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Determination of
Multi-Component Failure

in Automotive System Using
Deep Learning

The connectivity of modern vehicles allows for the monitoring and analysis of a large
amount of sensor data from vehicles during their normal operations. In recent years,
there has been a growing interest in utilizing this data for the purposes of predictive main-
tenance. In this paper, a multi-label transfer learning approach is proposed using 14 dif-
ferent pretrained convolutional neural networks retrained with engine simulation data to
predict the failure conditions of a selected set of engine components. The retrained classifier
networks are designed such that concurrent failure modes of an exhaust gas recirculation,
compressor, intercooler, and fuel injectors of a four-cylinder diesel engine can be identified.
Time-series simulation data of various failure conditions, which include performance
degradation, are generated to retrain the classifier networks to predict which components
are failing at any given time. The test results of the retrained classifier networks show that
the overall classification performance is good, with the normalized value of mean average
precision varying from 0.6 to 0.65 for most of the retrained networks. To the best of the
authors’ knowledge, this work represents the first attempt to characterize such time-
series data utilizing a multi-label deep learning approach. [DOI: 10.1115/1.4063003]
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Introduction and Background

The introduction of high-bandwidth communication systems for
vehicle-to-vehicle and vehicle-to-infrastructure connections is
enabling new technologies and services including optimal traffic
control, car-sharing service, and connected and automated vehicles
[1-5]. An area of interest that has not been explored much,
however, is utilizing the data collected from these vehicles for pre-
dictive diagnostics or prognostics of the vehicle components [6].
Being able to predict component failure of a vehicle would be of
great benefit as it could allow for reduction of maintenance time
and effort, lower operation costs, and improved user safety [7].

The standard approach for handling component failure in auto-
motive systems has been to employ a preventive maintenance, or
scheduled maintenance program. Utilizing statistical data, preventa-
tive maintenance can be implemented such that critical components
are replaced before failures typically occur [7]. However, due to the
variation in each individual vehicle, it is difficult to apply this
approach to a fleet of vehicles, nor is it economically viable to
replace every component on a staggered schedule. For such cases,
reactive maintenance can be employed [7]. In reactive maintenance,
the failure of vehicle components is detected using an onboard diag-
nostic system [8]. For example, electronic control units (ECU)
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utilize heuristic and model-based methods to determine what consti-
tutes a failure [9]. Then, techniques such as failure mode and effects
analysis are applied utilizing sensor data and analytical models to
determine potential failure modes of the components. The resulting
failure modes and their related parameters are used in rule-based
algorithms in onboard diagnostic systems [10,11]. This is a
general approach without utilizing any particular data unique to a
specific vehicle to generate appropriate predictions.

Although preventive and reactive maintenance approaches are
currently prevalent in the automotive industry, predictive mainte-
nance (PdM) is anticipated to offer considerable advantages, includ-
ing reduced machine downtime and maintenance costs [12]. For this
reason, PAM has attracted significant interest from researchers in the
field of automotive systems. However, PdAM has not seen any real
application on the individual vehicle scale due to the difficulties
associated with data collection [12,13]. Obtaining the necessary
data for automotive systems requires the following at minimum:
numerous sensors to measure physical signals, a means of transmit-
ting and storing this data, expert knowledge of the system, and suf-
ficient vehicle operation time to cover the progression of a failure
mode from beginning to end [7]. Obtaining this data is further com-
plicated by the fact that the lifecycle of any set of vehicles can
involve dissimilar drive cycles and environments, which can have
a significant effect on the progression of failure. For example, it
has been shown that adding geographical data can provide more
accurate maintenance scheduling for fleet management [14]. At
the component level, active failure detection using machine learning
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methods has been applied in some studies [6,7]. Among various
automotive components, batteries have been the primary focus for
hybrid-electric and fully electric vehicles [15-17]. Failures of
other mechanical components such as bearings, brakes, gearboxes,
and suspension systems have also been investigated. However, the
aforementioned data limitations remain unresolved, and these limi-
tations have led to a reliance on simplified experiments or models as
a workaround [18-21]. Due to these challenges, the implementation
of predictive maintenance for individual vehicles has not been
extensively researched, making it the primary focus of this paper.
There have been many different data-driven approaches for com-
ponent diagnostics and prognostics to date. These include physics-
based models, knowledge-based approaches, statistical methods,
machine learning approaches, and deep learning approaches [22-
28]. However, most of the approaches found in the literature
involve either binary or multi-class problems focused on isolated
failure modes. Such binary and multi-class problems operate
under the assumption of mutual exclusion, which restricts their
ability to classify concurrently occurring component failures effec-
tively. The research problems that do include multiple failure modes
have treated them as a multi-class problem, which is not a viable
approach as the number of components, failure modes of each com-
ponent, and combinations of the two increase to the full scale on a
real-world vehicle. In this paper, it is hypothesized that a multi-label
approach has the potential to resolve this issue. While the multi-
class classification picks only one output class requiring 2" different
output nodes for n different failing components, the multi-label
classification will generate multiple output classes using just n dif-
ferent output nodes. This is because, in a multi-label approach, a

