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Abstract

Background Access to healthcare is imperative to health equity and well-being. Geographic

access to healthcare can be modeled using spatial datasets on local context, together with

the distribution of existing health facilities and populations. Several population datasets are

currently available, but their impact on accessibility analyses is unknown. In this study, we

model the geographic accessibility of public health facilities at 100-meter resolution in sub-

Saharan Africa and evaluate six of the most popular gridded population datasets for their

impact on coverage statistics at different administrative levels.

Methods Travel time to nearest health facilities was calculated by overlaying health facility

coordinates on top of a friction raster accounting for roads, landcover, and physical barriers.

We then intersected six different gridded population datasets with our travel time estimates

to determine accessibility coverages within various travel time thresholds (i.e., 30, 60, 90,

120, 150, and 180-min).

Results Here we show that differences in accessibility coverage can exceed 70% at the sub-

national level, based on a one-hour travel time threshold. The differences are most notable in

large and sparsely populated administrative units and dramatically shape patterns of

healthcare accessibility at national and sub-national levels.

Conclusions The results of this study show how valuable and critical a comparative analysis

between population datasets is for the derivation of coverage statistics that inform local

policies and monitor global targets. Large differences exist between the datasets and the

results underscore an essential source of uncertainty in accessibility analyses that should be

systematically assessed.
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Plain Language Summary
Knowing where people reside and

what health services are accessible to

them in a timely manner can make a

difference in life-or-death situations.

Geographic models that mimic the

journey of patients can help under-

stand where people cannot access

healthcare and can provide valuable

insights for policy and research.

Population distribution data is

essential for these models, as it

determines the relative coverage

provided by the existing health sys-

tem. However, there are several

datasets available on population dis-

tribution that vary widely. In this

study, we quantify the impact of

using six different population data

sets to calculate healthcare coverage

in sub-Saharan Africa. Our results

show large continental, national, and

subnational differences between the

different gridded population datasets,

which can strongly influence the

uncertainty of healthcare accessibility

models and thus the decisions based

on them.
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Geographic access to healthcare is essential to ensure uni-
versal health coverage, a key target of the United Nations
Sustainable Development Goals (SDGs)1. While geo-

graphic access is only one of many factors, such as affordability,
availability, and acceptability2–4, that impacts access to health-
care, it is fundamental to the organization of a health system as it
determines the spatial reach of health services in relation to the
population5,6. Modeling geographic access to healthcare is
necessary to identify gaps in health system coverage and to
support targeted health system optimization and planning, such
as placement of new facilities, deployment of community health
workers, or mobile outreach7,8. The key components of a geo-
graphic accessibility analysis are the population needing access,
the locations of health facilities, and data to help model con-
nectivity and travel time (i.e., road networks, land cover, streams,
elevation, and care-seeking specificities)5,9. Although data on
each of these components is increasingly available, accurate, and
current10, there are persistent differences between regions, ham-
pering accessibility analyzes in data-poor regions11. Global
advancements in population modeling have enabled the research
community to use several gridded population datasets12–17 in
combination with recent data on health facility location18,
opening new avenues for modeling geographic accessibility to
healthcare in data-poor settings. It is not known to what extent
the use of different population data in accessibility analyzes
affects accessibility coverage (i.e., the proportion of the popula-
tion that can access a health facility within a given travel time
threshold) and thus the monitoring of indicators that underpin
policy-making at the global, national, and subnational level. This
study aims to shed light on the magnitude and variation of these
effects and possible policy implications, by conducting the first
comprehensive comparison of six of the most commonly used
global gridded population datasets in a geographic accessibility
model at 100-meter resolution for sub-Saharan Africa.

Gridded population datasets allocate population counts across
rows and columns of grid cells either by using simple techniques to
uniformly redistribute census data or by using ancillary variables
derived from Earth observations (e.g., land cover, elevation, and
night lights) or socio-economic data to apply dasymetric modeling
techniques, that provide more refined population estimates19. These
datasets typically use a country’s most recent census or projected
estimates, summarized in available administrative units or census
enumeration areas, to disaggregate population numbers at a finer
spatial and temporal resolution20–22. Population redistribution
techniques vary from dataset to dataset, meaning that the suitability
of each dataset for any spatial analysis is context-dependent. Dis-
crepancies between datasets do not necessarily reflect specific
appropriateness; rather the suitability of each gridded population
dataset is highly dependent on the target scale, context and purpose,
and geographic extent of the analysis19. However, even when two or
more gridded population datasets meet some predetermined criteria,
differences in accessibility coverage may be observed. Different
population data have been used in accessibility analyzes, exposing
potential uncertainty in accessibility coverage estimates and making
comparability across studies difficult. Some studies have used
national censuses23, WorldPop products7,11,24–28, Gridded Popula-
tion of the World (GPWv4)29, High-Resolution Settlement Layer
(HRSL)30, or LandScan31. The scientific literature increasingly
acknowledges differences between gridded population datasets19,20.
However, the focus is often on general data characteristics and their
suitability19,20,32 or on the country- or discipline-specific implica-
tions of using the different data products21,33–35, rather than
quantifying differences in model outcomes at large geographical
scales. In addition, the motivation and implications of using a
particular population dataset are usually neglected in accessibility
studies35,36. The choice of any specific population layer is likely

driven by personal preferences, lack of knowledge of other sources,
or ease of access and use.

