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Abstract 

Replica exchange with solute tempering (REST) is a highly effective variant of replica exchange 

for enhanced sampling in explicit solvent simulations of biomolecules. By scaling the Hamiltonian 

for a selected “solute” region of the system, REST effectively applies tempering only to the 

degrees of freedom of interest but not the rest of the system (“solvent”), allowing fewer replicas 

for covering the same temperature range. A key consideration of REST is how the solute-solvent 

interactions are scaled together with the solute-solute interactions. Here, we critically evaluate the 

performance of the latest REST2 protocol for sampling large-scale conformation fluctuations of 

intrinsically disordered proteins (IDPs). The results show that REST2 promotes artificial protein 

conformational collapse at high effective temperatures, which seems to be a designed feature 

originally to promote the sampling of reversible folding of small proteins. The collapse is 

particularly severe with larger IDPs, leading to replica segregation in the effective temperature 

space and hindering effective sampling of large-scale conformational changes. We propose that 

the scaling of the solute-solvent interactions can be treated as free parameters in REST, which 

can be tuned to control the solute conformational properties (e.g., chain expansion) at different 

effective temperatures and achieve more effective sampling. To this end, we derive a new REST3 

protocol, where the strengths of the solute-solvent van der Waals interactions are re-calibrated to 

reproduce the levels of protein chain expansion at high effective temperatures. The efficiency of 

REST3 is examined using two IDPs with nontrivial local and long-range structural features, 

including the p53 N-terminal domain and the kinase inducible transactivation domain of 

transcription factor CREB. The results suggest that REST3 leads much more efficient temperature 

random walk and improved sampling efficiency, which also further reduces the number of replicas 

required. Nonetheless, our analysis also reveals significant challenges of relying on tempering 

alone for sampling large-scale conformational fluctuations of disordered proteins. It is likely that 

more efficient sampling protocols will require incorporating more sophisticated Hamiltonian replica 

exchange schemes in addition to tempering.  
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Introduction  

Atomistic simulations of proteins in explicit solvent have greatly benefited from significant recent 

advances in both GPU-enabled molecular dynamics (MD) algorithms1-6, which can provide over 

100-fold acceleration compared to traditional CPU-based approaches,  and accurate general-

purposed force fields7-12, which have been extensively rebalanced for describing folded as well 

as unfolded proteins.  Nonetheless, direct atomistic simulations of large-scale conformational 

fluctuations and transitions of proteins remain extremely challenging. For example, re-analysis of 

a 30-𝜇𝑠 simulation of a relatively small 40-residue Ab40 peptide generated using special purpose 

supercomputer ANTON 27, 13 revealed a surprisingly limited level of convergence at both the 

secondary and tertiary structure levels14. This highlights the critical need for so-called enhanced 

sampling techniques for generating statistically representative structural ensembles of proteins15-

23. This is particularly true in studies of intrinsically disordered proteins (IDPs)24-27, an important 

class of proteins that rely on structural plasticity for function and need to be described using 

heterogeneous conformational ensembles28-32.  Arguably, the functional mechanism of an IDP is 

encoded in how its disordered ensembles respond to various cellular stimuli and signals, such as 

the binding of ligands and cofactors, changes in cellular environments, and post-translational 

modifications32-35. There is a critical need to generate well-converged disordered ensembles of 

an IDP and resolve their differences in various states in order to establish the molecular basis of 

its function36-38. 

For high-dimensional and diffusive processes such as IDP conformational fluctuations, 

temperature-based replica exchange (T-RE)16, 39, 40 has proven to be one of the most powerful 

enhanced sampling techniques in general. In T-RE, multiple copies of the system (“replicas”) are 

simulated in parallel at different temperatures and periodically attempt to exchange simulation 

temperatures according to Metropolis criteria that maintain the detailed balance. As a result, 

replicas can undergo random walk in the temperature space to promote barrier crossing and 

conformational sampling. T-RE has played an instrumental role in recent implicit and explicit 

solvent force field optimizations, by helping to provide converged conformational distributions of 

model peptides8, 41-43. An important limitation of T-RE for explicit solvent simulations is that the 

number of replicas required for a given temperature range scales as	√𝑁, where N is the total 

number of atoms16. The number of replicas required can become prohibitive for explicit solvent 

simulation of even modestly sized IDPs that require very large water boxes to accommodate the 

conformational flexibility. Replica exchange with solute tempering (REST) is a powerful variant of 
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T-RE designed to dramatically reduce the number of replicas required17, 44-46. The basic idea is to 

use Hamiltonian rescaling to achieve effective tempering, such that different regions of the system 

can be simulated under different effective temperatures17. This allows only the selected “solute” 

region (e.g., the protein) to be subjected to tempering while the rest of the system (“solvent”) is 

maintained at the same temperature for all replicas. As a result, only interactions related to the 

