
IEEE INTERNET OF THINGS JOURNAL 1

Transparent and Tamper-Proof Event Ordering in
the Internet of Things Platforms

Mahbubur Rahman and Abusayeed Saifullah

Abstract—Today, the audit and diagnosis of the causal rela-

tionships between the events in a trigger-action-based event chain

(e.g., why is a light turned on in a smart home?) in the Internet

of Things (IoT) platforms are untrustworthy and unreliable.

The current IoT platforms lack techniques for transparent and

tamper-proof ordering of events due to their device-centric

logging mechanism. In this paper, we develop a framework that

facilitates tamper-proof transparency and event order in an IoT

platform by proposing a Blockchain protocol and adopting the

vector clock system, both tailored for the resource-constrained

heterogeneous IoT devices, respectively. To cope with the unsuited

storage (e.g., ledger) and computing power (e.g., proof of work

puzzle) requirements of the Blockchain in the commercial off-the-

shelf IoT devices, we propose a partial consistent cut protocol

and engineer a modular arithmetic-based lightweight proof of

work puzzle, respectively. To the best of our knowledge, this is the

first Blockchain designed for resource-constrained heterogeneous

IoT platforms. Our event ordering protocol based on the vector

clock system is also novel for the IoT platforms. We implement

our framework using an IoT gateway and 30 IoT devices. We

experiment with 10 concurrent trigger-action-based event chains

while each chain involves 20 devices, and each device participates

in 5 different chains. The results show that our framework may

order these events in 2.5 seconds while consuming approximately

140 mJ of energy per device. The results hence demonstrate the

proposed platform as a practical choice for many IoT applications

such as smart home, traffic monitoring, and crime investigation.

Index Terms—Internet of Things, wireless network, blockchain,

event order.

I. INTRODUCTION

Internet of Things (IoT) applications are greatly influencing
every aspect of our lifestyle, including our activities at home,
safety at public places and roads, and care in a hospital bed.
As of today, there are numerous IoT platforms to automate our
home appliances [1], monitoring systems to automate traffic
flows [2]–[4], network deployments to ensure public safety [5],
[6], and smart health systems for patient monitoring [7]–
[9]. Typically, such IoT platforms allow smart sensors and/or
applications to interconnect through the Internet or gateway
and chain together to perform diverse activities. They also pro-
vide programming frameworks to enable advanced automation
through chaining of multiple third-party applications.

Despite their configurability, many IoT platforms lack trans-
parent and tamper-proof detection of causal dependencies
between the sensors, especially during emergency/audit. For

Mahbubur Rahman is with Queens College, City University of New York,
NY, and Abusayeed Saifullah is with Wayne State University, MI.

Copyright (c) 2022 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

example, a traffic monitoring system may not provide a trans-
parent scenario of an accident that involves one or multiple
road intersections; a compromised public safety monitoring
system may fail to order the events needed for a crime
investigation; a smart health platform may not identify the
root causes of a monitored patient going into critical condition;
and a smart home platform may not conclude if a porch light
is turned on because a motion sensor has detected motion
or the front door has been unlocked. The reasons behind
these scenarios include device-centric logging mechanism,
vulnerability, and heterogeneity of the IoT devices.

Although the gateway gets a centralized view of the whole
platform by congregating logs from the devices, it is unable
to construct accurate causal dependencies between the IoT
devices/sensors due to the lack of synchronization between
them [10]. For example, consider the following high-level de-
vice logs provided by an Iris security system gateway: “motion
detected by camera at 11:13 AM”, ”front door unlocked at
11:13 AM”, “porch light turned on at 11:14 AM” [1]. This
gateway thus cannot provide a causal dependency between
these light, camera, and door sensors. As reported in [11],
ZigBee vulnerability lets hackers use hue bulbs to hijack any
smart home, thus introducing trust issues as well. In general,
the lack of a uniform ontology between the heterogeneous
devices and uncertain temporal behavior in these systems make
it extremely difficult to derive the causal dependencies.

In this paper, we propose an IoT framework called Trans-
parent IoT (T-IoT), where the causal relationships (i.e.,
data provenance) between heterogeneous IoT devices become
transparent and tamper-proof. Formally, data provenance is a
holistic tracking of the causal relationships between a sequence
of activities within a computing system. To design the core of
T-IoT, we take motivation from the existing transparent and
tamper-proof systems such as cryptocurrency (e.g., Bitcoin
maintains provenance of its transactions [12]) and retail corpo-
rations (e.g., Walmart maintains provenance of its pharmaceu-
ticals and produce for safety and tracking [13]). While these
platforms can afford resource-hungry Blockchain protocols to
ensure tamper-proof transparency, it is not well-suited for the
resource-constrained IoT devices. In T-IoT, we thus design
a Blockchain protocol tailored for the resource-constrained
IoT devices and enable the tamper-proof transparency of their
event provenance.

Enabling Blockchain over resource-constrained IoT devices
raises a number of practical challenges. In Blockchain (e.g.,
Bitcoin), each participating entity (e.g., miners) maintains
the entire copy of a continually growing distributed ledger
of transactions via a Byzantine consensus protocol – called



IEEE INTERNET OF THINGS JOURNAL 2

the Nakamoto consensus over a peer-to-peer (P2P) network
to provide transparency of the transactions. The correctness
of such consensus depends on a computationally expensive
proof of work (PoW) protocol [12]. The PoW protocol and
the ledger prevents the double spending problem (spending
the same coin more than once by tampering the ledger) in
the Bitcoin ecosystem. In T-IoT, events are analogous to the
Bitcoin transactions and the double spending refers to an
inconsistency in its data provenance, e.g., the root cause of
an event referring to several IoT nodes (when its not). In the
same spirit of Bitcoin, T-IoT maintains a ledger of its events
and employs a PoW protocol. Specifically, the design of T-IoT
addresses the following key practical challenges.

(1) Commercial off-the-shelf (COTS) IoT devices provide
only a few hundred KB of flash memory (e.g., 128 KB
in TI CC1310), which is shared between the system and
application programs. It is thus impractical for the IoT devices
to participate in a Blockchain protocol where the ledger grows
continually (currently, 375+ GB in Bitcoin [14]). (2) COTS
devices typically perform ultra low-power operation and need
to have a battery-life of several years, thereby making them
naturally unsuited for the PoW protocol that has to rely on high
computing power, time, and energy budget [15]. (3) Depending
on their functionality, different IoT devices are equipped with
different wireless communication protocols (e.g., Wi-Fi, BLE,
ZigBee, or LoRa). Such heterogeneity makes it difficult to
develop a P2P protocol to enable the Nakamoto consensus pro-
tocol. (4) The lack of a common ontology between the devices
from different vendors makes it difficult to synchronize them.
As a result, deriving any cause-effect relationship between the
events in an IoT platform becomes extremely difficult. In this
paper, we address the above challenges and enable transparent
and tamper-proof event ordering in the IoT platforms. The key
novel contributions of this paper are as follows.

• We enable Blockchain in T-IoT by allowing each node to
save only a portion of the ledger that relates to the most
recent events in the platform. As the ledger grows, a node
replaces its portion over time. To do this, we propose a
partial consistent cut-based replacement policy that finds
the dependencies between multiple events (based on the
cut size) that occurred in the platform. We also propose a
modular arithmetic-based lightweight PoW protocol that
is computationally fast for the IoT nodes.

• We enable the ordering of events by logically synchro-
nizing the nodes. For this, we extend Lamport’s logical
clock [16] to vector clocks, tailored for the IoT platforms.
We then propose a backtracking-based algorithm to create
the data provenance in T-IoT. Additionally, we enable a
gateway-assisted P2P communication in T-IoT.

• We evaluate the performance of T-IoT indoor. The gate-
way is implemented on GNU Radio using USRP (Univer-
sal Software Radio Peripheral) devices to support various
communication protocols. We deploy 30 nodes (19 TI
CC1310s with IEEE 802.15.4g, 3 TI CC1350s with BLE,
and 8 Dragino LoRa nodes) in our testbed. We then
activate 10 trigger-action-based event chains. Each chain
involves up to 20 nodes, and each node may participate in

5 different chains. Our results show that when 10 chains
execute concurrently, the ordering of their events may be
done in 2.5 seconds at the cost of ⇡140 mJ of energy
per node, thus demonstrating the feasibility of T-IoT.

T-IoT, in summary, adds the following to IoT platforms
with resource-constrained heterogeneous nodes. (1) Our partial
consistent cut replacement policy and modular arithmetic-
based PoW protocol enable resource-constrained IoT nodes
to participate in a Blockchain protocol without requiring
massive storage capacity or computing power. Note that the
T-IoT Blockchain protocol is essential to providing tamper-
proof transparency. (2) In trigger-action-based IoT platforms
with heterogeneous nodes, our vector clock-based node syn-
chronization protocol, combined with gateway-assisted P2P
communication, orders events accurately without the physical
clock synchronization between the heterogeneous nodes. (3)
Finally, our provenance creation protocol enables the T-IoT
gateway to provide pervasive knowledge representation of
events without requiring the gateway to be dependent on the
device-centric logging mechanism of the nodes.

In the rest of the paper, Sections II and III overview our
system model and design, respectively. Sections IV, V, and VI
detail the T-IoT Blockchain, event ordering, and provenance
creation protocols, respectively. Sections VII and VIII provides
the implementation details and the performance evaluation of
different protocols of our framework. Section IX overviews
the related work. Finally, Section X concludes our paper.