Here, we systematically assess differences between estimates of
geographic healthcare accessibility for all of sub-Saharan Africa
using the most popular gridded population data products: (1)
WorldPop top–down constrained, (2) WorldPop top–down
unconstrained, (3) HRSL, (4) GPWv4, (5) LandScan, and (6)
Global Human Settlement Population (GHS-POP). Healthcare
accessibility is modeled at 100-meter resolution using the most
recent release of the geocoded health facility inventory of 50
countries in sub-Saharan Africa to enable a fair comparison
between models18. We contrast accessibility coverage statistics
derived from the six population datasets, across countries at
national and subnational scale. Travel time was calculated by
developing a friction layer at 100 meters resolution, representing
the estimated time required to reach the nearest health facility.
We intersected the six different gridded population datasets with
our travel time estimates to determine accessibility coverages
within various travel time thresholds (i.e., 30, 60, 90, 120, 150,
and 180-min).

Our accessibility coverages vary widely between the different
datasets and estimates on the sub-Saharan African level mask
larger subnational variations. Differences are most pronounced in
scarcely settled regions, where administrative units are large.
Datasets that distribute population over larger land areas, rather
than being limited to building footprints, result in longer travel
times for a portion of the population and therefore lower overall
estimates of accessibility, notably changing accessibility patterns.
The results provide useful clues for policy-making and critical
reflection on previous estimates of accessibility to healthcare and
their associated uncertainties.

Methods
In order to quantify and compare the differences in healthcare
coverage between the six different datasets, we took several steps
to prepare, process, and analyze the spatial data.

Accessibility model. Accessibility to healthcare was modeled in
terms of travel time to the nearest public health facility. This cal-
culation was made by overlaying health facility coordinates on top
of a friction raster. Each grid cell in the friction raster represented a
unique land cover class which was assigned a travel speed. On-road
travel represented motorized speeds whereas for off-road travel
walking speeds were used. The cumulative time required to traverse
all cells to the nearest health facility was then calculated for each
grid cell which represents the travel time raster. This calculation
was done on the eight-directional least-cost path algorithm9,37 and
was isotropic, meaning that no corrections were made for slopes.
Although anisotropic analyzes make the model results more rea-
listic, we preferred an isotropic analysis to minimize model com-
plexity and assumptions, in the absence of local transport
information. Slope corrections are usually applied to the speeds of
pedestrians and cyclists. It is therefore important to have local
information on modes of transport, and this is likely to vary from
country to country and from region to region.

The friction raster represents information about potential
impacts on a patient’s journey to healthcare, including land cover
type, barriers to movement, and the road network. All this
information was extracted from open data sources and processed
between January 2021 and October 2021, however, reference
dates of some of the data can date back up until 2015 as indicated
in Table 1 and Supplementary Table 2. (Table 1). We fully
automated the entire workflow in an R and Python environment
(Supplementary Fig. 1). In brief, road networks, rivers, and lakes
were extracted from OpenStreetMap (OSM) using the
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osmextract38 library in R39 (version 4.0.4). The land cover for
sub-Saharan Africa was downloaded at 100-meter resolution
from Copernicus40. Health facility coordinates were extracted
from a geocoded database for sub-Saharan Africa18. Adminis-
trative boundaries for all African countries were taken from the
database of Global Administrative Areas (GADM)41.

Data preparation was done on a per-country basis and
optimized to minimize computation time as detailed in
Supplementary Fig. 1, implying that land cover data was first
downloaded for the entire African continent and then processed
for each country, separately. In summary, and as shown in
Supplementary Fig. 1, data processing included cropping to the
bounding box of each country to minimize computation time in
the masking step. Then rasters were clipped to exact country
borders. Lastly, the land cover raster was projected in the
country’s coordinate system (Supplementary Table 1).

The process was parallelized using the doParallel42 and
foreach43 R libraries. All necessary data processing steps were
done using the terra package44. Scripts for data processing and
analysis can be sourced from Github [https://github.com/
fleurhierink/Population_Access] and Zenodo [https://doi.org/10.
5281/zenodo.7004009]45.