“solute” contribute to the Metropolis criteria of replica exchange and a much smaller number (by 

3- to 10-fold) of replicas is required to cover the desired temperature range. For example, only 16 

replicas were required in REST simulations of the disordered N-terminal domain of p53 (p53-NTD, 

residues 1-61)12, 37, 38, achieving ~25% acceptance rates from 298 to 500 K. A comparable T-RE 

simulation of the same solvated system (~72,000 atoms) would require over 100 replicas to 

ensure sufficient exchange acceptance rates (e.g., ~20%). Importantly, the solute region in REST 

simulations does not need to include the whole protein, allowing flexible tempering of selected 

protein regions of interest 46-48. REST can be further generalized to only include selected energy 

terms for tempering to further reduce the number of replicas required49 .  

Despite the great flexibility of REST in targeted tempering, how well it translates into better 

efficiency in sampling large scale protein conformational transitions is not always clear. Disrupting 

the delicate balance between protein-protein, protein-water and water-water interactions due to 

the re-scaling of different components of the Hamiltonian can result in elevated energy barriers 

and actually end up hindering the sampling50. In the improved REST2 protocol, the solute-solvent 

interactions were increasingly weakened at higher effective temperature conditions compared to 

the original protocol. As a result, the protein remains more compact at higher temperatures, which 

apparently could allow REST2 to generate more reversible folding transitions of beta-hairpin 

peptides44. In this work, we critically analyzed the efficacy of REST2 for the simulation of 

disordered protein conformational ensembles using two model IDPs with nontrivial local and long-

range structural features. The results reveal an alarmingly strong tendency of REST2 to generate 

increasingly compact ensembles at higher temperatures, especially for larger and more flexible 

IDPs. Importantly, the overly compact conformations at high temperatures could rarely be 

exchanged to low temperatures, leading to the segregation of replicas and greatly reducing the 

efficiency of random walk in the temperature space. We propose that the scaling factors of solute-

solvent van der Waals (vdW) interactions can be treated as free parameters to control the solute 

conformational properties at different temperatures for maximizing sampling efficiency. To this 

end, we design a new REST3 protocol that aims to reproduce the levels of protein chain 
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expansion at high temperatures. The new protocol eliminates the exchange bottleneck and greatly 

improves the efficiency of random walk in the temperature space, realizing similar conformational 

convergence with a smaller number of replicas. Nonetheless, our analysis also reveals that 

tempering has important limitations in driving cooperative local and global conformational 

transitions of proteins, due to the entropic nature of the associated free energy barriers51. It is 

likely that more efficient sampling protocols will require incorporating more sophisticated 

Hamiltonian replica exchange schemes in addition to effective tempering51-55.  

Methods 

REST algorithm. REST allows tempering on only a selected region of interest (e.g., “solute”) 

while keeping the rest of the system (e.g., “solvent”) at a single temperature. This can significantly 

reduce the number of DOFs that contribute to the Metropolis criteria of replica exchange, and thus 

a much smaller number of replicas is needed to cover the same temperature range17, 44. The 

energy of the whole system can be divided into three parts: the solute-solute energy 𝐸'', the 

interaction energy between solute and solvent 𝐸'(, and the self-interaction energy between the 

solvent molecules 𝐸((. The scaled Hamiltonian at condition m is then given as,   

𝐸)*+,-(𝝌) = 𝜆)
''𝐸''(𝝌) + 𝜆)

'(𝐸'((𝝌) + 𝜆((𝐸(((𝝌) ,            (1) 

where 𝝌 denotes the system coordinates and 𝜆’s are the scaling factors of the three components. 

The scaling factor of solvent-solvent interactions 𝜆((  will be kept constant (e.g., 1) at all 

conditions in REST. The solute-solute interaction scaling factor (𝜆)
''), on the other hand, is 

adjusted for each condition to achieve the desired effective temperature of 𝑇), which is usually 

exponentially spaced between 𝑇4 (the temperature of interest) and 𝑇)56 with 𝑀 total replicas, 

𝑇8 = 	𝑇4 :
;<=>
;?
@

A
BCD , m = 0, 1, … ,M − 1.             (2) 

Note that all replicas are simulated at the same apparent temperature of T0 in REST. The two 

existing variants of REST protocols differ in how the solute-solvent energy term is scaled. The 

original REST protocol17 is equivalent to having:  

 𝜆)
'' = 𝛽8/𝛽4, 𝜆)

'( = (N?ON<)
PN?

