sur
faces are irrelevant, for example when combining fine- 
scale built-up surface data with coarser population esti
mates. Examples of the resulting surfaces of thematic 
(i.e. precision and recall) and quantity agreement (i.e. AE) 
will be shown and discussed in Section 3.1. Here it is 
worth noting that the fourth category used in confusion 
matrices (i.e. the true negatives) was not calculated as 
none of the agreement or density metrics requires the 
true negatives. Generally, for binary comparisons such as 
built-up vs. not built-up grid cells, it is advised not to use 
accuracy metrics that include the true negatives, as they 
are the dominant class, in particular in sparsely built-up, 
rural areas, and will yield inflated values, e.g. overall 
accuracy (Rosenfield and Melley 1980; Stehman and 
Wickham 2020), as shown in the context of built-up 
land data in previous work (Uhl and Leyk 2022b).

2.2.3. Focal landscape metrics
We used the software FRAGSTATS v4.2 (McGarigal, 
Cushman, and Ene 2012) to calculate landscape metrics 
describing the shape and spatial structure of contiguous 
patches of built-up land within focal regions defined by 
the four support levels. To keep computational efforts 
manageable, we computed these metrics for a subset of 
N = 200,000 locations (i.e. grid cells) within 
Massachusetts (see Section 2.2.5, Appendix Figure 911). 
While previous work suggests that particularly the size 
of patches affects the classification accuracy (Smith et al. 
2002, 2003; Klotz et al. 2016; Mück, Klotz, and 
Taubenböck 2017), we also assumed that certain shape 
and fragmentation characteristics may drive classifica
tion accuracy. Thus, we computed nine landscape level 
measures and seven patch-level measures, for both 
built-up areas from the GHSL and the reference data 
(Table 1). To characterize the distributions of all patch- 
level measures within the focal windows in Table 1, we 
calculated mean (MN), area-weighted mean (AM), med
ian (MD), standard deviation (SD), coefficient of variation 
(CV), and range (RA), summing up to a total of 51 land
scape metrics. As shown in Table 1, these commonly 
used metrics cover a wide range of the morphological, 
shape, and structure-related characteristics of built-up 
areas that are assumed to affect the classification accu
racy of the GHSL in different ways. For our Charlotte 
study area, we calculated exhaustive surfaces of focal 
landscape metrics, using grid and support levels consis
tent to the focal accuracy surfaces. These focal land
scape metrics were derived from both the reference 
data and the GHS built-up areas for the four levels of 
spatial support, as landscape metrics may be scale- 
sensitive (Lustig et al. 2015; Frazier 2022). These surfaces 
are discussed in Section 3.1. The surfaces of all 51 land
scape metrics, derived from the reference data, for the 
four support levels are shown in Appendix Figure 1022.

2.2.4. Correlation analysis
Using the consistent gridded layers of spatially corre
sponding focal accuracy estimates and the focal land
scape metrics we quantified the correlation between 
GHS-BUILT data accuracy and the morphological char
acteristics of the built-up areas. Specifically, we calcu
lated Pearson’s correlation coefficient between the 
landscape metrics and focal accuracy estimates 
(Section 3.1), as well as between landscape metrics 
and built-up density, since we assumed that built-up 
density may be a good proxy for GHS data accuracy, 
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as previous work has shown (Leyk et al. 2018; Uhl and 
Leyk 2022b).

2.2.5. Regression modeling
To further analyze the relationship between land
scape metrics and accuracy, we assessed the explana
tory power of landscape characteristics to estimate 
built-up land mapping accuracy across different levels 
of spatial support. We drew two subsamples of 
N = 100,000 from the initial sample through random 
selection, stratified by deciles of BUDENSREF (sample I) 
and BUDENSGHSL (sample II), respectively (Appendix 
Figure 1131b,113). This stratification ensured that the 
drawn samples are equally distributed across the 
rural-urban continuum and kept computational 
efforts feasible. For the locations in sample I, we com
puted focal landscape metrics based on the built-up 
patches in the reference data, and for the locations in 
sample II, we used the GHSL-derived built-up patches 
to compute landscape metrics (Section 2.2.3). As 
described above, we separately assessed thematic 
accuracy and quantity agreement. These components 
were further separated into omission and commission 
errors. While the reference data alone are indepen
dent from the test data (i.e. the GHSL), landscape 
metrics (LSMs) derived from the reference data 
(LSMREF) neither contain any information on commis
sion errors in the test data, nor do GHSL-based land
scape metrics (LSMGHS) allow for inferring on omission 
errors with respect to the reference data. For example, 
a road in an uninhabited region is mistakenly classi
fied as built-up area (i.e. false positive). As the refer
ence data indicates only not built-up grid cells in that 

region, the landscape metrics derived from the refer
ence data will all be zero or not defined. Thus, the 
regression model precision = f(LSMREF) will not be 
able to explain the low precision, since all covariates 
are zero. In other words, such a regression model 
could only work in regions where the spatial distribu
tions of test and reference data are similar, but would 
fail in the areas that matter most, i.e. where extremely 
high commission error occur. Computing an R2 of 
such a scenario would be unfair as we know a priori 
that the covariates have limited explanatory power.