Vector data representing road networks and barriers to
movement were fetched using the osmextract38 library in R39

(version 4.0.4) and projected in the country’s coordinate system
(Supplementary Table 1). All road classes that are officially
classified by OSM were included for analysis46. Barriers to
movement (unless a road crosses over) included hydrographic
lines classified as river and hydrographic polygons. Streams and
smaller waterbodies were excluded from the analysis since they
can be traversed with ease46.

The geocoded inventory of public health facilities in sub-
Saharan Africa18 assembled between 2012 and 2018 was down-
loaded and projected to match the spatial coordinate system of
the other datasets by country (Supplementary Table 1). We
included all health facilities irrespective of type (e.g., primary,
secondary, health centers, etc.).

Finally, all data were combined in a friction raster at 100-meter
resolution. This resolution offered the best compromise between
computational efficiency, spatial detail to address fine-scale
disparities in healthcare access, and consistency with the
assembled spatial data described above. The vector data were
rasterized at 100-meter resolution. All raster cells were aligned,
and layers merged to create one comprehensive land cover raster,
to which travel scenarios (Supplementary Data 1) were applied.
The travel scenarios for all sub-Saharan African countries were
taken from Weiss et al. (2020)36, but adapted to the context of
this paper (Supplementary Data 1). When a travel scenario from
Weiss et al.36 did not indicate a speed for a specific road class in a
given country, we used the African average travel speed for that
road class (Supplementary Data 1).

We did not use an existing travel time surface, such as the one
available from Weiss et al.36, because its coarser resolution (i.e.,
1 km × 1 km) did not match the resolution of most of the input-
and population data, nor our objective to capture barriers with
higher spatial accuracy. In addition, the assumptions made by
Weiss et al.36 about travel speeds and barriers to movement, such as
the traversability of waterbodies at a speed of 1 km/h and the use of
global average speeds for road classes for which no information on
speed limits was available, did not fit well in the context of sub-
Saharan Africa. Most importantly, the travel time surfaces modeled
in this study were used as an indicator to assess the impact of using
different gridded population products, rather than to inform the
research community on coverage statistics. To inform policy- and
decision-making, it is preferable to work at a finer spatial scale to
ensure greater accuracy and robustness in the model inputs by
consulting local experts on health facility data and information of
health seeking behavior of the target population, so that the travel
scenarios can be best adapted to the local context.

Data processing of population grids. In Supplementary Table 2,
the properties of the different gridded population datasets are
described. All population rasters were clipped to country borders
and reprojected to each country’s projection system (Supple-
mentary Table 1). Population that was lost from the original files,
due to these data processing steps, were equally smoothed out
over the rasters so that total population counts remained the same
as in the original files. This was done by comparing the summed
population at administrative level 2 for the original and projected
rasters. Due to the different resolutions of the datasets, and to
avoid resampling of population raster data, all population grids
were transformed into spatial points representing the centroids of
the grid cells.

Extraction of accessibility coverage statistics. To assess the
spatial variation in national and subnational accessibility coverage
statistics, we overlaid the six gridded population datasets onto the
travel time rasters for each country. We extracted the travel time
and the administrative boundary (level 1 and 2) for each popu-
lation point feature. We then calculated the accessibility coverage
statistics, by means of zonal statistics, to output the population
able to reach the nearest health facility within a certain travel
time. Both relative and absolute coverage statistics were obtained
per administrative unit. Population falling on barriers (i.e.,
waterbodies or just outside country borders) were not included in
the extraction of coverage statistics. The absolute and relative
number of people falling on barriers are indicated in Supple-
mentary Data 2.

Limitations of method. We note that our travel time grid, which
captures the accessibility of the nearest health facility, served as

Table 1 Overview of spatial data sources used in the study.

Dataset Producer Resolution Year Citation

Landcover Copernicus ∼100 meters 2019 40

Roads OpenStreetMap Vectorized 2021 38,71

Waterbodies (lines and polygons) OpenStreetMap Vectorized 2021 38,71

Health facilities Maina et al. (2019) Vectorized 2018 18

Travel scenario Adapted from Weiss et al. (2020) – – 36

Administrative boundaries Global Administrative Areas (GADM) vectorized 2020 41

Mean administrative unit area for publicly available
population census data

Center for International Earth Science Information
Network - CIESIN

∼1 kilometer 2018 53

For an overview of the different gridded population data products please see Supplementary Table 2.
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the main input data for deriving the coverage statistics presented.
However, we recognize that realistic estimates of geographic
access to healthcare require local knowledge of health-seeking
behavior, such as travel modes and speed, as well as information
on (seasonal) barriers to mobility. Although we have used local
expert knowledge to build accessibility models in previous
studies28,30,47, the scale and context of the present analysis did
not allow us to use such local knowledge. Such detailed input was
beyond the scope of this study, which aims to reflect important
differences between population datasets. Therefore, our travel
time maps and associated accessibility estimates should not be
used for health system planning at national and subnational
levels. However, our methodology can be adapted to local con-
texts, drawing on the expertize of different stakeholders at
national and subnational levels, particularly in relation to trans-
port modes and speeds.

