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Abstract—Estimating multimodal distributions of travel times
from real-world data is critical for understanding and managing
congestion. Mixture models can estimate the overall distribution
when distinct peaks exist in the probability density function, but
no transfer of mixture information under epistemic uncertainty
across different spatiotemporal scales has been considered for
capturing unobserved heterogeneity. In this paper, a physics-
informed and -regularized prediction model is developed that
shares observations across similarly distributed network seg-
ments across time and space. By grouping similar mixture
models, the model uses a particular sample distribution at
distant non-contiguous unexplored locations and improves TT
prediction. Compared to traditional prediction without those
updates, the proposed model’s 19% of performance show the
benefit of indirect learning. Different from traditional travel time
prediction tools, the developed model can be used by traffic
and planning agencies in knowing how far back in history and
what sample size of historic data would be useful for current
prediction.

Index Terms—Optimal Learning, Regularization, Spurious
Correlation, Multimodal Probability Distribution, Spatiotempo-
ral Correlation

I. INTRODUCTION

Travel time reliability has attracted attention and “buffer
time” has been used to indicate extra time to allow for traffic
delays. However, unimodal assumption does not distinguish
different probability density functions (PDFs). Travel time
PDFs on freeways have shown two or more modes as distinct
peaks due to the mixes of driving patterns and vehicle types
[1]. The multimodal distribution exists on arterial roads, where
a vehicle passing a signal at the end of the green would expe-
rience quite a different travel time than the vehicle following
behind it that must make a stop for the red, although they
traveled next to each other [2].

Current navigation systems (e.g., Google Maps) are not
customized to users’ tolerance for unexpected delays. Authors’
previous work [3] could significantly reduce the traffic delays
by providing en-route suggestions to informed drivers using
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predicted information about the time-varying route habits of
uninformed drivers. However, the network is dynamic and the
route suggestion users receive at the outset of their commute
may not be optimal when they are on the road. While those
complex patterns can be captured as unobserved heterogeneity
using data-driven models, incorporating physics knowledge
can regularize the spurious correlation that may exist in the
data-driven models.

Temporal Multimodal Multivariate Learning (TMML) [4],
[5] addressed the above challenges by indirectly learning and
transferring online traffic information from multiple modes of
probability distributions and multiple variables across different
time stages. A location’s observed traffic data could be used to
forecast conditions at distant non-contiguous locations. This
was achieved by aggregating the traffic data from all the
grid cells and clustering cells that have similar probability
distributions. When one cell of a cluster is explored, the traffic
information gained from the explored cell can partially remove
uncertainty about the conditions in distant non-contiguous
unexplored cells of the same cluster. Those travel time mixture
is clustered as white cell type numbers in Fig. 1 under lower
and upper bounds with probability P(T).

The local and non-contiguous spatiotemporal correlation
may not be caused by the same type of unobserved hetero-
geneity, which we call “false causation”. Under multimodal
distribution as combination of traffic patterns, although corre-
lation may exist between one distribution with non-recurring
congestion on low volume road and another distribution with
recurring congestion on high volume road, we cannot con-
clude that those two distributions are causally related. This
paper advances the data-driven TMML by decoupling spurious
correlation for two fundamental diagrams grouped in a cluster
with high confidence. [6] partially filled this gap by grouping
similar types of the bimodal output distribution of images
classified by mixture density network. Maximum entropy
seeking transfer learning was superior to partially observable
Markov decision processes.
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Fig. 1: Sequential information gain starting from the single-type to mixture information gain

However, a complete removal of uncertainty was made for
each observation. Partial information gains from multimodal
distribution and multivariate correlation have been left un-
addressed, possibly due to the main focus of reinforcement
learning (RL) on games and simple control problems with a
lack of generalization to real-world problems. In a sequence
of transfer learning, the RL does not utilize the covariance
structure and ignore multimodal and multivariate gains in the
reward function. Hybrid deep learning traffic studies extract
spatiotemporal correlations [7]-[9], however static graph are
unable to capture dynamic nature of traffic. Recent adaptive
adjacency graphs [10], [11] could be alternative, however,
multimodality has not been considered.