single data case can correspond to multiple labels representing dif-
ferent failed components. However, a general approach of applying
multi-label methods to time-series data, particularly automotive
data, has not been studied to date. In addition, the approach of
reshaping such time-series data into images for use in convolutional
neural networks is lacking in the literature. Therefore, this paper
demonstrates the feasibility of such a general approach by evaluat-
ing the performance of various pretrained learning models using
automotive system data. This serves as an example for potential
diverse applications in future work.

Methodology for Predicting Multi-Component Failure

The goal of this paper is to propose a new approach to determine
the binary failure states of multiple components in an automotive
system by employing transfer learning with time-series data. To
accomplish this goal, an automotive engine system with at least
one existing component failure is considered in this paper. To
obtain the necessary system data, a high-fidelity diesel engine simu-
lation model employing an exhaust gas recirculation (EGR) system
and a variable-geometry turbocharger was developed in commercial
software, GT-SUITE, as shown in Fig. 1. Within this model, four sub-
systems are assumed to have a single potential failure mode: the
EGR, the compressor (Comp), the injectors (Inj1, Inj2, Inj3, Inj4),
and the intercooler (Inter). The EGR is assumed to fail due to accu-
mulation of soot along the EGR inner wall. For the modeling
purpose, this soot accumulation is assumed to be of uniform thick-
ness along the EGR pipe and remains constant throughout each
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simulation. The compressor is assumed to fail due to progressive
buildup of obstructions in the intake filter, represented as a decrease
in the intake pipe diameter. The intercooler is assumed to fail due to
the accumulation of debris and other material, represented as an
obstruction on the intake side of the intercooler channel. Finally,
the injectors are assumed to fail over time due to clogging from
impurities in the fuel and exhaust gas particulates, represented by
auniform restriction in the diameter of the fuel injector output chan-
nels. Each individual injector is considered to have its own unique
failure mode, meaning that there are seven total individual failure
modes considered in this study.

In this study, the steady-state behavior of the system is of primary
interest since it is regarded that steady-state behavior would provide
the best means of isolating the effect of each failure mode. This
means that the possible effects of transient behavior during drive-
cycle simulation need to be minimized. To accomplish this, the
engine simulation model is gradually brought to a target speed
over 2 s and then held constant thereafter. Each specific steady-state
engine operation with a combination of failure modes is then simu-
lated for a minimum of 15s, with a step size of 0.01s, until
steady-state is reached or a maximum simulation time of 2 min
has passed, whichever occurs first. In the case that steady-state
cannot be reached in this time frame, it is assumed that it is not pos-
sible to reach a true steady-state. Ten representative cases for
steady-state engine operation, shown in Table 1, are chosen to
cover the entire operational range of the engine. For the simulation
study, the EGR failure due to the internal soot accumulation is
modeled as decreasing diameter of the EGR pipe from valve to
outlet as described in Table 2. To prevent the simulated gas flow
from reaching supersonic speed, the EGR pipe clogging is limited
to a maximum of 80%, which is regarded as the component
failure point.

To include the thermal effect of accumulated soot in the simula-
tion, the overall thermal conductivity in the pipe is modeled based
on a pseudo-composite “material” consisting of deposited soot and
stainless-steel pipe. Utilizing a lumped parameter modeling
approach, the overall thermal conductivity is calculated as the
weighted mean of the stainless steel’s thermal conductivity and
the soot’s thermal conductivity, which is assumed to be 1 W/mK
[29]. The density of the composite material is calculated by dividing
the total mass by the combined volume of the materials. Utilizing
these two material effects, the engine model is run for each case
shown in Table 2 for the ten operational conditions specified in
Table 1. Similarly, the diameter and respective failure percentage
of the compressor, intercooler, and injector are shown in Tables
3-5, respectively. The thermal characteristics of these components