A limitation of the current study is that the unconstrained
datasets included a proportionally higher number of people living
in areas considered to be barriers (i.e. waterbodies or areas
outside national borders).

In addition, modeling geographic accessibility presents chal-
lenges other than differences between gridded population
datasets. For example, uncertainties in travel modes and speeds
can lead to under- or overestimation of accessibility. If travel
speeds are assumed to be higher than they actually are, the
accessibility model results will incorrectly indicate a higher
accessibility coverage. This also applies to uncertainties in road
network data when some roads maybe missing or when roads
may actually present dirt tracks that in reality cannot be traveled
by motorized vehicles. Realistic modeling of access to healthcare
is therefore highly dependent on reliable and locally agreed model
inputs. One nascent area is the use of Google Maps APIs to
characterize travel time which has been shown to estimate near to
reality travel times in urban areas. The approach potentially
accounts for traffic, weather conditions, difference in speeds, road
conditions and other predisposing factors. However, the
approach is still at an early stage of development and is more
applicable in urban areas where data collection through voluntary
geographic research is better than in remote and rural areas
where the majority of people live. Therefore, the use of least-cost
path algorithms still remains feasible but requires improved
parameterization48.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Diverging accessibility coverage estimates for sub-Saharan
Africa. Estimates of accessibility coverage, modeled by con-
structing a travel time grid at 100-meter resolution for all of sub-
Saharan Africa (Supplementary Fig. 2), show greatly divergent
results using the six different population datasets (Fig. 1a, b).
Importantly, HRSL data for Ethiopia, Somalia, South Sudan, and
Sudan were not available at the time of this study.

For all of sub-Saharan Africa, the population that has access to
healthcare is highest when using HRSL, followed by GHS-POP
(Fig. 1b). Differences in accessibility coverage are larger at 30-
and 60-min catchments and logically decrease as travel times
increase. An estimated 88.2% of the HRSL-derived population has
access to a health facility within 30 min travel time. This value
drops to 60.5% when GPWv4 is considered (Table 2 and Fig. 1b).
Access to healthcare is in general substantially lower when
statistics are derived using GPWv4 and WorldPop top–down
unconstrained datasets (Fig. 1b). These two datasets also present

the largest differences in accessibility coverage as compared to the
other datasets (Fig. 2). Although the differences between the other
datasets are smaller, there are still coverage differences of up to
9.5% among the other population products at 30 min travel time
(Fig. 2). The relative differences are smallest between LandScan
and WorldPop top–down constrained and between HRSL and
GPWv4. While accessibility coverages at the sub-Saharan African
level already show strong variation, such continental summary
statistics substantially mask even greater variations at the national
and subnational level.

The comparison of national differences in accessibility enables
the localization of major differences. Moving from sub-Sahara
Africa to national coverage statistics, we find new patterns, with
varying results across population datasets and between countries
(Fig. 3 and Supplementary Table 3). Strongly divergent trends are
particularly evident in some countries, including Chad, Sudan,
Eritrea, South Sudan, Central African Republic, Republic of the
Congo, Democratic Republic of the Congo, Equatorial Guinea,
and Gabon (Fig. 3). In these countries, we observe lower coverage
statistics for GPWv4 and WorldPop top–down unconstrained,
meaning that a relatively smaller number of people have access to
healthcare, sometimes followed by notable discrepancies between
coverage values for the other datasets. The differences in acces-
sibility coverage can exceed 60% and would affect any conclusion
drawn from one of the individual population datasets. In the
Republic of the Congo, for example, accessibility coverage at
30 min travel time ranges from 28.8% to 88.9%. Using GPWv4 or
WorldPop top–down unconstrained suggests that 71.2% or 65.5%
of the population in the country is unable to reach the nearest
health facility within half an hour travel time. In contrast, using
GHS-POP, HRSL, LandScan, or WorldPop top–down con-
strained indicates that 11.1%, 13.9%, 15.8%, or 27.3% of the
population is unable to reach healthcare within half an hour. This
discrepancy between the datasets may have a strong impact on
the conclusions drawn from monitoring global and national
indicators of access to healthcare, and thus on decision making
for resource allocation.

Differences in accessibility coverage are most evident at the
subnational scale. Figure 4 illustrates accessibility coverage
within 1-hour catchments at the subnational level (i.e., adminis-
trative level 1). Supplementary Data 1 presents accessibility cov-
erage for 30, 60, 90, 120, 150, and 180 min travel time at
administrative level 1 and 2. While the definition of adminis-
trative levels varies from country to country, administrative level
0 always represents the national borders of a country, adminis-
trative level 1 represents the largest subnational unit of a country,
smaller subnational levels are levels 2, 3, and 4.