, 𝜆)(( = 	1,     (3)            
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where	𝛽8 = 1/𝑘R𝑇), 𝛽4 = 1/𝑘R𝑇4 and 𝑘R is the Boltzmann constant.	However, it has found that 

REST showed limited efficiency in driving large conformational transitions and led to exchange 

bottlenecks between low and high temperature conditions50.	In the revised REST2 protocol44, 	

  𝜆)
'' = 𝛽8/𝛽4, 𝜆)

'( = T𝛽8/𝛽4, 𝜆)(( = 	1.                              (4) 

The geometric averaging scaling scheme for setting 𝜆)
'( in REST2 weakens the solute-solvent 

interactions compared to the original REST protocol, and the weakening effect is maximal at 

condition 𝑇)56. Note that weakening solute-solvent interactions in REST2 was intentional, for 

artificially maintaining more compact conformations at high temperatures to facilitate refolding 

and potentially drive faster reversible folding transitions of beta-hairpins and mini-proteins44. It 

remains unclear whether this is an optimal scaling scheme to simulate the dynamic and potentially 

more extended ensemble of IDPs. In this work, we propose a new REST3 protocol by introducing 

an additional calibration factor 𝜿𝒎 for vdW interactions between the solute and solvent, and more 

details can be found in the third session of Results and Discussion. 

System setup and simulation protocols. Two well-studied IDPs were used to evaluate the 

REST protocols in this work. The kinase inducible transactivation domain (KID) of transcription 

factor CREB includes residues 119–146 (TD SQKRR EILSR RPSYR KILND LSSDA P). p53-NTD 

includes residues 1-61 of p53 (MEEPQ SDPSV EPPLS QETFS DLWKL LPENN VLSPL PSQAM 

DDLML SPDDI EQWFT EDPGP D). The N- and C- termini were capped with acetyl and N-methyl 

amide groups, respectively. Both proteins have been extensively characterized by MD, NMR and 

other biophysical approaches12, 56-64. Unless otherwise noted, we ran two independent simulations 

(control and folding) for each protocol starting from two distinct conformations to evaluate 

simulation convergence. The control simulation was initiated from a helical state and the folding 

simulation from an extended state (see Figure S1). Except for the control simulations of KID, the 

proteins were solvated in truncated octahedron boxes, where the shortest distance between two 

opposite hexagons was ~10.0 nm for KID (folding, with ~25000 water molecules) and ~9.8 nm for 

p53-NTD (both control and folding, with ~23500 water molecules), respectively. In KID control 

simulations, the folded initial conformation was solvated in an ~8.5 nm cubic box using about 

20000 water molecules. Na+ or Cl- ions were added to neutralize the systems. The periodic 

boundary conditions were utilized in all simulations, and simulation boxes were large enough to 

prevent the protein from significant interactions with the periodic images (e.g., see Figure S2).  
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All initial conformations were first energy minimized using a steepest descent algorithm for 6000 

steps in GROMACS65, 66. 100 ps NVT simulations at 298 K followed by 1 ns of NPT simulations 

at 298 K and 1 atm were then performed with protein heavy atoms harmonically restrained with a 

1000 kJ/mol/nm2 force constant. The systems were equilibrated under the same NPT condition 

for another 1 ns without restraints before the standard MD or REST production simulations. All 

new simulations in this work were carried out in the a99SB-disp protein force field7, which is 

arguably one of the best for simulating dynamic protein conformations12. The vdW interactions 

were smoothly switched off at 1.0 nm, and the long-range electrostatic interactions were treated 

using the particle mesh Ewald (PME) method67. The lengths of hydrogen-containing bonds were 

constrained using the LINCS algorithm68. 

The REST2 and REST3 simulations were carried out using GROMACS65, 66 patched with 

PLUMED 2.3.069-71. As summarized in Table S1, a total of eight REST simulations were performed. 

These simulations include either 16 replicas spanning an effective temperature of 298 K to 500 K 

or 8 replicas spanning 298 K to 450 K. Detail configurations of all REST2 and REST3 protocols 

are given in Table S2. Replica exchange was attempted every 2 ps. The total lengths of 

simulations are 1 𝜇𝑠 per replica for KID and 2 𝜇𝑠 per replica for p53-NTD. Only folding REST3 

simulations were performed for p53-NTD due to the longer simulation length. We have previously 

performed REST2 simulations of p53-NTD in six force fields12, where each simulation was ~ 1 𝜇𝑠 

per replica. Here, the p53-NTD simulations in a99SB-disp with REST2 were extended to 2 

𝜇𝑠/replica for both control and folding runs. In addition, two 500 ns standard MD simulations were 

performed at 500 K for p53-NTD to guide our design of the REST3 protocol. 