Thus, we used precision and recall as response 
variables to be estimated based on the LSMGHS and, 
LSMREF respectively. Accordingly, we separated the 
absolute error (Equation 3) into overestimation (OE) 
and underestimation (UE) components as follows: 

OE ¼ AE; AE > 0
0; AE � 0

�

(6) 

UE ¼ 0; AE > 0
AEj j; AE � 0

�

(7) 

Thus, we established four models: (a) Estimating the
matic commission error, i.e. the precision of GHSL 
given the reference data, based on the 51 GHSL- 
derived landscape metrics: 

PrecisionGHSL REF ¼ f LSMGHSLð Þ

¼ a1 � lsmGHSL;1 þ . . .þ a51

� lsmGHSL;51 (8) 

(b) Estimating quantity commission error, i.e. the OE 
of GHSL given the reference data, based on the 51 
GHSL-derived landscapemetrics: 

Table 1. Landscape metrics used in this study include 9 landscape-level measures, and 7 patch-level measures. For each patch-level 
measure, six summary statistics were computed. Source: McGarigal (2015).

Metric type Metric name Short name Measured characteristic

Landscape/class 
level

Aggregation Index AI Disaggregation
Landscape Division Index DIVISION Segregation
Landscape Shape Index LSI Shape complexity
Largest Patch Index LPI Dominance, connectivity
Number or Patches NP Segregation
Percentage of Like Adjacencies PLADJ Contiguity
Perimeter-area Fractal Dimension PAFRAC Shape complexity
Edge Density ED Compactness, shape complexity, segregation
Cohesion Index COHESION Connectivity

Patch level 
(MN, AM, MD, 
SD, CV, RA)

Contiguity Index CONTIG Contiguity
Fractal Index FRAC Shape complexity
Patch Area AREA Size
Perimeter-Area Ratio PARA Shape complexity
Radius of Gyration GYRATE Extension
Related Circumscribing Circle CIRCLE Compactness
Shape index SHAPE Shape complexity
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OEGHSL REF ¼ f LSMGHSLð Þ

¼ a1 � lsmGHSL;1 þ . . .þ a51 � lsmGHSL;51

(9) 

(c) Estimating thematic omission error, i.e. the recall of 
GHSL given the reference data, based on the 51 refer
ence-data derived landscape metrics: 

RecallGHSL REF ¼ f LSMREFð Þ

¼ a1 � lsmREF;1 þ . . .þ a51 � lsmREF;51

(10) 

and (d) Estimating quantity omission error, i.e. the OE 
of GHSL given the reference data, based on the 51 
reference-data derived landscape metrics: 

UEGHSL REF ¼ f LSMREFð Þ

¼ a1 � lsmREF;1 þ . . .þ a51 � lsmREF;51 (11) 

These models were implemented as classical 
ordinary least squares (OLS) linear regression 
models as baseline models, and were compared 
to regression models using an AdaBoost regressor 
(Freund and Schapire 1997; Drucker 1997), which 
consists of an ensemble of shallow decision trees 
(“weak learners“). AdaBoost regression models 
have shown promising performance in other 
applications in the geosciences (e.g. Li et al. 
2016; Belgiu and Drăguţ 2016). This comparison 
was done in order to test whether complex (albeit 
black box) machine learning models such as the 
AdaBoost regressor are necessary to solve the 
given regression problem, or if classical, and 
more interpretable statistical models such as OLS 
are sufficient. All models were tested using these 
two techniques and separately for the four levels 
of spatial support, in order to assess cross-scale 
effects, yielding a total of 32 regression models 
(Section 3.5). For the AdaBoost regression, we 
performed hyperparameter tuning separately for 
each response variable and support level. The 
outcomes of this analysis will illuminate two ques
tions: (a) What can landscape metrics derived 
from the reference data tell us about omission 
errors in built-up land reported in the GHS-BUILT 
? (b) Can the GHS-BUILT itself be used to estimate 
its inherent uncertainty (i.e. commission errors)?

2.2.6. Sensitivity analyses
In our analytical setup, there are four components 
potentially affecting the performance of the 

regression models and the drawn conclusions. These 
components include:

(1) The spatial support of localized accuracy esti
mates and landscape metrics. To address that, 
we carried out all regression models based on 
the four levels of spatial support and compared 
their results.

(2) The analytical unit (i.e. the grid cell size). As 
mentioned before, positional uncertainty in 
our data may cause misalignment between 
the gridded GHS-BUILT and reference data, 
and could severely bias the thematic accuracy 
estimates obtained at the “native” resolution of 
30x30m (Congalton 2007). Thus, we also com
puted the landscape metrics and localized 
accuracy estimates in coarser, 90x90m grids 
and carried out the regression analysis accord
ingly. This step is important because the effect 
of positional uncertainty on thematic accuracy 
estimates itself appears to depend on the land
scape characteristics (Gu and Congalton 2020).

(3) The epoch or acquisition date. As GHS-BUILT 
R2018A is a multi-temporal data product 
(1975–2014) using multispectral data from var
ious generations of the Landsat sensors as 
input, the relationship between classification 
accuracy and underlying landscape metrics 
may vary over time, as the properties and cap
abilities of the underlying sensors (Landsat 
MSS, TM, ETM+, OLI) have changed over time. 
Thus, we also computed the landscape metrics 
and localized accuracy estimates based on the 
1975 GHSL epoch, and on a 1975 snapshot of 
the MTBF-33 reference data.