Despite the similarities in overall accessibility patterns, with
low access in northern and central sub-Saharan Africa and higher
access in southern sub-Saharan Africa and coastal regions,
subnational differences between the datasets are clearly evident.
Low accessibility coverage is particularly widely spread for
GPWv4 and WorldPop top–down unconstrained. In Fig. 5 we
present the average percentage point difference between the
datasets we observed at the subnational level. The average
difference between all datasets can be as high as 45.4%. However,
when comparing individual datasets, the subnational average
difference can exceed 70% (Fig. 5b and Supplementary
Figs. 3–51).

Explaining discrepancies in coverage estimates. Most of the
observed discrepancies in accessibility coverage can be explained
by the characteristics and quality of the input data and the
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redistribution approach used for creating the gridded population
datasets. More specifically, the main differences in accessibility
coverage that we observe can be explained by (1) the use of
settlement data to conditionally constrain population to build-
ings, (2) the quality and resolution of the settlement data used,
and (3) the granularity of the smallest publicly available unit for
population data. In Figs. 4 and 5, the differences in accessibility
coverage are particularly evident between datasets that constrain
population to settlements (i.e., WorldPop top–down constrained,
HRSL, GHS-POP, and LandScan) and the other datasets that
allocate population based on proportional weighting or other
areal interpolation techniques used for dasymetric refinement.
Constrained population datasets typically use building footprints
or settlement feature data derived from satellite imagery to con-
strain the distribution of population to grid cells in which
buildings have been detected. The datasets based on settlement
data have a large proportion of zero cells in areas where no
buildings are detected33. This means that population is com-
monly distributed over smaller areas and therefore more con-
centrated in regions with human activity and health facilities. In
contrast, datasets that do not contain information on settlements
have a small proportion of zero cells. This is a natural con-
sequence of using approaches that spread population over vast
areas of land where few or no people are likely to reside, including
extremely uninhabitable areas such as deserts or dense forests
where there are no health facilities. These distorted distributions
ultimately result in longer travel times for some of the population
and therefore smaller overall accessibility estimates.

In the region of Borkou in northern Chad, for example,
accessibility coverage is between 58.1% and 72.4% at 30 min
travel time using HRSL, GHS-POP, LandScan, or WorldPop
top–down constrained, and drops to almost 0% when GPWv4 or
WorldPop top–down unconstrained is considered (Supplemen-
tary Figs. 6 and 45). Similar patterns were also observed in
northern Niger and other regions south of the Sahara Desert. This
region is sparsely populated and has large differences in

accessibility patterns between the datasets. Figure 6 shows an
example of the observed visual differences between the datasets.
The same is true for some regions in central sub-Saharan Africa,
such as the Republic of the Congo, Gabon, and the Democratic
Republic of the Congo where large areas of land are characterized
by dense and closed forests with very few detected settlements
(Supplementary Figs. 11, 12, 18 and 52). In Ogooué-Maritime, a
province in western Gabon characterized by dense forests,
accessibility coverage within 30 min ranged from 87.9% to
96.3% when using WorldPop top–down constrained, LandScan,
HRSL, or GHS-POP, in ascending order of coverage. However,
accessibility coverage decreases to 11.1% and 3.8% when
WorldPop top–down unconstrained and GPWv4 are used
(Supplementary Fig. 18). Comparisons of accessibility coverage
between the settlement-based population data also show
discrepancies (Figs. 2 and 5), as their accuracy appears to be
highly dependent on the completeness of identified building
structures. The quality of the underlying satellite data containing
information on built environments and the applied methodology
to automatically extract built features involves omission and
commission errors, leading to an under- or overestimation of
uninhabited areas21,49,50. While WorldPop top–down con-
strained uses polygon building footprint data and HRSL uses
high resolution satellite imagery (~50 cm), GHS-POP extracts
built features from Landsat 8 imagery with a resolution of ~30
meters32. Due to the difficulty of detecting built-up areas from
coarser resolution satellite imagery, GHS-POP and, to a lower
extent, LandScan have previously been found to overestimate
uninhabited zones and thus underestimate people in sparsely
populated sub-urban and rural areas21,51,52. We found similar
patterns in two rural areas in Garissa and Nakuru counties in
Kenya, where divergent patterns of settlement detection between
the gridded population products were seen (Supplementary
Figs. 53 and 54). Particularly GHS-POP did not seem to allocate
population in small settlements that were included in the other
datasets (Supplementary Fig. 54). When no population is

Fig. 1 Accessibility coverage at the sub-Saharan African level. Absolute (a) and relative (b) accessibility coverage for the six different gridded population
data sets: HRSL, GHS-POP, GPWv4, LandScan, WorldPop top–down constrained, WorldPop top–down unconstrained. Total population is lower for HRSL
because Ethiopia, Somalia, Sudan, and South Sudan are not included in the data set released in 2018. Legend indicates the total population falling on
barriers (i.e., permanent waterbodies) and thus not included in the analysis.
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allocated to small rural settlements, a relatively large proportion
of the population is distributed into larger built areas where
facilities are located, this likely contributes to higher accessibility
coverage statistics for GHS-POP and LandScan as compared to
HRSL and WorldPop top–down constrained.