This study endeavors to create a new principled multimodal
learning to predict travel time during simultaneous inference
of spatiotemporal multimodal observations. We start extending
[6] to ensure that locations with broad bimodal probability dis-
tributions are preferred over locations with narrow probability
distributions.

II. TEMPORAL MULTIMODAL LEARNING FOR MIXTURE
MODEL

A multi-modal urban transportation network gives travelers
a variety of options for getting around. The literature treats
links as a unimodal probability distribution with an expected
travel time. If the assumption that the cell states are correlated
is true, then visiting one cell will improve the state estimate of
all cells that share similar travel time probability distribution.

The temporal multimodal learning captures mutual depen-
dency between states under the impact of exogenous variables.
Once we have additional observations within the same cluster,
a new entropy method is used to estimate the mixture of
multimodal and multivariate distributions. However, Shannon
entropy [12] cannot distinguish distributions with multiple
weights (e.g., bimodal distributions) because it only considers
raw information gain, treating all information as equally
valuable. Kullback-Leibler (KL) Divergence [13] introduces a
bias toward only one mode (e.g., Exclusive, Reverse) or toward

the mean of the modes (e.g. Inclusive, Forward) with non-
symmetrical measures of information gain. Recent learning
models [14] cannot address unobserved heterogeneity causing
multimodal distributions since representing the information
gain using KL Divergence requires comparison to an “ideal”
distribution. This biases the model towards searching only for
some types of solutions while ignoring more valuable solu-
tions. When the probability distribution is heavily weighted
at either extreme, the system cost either experiences posi-
tive true savings or negative true savings. The Expectation-
Maximization algorithm cannot be guaranteed since the type
of mixture probability vary across time and space and evolve
as new observations become available.

If an identical cell is visited by another traveler and found
to be in the same state as the original cell of that type, then
all travelers have confirmation that the assumption that these
cells are correlated is more likely to be true. Instead of directly
using the classical entropy to combine current and historical
observations, Kalman Filtering (KF) systematically split the
database: starts with prediction based on historical data; and
then once the new observation is available, follows hierarchical
steps:

1) remove the spurious correlation

2) estimate the mixture of multimodal and multivariate

sample distributions using cross entropy method. Here
the parent distribution of observations is used to identify
the cluster for the new observation.

III. METHODOLOGY

The distinguishable aspects of the physics-informed and -
regularized (PIR) KF in the hierarchical update steps is the use
of new data obtained from multimodal multivariate learning
(Fig. 2). The global correlation between non-contiguous cells
of an entire map are estimated by using Expectation Maxi-
mization.

We learn and predict traffic speed v within day by analyz-
ing the spatiotemporal correlations between random variables
vl for all (c,t) € C x T. By clustering all v’ variables,
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Fig. 2: Physics-informed and -regularized (PIR) KF in the hierarchical update steps

we identify spatiotemporal patterns and different combinations
of traffic speed distributions. If v} is clustered with random
variable vg, then knowing information about the realization
of 112 will lower the uncertainty (measured using standard
deviation) for v/2.

Prediction-Collection Step We project the state at time ¢ us-
ing the prediction at previous time t—1 as #, = A%} | + By
and error covariance of state as P;” = P;t | AT +Q. We deter-
mine the Kalman Gain at time t as K, = P, HT(HP, HT +
R)~! where H is the connection matrix between the state
vector and the measurement vector and R is the data precision
matrix. In case of KF-no PIR, Z; are the speed observations
on a given day while in case of PIR-KF, Z; are mean and
variance of historical speed data. Incorporating unobserved
local heterogeneity in the distributed data stream requires
careful learning. Based on a cluster of similar fundamental
diagrams (speed and density), density or flow are used for
predicting a speed at different locations and times if the
correlation is within the same cluster.

We first decouple spurious correlations and then use the
entropy method to estimate the mixture of multimodal and
multivariate distributions. Since the mixture could be non-
Gaussian and non-linear, providing an accurately estimated
distribution rather than just mean and standard deviation will
increase the accuracy of updating the error covariance matrix.