II. SYSTEM MODEL AND BACKGROUND

In this section, we discuss our system model and provide
background knowledge on Blockchain and data provenance.

User

Gateway

IoT Cloud
Backend

IoT Devices

Figure 1. Network model of T-IoT.

A. System Model of T-IoT
Network Model. Figure 1 shows the network model of T-
IoT, which represents the existing IoT platforms. It consists
of a variety of IoT devices including its users, a gateway or
hub, and a Cloud backend. The devices are heterogeneous
and have limited power (e.g., battery-powered) and storage
capability to log their activities. Each device is equipped
with one radio front-end (e.g., Wi-Fi, BLE, Zigbee, etc.) to
send/receive commands to/from the gateway. The gateway is
computationally powerful, wall-powered, and is connected to
the Internet/Cloud. It manages each device through a device
abstraction layer. It is equipped with heterogeneous wireless
transceiver radios that allow it to communicate with the hetero-
geneous devices. Also, it connects to the Cloud using Wi-Fi or
Ethernet. The users can host different applications (e.g., smart
home) using the Cloud backend. The Cloud also acts as a data
storage for the applications. Such an architecture enables an
automatic management of a target application where users can



IEEE INTERNET OF THINGS JOURNAL 3

remotely enable, monitor, and control various activities that
involve trigger-action based chaining of numerous devices.
Assumptions and Facts in T-IoT. In this paper, we consider
that the T-IoT gateway and the Cloud backend are the trusted
entities. Securing the gateway and the Cloud backend is out
of the scope of this paper. Instead, we design novel protocols
to ensure tamper-proof and transparent ordering of the events
of the resource-constrained IoT devices (e.g., sensors) that are
more vulnerable and major entry point to the adversaries [11],
[17]. We also assume that, at any given point of time, more
than half of the IoT devices will function properly (e.g.,
no hardware failure/compromised) in T-IoT to facilitate the
correct ordering and tamper-proof transparency of the events.
Despite having a centralized view and sufficient storage and
computing power, the gateway may not construct a causal
ordering of the events in T-IoT. The reason is that the gateway
entirely depends on the IoT devices’ logs to learn at what exact
time the events occur. Also, even within a single trigger-action-
based event chain, the lack of synchronization between the
IoT devices may alter the causal ordering in the chain. The
presence of multiple chains with one or more common IoT
devices makes this scenario more complicated. Despite these
issues, even if the gateway can order events on its own (for
argument’s sake), T-IoT will lose the tamper-proof property.

From the security perspective, the major breakpoint for both
the gateway and Cloud is related to the authentication (e.g.,
passwords of less complexity) and transport/network layer
encryptions, which is common to the existing wireless/wired
systems. The resource-constrained IoT devices, on the other
hand, are vulnerable to a variety of issues that are related to
the device proximity (e.g., physically compromising motion
sensors and security cameras), hardware (e.g., connecting to
JTAG UART/I2C/SPI of the system to generate false alarms),
and protocol stack (e.g., using man-in-the-middle and replay
attacks to tamper device logs) [18]. These vulnerabilities
inspire the need for a tamper-proof protocol (e.g., Blockchain)
in the resource-constrained IoT devices even if the gateway
and Cloud are trusted.

B. Background Knowledge

Bitcoin Blockchain. Bitcoin is a cryptocurrency and used
by the interested parties to complete financial transactions
without a central administrator (e.g., Banks). To facilitate
transactions, Bitcoin ecosystem creates a P2P network of its
parties (say, nodes). Transactions are verified by the network
nodes and then recorded in a public distributed ledger –
called a Blockchain. The Blockchain thus holds the records
of the Bitcoin transactions in the form of a growing list of
records called blocks that are linked using cryptography. Each
block in the Blockchain contains a cryptographic hash of its
parent block, control information (e.g., timestamp, transaction
hash, etc.), and transaction data in the form of a Merkle
tree to facilitate creation of their hash value [12]. Only a
group of special nodes (called miners) in the network can add
new blocks (called block validation/mining) to the existing
chain. To add a new block, a miner solves a computationally
expensive puzzle known as the PoW and other miners have to

agree that the solution is acceptable via a Byzantine consensus
protocol known as the Nakamoto consensus [12]. All the
miners have to maintain a complete copy of the already
validated chain to participate in and provide correctness of
this process. Once a block is mined, each miner adds that
block to its chain without requiring any central oversight. The
Blockchain, by design, thus becomes resistant to modification
of the transaction data and prevents the double spending
problem at the cost of extensive computation and storage in
the miner, as long as majority of the miners are honest.

Past

Present

Present

Activity

Entity

Agent wasGeneratedBy
Used

wasAssociatedWith

wasAttributedTo

wasDerivedFrom

Figure 2. PROV-DM provenance model.

Data Provenance. In T-IoT, we enable a tamper-proof trans-
parent ordering of the IoT events. Such ordering is useful
to the users when its knowledge representation is pervasive
and easily comprehensible. We thus present the order of
events in the form of a data provenance. Data provenance
systematically describes the history of the actions taken on
an object (e.g., data, event, entity, etc.) from its creation up
to the present. Such knowledge presentation can answer many
historical questions about an object, including “what entity
triggered event ei?” and “how is event ej derived from event
ei?”, which is useful in system diagnosis/audit [19]–[21].

We use the W3C PROV-DM [22], [23] model to represent
the event order in T-IoT. It represents provenance in the form
of a directed acyclic graph (DAG) that consists of entity,
activity, and agent nodes. An entity is a data object and
may refer to many other entities. An activity is a process
and defines how entities come into existence. An agent bears
responsibility for activities and entities. In short, such struc-
ture can describe a relationship in the following form: “the
agent was responsible for the activity which generated the
entity”. The edges in PROV-DM DAG encode a variety of
dependencies between the nodes, as shown in Figure 2, where
the timeline follows past to present from left to right and
top to bottom. In general, using the PROV-DM in T-IoT, we
may enable the T-IoT users to learn (without having to deal
with the low-level and obtuse logs from the devices/gateway)
which entity wasDerivedFrom which entity, which en-
tity wasGeneratedBy which activity, which activity used
which entity, which activity WasAssociatedWith which
agent, and which entity WasAttributedTo to which agent.

III. T-IOT FRAMEWORK OVERVIEW

In this section, we briefly overview the T-IoT framework
design, which is depicted in Figure 3.
Blockchain protocol. In T-IoT, we create a distributed ledger
of the events that are generated by the IoT nodes. An event
is said unregistered as long as it is not added to the ledger.



IEEE INTERNET OF THINGS JOURNAL 4

Blockchain protocol 

Blockchain of events

Miners

Unregistered events

Event ordering Provenance creation
Figure 3. Block diagram of the three protocols of T-IoT (dashed-arrows
represent functional dependencies).

Several IoT nodes act as miners to add all these events in
the ledger (as blocks of events). This process is called event
registration (i.e., mining). All the events within an event
chain are initially unregistered. In time, all of them become
registered (added to the ledger). The gateway plays a vital
role in the trigger-action-based event chain by managing (e.g.,
sending event commands) the IoT nodes. It allows an action
event only if all the triggering events are already registered.
Due to numerous trigger-action-based chains in the system,
an IoT node may be involved in multiple chains, and thus
maintains a list of the registered events (i.e., the ledger). To
do so, it saves only a portion of the ledger (which is updated
over time) because of its storage limitation. The gateway has
sufficient storage (since its connected to the Cloud) and saves
the entire ledger.
Event Ordering Protocol. Our event ordering protocol runs in
parallel to the event registration process. All the unregistered
events are listed in one/more blocks by one or more miners
in the order they are generated. To achieve such ordering, we
logically synchronize the IoT nodes by extending Lamport’s
logical clock system. In this process, each miner maintains a
vector of event’s count to track the number of event requests
made by other miners that have at least one common event
with it. In this way, a miner waits to group an event in a block
until the other miners confirm (by sending messages through
the gateway) that there are no unknown preceding events.
Provenance Creation. The gateway creates the data prove-
nance in the form of a DAG. For each trigger-action-based
event chain, it identifies the start event (root cause) and the
end events (final effects) of that chain and builds a provenance
graph while conforming to the PROV-DM model. Since the
blocks in the ledger contain events in an orderly fashion, the
gateway thus starts from the most recent block to find the
effects and then backtracks to as many blocks as needed.

IV. T-IOT BLOCKCHAIN PROTOCOL

In this section, we detail the T-IoT Blockchain protocol that
provides tamper-proof transparency in the IoT platforms.