An important challenge for all gridded population datasets is
the quality and granularity of the input population data. Even
though census data is often collected at the household level or in
smaller enumeration areas, countries usually release aggregated
data at specific administrative levels to protect privacy19. The
scale at which the latest population census is made publicly
available53 varies widely across sub-Saharan Africa (Fig. 7a) and
ranges on average from ~2 km2 to 182,211 km2. Figure 7b
illustrates the association between population input unit size
(km2), relative coverage difference between the datasets at 1-hour
travel time, and average total population per administrative unit
(level 1). The figure shows that in areas where there are large
differences in accessibility coverage between the datasets, the size
of the population input unit is generally large, and the total
population living in these units is small, mostly in the first or
second quantile (Fig. 7b, top right corner). This means that when
population counts in sparsely populated areas are aggregated into
large units, differences between the datasets are greatest. Figures 5
and 7 show similarities between areas with high accessibility
coverage differences and regions with large population input
sizes, such as the northern- and central parts of sub-Saharan
Africa. Sangha, for instance, a region in the Republic of the Congo
has one of the highest average accessibility coverage differences
across all datasets (45.4%) (Supplementary Figs. 7–55). The
average total population of 45,281 people is spread out over
~57,686 km2 land and the landscape is primarily comprised of
dense forests, complicating building detection. The same is true
for an area that we described before, Ougooué-Maritime province
in Gabon, where the average coverage difference is 45%, the
average total population is 44,230, the population input unit size
is 7528 km2, and the landscape is dominated by dense forests
(Supplementary Fig. 2).

The aggregated nature of the input population data masks the
spatial variability in population distribution at finer scales and
therefore causes uncertainty when total population counts are
reallocated into grid cells. Our analysis suggests that particularly
in sparsely populated areas where population data is made
available at a coarse scale, the different redistribution techniques
used to create the different datasets cause most of the observed
variation in the population reallocation patterns and thus
translate into widely ranging accessibility coverage estimates.

Discussion
Data on population distribution is the main denominator for
almost all public health interventions. The effectiveness of
evidence-based health planning, such as the distribution of health
facilities or the implementation of vaccination campaigns, largely
depends on accurate population estimates54,55 to calculate
resource needs and measure the impact of interventions56,57.
Moreover, the SDGs and other international health targets are
based on indicators that reflect the proportion of the population
that has access to certain services. Knowing how many people live
where is essential for these calculations56. Here we show that
estimates of healthcare coverage vary widely depending on the
gridded population dataset chosen and that they can lead to
conflicting conclusions.

Our results show notable variations and tend to diverge most
in regions with a low population density where administrative
units are large, and land cover classes such as dense forests and
deserts indicate sparse population distribution. The largeT
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variability in our results would also hold true for coverage esti-
mates of other types of services for which similar accessibility
models can be used, such as school access for children58 within a
predefined threshold or for estimates related to the people at risk
of infectious diseases59,60, people living in disaster-prone areas33,
or modeling vaccination coverage61,62.

The use of one population dataset can have strong implications
for policy- and decision-making. With new global targets aimed
at improving access to healthcare, it is crucial that indicators that
monitor progress are correct and based on realistic input para-
meter values. For instance, the recently adopted target 4 indicator
of the World Health Organization (WHO)’s Ending preventable
maternal mortality (EPMM) strategies states that by 2025 (1) at
least 60% of the global population should be able to access the
closest functional emergency obstetric care (EmOC) health
facility within two hours travel time, and (2) 80% of countries
should have a 2-hour accessibility coverage greater than 50%63. A
United Nations (UN)-led guidance to help countries model this
indicator will be released in 2022. In that context, our results can
provide useful quantification of the expected relative differences
and thus the sensitivity of this indicator based on various
population datasets. Taking again the Republic of the Congo as an
example, we find that when using different population datasets,
accessibility coverage at 2-hour travel time ranges from 44.7% to
95.0%. Coverage statistics are highest when using GHS-POP
(95.0%), HRSL (93.2%), LandScan (93.4%), or WorldPop
top–down constrained (84.3%). However, when using WorldPop
top–down unconstrained or GPWv4, coverage was considerably
lower at 51.5% and 44.7% respectively. This means that our
observed differences could lead to very different conclusions
when considering thresholds for accessibility coverages, such as
those used in EPMM. Supplementary Fig. 55 shows the subna-
tional discrepancies in accessibility coverage at a 2-hour travel

time threshold at administrative level 1. Although the differences
are smaller than those in Fig. 4 (1-hour travel time), the
unconstrained datasets show markedly different patterns than the
constrained datasets.