First update step: When there are two conflicting ob-
servations from multimodal and multivariate clusters at the
same time and location, then we investigate the original cell
distribution in which observation belongs. When a spurious
correlation is suspected, we should use only one of the
trustable observations. Spurious correlations are filtered using

(ol

the coefficient of variation parameter given by CV = T

to show mean changes according to the standard deviation
as a measure of relative variability. During the update step,
observations available from the correlated links from previous
time intervals are considered. The mean and variance of speeds
of all correlated links are treated as the new observation.
Instead of only one update step, we have two updates, one
with mean and variance of historical data and the other with
correlated speed data obtained from the clustering step. We
address the question of how best can we predict vckH) if we
know v*.

Second update step: To estimate a mixture of multimodal
and multivariate distributions, we use multivariate Gaussian
mixture by a cross-entropy method. Stochastic likelihood
maximization is based on cross entropy method. The cross-
entropy metric measures the relative entropy between the true
distribution f and the proposed mixture of multimodal and
multivariate probability distributions g. Considering a random
variable X = (X3y,...,X,,) with support X, the relative en-
tropy between the two continuous probability density functions
f and g will be defined as expected E; value based the choice
of mixture parameters 6 that minimizes the cross-entropy. We
will minimize the relative entropy between the true distribution
f and the mixture of multimodal and multivariate distributions
g parameterized by 6:

0, = arg min — / fr(x)logg (x| 6y)dx (1)
0, x€X

The cross-entropy-method uses a multi-level algorithm to
estimate 0; iteratively. Specifically, the parameter 8, at itera-
tion k is used to find new parameters 6 at the next iteration
K.



The multivariate relationship with fundamental diagram will
be further considered in the regularization step by the full
paper submission deadline. Clustering on TMCs as explained
in section 3.1 is performed for each time interval ¢. We
employed more efficient method of evolving adjacency matrix
than [15] which is capable to capture geographical adjacency
as well as dynamic traffic flow. The dynamic adjacency graph
will be used in graph convolution neural network to gain infor-
mation about nodes in different perspective and capture static
adjacency among nodes along with its semantic adjacency.

IV. EXPECTED RESULTS
A. Exploratory Analysis of Multimodal Travel Time

In addition to below real-world analysis, we will expand the
network size and more benchmark analysis will be presented.
Fig. 3 presents the multiple modes of probability distributions
of speed for four sample TMCs among a total of 39 TMCs.

B. Benchmarks

Compared against traditional prediction without those up-
dates, the superior performance in prediction uncertainty are
presented: both PIR and mixture model (19% increase), PIR
only (14%), and TMML ( [4] data driven (5%). It presents
the temporal transition of the coefficient of variation of multi-
modal and multivariate for each TMC across 25 time interval.

A Gap function determines the best number of clusters for
grouping the similar distributions. Across selected 36 traffic
segments, PIR + mixture performs better than TMML and PIR
(Fig. 4).

The higher the mean value per unit standard deviation
indicates that the mean changes according to the standard
deviation and we better use the multivariate data. When speed
observations with PIR are close to historic observations, the
reduction in uncertainty is higher. A significant reduction in
uncertainty of PIR and mixture model indicates more confi-
dence in the predictions.
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Fig. 3: Surprisingly many travel time distributions
multimodal - 4 sample TMCs
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Fig. 4: Benchmarks PIR vs TMML vs PIR + Mixture across
36 TMC segments
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V. CONCLUSION

In this study, the data space is grouped into fine grain
cells featuring multimodal and multivariate clusters. Rather
than handling individual data points, we analyze which parent
distribution those available sample observations belong and
evaluate the importance of observations to be used in im-
proving the current prediction. We overcome the limitation
of traditional direct (geographically nearby) learning by the
transferring online information through indirectly learning
of multiple modes of probability distributions and multiple
variables across different time stages.

The new family of statistical machine learning models
enhanced with traffic theory-driven regularization and cross-
entropy based mixture estimation of multimodal and multi-
variate distribution presents superior performance in reducing
travel time prediction. This paper opens appealing research
opportunities in the study of information-theoretic decision
making that exhibit nontrivial indirect learning from spa-
tiotemporal correlation.

The proposed approach will be useful for traffic and plan-
ning agencies knowing how much sample observations they
need to improve the traffic prediction capability and plan the
future projects. Our tool simply suggests how to use those
unused values in the older forecasts, balances the older and
recent forecast values based on their importance, and help
improving current forecast of traffic value of interest.
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