Analysis. Unless otherwise noted, the first 200 ns of all REST2 and REST3 simulations were 

excluded in subsequent analysis, which was performed using a combination of GROMACS, in-

house scripts, and the MDTraj package72. The helical propensities were identified using the 

standard Dictionary of Secondary Structure of Proteins (DSSP) protocol73. For KID simulations, 

the error bars were estimated from the difference between the folding and control runs. For p53-

NTD simulations, the 2 𝜇𝑠 folding trajectories were divided into two parts (0.9 𝜇𝑠 each excluding 

the first 200 ns) for error bars calculation. Principal component analysis (PCA) was performed 

using the python SciKit-learn package74 to evaluate the sampling efficiency as well as to visualize 

the simulated ensembles. For this, snapshots were taken every 100 ps from the entire trajectories 

to collect all conformations sampled at 298 K (including the first 200 ns). For each peptide, the 
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ensembles generated from REST2 and REST3 simulations were combined and aligned using the 

backbone atoms before performing the PCA analysis to derive a common set of principal 

components. The PCA analysis was performed based on the coordinates of Cα atoms. The free 

energy surfaces were derived directly from the 2D probability distributions along the first two 

principal components (PCs).  All molecular visualizations were done using VMD75.  

Results and Discussion 

Severe over-compaction at high temperatures in REST2 

We previously utilized REST2 to evaluate the performance of six latest protein force fields for their 

ability to describe various local and long-range structures of p53-NTD12. These force fields include 

CHARMM36m (C36m)8 and its variant C36mw8, CHARMM22* (C22*)76-78, Amber ff99SB-ILDN79, 

80 and ff99SB-ILDN-TIP4P-D79, 81, and a99SB-disp7. Curiously, the level of convergence depends 

strongly on the force field even with ~1 μs/replica simulation time. It was further found that some 

helical states appeared to be long-lived in C36m and C36mw in REST2, even though these states 

would readily unfold during standard MD at 298K within 1 μs12. The implication is that the rescaling 

scheme of protein-protein and protein-water interactions in REST2 may result in elevated energy 

barriers for helix-coil transitions. Here, we further analyze the conformational properties of p53-

NTD as a function of effective temperature from these REST2 simulations in all six force fields. 

As summarized in Figure 1 and S2, p53-NTD adopts spuriously compact ensembles under high 

temperature conditions in all six force fields, leading to smaller radius of gyration and end-to-end 

distance. The helicity level also often increases together with an elevated level of compaction at 

high temperatures (e.g., in a99SB-disp, Figure S2C). Ensembles for p53-NTD at 500 K are 1.5-2 

times more compact than the ensembles generated at the lowest temperature of 298 K, except 

for the ff99SB-ILDN and C22* that lead to severe over compaction at 298 K. Even for these two 

later force fields, the scaling scheme of REST2 (Eq. 4) drives further compaction above 400 K 

after a modest chain expansion between 298 to 400 K. Similar observations can also be made on 

REST2 simulation of the smaller and less flexible KID in a99SB-disp (Figure S3), demonstrating 

that this behavior is force field and protein independent. Interestingly, temperature-induced 

compaction was also observed in a previous REST2 simulation of a short model peptide Q15, but 

it appeared to reflect a true property of this peptide in the Amber03ws force field82. 
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Figure 1. Overall protein chain expansion of p53-NTD as a function of temperature in REST2 

simulations in six explicit solvent protein force fields. (A) Average radius of gyration and (B) 

end-to-end distance. The error bars were calculated as the differences between results from 

the control and folding REST2 simulations. The first 200 ns was excluded from both the 

control and folding runs. 

Importantly, the collapsed ensembles at high effective temperatures in REST2 are artificial. In 

Figure 2, we compare the REST2 ensemble in a99SB-disp at an effective temperature of 500 K 

to the one generated by standard MD simulations at 500 K using the unscaled force field. Clearly, 

the protein does not become severely compact (Figure 2A and B, blue vs green trace) or highly 

helical (Figure 2C, blue vs green trace) in standard 500 K MD simulations with the original 

unscaled Hamiltonian. These results suggest that the scaling scheme 𝜆)
'( = T𝛽8/𝛽4 in REST2 

weakens solute-solvent interactions too much compared to solute-solute interactions and that the 

level of imbalance becomes more severe at higher temperatures. The observation that IDPs are 

driven to undergo severe compaction at high effective temperatures likely contributes to the 

challenges of REST2 protocol in achieving convergence during 1 μs/replica simulations of p53-

NTD using C36m or C36mw in the previous study12. 
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Over-compaction at high temperatures can lead to replica segregation in REST2 

To evaluate the consequence of compaction at high temperatures, we analyzed the efficiency of 

replica random walk in the temperature space in both control and folding REST2 simulations of 

p53-NTD in a99SB-disp (Table S1). Inspection of the temperature evolution of all replicas (Figures 

S4 and S5) reveals substantial segregation in the temperature space. For example, several 

replicas including 11, 12 and 15 occupy the high temperature conditions exclusively throughout 

the folding REST2 simulation (Figure S5). We calculated a set of metrics to further evaluate the 

consequence of segregation in the temperature space, including the average occupancies at the 

lowest temperature, average effective temperatures and total number of round trips between the 

lowest and highest conditions for each replica. In an ideal replica exchange simulation, all replicas 

undergo efficient random walk in the temperature space and should be equivalent to each other. 