A. Blockchain Primers
Virtual Currency. In T-IoT, we use virtual coins (or, simply
coins) in transactions (e.g., event requests) between the nodes
and the gateway. Coins are necessary to limit the number of
event requests from the nodes to the gateway. A node spends
a coin (i.e., pays to the gateway) to request an event. In other
words, a node pays the gateway with a coin to initiate an
event. There is thus no notion of fractional coin transfer in T-
IoT. A node is assigned a fixed integer number of coins when

it joins the network. Specifically, a node gets N coins if it may
generate N distinct events. For example, a door sensor in a
smart home gets 2 coins if it can activate (via the gateway)
two different light bulbs. The gateway restores a spent coin if
the associated event is validated (detailed in Section IV-B). At
any given point of time, the total number of coins in T-IoT is
thus fixed depending on the number of events.
Distributed Ledger. In T-IoT, we maintain a distributed ledger
of the events generated by the nodes, which grows in size over
time. The gateway saves the entire ledger while each node
saves a portion of it. Such a design decision is made due to the
following two reasons. (1) The nodes are memory-constrained,
and it is impractical for them to maintain an ever-growing
ledger. (2) The memory or storage at the gateway is not a
big concern since it is connected to the Cloud. In its partial
ledger, each node saves the most recent events, specifically
the events that are generated by its associated nodes. For
example, a light sensor saves the recent events of a motion
sensor and a door sensor if these sensors can generate an event
in it. A node learns about the associated nodes when it joins
the network (e.g., during its installation by a user/technician
through manual/Cloud configuration).
Message-Passing. In T-IoT, we enable P2P communications
between any two nodes via the gateway. Since the gateway is
equipped with heterogeneous receiver and transmitter radios,
the communication between two nodes with different protocols
(e.g., between ZigBee and BLE) is thus possible. Specifically,
a message delivery between a sender and a receiver (or a
set of receivers) happens in the following two steps. (1) The
sender sends the message to the gateway. (2) The gateway then
broadcasts the message in the network. Depending on the IoT
platform, the nodes may adopt Low Power Listening [24] or
on-board sensor-triggered wake-up policy [25] to listen to the
broadcast messages with ultra-low energy consumption. This
may also help the T-IoT framework to detect malfunctions/vul-
nerabilities under very low-traffic or low device-activities.

B. Transaction Details

Transaction. An event request by a node to the gateway is a
transaction in T-IoT. A node pays the gateway with a coin for
each event request. T-IoT does not incur any fee for transac-
tions, as it bears no meaning. Similarly, there is no incentive
(reward coin) for the nodes that validate such transactions.
Adding an event to the ledger means that the gateway has
allowed that event to execute. A unique event handler or a
number represents each event in T-IoT. Adding an event to
the ledger thus refers to adding the associated number. In each
transaction, a node incorporates its event request and all the
validated events of the trigger-action-based event chain it is
involved in. For simplicity, the event handler of each event
in T-IoT represents the coin for itself. Paying the gateway for
an event thus refers to the inclusion of the event handler in
the event request. The gateway tracks the validity of the coin
by associating one additional bit of information (say, coin bit)
with each event handler where 0 means the payment is valid
(i.e., event request is valid) and 1 means the payment is invalid.
For a valid request, it sets the coin bit and then broadcasts the



IEEE INTERNET OF THINGS JOURNAL 5

transaction in the network for validation. For a successful event
validation (discussed in Section IV-C), the gateway resets the
corresponding coin bit so that the requesting node may be
able to register the same event in the future. For an invalid
payment (thus a replay attack), the gateway rejects the event
request by checking if the associated coin bit is set. Note that
the user has to ensure that it completely trusts both the third-
party IoT devices and the person who installs or configures
all the event chains for the very first time in T-IoT.

Genesis 
block

TB 1,1

TB 1,2

TB i,1

TB i,2

TB i,j

TB n,1

TB n,2

… …

…… …

ID <0,0>
Block Hash: 123…abc

Parent Hash: nil
Trans. Hash: nil
List of Trans.:{} 
Genesis block

ID <1,1>
Block Hash: 0ac..1f9

Parent Hash: 123…abc
Trans. Hash: 234…7ed

List of Trans.:
{T821, T768, T931, …} 

TB1,1

Figure 4. A generic view of transaction block (TB) and ledger in T-IoT.

Transaction Block. Multiple transactions are grouped together
to create a block based on two criteria. (1) The events
belonging to the same chain are included in the same block (a
node knows its scope). (2) If a node belongs to multiple chains,
events in these chains that happen concurrently at any given
point of time are also included in the same block. Thus, there
may be several chains of blocks rooted at the genesis block,
as shown in Figure 4, depending on how the IoT devices are
chained together to create the trigger-action-based chains. A
genesis block in any Blockchain protocol refers to the very
first block in the Blockchain and serves as an entry point of
search through the Blockchain (similar to the head pointer of
a linked list). Having multiple chains of blocks reduces the
search space at the gateway, which makes it highly scalable.
In a transaction block, several other control information such
as ID, parent hash, transaction’s hash are also added (Figure 4)
to maintain the integrity and structure of the ledger.

C. The PoW Protocol
The T-IoT PoW protocol includes identifying the miners,

dealing with the resource limitations, and block validation.
Miner Identification. Any Blockchain protocol guarantees
tamper-proof transparency using a PoW protocol (or smart
contract) that requires miners [12], [26]. In T-IoT, a node with
one of the following criteria participates as a miner to validate
a transaction block of unregistered events. (1) At least one
event in the transaction block is common to the events in the
trigger-action-based event chains it belongs to. (2) T-IoT has
made an earlier reservation with a node to act as a miner.
While the first criterion is intuitive, the second criterion is
added in our framework to support isolated events that do not
belong to any trigger-action-based event chain.
Dealing with the Storage Requirements. As discussed in
Sections IV-A and IV-B, a miner may not be able to store
the entire ledger that grows in size over time. Consequently,
depending on its storage capacity, a miner saves several of
the recently validated blocks of its related events. In general,

the goal is to efficiently use a miner’s limited storage capacity
so that it can effectively participate in the T-IoT Blockchain
protocol. While saving a block into its storage, a miner
maintains a partial consistent cut of the chain of blocks of
its related events. Figure 4 shows an example of such a chain
of blocks as {TBi,1 ! TBi,2 ! · · · ! TBi,j ! · · · }.

A partial consistent cut of a chain refers to the portion (i.e.,
the subsequence of blocks) of the chain, where each event in
that portion is traceable to its triggering event, as shown in
Figure 5. In this figure, the chain has three miners Ma, Mb,
and Mc, executing events {ea,1, ea,2}, {eb,1, eb,2, eb,3}, and
{ec,1, ec,2}, respectively, and one of the partial consistent cuts
(as shown on the left side of this figure) includes events {ec,1,
ec,2, eb,2, ea,2} from a few blocks in the chain. Note that
inclusion of event eb,3 to this cut will also be another partial
consistent cut. A miner thus saves a portion of the ledger using
this technique and the cut size will be determined by its storage
size. If a miner can save M blocks and each block contains
on average E events, then the worst-case time complexity for
finding a partial consistent cut is O(ME). The partial cut
shown on the right side of Figure 5 is an inconsistent cut
since event eb,1 cannot be traced back to its triggering event.

In time, a miner replaces an older block with a newer
block while maintaining a partial consistent cut. A miner may
also save the most recent blocks that are not included in its
partial consistent cut, as long as it has storage capacity. For
an event validation, a miner may also request the gateway for
the missing block/s (a block fits in the payload of one packet,
as discussed in Section VIII-A), which is analogous to the
notion of the cache and main memory in the CPUs. It saves
the incoming block/s while maintaining a partial consistent cut
or using a cache replacement policy such as the least recently
used (LRU). The LRU technique may also be used if no partial
consistent cut exists. In contrast to the other cache replacement
policies, the LRU policy is beneficial for a node since the
recent blocks are most suited for new event validation.
Puzzles and Dealing with the Computation Requirements.

Our goal here is to efficiently use the limited computing power
of the miners so that they can solve the PoW puzzles quickly
and energy efficiently. In T-IoT, the gateway generates one
puzzle per event. The rationale behind a puzzle per event is
twofold. (1) No miner can dominate the T-IoT PoW protocol.
(2) Each event becomes tamper-proof so that a compromised
miner cannot falsify it with a group of events. In the following,
we explain the strategy to generate a puzzle for event e.

The gateway chooses a large prime number P and calculates
the primitive roots of P . A primitive root of a prime P is an
integer r which is relative prime with P and r (mod P ) has a
multiplicative order (P � 1) [27]. The number of primitive
roots of P is exactly �(�(P )), where � is the Euler phi
function [28]. For prime P , �(P ) = P � 1. For any other
positive integer N , �(N) = N⇧p|N (1� 1

p ), where p is a prime
factor of N . After calculating the primitive roots for event e,
the gateway assigns a unique tuple hP, rii to each of the miners
associated with event e, where ri 2 {r1, r2, r3, · · · , r�(�(P ))}
is the i-the primitive root of prime P . Note that a miner which
is associated with m distinct events will thus get m tuples
hPj , rjki, where prime Pj is distinct for m distinct events



IEEE INTERNET OF THINGS JOURNAL 6

Ma

Mb

Mc

ea,1

Time

Partial consistent cut 

ea,2

eb,1
eb,2 eb,3

ec,1 ec,2

Cause of        cannot be determined

ea,1

 Partial inconsistent cut 

ea,2

eb,1

eb,2 eb,3

ec,1 ec,2

eb,1

Ma

Mb

Mc

Figure 5. Left figure shows one of several partial consistent cuts (two dotted negative-ended curved lines) of the events (denoted by black squares and labeled
accordingly) of 3 miners Ma, Mb, and Mc.

Prime Primitive Root K Time for K (ms)
Nth Value # of Roots Chosen TI RPi
100 541 144 360 1081 26.51 1.49
200 1223 552 926 2445 71.38 1.90
400 2741 1088 2520 5481 191.8 9.69
600 4409 2016 2921 8817 331.7 16.59
800 6133 1728 5264 12265 507.3 24.87
1000 7991 3816 3926 15837 677.1 32.62

Table I
TIME TO FIND K.

and rjk 2 {rj1, rj2, rj3, · · · , rj�(�(P ))} is the k-th primitive
root of Pj . During the block creation (containing event e), a
miner that is assigned tuple hP, rii tries to solve the puzzle:
(ri)K mod P = ri for K, where K > P ⇤ rand(1, ri).
The rand(1, ri) function generates a random value within the
range between between 1 and ri, which brings unpredictability
in the system and allows different miners to solve a puzzle for
the same event occurring at different times in the system.