In light of previous research and policy documents, that have
relied on a single gridded population dataset for coverage
estimates, our results also provide interesting clues for com-
parison across various population input data used in the same
region or country. For example, studies on geographic access to
care in Mozambique have used GPW29, WorldPop top–down
unconstrained64, and HRSL30, leading to different estimates. In
addition, studies that have examined health service accessibility
at a global or continental level, such as Weiss et al.36 and
Wigley et al.65 have reported national and subnational acces-
sibility coverages that fall outside the coverage ranges we found.
For example, Weiss et al.36 found an accessibility coverage of
78.7% in a 1-hour catchment in Madagascar, while our coverage
estimates in the same catchment ranged from 58.7 to 76.6%.
The same holds true for other countries where estimates of
Weiss et al.36 were either outside our range of estimates or we
found large ranges around the reported estimate. Moreover,
Wigley et al.65 estimated that all countries in sub-Saharan
Africa meet the target of 80% of pregnancies falling within a
2-hour catchment of the nearest hospital. However, our analysis
suggests that at least 13 countries do not meet this target
according to one gridded population dataset and 7 countries
have either two or more datasets that indicate a coverage lower
than 80%. While any comparison of coverage is also influenced
by other input data used in an accessibility analysis, such as
travel scenarios, road networks, and health facility coordinates,
our results can be used to get a sense of the potential uncer-
tainty in estimating coverage based on the population
denominator chosen.

Fig. 2 Relative difference in accessibility coverage estimates. The matrix shows the relative difference in accessibility coverage statistics at a 30, b 60,
c 90, and d 120min travel time for the six gridded population datasets for the full Sub-Saharan African region.
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Gridded population datasets heavily rely on the recency and
quality of population censuses, which countries commonly con-
duct every 10 years, however many countries in sub-Saharan
Africa have not conducted a full population census in more than
15 years due to financial constraints, political instability, or
remoteness19,66. In the Democratic Republic of the Congo, the
last complete census was carried out in 1984, and policy-makers
and gridded population data providers, therefore, rely on
imprecise estimates of the current population through linear
population projections67. The growing number of bottom-up
population estimation approaches overcomes this challenge by
conducting micro-censuses in small areas which are then extra-
polated to larger administrative units using ancillary satellite
data56. In January 2022, WorldPop released bottom-up popula-
tion estimates for seven provinces (i.e., Haut-Katanga, Haut-
Lomami, Ituri, Kasaï, Kasaï Oriental, Lomami, and Sud-Kivu) in
the Democratic Republic of the Congo68,69. Interestingly, com-
paring the relative coverage estimates of the bottom-up and
top–down datasets in these seven provinces did not lead to dif-
ferent patterns than earlier observed (Supplementary Table 4),
meaning that the relative bottom-up coverage fell within the
range of the constrained top–down datasets. However, absolute
comparisons were markedly different, with generally lower total
population counts in the bottom-up dataset and thus

proportionately lower numbers of people falling within the
1-hour health facility catchment. Even though it is impossible to
indicate the best-gridded population dataset, objective compar-
isons of population products can improve our understanding of
the differences and the implications of using one dataset in
particular20.

In terms of fitness for use, population datasets that constrain
population to settled areas, based on high-resolution settlement
data (i.e., HRSL, WorldPop top–down constrained), are more
suited for accessibility modeling assuming acceptable levels of
accuracy57. Most accessibility models need to consider the
population at their place of residence (i.e., de jure/de facto
population)20, because the aim is to capture the complexity of the
patient’s journey to reach a health facility from their home, so
that health system improvements can be targeted, and micro-
planning of outreach is possible54,55. This is complicated when
datasets do not constrain population to buildings or when
ambient population is modeled and thus make GPWv4, World-
Pop top–down unconstrained, and LandScan less favorable.
However, the interpretation of built-up areas from satellite ima-
gery is not without error. This means that in the absence of
complete settlement data, these unconstrained datasets are still
important and useful in ensuring that no population is over-
looked in health estimates. Resolution and recency are other

Fig. 3 Accessibility coverage for all sub-Saharan African countries. National plots for all sub-Saharan African countries comparing relative accessibility
coverage statistics at 30, 60, 90, 120, 150, and 180min travel time for the six gridded population data sets. Each plot corresponds to the relative
geographical location of the country. Legend indicates the total population falling on barriers (i.e., permanent waterbodies) and thus not included in the
analysis.
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Fig. 4 Subnational accessibility coverage maps for sub-Saharan Africa. Relative accessibility coverage at a 1-hour travel time limit for a WorldPop
top–down constrained, b WorldPop top–down unconstrained, c GPWv4, d LandScan, e GHS-POP, and f HRSL. Boundaries reflect administrative level 1.