However, the results, summarized in Figure 3, show that all metrics are highly non-uniform for 

replicas in both control and folding REST2 simulations of p53-NTD. Only subsets of replicas 

contribute to the ensemble at 298 K and several replicas take few round trips between the lowest 

and highest temperature conditions. The segregation is particularly severe in the control REST2 

simulation. Overall, there are only about 8.82/µs and 9.93/µs round trips per replica in the control 

and folding runs, respectively. Further analysis showed that inefficient temperature random walk 

 

Figure 2. Conformational properties of p53-NTD using unscaled (MD) and scaled 

Hamiltonians (as in REST2 and REST3 or 𝜿𝒎 = 1.06; see Table S2), including (A) radius of 

gyration, (B) end-to-end distance, and (C) residue helicity profile. The distributions at 500 K 

with the unscaled Hamiltonian were calculated from the last 400 ns of two independent 500-

ns runs and the error bars show the difference between these two runs. Results for REST2 

and REST3 at 500 K were calculated from the last 1.8 µs of the ensembles and the error bars 

were estimated as the difference between the first and second 0.9 µs of these ensembles. 
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in REST2 hampered conformational samplings, which will be discussed in the following sections. 

Importantly, the observed replica segregation in the temperature space is not due to inefficiency 

in neighboring replica exchanges; the acceptance rates are relatively uniform at ~25% in both 

control and folding REST2 runs. Instead, it should be attributed to the conformational trapping of 

replicas, particularly at high temperatures. For example, the three replicas trapped at high 

temperature regions in the folding REST2 simulations (11, 12 and 15) are all trapped in compact 

conformational states with very small radius of gyration (Figure S5, blue traces). With worse 

temperature mixing and strong potential bias introduced by the folded initial conformation during 

the control REST2 run, we will mainly focus on the analysis of folding simulations of p53-NTD in 

the following sessions. 

 

  

Figure 3. Efficiency of replica exchange in REST2 simulations of p53-NTD, as reflected in (A) 

occupancy at the lowest temperature (T0, 298 K), (B) average effective temperature, and (C) 

the number of temperature round trip (Ntrans) per µs for each replica in control (left) and folding 

(right) runs. The dashed lines in A and B mark the expected values if perfect random walk 

occurs (T0 % = 0.06; < 𝑇 > = 390.9 K). The dashed line in C indicates the average Ntrans per µs 

of all 16 replicas, which is 8.82/µs and 9.93/µs in the control and folding runs, respectively. 
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Re-balancing the solute-solvent interactions in REST3 

The artificial conformational collapse at high effective temperatures and resulting replica 

segregation in the temperature space are a direct consequence of the scaling scheme in the 

REST2 protocol (Eq. 4), which is intentional and designed to drive more reversible folding 

transitions of mini-proteins and beta-hairpins. This limitation may thus be addressed by re-

balancing of solute-solvent and solute-solute interactions in the REST protocol (Eq. 1). In 

particular, we propose that the scaling of the solute-solvent interactions in REST does not need 

to follow prescribed mixing rules such as Eq. 2 and Eq. 3. Instead, 𝜆)
'( may be treated as free 

parameters that can be carefully tuned to control the solute conformational properties (e.g., chain 

expansion) at different effective temperatures for more efficient sampling. We note that scaling of 

solute-solute electrostatic interactions is achieved by scaling of all solute partial charges, such 

that the use of PME requires the solute-solvent electrostatic interactions to follow the geometric 

mixing rule of Eq. 3. However, the solute-solvent van der Waals (vdW) interactions could be 

independently tuned. As such, we recast Eq. 1 in REST3 as,	

        𝐸)*+,-Y(𝝌) = 𝜆)
''𝐸''(𝝌) + 𝜆)

'(𝐸'(Z[Z\(𝝌) + 𝜿𝒎𝜆)
'(𝐸'(]^_(𝝌) + 𝜆((𝐸(((𝝌),  (5)                                                                     

where 𝜿𝒎 is the additional scaling factor for the solute-solvent vdW interactions at condition m. 

Setting 𝜿𝒎 = 1 for all conditions recovers the REST2 protocol.  