(4) The study area and data product. Landscape 
metrics may be very specific to the settlement 
patterns in Massachusetts. Moreover, the GHS- 
BUILT accuracy may be dependent of vegeta
tion types, predominant roof material, and 
potentially ambiguous spectral responses 
between built-up and not built-up landscape 
features. Moreover, cloud cover frequency 
associated with a specific study area may also 
affect the GHS accuracy in that area. To account 
for that, we took two measures: First, we 
applied our regression models developed 
using the Massachusetts data to our Charlotte, 
North Carolina study area. For that study area, 
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which is also covered by the MTBF-33 reference 
database, localized accuracy estimates and 
landscape metrics were derived from the fine- 
resolution GHS-BUILT-S2 product (see 
Section 2.1.1). Second, we subdivided our 
Massachuetts study area into the 14 counties, 
and established individual regression models 
for each county. We then measured how well 
each county-level regression model estimates 
the focal accuracies in all other counties, in 
order to test the spatial stationarity of the rela
tionships between landscape metrics and accu
racy, Moreover, we applied this concept to the 
temporal domain, i.e. using regression models 
trained in 2014 applied to the 1975 epoch, and 
vice-versa.

In the subsequent analyses, we considered the 2014 
epoch and the analytical unit of 30x30m as our base
line scenario.

3. Results and discussion

In this section, we first illustrate the created focal 
accuracy and landscape metrics surfaces 
(Section 3.1), and describe the results of the correla
tion analysis between focal accuracy estimates and 
landscape metrics (Section 3.2), and the regression- 
based accuracy models (Section 3.3). We then discuss 
the sensitivity of correlation and regression analysis to 
the GHS epoch (1975 and 2014) and to the analytical 
unit underlying the spatially explicit accuracy assess
ment and landscape metrics computation 
(Section 3.4). Then, we describe the results of the 
domain adaptation analysis, i.e. applying the regres
sion models trained on GHS-BUILT R2018A in 
Massachusetts to GHS-BUILT-S2 data in North 
Carolina (Section 3.5). Lastly, we present the results 
of regression model regionalization to the county- 
level within Massachusetts to assess spatial variation 
of the target relationships (Section 3.6).

3.1. Surfaces of agreement metrics and landscape 
metrics

As discussed in Sections 2.2.1 to 2.2.3, we created 
a variety of different raster datasets used for the spatially 
explicit accuracy assessment and all further analyses. All 
surfaces were created using four levels of spatial support 

(i.e. focal windows of 1 km, 2.5 km, 5 km, and 10 km) 
These surfaces include the focal density of confusion 
matrix elements TP, FP, and FN (Figure 3a), the focal 
densities of built-up surface derived from both, refer
ence and test data (Figure 3b), the focal accuracy sur
faces including precision, recall, and absolute error 
(Figure 3c). The focal landscape metric surfaces are cal
culated in the same grid, using the same focal window 
sizes, derived from the reference data and from the 
GHSL (see Figures 3d and e for some examples).

3.2. Correlation analysis

As a first step, we systematically analyzed the correla
tion coefficients between each of the response vari
ables, i.e. thematic commission error (precision), 
quantity commission error (overestimation), thematic 
omission error (recall), and quantity omission error 
(underestimation), and all 51 landscape metrics (i.e. 
9 landscape-based measures, and 6 summary statis
tics for each of the 7 patch-based measures) used as 
explanatory variables. Figure 4a shows the correlation 
coefficients for these metrics (for patch-based mea
sures, only the statistic with maximum average corre
lation across all 16 models is shown, see Figure 1243 
for the full matrix, and Figure 1354 for a more detailed 
visualization of the relationships between landscape 
metrics and selected accuracy measures). The land
scape metrics are sorted by their average correlation 
to all accuracy metrics at all support levels. We 
observe the following: In average, the Landscape 
shape index (LSI) exhibits the highest levels of corre
lation to the accuracy measures under test. Among 
the tested landscape metrics, highest levels of corre
lation were found for the reference-based landscape 
metrics (LSMREF) and recall, and lowest for UE. In many 
cases, correlation increased with increasing spatial 
support. As shown in Figure 4a, contiguity, disaggre
gation, and connectivity measures of built-up land (AI, 
PLADJ, COHESION, and CONTIG) are highly correlated 
with recall, whereas quantity omission errors (i.e. UE) 
are highly correlated with measures of shape com
plexity (ED, LSI) but also with scatteredness (i.e. NP, 
also ED). The GHSL-based landscape metrics (LSMGHS) 
highly correlated with commission error measures (i.e. 
precision and OE) are the Shape index (SHAPE), Fractal 
index (FRAC) and the GYRATE metric. They measure 
shape complexity and extension, and yield higher 
values e.g. where irregular road features are present, 
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which are often incorrectly classified as built-up area 
(i.e. representing commission errors). Thus, commis
sion errors appear to be associated with the shape of 
the GHSL built-up areas, whereas omission errors are 
related to the contiguity and segregation of reference 
built-up areas.