Fig. 5 Maps of relative difference in accessibility coverage estimates. Maps show the average relative difference in accessibility coverage statistics at
1-hour travel time between a all datasets, bWorldPop top–down unconstrained and WorldPop top–down constrained, and c HSRL and WorldPop top–down
constrained for full sub-Saharan Africa.
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important factors that weigh in this decision. Accessibility models
are dependent on a more local target scale for analysis, the
unconstrained population datasets cannot provide this analytical
scale because the population is distributed over larger units.
Constrained models focus more explicitly on the units of interest
relevant for accessibility modeling and therefore the estimates are
more plausible. The HRSL and WorldPop top–down constrained
datasets seem the best fit for use when it comes to accessibility
modeling to healthcare. Our advice would be to, where possible,
consider both datasets and construct a plausible range of coverage
estimates, comprising the mean, and a lower and upper bound
around the summary statistics.

There are a number of caveats related to our accessibility
analysis which are explained in more detail in the Methods. In
brief, our travel time raster was developed while making large-
scale assumptions on the speeds- and modes of transport that
may not appropriately reflect local contexts. We think that by
keeping the speeds and modes constant per country, we were able
to more concretely discuss the differences in coverage as a result
of the population datasets. Since this study aims at assessing the

uncertainty in accessibility coverage estimates associated with
different population data, we simplified the assumptions involved
in the definition of the travel time surface. For instance, we did
not add lower and upper bounds to our travel speeds nor did we
assume cross-border travel to seek healthcare. However, we
acknowledge that different assumptions in other input data, such
as travel speeds, health-seeking behavior, road networks, and
barriers, may introduce further uncertainty into our coverage
estimates. While global travel time surfaces have proven to be
powerful and useful tools for advocacy36, we contend that for
local decision-making processes, it is essential to closely colla-
borate with and consult local experts to produce realistic model
outputs. As a consequence, the estimated accessibility statistics
should not be used for local policy- or decision-making because
they lack essential information needed to produce a realistic
accessibility model.

In addition, we did not reallocate population falling on barriers
(i.e., rivers and lakes). Across sub-Saharan Africa, this percentage is
only 0–2% of the total population, but at the national and subna-
tional level, these figures can be higher, especially in small island

Fig. 6 Visual comparison of gridded population datasets. Visual differences between a HRSL, b WorldPop top–down constrained, c WorldPop top–down
unconstrained, d LandScan, e GHS-POP, and f GPWv4 for Borkou, a northern region in Chad. Google satellite imagery as background (Map data© 2015
Google). White transparent color represents low numbers of population density.
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countries. However, since the observed percentages are generally
low, the observed patterns are not expected to change dramatically.
Furthermore, the version of the HRSL dataset used in this study did
not include all the countries included in the analysis. In particular,
Ethiopia, Somalia, South Sudan, and Sudan were not available for
the continental HRSL raster, which affected comparisons between
all datasets in these countries and resulted in widely diverging total
population counts at the sub-Saharan African scale.

Despite an increasing global availability of data on numerous
geographic objects, we still face challenges in precisely and
accurately locating population, especially in low- and middle-
income countries and areas sparsely populated. Yet, data on
population density and distribution are vital inputs for research
and policy-making70. The results presented in this study show
how valuable and critical a comparative analysis between popu-
lation datasets is for the derivation of coverage statistics that
inform local policies and monitor global targets. Our results show
that large differences exist between the datasets. This is also true
for datasets informed by building footprints, even though at a
smaller extent. Caution should be taken when drawing conclu-
sions from any single gridded population dataset and potential
uncertainties and limitations should increasingly be acknowl-
edged in accessibility studies. A critical comparison of the results
provided here shines a light on the sensitivity, reliability, and
plausibility of coverage statistics.

Data availability
The open and raw data that were used to derive the findings of this study are available via
the relevant resources as indicated in Table 1 and Supplementary Table 2. The gridded
population data from LandScan are not publicly available, but can be requested from
their database, however, specific licensing rules may apply. All results that were obtained
from this study are accessible in Supplementary Data 2. Source data for the main figures
are available in Table 2 and Supplementary Data 2.

Code availability
The R and Python code for data processing and analysis are available at Github
[https://github.com/fleurhierink/Population_Access] and Zenodo [https://doi.org/10.
5281/zenodo.7004009]45.
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