A miner, on the other hand, tries to a solve the puzzle
for event e computationally efficiently using Fermat’s Little
Theorem [29]. According to Fermat’s Little Theorem, if r

is relative prime with P and P is a prime number, then
r
P�1 ⌘ 1 (mod P ). During block validation (containing

event e) process, the other miners associated with event e,
each having a different tuple hP, rji, assure the correctness
of the solution by checking if (rj)K mod P = rj holds.
Such a mathematical relationship is consistent between the
primitive roots of a prime and also used in Diffie–Hellman key
exchange [30]. We provide an execution-time estimation for
solving such a puzzle with different primes and their primitive
roots in Table I using three IoT devices: TI CC1310 and
CC1350 (both have 32-bit Cortex-M3 [31]) and LoRa Hat
on Raspberry Pi (RPi) 3 (64-bit Quad-Core 1.2GHz [32]). For
the 1000th prime, the value of K is found within hundreds
of ms using TI CC1310/CC1350 and only tens of ms using
RPi. The T-IoT PoW puzzles are thus very efficient for IoT
nodes. While this PoW may be vulnerable to Shor’s factor
decomposition algorithm [33], it would require a compromised
resource-constrained IoT device to have the capabilities of a
quantum computer (which is impractical).
Block Validation. This process adds blocks to the ledger. It
starts when a miner (among many) claims (to the gateway)
that it has created a block by solving all the related puzzles
in the block. The gateway then broadcasts this block to the
associated miners. All these miners at this point stop creating
their own blocks, check the correctness of the puzzles, checks
the consistency of the hash values in the block, and inform the
gateway. The gateway then adds the block to the ledger only
if no less than 51% of these miners agree to the correctness
of the block. The overall process is refereed to as Nakamoto

consensus. Once a block is added to the ledger, each miner
resumes its block creation process and disregards events of
the newly validated block. If multiple blocks are created by
different miners at the same time, the gateway broadcasts
the block with a greater number of events in it, where ties
are broken randomly. During block validation of the isolated
events (that do not belong to any event chain), there may be
only one active miner. In this case, the gateway checks the
correctness of the solved puzzles.

D. Security Analysis of T-IoT Blockchain
In this section, we discuss the security of the T-IoT

blockchain and mathematically show that the probability of
a compromised node being able to falsify blocks in the T-
IoT ledger (as it grows) diminishes exponentially as long as a
majority of the nodes are uncompromised (which is also the
security basis of Nakamoto consensus [12]).

Since Shor’s factor decomposition is impractical for an IoT
node (as discussed earlier), we assume that a compromised
node (an existing or covertly installed one) somehow has
the tuple hP, ri for one or multiple events in T-IoT (e.g.,
from the gateway, through sniffing, spoofing, or via manual
configuration by an attacker) and is able to participate in the
block creation process. Despite having such an advantage, a
compromised node also has to accomplish the following: (i)
modify (i.e., redo the PoWs) the earlier blocks (in all the
related chain of blocks in the ledger) according to its malicious
intents (e.g., changing/falsifying the root cause/s of an event);
(ii) convince the gateway to accept these modifications, which
is against the T-IoT scheme (once a block is added to the
ledger, it cannot be modified); and (iii) wait for no less than
51% of the uncompromised nodes (i.e., miners) to update
their portion of the ledger (i.e., partial consistent cuts), which
may be impractical. Without accomplishing the above goals,
when a compromised node proposes a block for validation,
the legitimate miners will refuse the block based on either the
wrong PoWs or the mismatches in the block hash values.

Mathematically, the operations of the uncompromised nodes
and a compromised node in the T-IoT Blockchain may be
characterized as a binomial random walk [12]. If a block
is added to the ledger by an uncompromised node, then it
is a success and T-IoT’s lead increases by 1. If a block is
added by a compromised node, then it is a failure and T-
IoT’s lead decreases by 1. Here, the probability of T-IoT’s
lead being zero or negative (which means the compromised
node is able to add a new block as well as modify all the
previous blocks in the ledger) due to a compromised node with
a given deficit is analogous to the gambler’s ruin problem [12],



IEEE INTERNET OF THINGS JOURNAL 7

i.e., a gambler with an unlimited credit starts at a deficit and
places an infinite number of bets to reach breakeven. The
following is the probability of a compromised node reaching
the breakeven (and thus T-IoT fails). Let p be the probability
of an uncompromised node adding a block to the ledger, q

be the probability of a compromised node adding a block to
the ledger, and qz be the probability of a compromised node
catching-up from z blocks behind (i.e., the ledger already has
z blocks). We thus have the following [12].

qz =

(
( qp )

z if p > q

1 otherwise.

The above equation shows that qz decreases exponentially as
the number of blocks a compromised node has to catch-up
with increases when p > q.

V. T-IOT EVENT ORDERING PROTOCOL

In this section, we discuss how the miners create a causal
order of the events in T-IoT.

A. Why is Causal Ordering Difficult at the Nodes and Gateway
The Blockchain technology does not guarantee the causal

ordering of the events at the nodes or gateway. In general,
canonical ordering of transactions (within a block) in the
Blockchain is an active area of research [34]–[36]. Due
to the variable communication delays in event propagation
and imperfect physical clocks in the IoT nodes, a particular
event may arrive at different miners at different times. As
a miner groups unregistered events in a block, it may not
thus represent the global ordering of events. For example,
depending on the arrival times of two events e1 and e2, two
miners may group these events in the orders (e1, e2) and
(e2, e1), respectively. Thus in the ledger, the order of these
events will depend on whether the block from miner m1 or
m2 is validated. The jitter in event propagation originates
from the gateway-assisted message passing protocol. A lone
gateway-based event ordering, if possible in a complicated
event chain, will loose the temper-proof property of T-IoT.
Had we facilitated direct messaging between heterogeneous
IoT nodes using the cross-technology communication [37],
such jitters would still persist due to their conversion delays.
A platform with a uniform ontology (e.g., only BLE) may
also suffer due to imperfect physical clocks of the miners.
Achieving physical clock synchronization may not solve this
problem. Rather, it may limit the scalability. We thus focus
on a logical synchronization in T-IoT by extending Lamport’s
logical clock [16], which is a practical choice for ordering
events in a heterogeneous IoT platform. In the following, we
first overview Lamport’s logical clock.

B. Lamport’s Logical Clock
In 1978, mathematician and computer scientist Leslie Lam-

port showed that event ordering via synchronization between
the nodes in a distributed system need not be based on the
absolute time or physical clocks [16], [38]. Even if two
nodes do not interact, they should still be synchronized not

necessarily because the lack of it will not be observable
and thus may not cause problems, but rather it is related to
the ordering of the events. Additionally, he argues that what
suffices for the nodes to agree on is in what order the events
occur (rather than the absolute time). In accordance, he defined
a “happens-before” relationship without referencing to the
physical clocks. If a and b are two events, then “a happens-
before b” means that all processes agree that first event a

occurs, then afterward, event b occurs. Formally, happens-
before relation is defined as follows (denoted by “!”).
- If a and b are two events in a process and event a comes

before event b, then a ! b.
- If a is a message sending event in a process and b is the

receipt of that message by another process, then a ! b.
- If a ! b and b ! c then a ! c for events a, b, and c. Two

distinct events a and b are concurrent if a 9 b and b 9 a.
To facilitate this within a system, he introduced a logical

clock that assigns a number to an event, where the number
represents the time at which it occurs. Specifically, he defined
a clock Ci for each process pi to be a function that assigns
a number Cihai to any event a in pi. The entire system of
clocks, represented by function C, assigns number Chbi to any
event b, where Chbi = Cjhbi if b is an event in process pj .
Thus, the happens-before may be restated as follows.
Clock Condition: For events a, b: if a ! b then Chai < Chbi.

Here, the converse condition may not hold since that implies
any two concurrent events must occur at the same time. Also,
according to the happens-before relation, this Clock Condition
is satisfied if the following conditions hold.
- If a and b are events in process pi, and a comes before b,

then Cihai < Cihbi.
- If a is a sending of a message by process pi and b is the

receipt of that message by process pj , then Cihai < Cjhbi.

C. Vector Clock-Based Causal Ordering
Since Lamport’s logical clock does not guarantee that if

Chai < Chbi then a ! b, it may not be used directly when
concurrent events are present. In the following, we discuss
our vector clock-based event ordering protocol that leverages
Lamport’s Logical Clock notion. In each miner, a counter
represents a logical clock. Also, each miner mi maintains a
vector Vi[1 · · ·n], where n is the number of miners (including
itself) that may trigger an event in it, Vi[j] is the number of
messages/actions from miner mj that has been received at
it, and Vi[i] is the number of messages/actions sent by itself.
These vectors are similar to the vectors used in the vector clock
system [39], [40], however, with the following exceptions. (1)
The vector clock system requires each node to have entries
for all other nodes in the system, whereas, in T-IoT, a miner
maintains entries only for its associated miners. (2) The miners
in T-IoT reset their vectors as soon as the associated events
are validated. This resetting technique also accounts for the
dynamic node join/leave (e.g., installing/uninstalling event
chains) in the network. If a node dies during a block validation,
the gateway can still stick to the Nakamoto consensus and
decide on approving/disapproving an event. Therefore, if a
node leaves/joins, there is no additional overhead.