Moreover, we visualized the 51 landscape metrics 
and the accuracy components in a two-dimensional 
space defined by their cross-support correlation tra
jectory with respect to quantity and thematic com
mission error measures (i.e. OE and precision, 
respectively), and quantity and thematic omission 
error measures (i.e. UE and recall, respectively) 
(Figure 4b). This way of visualizing the results 
shows highest correlations between landscape 

metrics and thematic omission error (i.e. recall) and 
most of these metrics also are highly correlated to 
thematic commission errors (i.e. precision). 
Conversely, some of the quantity agreement mea
sures exhibited higher levels of correlation to OE, but 
low correlation to UE, indicating that structural prop
erties of built-up areas determining the level of 
quantity overestimation are different from those 
that trigger underestimation.

3.3. Regression analysis

Furthermore, we visualized the performance of the 
AdaBoost regression models generated for each of 
the four scenarios (Section 2.2.6), separately for 

Figure 3. Continuous surfaces used in this study and the effect of spatial support: (a) density surfaces of grid cells for each thematic 
agreement category (i.e. true positives – TP, false positives – FP, and false negatives – FN), (b) derived measures of built-up quantity 
(measured in grid cells) derived from the reference data and the test data, (c) surfaces of focal, thematic and quantity agreement 
measures, (d) selected focal landscape metrics (LSMs) derived from (d) the reference data, and (e) the GHS-BUILT-S2, including the 
largest patch index (LPI), and the area-weighted mean of the Related Circumscribing Circle metric (CIRCLE_AM) and fractal index 
(FRAC_AM). The rows represent the different levels of spatial support (i.e. focal window size). All data are shown for a subset of 
Charlotte, North Carolina and based on the built-up areas shown in Figure 1c and f. A rank transform was applied to the continuous 
surfaces before color-coding.
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models estimating thematic accuracy (Figure 4c) 
and quantity agreement (Figure 4d). These visuali
zations show that for the optimal hyperparameters, 
all four models yielded R2 values of >0.9, when 
using a spatial support of 10 km, indicating that 
all four accuracy components can be explained 
reliably based on the landscape metrics, within 
focal windows of 10 km x 10 km. Visualizing 
RMSE versus R2 for each model revealed further 
that there are increasing levels of R2 as spatial 
support increases. The opposite trends between 
Figure 4 c and d along the x-axis are due to the 
absolute nature of the OE and UE quantity error 

components, naturally increasing with increasing 
spatial support. As can be seen, the best-fitting 
models were achieved for estimating recall from 
LSMREF and for estimating OE from LSMGHS.

These observations imply that landscape metrics 
derived from the GHSL can reliably be employed as 
explanatory variables for commission errors in the 
absence of reference data, and the omission error 
component of the accuracy of built-up land data is 
highly affected by the level of spatial segregation 
and contiguity of built-up areas, confirming prior 
research results (e.g. Smith et al. 2002, 2003; Klotz 
et al. 2016; Mück, Klotz, and Taubenböck 2017). 

Figure 4. Estimating localized accuracy using regression analysis based on focal landscape metrics. (a) Pearson’s correlation 
coefficients for the 16 most correlated landscape metrics, for each response variable and each level of spatial support. For patch- 
based metrics, only the summary statistic is shown that yields the highest overall correlation, see Appendix Figure 1133 for the full 
matrix; LSMs are sorted from top to bottom ascendingly by their average correlation across rows; (b) Correlation coefficients of the 51 
landscape metrics in a bi-dimensional space of correlation to measures that characterize commission error (i.e. OE and precision; 
x-axis) and omission error (i.e. UE and recall; y-axis), color-coded by accuracy type (i.e. thematic or quantity agreement); correlation 
coefficients are shown for spatial support of 10 km, gray lines illustrate the cross-support trajectory for each LSM across the four levels 
of spatial support; (c) shows the AdaBoost model performance in bi-dimensional spaces of RMSE and R2 for the two models estimating 
thematic errors, with each data point representing a different hyperparameter setting; (d) respective visualization for the two models 
estimating quantity errors. Lines connect the R2-RMSE pairs for each hyperparameter combination across the levels of spatial support.
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Overall, recall appears to exhibit the strongest asso
ciation to LSMs, and those models exhibit the high
est explanatory power. It is also worth noting that 
while the machine-learning models (AdaBoost) con
sistently outperform the OLS models in most cases, 
OLS comes closest to the AdaBoost model perfor
mance for estimating recall for large spatial supports 
(Table 2).

3.4. Sensitivity to epoch and analytical unit

In the focal confusion matrix composites shown for 
the epochs 1975 and 2014, and for the analytical units 
of 30x30m and 90x90m (Figure 5), we observe inter
esting differences in the relative proportions of TP, FP, 
and FN instances (i.e. grid cells). For example, the RGB- 
encoding of these relative proportions yields green- 
yellow colors in the center of the map (i.e. the city of 

Table 2. Regression analysis results for the modeling of GHS accuracy based on landscape metrics, using AdaBoost regression and 
Ordinary Least Squares.