As a proof of concept, we recalibrated the solute-solvent relative interaction strength by matching 

the conformational properties of p53-NTD at high temperatures, where the artificial compaction is 

particularly severe in REST2 simulations (Figures S2, S3, and 4).The results show that a modest 

increase in the solute-solvent vdW interactions with 𝜿𝒎 = 1.06 is sufficient to largely recover both 

local and global structural properties of p53-NTD at 500 K (Figure 2), as compared to results from 

standard MD using the original unscaled s99SB-disp force field. Based on this, we simply use a 

linear relationship to set 𝜿𝒎 for other conditions in REST3,  

         𝜿𝒎 = `1,																																																									m < 4
1 + 0.005 ∗ (m − 3),																					m ≥ 4				.     (6) 

Note that 𝜿𝒎 = 1 for the first four conditions, because the artificial collapse of p53-NTD appears 

to be minimal at low effective temperatures (see Figure 1). Detailed values of all scaling factors 

of the REST3 protocol tested below can be found in Table S2.  
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Figure 4. Conformational properties as a function of temperature from REST3 simulations of 

p53-NTD (left, folding) and KID (right, control and folding simulations) in a99SB-disp, including 

(A) average radius of gyration, (B) distributions of radius of gyration, (C) distribution of end-to-

end distance, and (D) average residue helicity profiles. Results from REST2 run are also shown 

in panel (A) for comparison. See Methods for calculation of error bars. 
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REST3 eliminates conformational trapping at high temperatures and replica segregation 

We first performed one folding REST3 simulation of p53-NTD in a99SB-disp to evaluate the new 

protocol’s efficiency in driving replica random walk in the temperature space and conformational 

sampling. As summarized in Figure 4 (left column), rescaling of the solute-solvent vdW 

interactions in REST3 (Eq. 5 and 6) eliminates the artificially increasing compactness at higher 

temperatures. Note that p53-NTD is a highly dynamic IDP with a large radius of gyration at room 

temperature (experimental value ~ 2.39 nm58); it apparently does not undergo further chain 

expansion as the temperature is increased from 298 K to 500 K (Figure 4A, top left). This is also 

confirmed in standard MD simulations of p53-NTD at 500 K using the original, unscaled a99SB-

disp force field (Figure 2). However, the residual helicity does gradually decrease at increasing 

temperature in REST3 (Figure 4D, left). This is in contrast to artificially elevate helicity at high 

temperatures in REST2 (Figures 2C and S2C). Therefore, the new REST3 protocol seems to be 

able to largely recapitulate the expected conformational properties of p53-NTD within the 

simulation temperature range.  

Removing artificial compaction at high temperatures leads to much more efficient replica random 

walk in REST3. As summarized in Figure S6, all REST3 replicas undergo rapid random diffusion 

throughout the temperature range. Importantly, all replicas are completely free of trapping in 

compact states and appear to efficiently sample a wide range of conformational states with 

different levels of compaction (Figure S6, blue traces for radius of gyration). Reflecting much more 

efficient mixing, all replicas in REST3 have similar average temperatures, number of round trips 

between the lowest and highest temperatures, and contribute similarly to the lowest temperature 

ensemble (Figure 5), which are hallmarks of well-converged replica exchange simulations. In 

particular, the average number of temperature round trips increase to 30.3/µs per replica, 

compared to 9-10/µs per replica in REST2 runs (see Figures 3). Note that the average exchange 

acceptance rates are essentially identical (~25%) in these REST2 and REST3 runs. The dramatic 

improvement in the efficiency of random walk in the temperature space is a direct result of 

eliminating the artificial conformational compaction at higher temperatures (Figures S4 and S5). 
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Figure 5. Efficiency of replica exchange in REST3 folding simulation of p53-NTD using 16 or 8 

replicas, as reflected in occupancy at the lowest temperature (T0% at 298 K), average effective 

temperature (<T>), and the number of temperature round trip (Ntrans) per µs for each replica. 

The average Ntrans per µs are 30.3/µs and 26.7/µs for 16-replica or 8-replica runs, respectively 

(as indicated by the dash lines).  

We further evaluate the efficacy and transferability of REST3 in preventing conformational 

trapping and replica segregation using KID, which is a smaller and more structured IDP64. As 

summarized in Figure 4 (right column), REST2 also leads to modest artificial conformational 

compaction and increased structural level for KID. REST3 effectively eliminates the artificial 

compaction and generates ensembles that show appropriate temperature-dependent 

conformational properties at both secondary and global levels. Interestingly, the efficiency of 

replica exchange in REST2 does not appear to deteriorate as much compared to the case of p53-

NTD (Figure 3 vs S7). As such, the replica exchange efficiency does not benefit significantly from 

the new REST3 protocol. This observation should not be surprising, considering that KID is a 

smaller IDP and adopts much more compact conformational ensembles even at 298 K (Figure 

4A). The artificial over compaction is much less severe than the highly flexible p53-NTD. 

Nonetheless, as will be discussed later, ensembles derived from the folding and control REST3 

runs appear to be better converged at all temperatures. Taken together, REST3 is an effective 
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protocol free of artificial compaction at high effective temperatures and much more suitable for 

the simulation of dynamic protein conformational ensembles compared to REST2 in general.  

Conformational sampling and convergence of REST2 and REST3  

 

Figure 6. 2D probability distributions of the radius of gyration and end-to-end distance of KID 

at 298 K, derived from independent REST2 and REST3 control and folding simulations (Table 

S1). The first 200 ns of all trajectories were excluded as the equilibrium phase. All probability 

distributions were first converted into the free energy surface before plotting. 