IEEE INTERNET OF THINGS JOURNAL 8

Formally, vector Vi in T-IoT has the following properties.
- All miners initialize their vectors V [1 · · ·n] with 0.
- When miner mi sends a message, it increments Vi[i] and

attaches its vector as a timestamp (TS) to the message.
- When miner mj receives a message from miner mi, mj sets
Vj [k] = max(Vj [k], TSi[k]), 8k 6= j and then increments
Vj [j] by 1. Here, TSi is the TS sent by miner mi.
Now, if a is an event from miner mi and b is an event

from miner mj , miner mk can determine the causal relation
between events a and b as a ! b if Vk(a)[i]  Vk(b)[i],
where Vk(a)[i] denotes the i-th entry of miner mk’s vector
after reception of event a from miner mi and Vk(b)[i] denotes
the i-th entry of miner mk’s vector after reception of event b
from miner mj . However, such causal relation will be true only
if the communication channel is deemed reliable and follows
the first-in-first-out (FIFO) message forwarding strategy. Thus,
the gateway simply follows the FIFO strategy while passing
messages between nodes. Miners, however, confirm the causal
message delivery as follows. Miner mj postpones creation of
a block for validation in T-IoT until
- TSi[i] = Vj [i] + 1, where TSi is the TS sent by miner mi.
- TSi[k]  Vj [k], 8k 6= i.

As an example, let miner m3 have V3 = [0, 1, 1], i.e., miner
m3 has received 0 message from miner m1, 1 message from
miner m2 and, sent 1 message so far. Later, miner m1 sends a
message with TS1 = [1, 2, 0]. At this point, miner m3 checks
and confirms it is the next message from miner m1 since
TS1[0] = V3[0] + 1. However, miner m3 does not create
a block immediately for validation since TS1[2] > V3[2].
Instead, miner m3 waits for a message from miner m2. Once
the missing message is received, miner m3 creates a block
for validation with respective order and solves the respective
puzzles. As soon as that block is validated, all the associated
miners decrease entries in their vectors depending on what
events have been validated. Each validated block in this way
contains the global causal ordering of the events.

VI. T-IOT PROVENANCE CREATION

In this section, we describe how the gateway creates a data
provenance in the form of DAGs. This protocol is essential to
provide a pervasive knowledge representation of the ordering.
Additionally, it may serve as the entry point for the developer’s
community for building applications. To recall, PROV-DM
DAGs have entity, activity, and agent nodes. We refer to these
nodes as DAG-nodes. In parallel to the block validation, the
gateway identifies the DAG-nodes continually and generates
provenance graphs of the trigger-action-based chains (or sim-
ply action-chains). An action-chain involves chaining of one
or more events in accordance with the happens-before relation.
In the following, we discuss the components and procedure of
the T-IoT provenance protocol.

A. Device Handlers
They represent the IoT nodes at the gateway. Communica-

tion between the gateway and a node (miner/non-miner) hap-
pens through the node’s device handler. Each device handler

manages the low-level commands (e.g., event handlers for
the supported events) and exposes a programmable interface
that allows the developers to provide custom-built automation
support. The event handler for each event is known to the
associated nodes and the gateway. A user may communicate
with a device handler to invoke an event handler to execute
an action (e.g., lock a door) or subscribe to broadcast events
(e.g., motion detection event).

B. Action-chains
The gateway creates a provenance graph for each action-

chain. An action-chain may involve one or multiple events
that lead the system to a specific state. Each action-chain has
a start event and one or more end events, where the start
event is the root cause and an end event is a final outcome.
An action-chain that involves only one event will recognize
that event as both start and end events. Such an action-chain
may emerge in the IoT platforms due to the interventions from
the users, device malfunction, attackers, and/or relationships
derived from all the existing action-chains.

C. Identifying Entity, Activity, and Agent
To recall, an entity is a data object which led the system

to its current state, an activity is responsible for creating one
or multiple entities, and an agent helps one or multiple activ-
ities to create entities. In T-IoT, the gateway identifies each
event (observable in the system) as an entity, each validated
event handler that generated an event as an activity, and each
IoT node (e.g., miner) that executes an event as an agent. For
example, the sound of an alarm (observable symptom) in a
smart home is identified as an event, the invoking function
alarm on is identified as an activity, and the alarm sensor is
identified as an agent. To define the dependencies between the
DAG nodes, the gateway encodes appropriate edge labels, as
depicted in Figure 2.

D. Provenance Creation Algorithm
Based on the observable symptoms or requests by the users,

the gateway first identifies the end event/s. Note that it can
start with any number of such independent events which
eventually conforming to a single or multiple action-chains.
Considering a single event, the gateway locates the event in
the T-IoT Blockchain ledger and identifies the corresponding
entity, activity, and agent. A recent event may reside within
a recently validated block. The gateway thus starts from the
latest blocks of each chain of blocks in the T-IoT Blockchain.
The dependencies between the IoT nodes are known to it.
When the end event/s are found, it follows the events in a
block in the reverse order and looks for a triggering event.
If it needs to traverse multiple blocks, it does so in the
reverse order as well through the selected chain of blocks.
This backtracking-based search procedure ends when all the
observable symptoms (e.g., events) merge to a single triggering
event or finish independently by identifying their own trigger-
ing events. The gateway thus has the provenance graphs of
one or multiple action-chains. The flowchart of the provenance
creation algorithm is shown in Figure 6.



IEEE INTERNET OF THINGS JOURNAL 9

Figure 6. Flowchart of the provenance creation algorithm.

VII. IMPLEMENTATION

We have implemented a proof of concept IoT platform
using GNU Radio [41], USRP [42], laptop, and several COTS
IoT devices including TI CC1310 [31], TI CC1350 [43],
and Dragino LoRa Hat [44] on Raspberry Pi 3 [32]. GNU
Radio is a signal processing toolkit (installed on a PC) for
implementing software-defined radios, which is used in our
gateway. Our gateway is equipped with four different types of
wireless communication technologies: Wi-Fi [45], BLE [46],
LoRa [47], and IEEE 802.15.4g [48]. Each of these technology
is supported by a half-duplex USRP device to act as the radio
front-end, and data collected from USRPs are processed by
C++ and Python. We thus have a multi-radio gateway similar
to many commercially available smart home gateways [1]. We
use a laptop that acts as the Cloud backend. The gateway
connects to the Cloud backend via Wi-Fi. We have used 19 TI
CC1310 devices, 3 TI CC1350 devices, and 8 Dragino LoRa
Hat devices as the IoT nodes in our platform. Figure 7 shows
the actual devices (except the PC running GNU Radio) used
in our implementation.

Figure 7. Devices used in our implementation.

Each TI CC1310 device is connected to the gateway via
IEEE 802.15.4g and uses a CSMA/CA (carrier sense multiple
access/collision avoidance)-based MAC (media access control)
protocol [48]. Each TI CC1350 device is connected to the gate-
way via BLE and uses the GATT (Generic Attribute Profile)
data transfer protocol [46], [49], [50]. Each LoRa Hat device is
connected to the gateway via LoRa communication technology
and uses a pure ALOHA-based MAC protocol [47]. We have
implemented the T-IoT Blockchain and ordering protocols
in each of the IoT devices using C, C++, or Python
programming language, depending on its native programming
language support. For energy consumption calculation at the
devices, we use their transmit/receive current consumption

with a 15 dBm of transmission power under a supply voltage
of 3.8 V (typical for the IoT sensors). Specifically, E =R
v.i.dt, where E is the energy consumed (in mJ) over a

period of dt (duration of transmit/receive window in ms) under
voltage v (in V) and current i (in Amp).

VIII. EVALUATION

In the section, we evaluate all the T-IoT protocols using our
implementation described in Section VII.

A. Experimental Setup
Event Chains. We let each IoT node execute one unique event
(total of 30 events, which is typical in the smart homes [51],
[52]). Each event has a unique event handler (i.e., number).
We also pseudo-randomly create 10 trigger-action-based event
chains of lengths 10–20 (thus, the maximum size of a partial
cut will be 20), where a device may participate in 5 chains at
maximum (also typical in the smart homes). In each chain, we
find the first event and (re)activate it during our experiments
(reactivation interval: 10–20 seconds). Note that we are unable
to find datasets, generated by the existing IoT platforms, which
fit and account for the novelty of our design.
Device Attributes. Each node uses a 30-byte payload (typical
for sensors [53]) while the actual frame size may vary depend-
ing on its communication protocol. The channel bandwidths
for BLE, IEEE 802.15.4g, and LoRa (spreading factor: 9,
coding rate: 4