AdaBoost Regressor OLS

Landscape metrics source data Response variable Spatial support [m] Max. Depth Num. Estimators R2 RMSE R2 RMSE

GHSL OE 1000 10 500 0.342 57.425 0.377 55.198
2500 25 250 0.575 296.407 0.545 306.091
5000 25 500 0.800 722.664 0.653 940.203

10000 25 250 0.949 1151.146 0.751 2531.439
GHSL Precision 1000 10 500 0.119 0.141 0.129 0.142

2500 25 250 0.412 0.116 0.342 0.123
5000 25 500 0.696 0.079 0.447 0.108

10000 25 500 0.913 0.039 0.539 0.090
Reference data UE 1000 10 500 0.268 37.740 0.264 37.796

2500 25 500 0.550 107.468 0.442 120.762
5000 25 250 0.791 209.211 0.525 315.497

10000 25 500 0.909 358.610 0.511 838.903
Reference data Recall 1000 10 250 0.573 0.174 0.561 0.177

2500 25 500 0.819 0.119 0.781 0.133
5000 25 500 0.928 0.073 0.857 0.104

10000 25 500 0.985 0.032 0.903 0.080

Figure 5. Focal confusion matrix composites for systematically varied parameters used in this study: Top row shows (a) Focal confusion 
matrix composites derived at a support level of 1x1km for analytical units of 30x30m, and 90x90m in 1975, and (b) in 2014, 
respectively. The bottom row shows focal confusion matrix composites derived at a support level of 10x10km for analytical units of 
30x30m, and pixel blocks of 90x90m, in 1975, and (d) in 2014, respectively. Focal confusion matrix composites are RGB-encoded, i.e. 
the relative frequencies of the agreement categories are illustrated by the color tones. Specifically, true positives (TP) are represented 
by the red channel, false positives (FP) by the green channel, and false negatives (FN) by the blue channel. Thus, the colors provide 
a qualitative insight on the locally “dominating” agreement category and allows to visually detecting regions of high levels of 
agreement (red) or disagreement (blue for omission, green for commission errors). Data shown for the city of Worcester, 
Massachusetts, USA (cf. Figure 1).
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Worcester, Massachusetts) for the 30 m scenario, and 
these areas turn red in the 90 m scenario, indicating 
higher proportions of grid cells switching from false 
positive to true positive when using a coarser analy
tical unit. This effect could be due to actual misalign
ments, which are mitigated by the 90 m aggregation, 
or could be caused by actual false positives (e.g. roads 
classified as built-up areas) nearby true positive grid 
cells. Moreover, in Figure 5 we observe a blue fringe 
around the city of Worcester in both 1975 scenarios, 
indicating higher levels of omissions in the GHS-BUILT 
epoch 1975 in peri-urban areas. These blue color 
tones are less pronounced in the 2014 scenarios, 
indicating a decrease of false negatives relative to 
the other categories (TP, FP).

These observations imply that classification accu
racy varies considerably across GHSL epochs, and that 

the chosen analytical unit likely affects the magnitude 
of the resulting accuracy measures. How do these 
sensitivities affect the relationship between accuracy 
and landscape metrics, as measured by their correla
tion coefficients (Figure 4a, Appendix Figure 1133)? 
To shed light on this question, we visualized the 
correlation coefficients for all landscape and accuracy 
metrics for the four scenarios (i.e. using epochs 1975 
and 2014, respectively, at an analytical unit of 30 m, 
and 90 m, respectively, see Appendix Figure 1355). 
While the overall trends seem consistent across these 
four scenarios, is the ranking of correlation coeffi
cients, and thus the level of association between land
scape and accuracy metrics consistent across 
scenarios? We transformed the correlation coeffi
cients for each scenario in percentile-based ranks 
and visualized them in Q-Q plots (Figure 6).

Figure 6. QQ-plots of correlation coefficients between accuracy metrics and LSMs, for the four scenarios i.e. different GHSL epochs (i.e. 
1975 and 2014), and different analytical units (AU; i.e. 30 m, 90 m) used for the accuracy assessments.
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The more spread the distributions in Figure 6 show, 
the more does either the epoch or the analytical unit 
(AU) affect the ranking of correlation coefficients. As 
can be seen in Figure 6c, the correlation coefficients 
between Recall and reference-data based landscape 
metrics experiences the least spread, with the points 
located nearby the main diagonal, indicating that the 
order of how strong the associations between specific 
landscape metrics and the Recall are, is largely inde
pendent from the GHSL epoch and from the chosen 
analytical unit. Conversely, the order of correlation 
coefficients between overestimation and GHSL- 
based landscape metrics is most affected by the 
epoch and analytical unit of the underlying data 
(Figure 6b).

The observed robustness of the correlation coeffi
cients between individual landscape metrics and the 
recall in the GHS-BUILT built-up areas across epochs 
and analytical units is also reflected in the regression 
analyses carried out for the four scenarios (Table 3). 
The R2 values of all regression models are relatively 
stable across the four scenarios. However, the coeffi
cient of variation across the R2 values of the OLS 
regression models that estimate recall using LSMREF 

are considerably lower than for the other target vari
ables. Importantly, the previously observed trend of 
increasing model fit with increasing spatial support 
(i.e. from 1 km toward 10 km) also persists when using 
the 1975 epoch or accuracy estimates obtained at 
90 m analytical units. When looking at the average 
R2 values across the models for each of the four 
scenarios (bottom row of Table 3), we observed, on 

average, lowest model fits for the 1975 GHSL epoch 
and using an analytical unit of 90 m. This drop in 
model fit is most pronounced when using GHS- 
based landscape metrics, indicating that the estima
tion of commission errors based on the GHS-BUILT 
alone is more difficult in 1975 than for the 2014 
epoch.