Examination of the evolution of the conformations of replicas in REST2 vs. REST3 as a function 

of simulation time clearly demonstrates more efficient exploration of different conformational 

spaces in REST3. For example, all REST3 replicas reversibly sample diverse conformations with 

a wide range of radius of gyration throughout the 2 µs simulation time (Figure S6, blue traces). In 

contrast, many REST2 replicas rarely sample conformations of different sizes (Figure S4 and S5, 

blue traces) and the lack of sampling by individual replicas is particularly prominent in the control 
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run. Nonetheless, it is also known that the apparent convergence of the lowest temperature 

ensemble of a replica exchange simulation can arise due to replica mixing even in the presence 

of substantial replica segregation and conformational trapping51, 83. Indeed, with 1 or 2 µs	 
sampling per replica, the current REST2 and REST3 simulations generated highly consistent 

disordered ensembles at 298 K for both KID and p53-NTD in the a99SB-disp force field, with 

similar local and global structural properties such as radius of gyration distributions and residue 

helicity profiles (Figure S8). Closer inspection of the structural ensembles generated by 

independent folding and control runs, however, suggests that certain structural properties are 

better converged in REST3 simulations. For example, substantial differences persist between the 

2D distributions of the radius of gyration and end-to-end distance derived from folding and control 

REST2 runs (Figure 6 A vs B), while the distributions are far more consistent from REST2 runs 

(Figure 6 C vs D). 

We further assess the sampling and convergence of REST2 and REST3 by performing the PCA 

analysis of the disordered ensembles at 298 K, which allows the heterogenous ensembles to be 

projected in principal axes with the largest variances (see Methods). The results confirm a higher 

level of consistency between ensembles of KID generated by folding and control runs of REST3 

compared to those of REST2, but at the same time reveal substantial residual differences even 

for REST3 simulations (Figure 7A). The later observation is somewhat surprising, considering the 

small size of KID and the apparent convergence of various 1D distributions with 1 µs per replica 

sampling time (e.g., Figure S8). On the other hand, this really illustrates the critical challenge of 

sampling disordered protein conformational ensembles in explicit solvent even for modest-sized 

IDPs32. For p53-NTD, REST3 appears to be capable to sample broader metastable states (e.g., 

areas with free energy < 0.5 kcal/mol, Figure 7B), but the ensembles generated by the two REST 

protocols are much more similar compared to those of KID. Besides the longer sampling time of 

2  µs per replica, the better convergence of p53-NTD ensembles may also be attributed to its 

more extended and less structured nature despite the longer sequence (Figure S8). 
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Figure 7. Distribution of conformational ensembles at 298 K generated by REST2 and REST3 

control and folding simulations of KID (A) and folding simulation of p53-NTD (B) in the a99SB-

disp force field. The ensembles were projected along the same first two principal components 

derived from PCA analysis of all conformations sampled from both REST2 and REST3 runs of 

each individual protein. All probability distributions were first converted into the free energy 

surface before plotting. 
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To directly compare the convergence rates, we further analyze the evolution of the disordered 

ensembles at 298 K as a function of REST2 and REST3 simulation time. For KID, we focus on 

the sampling of transient partial helices, as analysis of the global structural properties already 

reveals improved convergence with REST3 (e.g., Figure 6 and 7). For this, we calculated the 

probabilities of partial helices as identified by their starting positions and lengths. The results, 

summarized in Figure S9, again highlight the challenge of sampling disordered protein 

conformations, as the helical substate distributions remain significantly different between 1-µs 

control and folding runs for both REST2 and REST3. Even longer sampling time is likely required 

for achieving better convergence at the helical substate level. Nonetheless, there appears to be 

an overall improvement in the convergence of the populations of helical substates in REST3 

compared to REST2. For example, the populations of partial helices starting around residue 1 

(red arrows in Figure S9 B and D) reach plateaus by ~600 ns during the REST3 folding run, but 

continue to increase and only reach similar (converged) levels near the end of the 1 µs REST2 

folding run. Similar observations can be made for some helical states in the control runs (e.g., 

purple arrows in Figure S9 A and C). For p53-NTD, the 2 µs REST2 and REST3 simulations yield 

highly similar ensembles, as reflected in various 1D distributions (Figure S8) and PCA analysis 

(Figure 7B). Examination of the evolution of the disordered ensemble at 298 K as a function of 

simulation time suggests that REST2 and REST3 are quite similar in achieving the overall 

convergence (Figure 8 A vs B), despite substantial differences in conformational coverage of 

individual replicas (Figure S4 and S5 vs S6, blue traces).  This again highlights how replica mixing 

itself can lead to apparent convergence in replica exchange simulations. Nonetheless, it is also 

clear that REST3 is able to sample broader free energy basin with shorter simulation times (e.g., 

regions with free energy < 0.5 kcal/mol). Taken together, detailed conformational analyses above 

support that improved replica exchange efficiency and conformational sampling of individual 

replicas in REST3 can indeed further improve the convergence of the disordered ensembles 

generated at the lowest temperature condition. 
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Figure 8. Evolution of the conformational ensemble of p53-NTD at 298 K during (A) REST2, 