5 ) are 1 MHz, 98 KHz, and 500 KHz, respec-
tively. These settings let each technology take approximately
the same time to send a 30-byte payload. Each node also uses
a 15 dBm of transmission power. For storage capacity, we find
that ⇡ 2560 bytes of the TI CC13x0 (CC1310 or CC1350) are
usable, which again shrinks as the main-thread-stack grows
(up to 1024 bytes). Considering the program size, we thus
limit a maximum of 20 blocks to be saved in the node’s flash
memory, which is 400 bytes (explained in the next paragraph).
The gateway is connected to a laptop (via Wi-Fi) where it saves
the entire ledger. It also chooses 30 random primes between
the 800th and 1200th primes, calculates their primitive roots,
and assigns random roots to the IoT nodes, as required.
Blockchain Parameters. Typically, the maximum size of a
block and the maximum number of transactions per block
are fixed (e.g., 1-MB block and 400 transactions per block
in Bitcoin [12]). In T-IoT, we limit the size of a block to 20
bytes to fit inside the payload of a message. The rest of the 10
bytes are used to encode K of our PoW puzzle. In our setup,
a device may be added to at most 5 event chains, and thus
may try to validate 5 events at maximum in one block. We
reserve 2 bytes for encoding the value of K so that a node
can fit five Ks, along with a block inside a payload. With 2
bytes, the value of K ranges between 0 and 216 (unsigned).
The above limits may provide reasonable protection against
the compromised nodes and can be changed if needed. For
the block size, we allow a maximum of 20 bytes, where the
block ID< i, j > is 16 bits (8 bits for each index), block hash
is 8 bits, parent hash is 8 bits, transaction hash is 8 bits, and
each transaction is 8 bits. Without the transactions, the size of
a block adds up to (16 + 8 + 8 + 8) = 40 bits. Thus, leaving



IEEE INTERNET OF THINGS JOURNAL 10

2 3 4 5 6 7 8 9 10
# of concurrent event chains

0  

50 

100

150

200

250

300

350

400

A
vg

. 
st

o
ra

g
e
 s

iz
e
 (

b
yt

e
/m

in
e
r)

LRU
cut <= 20
cut <= 15
cut <= 10
cut <= 5

(a) Storage growth

2 3 4 5 6 7 8 9 10
# of concurrent event chains

0  

0.5

1  

1.5

2  

2.5

3  

3.5

4  

A
vg

. 
la

te
n
cy

 (
se

co
n
d
/m

in
e
r)

LRU
cut <= 20
cut <= 15
cut <= 10
cut <= 5

(b) Block validation latency

2 3 4 5 6 7 8 9 10
# of concurrent event chains

0  

50 

100

150

200

250

A
vg

. 
e
n
e
rg

y 
sp

e
n
t 
(m

J/
m

in
e
r)

LRU
cut <= 20
cut <= 15
cut <= 10
cut <= 5

(c) Block validation energy consump.
Figure 8. Performance of T-IoT Blockchain protocol with various numbers of concurrent trigger-action-based event chains.

the space for a maximum of (20⇤8�40)/8 = 15 transactions
(each of 8 bits) in a block. With these setup, T-IoT can host
28 distinct events in any IoT platform. The hash values in the
experiments are calculated based on the XOR function.

B. Performance of the T-IoT Blockchain

We now evaluate the performance of the T-IoT Blockchain
protocol in terms of the storage growth, latency, and energy
requirements in the miners. We allow between 2 to 10 different
chains to execute in parallel. Each node associated with an
executing chain acts as a miner. Miners, however, are allowed
to save and replace block/s that have events belonging to a
partial consistent cut of size less than or equal to a fixed
number C. We repeat this experiment 5 times by setting the
value of C to 1, 5, 10, 15, and 20, respectively. Setting C =
1 refers to the LRU replacement policy, which is the baseline
for comparison since it is the naive approach.
Storage Growth. As shown in Figure 8(a), the average storage
size per miner is approximately 160 bytes when 2 chains
execute concurrently and the miners store/replace blocks based
on the LRU policy, compared to 23, 30, 35, and 41 bytes
when they store/replace blocks based on the cut sizes  5,
10, 15, and 20, respectively. As the number of concurrent
chains increases, the average storage size per miner also
increases for all the scenarios. LRU, however, saturates the
miner’s storage capacity faster (with 4 concurrent event chains)
than the other scenarios. Between other scenarios, each cut
gradually approaches its limit, e.g., the storage in a miner
having a cut size  5 does not grow beyond 100 bytes (5⇤ 20
bytes). This experiment thus shows that the LRU replacement
policy performs the worst. Additionally, with a cut size  5,
the miners can easily execute the T-IoT blockchain protocol.
Validation Latency. Figure 8(b) shows the average latency
per miner per block. When 2 concurrent chains execute,
the average latency per miner is approximately 0.72 seconds
when the miners save/replace blocks using the LRU policy,
compared to 0.2, 0.19, 0.19, and 0.2 seconds when they use
the cut sizes  5, 10, 15, and 20, respectively. As the number
of concurrent event increases, the latency increases for all the
cases. Again, LRU policy performs the worst (e.g., the latency
is approximately 4 seconds for 10 chains). The average latency
per miner with a cut size  20 is approximately 0.4 seconds
(for 10 chains), which is very low compared to the others.
In fact, the change in latency is negligible across different

concurrent chains. This experiment thus confirms that miners
may validate blocks faster if the consistent cut size is larger.
Validation Energy Consumption. As shown in Figure 8(c),
when 2 concurrent chains execute, the average energy con-
sumption per miner to validate one block is approximately
42.2 mJ for the LRU policy, compared to approximately 11.4,
10.83, 10.9, and 11.4 mJ for the cut sizes  5, 10, 15, and 20,
respectively. The increase in energy consumption per miner per
block follows the similar trend of the average latency, as the
number of concurrent chains increases. Overall, for 10 chains,
a miner with cut size  20 consumes the minimum energy
(approximately 23 mJ) compared to others since it needs no
block replacement. Hence, an increase in the cut size increases
the energy efficiency of the T-IoT Blockchain protocol.

C. Performance of the Ordering Protocol

In this section, we evaluate the performance of the ordering
protocol in terms of message-to-event ratio (MER), latency,
and energy requirements in the miners. MER is defined as the
ratio of the number of messages to the number of events in
a chain. In experiments, we set the consistent cut size to 
20 in all the miners since it is the most energy-efficient and
requires the least time to validate a block. Also, we vary the
number of miners between 2 and 10 for each event chain to
determine its effects on the ordering.
Message-to-event Ratio. As shown in Figure 9(a), when 2
concurrent chains execute, the MER per miner is approxi-
mately 1.2, 1.3, 1.39, 1.5, and 1.9 for 2, 4, 6, 8, and 10
miners, respectively. As the number of chains increases, the
MER per miner also increases almost linearly for all the cases.
Also, as we increase the number of miners, the MER per
miner increases, which is due to an increase in the number
of messages between the miners. For example, in the case of
10 miners and 10 chains, the MER per miner is approximately
3.7, which is practical with respect to its latency and energy
requirements, as discussed below.
Event Ordering Latency and Energy Consumption. As
the MER increases with the number of miners, the event
ordering latency also increases. Figure 9(b) shows that when
10 concurrent chains execute, the average latency per chain
(i.e., average latency per miner) is approximately 1.92, 2.05,
2.11, 2.36, and 2.44 seconds for 2, 4, 6, 8, and 10 miners,
respectively. Such a sub real-time latency is practical for the
smart home, traffic, or/and crime monitoring applications. As
shown in Figure 9(c), the average energy consumption per



IEEE INTERNET OF THINGS JOURNAL 11

2 3 4 5 6 7 8 9 10
# of concurrent event chains

1  

1.5

2  

2.5

3  

3.5

4  

M
e
ss

a
g
e
-t

o
-e

ve
n
t 
ra

tio
 (

/m
in

e
r)

n_miners=10
n_miners=8
n_miners=6
n_miners=4
n_miners=2

(a) Message-to-event ratio

2 3 4 5 6 7 8 9 10
# of concurrent event chains

0  

0.5

1  

1.5

2  

2.5

A
vg

. 
la

te
n
cy

 (
se

co
n
d
/c

h
a
in

)

n_miners=10
n_miners=8
n_miners=6
n_miners=4
n_miners=2

(b) Event ordering latency

2 3 4 5 6 7 8 9 10
# of concurrent event chains

0  

30 

60 

90 

120

150

 A
vg

. 
e
n
e
rg

y 
sp

e
n
t 
(m

J/
m

in
e
r)

n_miners=10
n_miners=8
n_miners=6
n_miners=4
n_miners=2

(c) Event ordering energy consump.
Figure 9. Performance of the T-IoT event ordering protocol under various numbers of concurrent trigger-action-based event chains.

miner follows the similar trend that we observe in the average
latency. For 10 chains, the average energy consumption per
miner is approximately 109, 120, 123, 137, and 142 mJ as we
set the number of miners to 2, 4, 6, 8, and 10, respectively,
which is also practical for battery-powered IoT nodes.