3.5. Domain adaptation analysis

Finally, we investigated how our regression models 
perfom when deployed on data from a different dis
tribution. This is called domain shift, and models that 
yield good results when performing a domain shift, 
are capable of domain adaptation (You et al. 2019). To 
do so, we applied the models trained on the GHS- 
BUILT R2018A sample collected in Massachusetts, to 
a region in Charlotte, North Carolina, where focal 
accuracy and GHS-based landscape metrics were 
obtained from the GHS-BUILT-S2 product (see 
Sections 2.2.1 and 2.2.6). We visually compared three 
accuracy surfaces: (a) the calculated accuracy surfaces 
based on map comparison between GHS-BUILT-S2 
and the MTBF-33 reference data, (b) the accuracy 
surfaces as estimated by the regression model trained 
on Massachusetts data (i.e. domain shift), and (c) the 
accuracy surfaces as estimated by a regression model 
trained on 80% of the data based on GHS-BUILT-S2 in 
the Charlotte study area (i.e. no domain shift). These 
surfaces are shown in Figure 7, for all target variables, 
support levels, and for the two regression techniques. 
As can be seen, the modeled accuracy surfaces using 

Table 3. Regression results across the four spatial support levels for GHSL epochs 1975 and 2014, and for analytical units of 30 m and 
90 m.

LSM 
source

Spatial support 
[m]

Accuracy 
measure

RMSE per analytical unit and epoch R2 per analytical unit and epoch

30 m, 
2014

30 m, 
1975

90 m, 
2014

90 m, 
1975

30 m, 
2014

30 m, 
1975

90 m, 
2014

90 m, 
1975

R2 Coefficient of 
variation

GHS 1000 OE 90.999 93.864 9.241 11.622 0.298 0.245 0.191 0.114 0.320
GHS 2500 OE 372.065 390.618 37.702 49.065 0.421 0.362 0.247 0.203 0.284
GHS 5000 OE 1174.696 1214.789 122.756 139.083 0.464 0.427 0.201 0.279 0.313
GHS 10000 OE 833.944 2117.633 190.991 264.154 0.972 0.821 0.802 0.699 0.119
Reference 1000 UE 37.796 41.537 9.402 9.626 0.264 0.188 0.271 0.240 0.136
Reference 2500 UE 120.762 138.817 30.432 25.837 0.442 0.277 0.496 0.471 0.203
Reference 5000 UE 315.497 362.587 83.073 67.511 0.525 0.372 0.589 0.533 0.159
Reference 10000 UE 838.903 895.912 227.732 179.768 0.511 0.443 0.670 0.570 0.152
GHS 1000 Precision 0.128 0.122 0.163 0.196 0.363 0.383 0.298 0.258 0.153
GHS 2500 Precision 0.119 0.115 0.159 0.202 0.515 0.525 0.386 0.303 0.214
GHS 5000 Precision 0.099 0.099 0.134 0.189 0.591 0.580 0.461 0.282 0.259
GHS 10000 Precision 0.063 0.069 0.088 0.129 0.776 0.735 0.659 0.464 0.182
Reference 1000 Recall 0.177 0.184 0.203 0.237 0.561 0.526 0.480 0.391 0.130
Reference 2500 Recall 0.133 0.146 0.152 0.185 0.781 0.734 0.745 0.655 0.063
Reference 5000 Recall 0.104 0.116 0.119 0.147 0.857 0.822 0.841 0.770 0.040
Reference 10000 Recall 0.080 0.089 0.087 0.107 0.903 0.880 0.900 0.860 0.020
Average 0.578 0.520 0.515 0.443
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domain shift differ, in many cases, considerably from 
the calculated surfaces. In some cases (e.g. OLS-based 
recall modeling at a spatial support of 1 km and 5 km) 
the resulting surfaces are even inverted, indicating 
that the underlying relationships between specific 
landscape metrics and data accuracy may be inverted 
between the Landsat-based GHS-BUILT R2018A and 
the GHS-BUILT-S2 product, in the analyzed study area. 
Importantly, the OLS-based regression models per
form the domain shift better at a spatial support of 
10 km for most target variables, in particular for the 
models estimating precision and recall measures (R2 

of 0.42, and 0.46, respectively, highlighted in gray in 
Figure 7). Poor performance for the overestimation 
models is due to predominant built-up quantity 
underestimation in our Charlotte study area, and the 
resulting sparsity of focal regions where quantity 
overestimation occurs, impede the successful 
estimation.

Moreover, we observed that at a spatial support of 
10 km, OLS-based models appear to outperform 

AdaBoost regression models (e.g. three out of four 
OLS models show – visually – acceptable domain 
shift results at a support level of 10 km, whereas this 
is not the case for any of the target variables using 
AdaBoost regression). This is in contrast to the better 
model fits of AdaBoost compared to OLS in Table 2, 
and indicates that the AdaBoost models may be over
fitted to the Massachusetts study area, whereas the 
OLS-based models, despite exhibiting lower levels of 
model fit in the Massachusetts study area, appear to 
be more generalizable to other study areas, when the 
spatial support is large enough.

