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Extended Abstract
Unsolicited network traffic captured by network telescopes, namely
darknet traffic, provides important data for studying malicious Inter-
net activities, such as network scanning [9], the spread of malware
[4], and DDoS attacks [6]. Inferring such activity in traffic often
requires first obtaining fingerprints of the activity and searching
historical traffic traces (e.g, pcaps) for that pattern. Traffic volume at
the largest darknets can exceed 100GB/hour, rendering it challeng-
ing to process at the packet level. Aggregated flow-based metadata
[2] can reduce computation, storage and I/O overhead at the ex-
pense of finer-grained information about the traffic. Customized
data structures (e.g., [7]) and streaming algorithms (e.g., [5]) offer
an alternative approach to extracting information from raw packets,
but they are typically traffic tailored for estimating specific metrics
and thus limited in their ability to detect a wide range of events.

We propose a machine learning (ML)-based framework to de-
tect events by characterizing traffic dynamics across many time
series generated from raw traffic processed by the Corsaro software
package [1]. Our method extracts signals of attacks in time-series
statistics that can reveal promising time periods in which to further
investigate an attack using raw packet traces.

Methodology
Our framework leverages the time-series traffic metrics (feature di-
mensions) generated by the Corsaro software suite (Fig. 1). Corsaro
tabulates five traffic metrics every minute based on six properties
of incoming packets collected by the telescope (Table 1) and stores
them into InfluxDB, a time series database. The properties cover
network protocol information from packet headers, metadata in-
ferred using prefix-to-AS datasets, IP geolocation databases, and
spoofing classification [3]. Each combination of the properties re-
sults in a distinct time series, yielding over 200K time series per
week (accessible at https://explore.stardust.caida.org).

Our ML-based analysis component queries the time series data
from InfluxDB and captures three major types of events:
I. Repeated events in the same time series could reveal re-use of

similar attack techniques/tools over time.
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Table 1: Traffic metrics and properties whose combinations produce
observations (per minute) yielding over 200K time series.

Properties Metrics (per minute)
Origin ASN # of packets (PPM)
Geolocation # of bytes (BPM)

Protocol number # of unique source IPs
TCP/UDP Destination port # of unique source ASN

ICMP type & code # of unique destination IPs
Spoofing inference

Figure 1: Data Analysis Architecture outputs a list of events that
merit deeper analysis.

II. Concurrent events across different time series could reveal fin-
gerprints and scale of network attacks.

III. One-off events refers to significant surges in traffic with the
same proprieties.

Type I & II rely on the same analysis method different time
series segments as input to the ML model. We often do not know
the nature of the traffic activity before analysis, so we adopt an
unsupervised approach to learning similarities in traffic patterns.

We first partition time series of 𝑇 observations belonging to a
set of traffic properties (Table 1) into 𝑁 segments of length 𝑏. We
denote a z-normalized segment 𝑛 of the partitioned set of time se-
ries for a given metric𝑚 from a set of metrics𝑀 as {𝑋𝑛

𝑚}𝑚∈𝑀,𝑛∈𝑁 .
We then apply Dynamic Time-Warping (DTW) [11] to compute
a similarity measure between any two combinations of 𝑛, storing
them in a symmetric distance matrix, 𝐷 ∈ R𝑛×𝑛 , for type I event
analysis. DTW generalizes to multiple dimensions and could com-
pute more semantically precise results by combining time series
across multiple traffic metrics. On the other hand, combining time
series across multiple traffic properties yields type II events.

The second step is to cluster segments based on their similarities
within the distance matrix. DTW restricts our choice of clustering
algorithm to ones that do not assume inputs are located in Euclidean
space (DTW produces measures that violate the triangle inequality).
We chose Single-Linkage Hierarchical Agglomerative Clustering
(HAC) [10] for segment clustering. HAC iteratively forms clusters:
in each iteration, a cluster is merged with another if any of their
members share a minimum distance. Prior to any merges, HAC
treats each input as a singleton cluster.
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Figure 2: Partial dendrogram of clustered U.S. PPM segments. Some
clusters have large cophenetic distances (blue lines).

Figure 3: Two segments belonging to the cluster formed at the first
step of HAC (marked with red in Fig. 2). Both time series possessed
similar z-normalized PPM values throughout the day.

For type III, we employ change point detection algorithms (CPDs)
to detect level shifts from the baseline contained in a segment. We
evaluated out-of-the-box performance of cost-function based CPDs
[8] using 1-week time series segments and found that the results
contained many false positives. We apply smoothing and quartile
filtering to reduce noise, noting that their accuracy may generalize
better when applied to segments of select clusters.

Preliminary results
We present preliminary results of detecting type I events from 2
years (June 3, 2020 - June 3, 2022) of UCSD Telescope data. We
selected 85 time series for analysis: all 5 metrics for each time
series with traffic source geolocated to 17 countries. We chose a
segment size of 1 day (�=1440 min) to capture diurnal patterns
of unique source IPs and ASNs. A smaller � could enable finer-
grained comparison, but reduce our confidence in the z-normalized
values (due to fewer observations). The value of� does not affect the
number of computations but it may affect execution time depending
on the implementation.

Fig. 2 shows the HAC clustering results of the distance matrix
computed from PPM metrics daily segments for source IPs geolo-
cated to the U.S. Fig. 3 shows two initially merged singleton clusters
belonging to the dendrogram. Although the two days were 3months
apart, their patterns were similar. The second subsequent merge’s
cophenetic distance is large compared to the first and to merges
across the tree. Large cophenetic distances imply that the two ad-
joined clusters should remain separate. Assessing the cophenetic
distance distributions of a dendrogram offers insight into possi-
ble cutoff values for defining a ’true’ cluster. High variance in the
distribution relates to the sparsity in a dendrogram’s tree, which
reflects the degree of heterogeneity across time series segments.
Distinctions in sparsity are visually observable across the dendro-
grams pertaining to different countries’ metrics, implying that each
dendrogram requires a different cophenetic cutoff value.

Once clusters are defined, we may choose segments to serve as
a representation of the baseline and quantify their proportion to
aberrant traffic segments. Comparing new segments with existing
clusters functions as a method for detecting anomalies.

We ran our analysis on Expanse [12], an advanced HPC system
at UC San Diego’s Supercomputing Center. Using jobs configured
with 64 CPU cores, the distance matrix computation time was less
than 6 hours.

Conclusion and Future Work
We examined the feasibility of ML approaches for time series anal-
ysis to detect network events in darknet traffic. Our results showed
preliminary success in identifying repeated events in two years of
UCSD Network Telescope data. Next, we will evaluate the accuracy
of the framework in terms of identifying different types of network
activities. We will study traffic data during the events and refine
automated approaches to their detection. We will create datasets for
predictive model training purposes, amenable to cross-evaluation
with other large-scale datasets.
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