D. Experiments on Provenance Creation

In this section, we experiment on the T-IoT provenance
creation protocol that runs at the gateway. Specifically, we
show that the provenance creation protocol is accurate and
timely. Additionally, we represent the achieved ordering in
the form of PROV-DM DAG, which may be perceived as an
observable output of the T-IoT framework. In the following,
we first discuss the setup and then describe the experimental
results with a provenance graph.
Setup. To facilitate this experiment, we take out 5 of our
devices from the experimental setup of the event chains
(Section VIII-A) and label them as different sensor nodes such
as smoke detector, smoke monitor, window sensor, fire alarm
sensor, and water sprinkler sensor. These sensors have the
following relationships. The smoke monitor sensor activates
the window sensor, fire alarm sensor, and water sprinkler
as it observes the smoke detector detects smoke. The above
setup is thus an event chain that associates 5 sensors. Note
that the smoke monitor does not execute any event by itself,
but activates events in the window, alarm, and sprinkler
by invoking their event handlers. Additionally, these are all
fabricated events (thus, no safety hazards) in our setup where
the smoke detector generates a smoke detection event as soon
as we start our experiment. To show the correctness of the
T-IoT provenance creation protocol, we run our smoke event
chain in parallel to the 10 other concurrently executing event
chains where the cut size is set to  20 and the number
of miners is set to 5. Note that the T-IoT Blockchain and
event ordering protocols also run in the background. After 15
seconds from the start of our experiment, we execute a user
program at the gateway that asks for a provenance graph of the
window open, alarm on, and sprinkler on events. We repeat
the same experiment 10 times with a random interval between
10 to 15 seconds to show its scalability and correctness.
Results. The gateway creates and returns the provenance graph
in the form of a DAG for each run of our experiment with an
accuracy of 100% and average latency of approximately 3.5
seconds. We draw the provenance graph in the form of PROV-
DM provenance model which is shown in Figure 10. As shown

eHandler: 
window_open

eHandler: 
alarm_on

eHandler: 
sprinkler_on

sensor: window sensor: alarm sensor: sprinkler

event: 
window open

event: 
alarm on

event: 
sprinkler on

eHandler: 
smoke_monitor

event: smoke 
detected

eHandler: 
smoke_detect

sensor: smoke 
detector

sensor: smoke 
monitor

wasGeneratedBy wasGeneratedBy wasGeneratedBy

wasAssociatedWith
wasAssociatedWith

wasAssociatedWith
wasInformedBy wasInformedBy

wasInformedBy

wasAssociatedWith
Used

wasGeneratedBy

wasAssociatedWith

Figure 10. Visual representation of the smoke detect provenance graph.

in this figure, all of our three requesting events, i.e., window
open, alarm on, and sprinkler on converge to their root cause,
which is a smoke detection event. This experiment thus shows
that the provenance creation protocol in T-IoT is pervasive,
accurate, and timely.

E. Comparison with Other Provenance Creation Protocols

In this section, we compare the storage overhead in our T-
IoT scheme (across all the nodes) with the schemes proposed
in [1]. The work in [1] has similar goals and security assump-
tions to ours, however, with significant protocol differences,
as described in Section IX. The work in [1] proposed two
schemes (ProvFull & ProvSave) to detect anomalies in event
ordering in the IoT platforms, of which ProvSave has the
lowest storage overhead (⇡59% better than ProvFull). The
storage overhead in [1] consists of metadata added to the
node’s software program. In T-IoT, the storage overhead
at the nodes consists mainly of their participation in the
Blockchain protocol. For comparison, we consider various
number of events and calculate the total storage overhead in
T-IoT and ProvSave in [1]. Overhead data for ProvSave is
directly adjusted (approximated using a curve-fitting approach)
from [1] to fit our experimental setup (e.g., total events)
in Section VIII-A, while T-IoT’s overhead is based on its
Blockchain operation.

Figure 11 shows the storage overhead comparison between
T-IoT and [1] in terms of their best storage-friendly proto-
cols or parameters (which is cut size  5 in T-IoT). As
shown in this figure, as the number of concurrent chains
increases from 2 to 10, the storage overhead in ProvSave



IEEE INTERNET OF THINGS JOURNAL 12

2 3 4 5 6 7 8 9 10
# of concurrent event chains

0 

4 

8 

12

16

20

T
o
ta

l S
to

ra
g
e
 O

ve
rh

e
a
d
 (

K
B

)

T-IoT (cut <= 5)
ProvSave

Figure 11. Storage overhead comparison between T-IoT and ProvSave [1].

increases linearly, while it remains constant in T-IoT with a
cut size  5. For example, the total storage overhead in T-
IoT remains approximately 2.93 KB when 10 chains execute
concurrently, compared to an approximate increase to 16.27
KB in ProvSave. The storage overhead in ProvSave increases
linearly because it requires additional software or program
instrumentation as the number of chains (and hence events)
increases. In T-IoT, a cut size  5 restricts each node to saving
a limited number of blocks from the ledger, and hence the
storage growth is also restricted. Overall, Figure 11 shows
that the T-IoT scheme is much more storage-friendly for the
resource-constrained IoT nodes.

IX. RELATED WORK

Blockchain in IoT. Blockchain protocols have been adopted
in the IoT platforms in various ways that include secure
data transfer between the gateway and Cloud [54], IoT de-
vice management [55]–[58], securing multiple smart homes
collectively [59], secure data sharing within/across organiza-
tions [60], [61], and proposing business models for IoT [62].
This large body of work, however, adopts the Blockchain
protocol on the overlay (or overhaul) network where the
devices (e.g., gateway, router, servers, etc.) have sufficient
computing power and storage capacity and are connected
via fast Internet connection, thus cope with the Blockchain
requirements (e.g., SpeedyChain [63] and EdgeChain [64]).

In this work, we bring the Blockchain protocol to the
end devices (e.g., IoT sensor/actuator nodes deployed for
sensing/actuation) of the IoT platforms. To the best of our
knowledge, ours is the first Blockchain protocol that is tai-
lored for the resource-constrained (e.g., limited storage and
computational power) heterogeneous IoT devices that connect
to the IoT gateway via wireless. Additionally, to the best of
our knowledge, T-IoT is the first framework that interconnects
the Blockchain and vector clock to provide transparent and
tamper-proof event ordering in general. A few works that bring
distributed ledger or Blockchain to the IoT devices include
IOTA [65] and Sensor-Chain [66]. IOTA is a cryptocurrency
for the IoT industry, which maintains a distributed ledger
(not Blockchain) among homogeneous (e.g., communication
protocol) devices with fixed types of preloaded transactions.
Sensor-Chain Blockchain does not incorporate any PoW con-
sensus protocol, works within homogeneous nodes, and cannot
guarantee tamper-proof ledger maintenance. In contrast to
these, T-IoT enables Blockchain over heterogeneous IoT nodes
to provide tamper-proof transparency in the IoT platforms.

Data Provenance in IoT. Data provenance in the IoT plat-
forms can be broadly categorized into device-centric [67]
and platform-centric [1] models. Device-centric provenance
reflects causal relationships of data objects within a device that
cannot be generalized for building a global provenance of its
embodying platform due to the heterogeneity of the devices.
In this paper, we facilitate platform-centric provenance that
supports several degrees of heterogeneity.

The closest work with the similar goal to ours is [1]
that also provides a platform-centric provenance for the IoT
platforms. However, we have the following differences. (1)
The framework in [1] is orchestrated by instrumenting/adding
software programs at different levels such as the platform
Cloud/gateway and the user applications (similar to those
in ifttt [68] and tray.io [69]). On the other hand, T-
IoT is designed by instrumenting the device’s programmable
interfaces (e.g., device handlers). Additionally, our device
instrumentation leaves the doors open for building innovative
protocols for the IoT platforms (e.g., Blockchain and vector
clock) that are not possible in [1]. (2) We enable Blockchain
in the resource-constrained heterogeneous IoT devices that is
unique in T-IoT. (3) For ordering of events, we customize
the vector clock system while [1] depends on instrumenting
the application programs. Additionally, our event ordering
logically synchronizes the IoT devices, which is not possible
in [1]. (4) For any change in the existing set of trigger-action-
based event chains, [1] will need to re-instrument program
code, which is unrealistic. On the other hand, in T-IoT, it can
be handled effectively by enabling/disabling event handlers
from device handlers. Thus, T-IoT is more scalable.

X. CONCLUSIONS

In this paper, we have proposed a transparent and tamper-
proof event ordering framework called T-IoT by tailoring the
Blockchain protocol for the resource-constrained IoT devices.
To overcome their storage and computation limitations, we
have allowed the devices to save only a portion of the ledger
based on a partial consistent cut and engineered an efficient
modular arithmetic-based PoW puzzle, respectively. Ordering
of the events has been achieved through the adoption of the
vector clock system, customized for the IoT platforms. We
have then proposed a backtracking-based data provenance
creation protocol. We have implemented T-IoT using COTS
devices. Our experiments with 10 concurrent trigger-action-
based event chains (each chain involving up to 20 devices
and each device participating in 5 different event chains) have
demonstrated that the ordering of these events may be done in
2.5 seconds at the cost of 140 mJ of energy per device, which
is much promising for many IoT applications, including smart
home, traffic/accident monitoring, and crime investigation.

ACKNOWLEDGEMENTS

This work was supported by NSF through grants CNS-
2301757, CAREER- 2211523, CCF-2118202, CNS-2211642,
and by ONR through grant N00014-22-1-2155.



IEEE INTERNET OF THINGS JOURNAL 13

REFERENCES

[1] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in
the internet of things,” in NDSS ’18, 2018, pp. 1–15.

[2] R. Cucchiara, M. Piccardi, and P. Mello, “Image analysis and rule-
based reasoning for a traffic monitoring system,” IEEE Transactions
on Intelligent Transportation Systems, vol. 1, no. 2, pp. 119–130, 2000.

[3] M. L. Sichitiu and M. Kihl, “Inter-vehicle communication systems: a
survey,” IEEE Comm. Surv. & Tutor., vol. 10, no. 2, pp. 88–105, 2008.

[4] T. Semertzidis, K. Dimitropoulos, A. Koutsia, and N. Grammalidis,
“Video sensor network for real-time traffic monitoring and surveillance,”
IET intelligent transport systems, vol. 4, no. 2, pp. 103–112, 2010.

[5] T. Doumi, M. F. Dolan, S. Tatesh, A. Casati, G. Tsirtsis, K. Anchan,
and D. Flore, “Lte for public safety networks,” IEEE Comm. Magazine,
vol. 51, no. 2, pp. 106–112, 2013.