(B) REST3 (16-replica), and (C) REST3 (8-replica) folding simulations in a99SB-disp. The 

ensembles were projected along the same first two principal components derived from PCA 

analysis of all conformations sampled from REST2 and REST3 runs. All probability distributions 

were first converted into free energy surface before plotting. 
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REST3 can further reduce the required number of replicas 

The observation that REST2 does not appear to suffer significantly from conformational trapping 

and replica segregation at high effective temperatures suggests that smaller number of replicas 

may be sufficient for the simulation of p53-NTD using the REST3 protocol. Here, we evaluate a 

REST3 protocol with only 8 replicas spanning 298 K to 450 K (see Table S2) and perform a folding 

simulation of p53-NTD for 2 µs per replica. Although the larger temperature spacing leads to 

smaller average replica exchange acceptance (~6.5%), all replicas can efficiently explore the 

whole temperature space and are free of conformational trapping (Figure S10). As a result, all 

replicas contribute significantly to the lowest temperature ensemble and have similar average 

temperatures (Figure 5B), which are hallmarks of well-converged replica exchange simulations. 

The average temperature round-trip transition rate is 26.7/µs per replica, compared to that of 

~30.3/µs for the 16-replica REST3 run. Importantly, the resulting disordered ensemble at 298 K 

is highly similar to those generated by both REST2 and REST3 protocols (Figure S11). 

Comparison of the 298 K ensembles as a function of simulation time (Figure 8 C) further 

demonstrates that the convergence rate of the 8-replica REST3 protocol is similar to that of the 

16-replica REST3 protocol and superior to that of the 16-replica REST2 protocol.  Taken together, 

it is evident that the better-balanced solute-solute and solute-solvent interactions in REST3 allow 

it to effectively sample disordered protein conformational ensembles with much less 

computational sources. 

Conclusions 

REST is one of the most effective enhanced sampling approaches for biomolecular simulations 

that is particularly suitable for explicit solvent simulations by dramatically reducing the number of 

replicas required. In this work, we critically evaluated the replica exchange and sampling 

efficiency of the latest REST2 protocol for simulation of disordered protein ensembles. Our results 

reveal that REST2 leads to artificial conformational compaction at high effective temperatures. 

This is due to the imbalanced scaling of solute-solute and solute-solvent interactions, which was 

originally designed to promote reversible folding of mini-proteins and beta-hairpins44. Importantly, 

the artificial over compaction at high temperatures leads to conformational trapping and 

segregation of replicas in the temperature space during REST2 simulations. These problems can 

be particularly severe for highly flexible IDPs such as p53-NTD, where some replicas can 

completely fail to contribute to the lowest temperature ensemble.  
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We propose that the scaling of solute-solvent vdW interactions can be treated as a free parameter 

in REST protocols, which can be optimized to carefully control the conformational properties of 

the protein solute at various temperature conditions and achieve more efficient conformational 

sampling. To this end, we describe a new REST3 protocol that has been tuned to generate 

conformational distributions throughout the temperature range similar to those expected using the 

unscaled Hamiltonian.  With a better balance between solute-solute and solute-solvent 

interactions, REST3 completely eliminates conformational trapping at high temperatures and the 

resulting replica segregation problem as observed in REST2. All REST3 replicas can undergo 

highly efficient random walk in the temperature space and sample a broad range of 

conformational space. As a result, REST3 can further improve the convergence of the disordered 

protein conformational ensemble at both local and global structure levels. Importantly, REST2 

often relies on replica mixing for achieving the apparent convergence instead of true 

conformational sampling of individual replicas. We also show that REST3 allows one to further 

reduce the number of replicas required for sufficient sampling. Our tests suggest that at least 

about half of the computational sources can be saved compared to REST2 when simulating the 

moderately sized IDPs such as p53-NTD.  

Our critical analyses of REST2 and REST3 protocols further reveal significant challenges of 

relying on tempering alone for sampling large-scale conformational fluctuations of disordered 

proteins. Sampling of many detailed conformational substates has limited convergence even with 

1 to 2 µs per replica sampling and significant differences often persist between independent runs 

initiated from drastically different initial conformations. This challenge can be attributed to the 

entropic nature of the barriers involved in folding transitions of local and/or global (transient) 

structures51, such that the transition rates will only depend weakly on the simulation temperature. 

As such, further improvement of the REST protocol will likely require incorporating of more 

advanced Hamiltonian replica exchange in addition to tempering. 
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