These results indicate that the morphological land
scape characteristics that drive the presence or 
absence of thematic omission errors are largely iden
tical for the GHS-BUILT R2018A and the GHS-BUILT-S2 
product, given that sufficient spatial context is 
provided.

While the presented analysis focused on the state 
of Massachusetts, we calculated focal landscape 
metric surfaces based on the MTBF-33 reference 

Figure 7. Results of the domain adaptation tests for OLS and AdaBoost regression. Best domain adaptation results are achieved for 
estimating focal precision and recall using an OLS regression model at 10 km spatial support (highlighted in gray). Values are rank- 
transformed; high values shown in yellow.
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data for all 33 counties covered by MTBF-33. In pre
vious work, we showed that there are strong associa
tions between GHSL data accuracy and the density of 
built-up surface within a given spatial unit (Uhl and 
Leyk 2022b). Thus, we calculated the correlation coef
ficients between each landscape metric and built-up 
density for each of the 33 counties, and for three 
levels of spatial support (i.e. 1 km, 2.5 km, and 5 km, 
see Appendix Figure 1466). As can be seen, across the 
three levels of support, most landscape metrics exhi
bit high positive of negative correlation with built-up 
density, and these correlations are very consistent 
across the 33 counties, out of which 19 are located 
outside of the state of Massachusetts.

3.6. Regional and temporal model generalization

We spatially stratified our data samples by county 
(see county boundaries in Appendix Figure 2), and 
established individual regression models for each 
county, and then calculated the R2 values of each 
county-level model when estimating the accuracy 
in all other counties. The results are a set of cross- 
tabulated R2 values for each of the four regression 
models (Figure 8). Note that we only did this for 
using OLS regression and for a spatial support of 
10 km, as these models showed the best perfor
mance in the previously discussed domain adapta
tion analysis. As can be seen in Figure 8, R2 values 

Figure 8. Regression model regionalization. Shown are matrices of R2 values from OLS regression models estimating accuracy 
components from landscape metrics, trained on county A (x-axis) and then used for inference in county B (y-axis), for the following 
accuracy metrics: (a) Recall, (b) Precision, (c) Underestimation component (UE), and (d) Overestimation component (OE). High R2 

values in cells other than on the main diagonal indicate high regression model generalizability between counties.
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are generally highest on the main diagonal (i.e. 
model trained and employed in the same county). 
These R2 values are largely in agreement with the 
R2 values for the state-level OLS regression models 
at a spatial support of 10 km (cf. Table 2). 
Interestingly, off-diagonal R2 values are low for 
most accuracy metrics, and for most counties, 
except for Recall (Figure 8a) and, to some extent, 
for OE (Figure 8d). This indicates that the relation
ship between landscape metrics and Recall 
(Figure 8a) exhibits highest levels of spatial statio
narity, i.e. the morphological properties of built-up 
areas contribute to the level of thematic omission 
error in similar ways across our study area. A clear 
exception is Suffolk County, where the city of 
Boston is located: the relationship between LSMs 
and recall is not found in any other Massachusetts 
county. Conversely, the relationship found in 
Worcester county seems to be most generalizable, 
possibly because this county contains balanced 
proportions of urban and rural regions. Thus, 
while the relationship between accuracy metrics 
and landscape metrics are highly localized, the 
recall metric takes an idiosyncratic position, as 
observed in Figure 8, and in line with the pre
viously discussed findings (e.g. Table 2, Figures 4 
and 6), underlining once more the strong and 
generalizable association between morphological 
properties of built-up land and the degree to 
which it is “undermapped.”

Finally, we also tested the generalizability of the 
accuracy-LSM relationship in the temporal domain 
(i.e. setting up regression models using the 2014 
epoch, and estimating accuracy in the 1975 epoch, 
and vice-versa). We observed similar trends, i.e. higher 
levels of generalizability over time for the Recall mea
sure, and low levels for the other accuracy metrics 
(Table 4).

4. Conclusions

In this article, we conducted a detailed assessment of 
the relationships between morphological characteris
tics of built-up surfaces (measured by means of land
scape metrics), and the data accuracy of built-up areas 
reported in the gridded, multi-temporal GHS-BUILT 
R2018A dataset. We identified varying associations 
between accuracy measures and morphological char
acteristics of built-up areas, and relatively high expla
natory power in the accuracy models, in particular 
when estimating omission errors from landscape 
metrics. These findings are useful to determine areas 
where omission errors are expected to be high, and 
could be incorporated into classifier training proce
dures, in order to improve future settlement layers. 
Moreover, some of the presented regression models 
could be applied to existing built-up land data, to 
identify regions where commission errors are 
expected to be high, in the absence of reference 
data, and could inform the sampling design of future 
accuracy assessments.