[6] I. Butun, M. Erol-Kantarci, B. Kantarci, and H. Song, “Cloud-centric
multi-level authentication as a service for secure public safety device
networks,” IEEE Comm. Magazine, vol. 54, no. 4, pp. 47–53, 2016.

[7] G. Boateng, V. G. Motti, V. Mishra, J. A. Batsis, J. Hester, and D. Kotz,
“Experience: Design, development and evaluation of a wearable device
for mhealth applications,” in MobiCom ’19, 2019, pp. 1–14.

[8] J. Park, W. Nam, J. Choi, T. Kim, D. Yoon, S. Lee, J. Paek, and J. Ko,
“Glasses for the third eye: Improving the quality of clinical data analysis
with motion sensor-based data filtering,” in SenSys ’17, 2017, pp. 1–14.

[9] Z. Jia, A. Bonde, S. Li, C. Xu, J. Wang, Y. Zhang, R. E. Howard, and
P. Zhang, “Monitoring a person’s heart rate and respiratory rate on a
shared bed using geophones,” in SenSys ’17, 2017, pp. 1–14.

[10] J. Cheney, S. Chong, N. Foster, M. Seltzer, and S. Vansummeren,
“Provenance: a future history,” in OOPSLA ’09, 2009, pp. 957–964.

[11] B. Patterson, “Zigbee vulnerability lets hackers use hue bulbs to hijack
your network,” 2020. [Online]. Available: https://www.techhive.com/
article/578322/

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[13] R. Miller, “Walmart is betting on the blockchain to improve food
safety,” 2018. [Online]. Available: https://techcrunch.com/2018/09/24/
walmart-is-betting-on-the-blockchain-to-improve-food-safety/

[14] Statista, “Size of the bitcoin blockchain,” 2019.
[Online]. Available: https://www.statista.com/statistics/647523/
worldwide-bitcoin-blockchain-size/

[15] U. Irfan, “Bitcoin is an energy hog. where is all that electricity
coming from?” 2019. [Online]. Available: https://www.vox.com/2019/
6/18/18642645/bitcoin-energy-price-renewable-china

[16] L. Lamport and C. Time, “the ordering of events in a distributed system,”
Communications, vol. 21, no. 7, pp. 558–565, 1978.

[17] “Hijacking iot,” 2020. [Online]. Available: https://www.cbronline.com/
breaches/hackers-can-hijack-100-of-smart-home-devices-4508843/

[18] “Iot device security,” 2020. [Online]. Available: https://documents.
trendmicro.com/assets/white papers/IoT-Device-Security.pdf

[19] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The good,
the bad, and the differences: Better network diagnostics with differential
provenance,” in SIGCOMM ’16, 2016.

[20] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the linux kernel,” in USS ’15, 2015, pp. 319–334.

[21] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting.” in NDSS, 2016.

[22] “Prov-dm: The prov data model,” 2013. [Online]. Available: https:
//www.w3.org/TR/prov-dm/

[23] E. Nwafor et al., “Towards a provenance collection framework for
internet of things devices,” in UIC-ATC ’17, 2017, pp. 1–6.

[24] M. Sha, G. Hackmann, and C. Lu, “Energy-efficient low power listening
for wireless sensor networks in noisy environments,” in IPSN ’13, 2013,
pp. 277–288.

[25] G. Lu, D. De, M. Xu, W.-Z. Song, and B. Shirazi, “A wake-on sensor
network,” in SenSys ’09, 2009, pp. 341–342.

[26] O. Choudhury, H. Sarker, N. Rudolph, M. Foreman, N. Fay, M. Dhuli-
awala, I. Sylla, N. Fairoza, and A. K. Das, “Enforcing human subject
regulations using blockchain and smart contracts,” Blockchain in Health-
care Today, pp. 1–14, 2018.

[27] P. Ribenboim, The new book of prime number records. Springer Science
& Business Media, 2012.

[28] D. Lehmer, “On euler’s totient function,” Bulletin of the American
Mathematical Society, vol. 38, no. 10, pp. 745–751, 1932.

[29] D. M. Burton, “The history of mathematics: An introduction,” Group,
vol. 3, no. 3, p. 35, 1985.

[30] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[31] “Ticc13x0,” 2020. [Online]. Available: http://www.ti.com/
[32] D. T. C. LTD, “Lora gps hat for raspberry pi,” 2019. [Online]. Available:

https://www.dragino.com/products/lora/item/106-lora-gps-hat.html
[33] J. Chu, “The beginning of the end for encryption

schemes?” 2016. [Online]. Available: https://news.mit.edu/2016/
quantum-computer-end-encryption-schemes-0303

[34] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint
arXiv:1904.05234, 2019.

[35] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and
mtgox,” in ESORICS ’14, 2014, pp. 313–326.

[36] J. Vermorel, A. Sechet, S. Chancellor, and T. Wansem, “Canonical
transaction ordering for bitcoin,” 2018. [Online]. Available: https:
//blog.vermorel.com/pdf/canonical-tx-ordering-2018-06-12.pdf

[37] Y. Chen et al., “Survey of cross-technology communication for iot
heterogeneous devices,” IET Comm., vol. 13, no. 12, pp. 1–12, 2019.

[38] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Concurrency: the Works of Leslie Lamport, 2019.

[39] C. J. Fidge, “Timestamps in message-passing systems that preserve the
partial ordering,” 1987, CS, Australian National University.

[40] F. Mattern et al., “Virtual time and global states of distributed systems,”
1988, Computer Science, University of Kaiserslautem.

[41] “GNU Radio,” 2019, http://gnuradio.org.
[42] “Ettus research,” 2020, https://www.ettus.com/.
[43] “Ticc1350,” 2019. [Online]. Available: shorturl.at/drL37
[44] “Dragino lora hat,” 2019. [Online]. Available: shorturl.at/adgWX
[45] “IEEE 802.11a,” 2020, https://github.com/bastibl/gr-ieee802-11.
[46] “BLE GNURadio Rx,” 2020, https://github.com/greatscottgadgets/gr-

bluetooth.
[47] “LoRa on Gnu Radio,” 2020, https://github.com/rpp0/gr-lora.
[48] “IEEE 802.15.4g,” 2020, https://github.com/dudmuck/gr-ieee802154g.
[49] “Modified For BLE Tx,” 2020, https://github.com/greatscottgadgets/gr-

bluetooth.
[50] “GATT,” 2019, https://learn.adafruit.com/introduction-to-bluetooth-low-

energy/gatt.
[51] “Iot,” 2020, https://www.homestratosphere.com/smart-home-sensors/.
[52] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “Casas:

A smart home in a box,” Computer, vol. 46, no. 7, pp. 62–69, 2012.
[53] M. Rahman, D. Ismail, V. P. Modekurthy, and A. Saifullah, “Implemen-

tation of lpwan over white spaces for practical deployment,” in IoTDI
’19, 2019, pp. 178–189.

[54] J. Lin, Z. Shen, C. Miao, and S. Liu, “Using blockchain to build trusted
lorawan sharing server,” International Journal of Crowd Science, 2017.

[55] S. Huh, S. Cho, and S. Kim, “Managing iot devices using blockchain
platform,” in ICACT ’17, 2017, pp. 464–467.

[56] P. Danzi, A. E. Kalor, C. Stefanovic, and P. Popovski, “Analysis of the
communication traffic for blockchain synchronization of iot devices,” in
ICC ’18, 2018, pp. 1–7.

[57] O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IoT Journal, vol. 5, no. 2, pp. 1184–1195, 2018.

[58] A. Z. Ourad et al., “Using blockchain for iot access control and
authentication management,” in IoT ’18, 2018, pp. 150–164.

[59] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an optimized
blockchain for iot,” in IoTDI ’17, 2017, pp. 173–178.

[60] S. H. Hashemi, F. Faghri, P. Rausch, and R. H. Campbell, “World of
empowered iot users,” in IoTDI ’16, 2016, pp. 13–24.

[61] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in SP Workshops ,15, 2015, pp. 180–184.

[62] Y. Zhang and J. Wen, “The iot electric business model: Using blockchain
technology for the internet of things,” P2P Netw. and App., vol. 10, no. 4,
pp. 983–994, 2017.

[63] J. Kang et al., “Toward secure blockchain-enabled internet of vehicles:
Optimizing consensus management using reputation and contract the-
ory,” IEEE Trans. on Vehic. Tech., vol. 68, no. 3, pp. 1–14, 2019.

[64] J. Pan, J. Wang, A. Hester, I. AlQerm, Y. Liu, and Y. Zhao, “Edgechain:
An edge-iot framework and prototype based on blockchain and smart
contracts,” IoT Journal, vol. 6, no. 3, pp. 4719–4732, 2018.

[65] S. Popov, “The tangle,” cit. on, p. 131, 2016. [Online]. Available: http:
//tanglereport.com/wp-content/uploads/2018/01/IOTA Whitepaper.pdf

[66] A. R. Shahid, N. Pissinou, C. Staier, and R. Kwan, “Sensor-chain: A
lightweight scalable blockchain framework for internet of things,” in
iThings, GreenCom, CPSCom, and SmartData ’19, 2019, pp. 1–8.

[67] M. N. Aman, K. C. Chua, and B. Sikdar, “Secure data provenance for
the internet of things,” in IoTPTS ’17, 2017, pp. 11–14.

[68] “Iffft,” 2020. [Online]. Available: https://ifttt.com
[69] “Tray.io,” 2020. [Online]. Available: https://tray.io