While the tree-based AdaBoost regressor outper
formed the OLS regression models in the “baseline 
scenario” (i.e. for the epoch 2014, using the full analy
tical resolution of 30x30m grid cells), our domain 
adaptation analysis revealed that these AdaBoost 
models likely overfitted to the Massachusetts study 
area, as they performed poorly in the “unseen” 
Charlotte study area. This important insight highlights 
the importance of domain shift/domain adaptation 
analyses when evaluating machine learning models. 
Moreover, the poor performance in our domain adap
tation analysis indicates that the relationships 
between morphology and accuracy of built-up land 
are highly regional, and not generalizable, except for 
the Recall metric which exhibits higher levels of gen
eralizability, across regions, and remains largely unaf
fected by the choice of the underlying analytical unit.

Notably, both correlations and model fits 
increased with the level of spatial support, indi
cating that the choice of an appropriate level of 
spatial support is crucial when creating and ana
lyzing localized accuracy estimates and local land
scape metrics. This effect is somewhat expected, 
and can be attributed to the general case of the 
Modifiable Areal Unit Problem (MAUP; Openshaw 
1984). These trends across different spatial sup
port levels underline the importance of scale- 

Table 4. Domain adaptation over time (OLS models, spatial 
support of 10 km).

train/infer 1975 2014 train/infer 1975 2014

Precision = f(LSMGHS) Recall = f(LSMREF)

1975 0.259 0.296 1975 0.912 0.923
2014 0.101 0.455 2014 0.890 0.942

OE = f(LSMGHS) UE = f(LSMREF)
1975 0.584 0.625 1975 0.208 0.341
2014 0.493 0.672 2014 −0.174 0.347
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related considerations in geospatial analyses. 
However, which level of spatial support is appro
priate for a specific purpose needs to be decided 
for each individual case, taking into account the 
tradeoff between model robustness (which 
increases with increasing support level in this 
study) on the one hand, and loss of spatial gran
ularity on the other hand.

At this point it is important to mention that despite 
the domain adaptation analysis presented in 
Section 3.5, further work using a larger set of study 
areas is required to formalize general guidelines on 
the effects of landscape characteristics and GHS- 
BUILT data accuracy. In particular, the temporal gap 
of two years between the GHS-BUILT-S2 (from 2018) 
and the MTBF-33 data (from 2016) may introduce 
a small bias into our domain adaptation analysis. 
However, as the Charlotte study area is located in 
the inner part of the city, rather than in a peri-urban 
area, it has not experienced substantial urban growth 
between these two years, and thus, we believe that 
this bias is of minor nature.

Importantly, in this work, we used landscape 
metrics derived from the test and from the reference 
data. Thus, the created regression models are of lim
ited use for predictive uncertainty modeling, as the 
reference data required to generate the explanatory 
variables (i.e. the landscape metrics) could also be 
used to perform the accuracy assessment by map 
comparison rather than using the predictive model. 
In future work, we will also test the use of completely 
independent explanatory variables (e.g. land cover 
data, census data) for the purpose of predictive uncer
tainty modeling. An important limitation here is that 
the spatial support of such predictive models needs 
to be large enough (e.g. 10x10km), as we observed 
rather weak associations at lower levels of spatial 
support (e.g. 1x1km). However, having accuracy sur
faces based on a support level of 10x10km is still an 
improvement over simple global accuracy estimates 
neglecting spatial accuracy variations, as still many 
studies do.

In future work, we will also focus on the application 
of the described framework to different built-up sur
face/settlement data products and we will analyze in 
detail the sensitivity of landscape metrics to spatial 
support, taking into account potential bias introduced 
by the scale sensitivity of the landscape metrics them
selves (see Lustig et al. 2015). While the relationships 

between landscape characteristics and data accuracy 
have been studied in the case of land cover data in 
general (Smith et al. 2002, 2003), and, in the case of 
built-up land data (Klotz et al. 2016; Mück, Klotz, and 
Taubenböck 2017), this work demonstrated at unpre
cedented depth, that the accuracy of remote-sensing 
derived built-up land data products such as the GHS- 
BUILT is affected by the morphology of the built-up 
area patterns, but differently for commission and 
omission error components. Concluding, this work 
contributes to a better understanding of the spatial 
structure and variation of the uncertainty inherent in 
data products such as the GHS-BUILT R2018A, and 
ultimately, to a more informed and reflected use of 
such data products.
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Appendix

Figure A1. Sampling locations (a) (N = 200,000) in the state of Massachusetts at which focal landscape metrics were computed, and 
the subsamples at which regression analysis was carried out for (b) reference data based landscape metrics, and (c) GHSL-based 
landscape metrics, of sample size N = 100,000 each. Black lines represent the boundaries of the 14 counties in Massachusetts.
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Figure A2. Exhaustive focal landscape metric surfaces at various levels of spatial support, shown for the city of Charlotte, North 
Carolina. Values are rank-transformed; high values shown in yellow.
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Figure A3. Pearson’s correlation coefficients between all 51 landscape metrics and accuracy components.
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Figure A4. Distributions of landscape metrics derived from the reference data (LSMREF), and from the GHSL (LSMGHS), within strata 
defined by quintiles of the response variables recall and precision, respectively. LSMs in the upper left exhibit least, in the lower right 
highest average correlation to the response variable across all support levels.
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Figure A6. Correlation of the 51 landscape metrics and built-up surface density in 30 U.S. counties, for 1 km (top), 2.5 km (middle), and 
5 km spatial support (bottom).
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