Table1 Ten cases chosen to represent the operational range of
the simulated engine

Case Speed (rpm) BMEP (bar)
1 4500 14

2 4000 16

3 3000 16

4 2000 16

5 1500 13

6 1000 9.5
7 3000 3

8 2000 2

9 1500 1
10 800 0

Table 2 Diameter of EGR inner pipes relative to clogging
percentage

Diameter (mm) 20 18 16 14 12 10 8 6 4
Percent clogged 0 10 20 30 40 50 60 70 80
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Table 3 Diameter of compressor intake relative to health

condition
Diameter (mm) 60 50 40 30 20 10
Health condition (%) 100 80 60 40 20 0

Table 4 Diameter of intercooler intake relative to health
condition

Diameter (mm) 8 7 6 5 4 3 2
Health condition (%) 100 83.6 66.7 50 334 167 0

Table 5 Diameter of single injector output relative to health
condition

0.17
83.4

0.16
66.7

0.15
50.1

0.14
334

0.13  0.12
167 0

Diameter (mm) 0.18
Health 100
condition (%)

are ignored as the failure modes involve only clogging obstructions
at specific points in the channel.

Utilizing the failure conditions shown in Tables 2-5, various
combinations of multiple component failures can be simulated.
Each combination of failing components, with varying health con-
ditions (HC), simulated under each specific operational conditions
specified in Table 1 represents a specific simulation. These simula-
tions produce time-series data of 672 unique signals representing
sensor output and other information from the simulation model.
For example, these signals include the engine speed, engine
torque, spark timing, and EGR valve opening, which can be
obtained from the ECU and other control units in a vehicle. As pre-
viously mentioned, the cases where no component failure occurred
are not included in the data as the no-failure case represents a
mutually-exclusive case.

As the goal of this study is to predict the failure modes, indepen-
dent of time scale, a convolutional neural network (CNN) is chosen
to classify the aforementioned time-series data. To utilize this data
in a CNN, a process has been developed to transform each simula-
tion dataset into an image. While transforming time-series data into
images has been reported in the literature, the approach presented
here deviates from conventional approaches [30,31]. To accomplish
this, the global maximum and minimum values of each signal are
obtained and utilized to normalize each respective time-series
data signal to the range of 0-255. Then, a sliding window
average is used to compress each time-series signal to 224 instances
in time regardless of the overall signal length in time. From the 672
normalized and compressed time-series data signals, 224 signals are
randomly selected to form a gray-scale image of 224 x 224 pixels.
Then, an additional 224 signals are randomly selected to form the
second gray-scale image, and the remaining 224 signals are used
to form the third gray-scale image. In this manner, three gray-scale
images of square size are formed and they are designated as red,
green, and blue (RGB) color images. This approach is adopted to
harness all the information encapsulated in the 672 signals, and
present it in a format typically recognized as input by CNNs.
With the three images combined, each simulation data set can be
completely represented by an RGB image of 224 x 224 pixels as
shown in Fig. 2. The image data generated in this manner contain
diverse time scales from 15 s to 120 s depending on how quickly
steady-state is reached in each simulation. Since CNNs can
extract hidden characteristics in the data regardless of the time
scale that the image represents, the data compression does not dete-
riorate CNNs’ classification capability.

A drawback of such a method, however, is that it is challenging to
obtain sufficient amount of data for the training of machine
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Fig.2 Example images for time-series data with (a) compressor failure and (b) injector failure

learning-based prediction models. The deterministic simulation
model shown in Fig. 1 does not provide sufficient randomness
between simulations, and traditional image transformation tech-
niques such as rotation are not applicable as they inherently mis-
characterize the dataset. To mitigate the issue of the limited and
homogeneous data size, white Gaussian noise is added to each
data signal with a signal-to-noise ratio randomly selected between
40 dB and 60 dB. This is done ten times for each original image,
increasing the total number of images from 1660 to 16,600.

One characteristic of this RGB image formation method, as
shown in Fig. 2, is the lack of large variations in the data. Most
parts of the image are white due to the combination of signals
near a steady-state maximum value. As a consequence, the areas
of meaningful information on a single image are relatively small
and narrow, making it difficult to develop a prediction model
with the optimal hyperparameters and well-tuned model parameters
using the image data only. Therefore, a multi-label transfer learning
approach utilizing pretrained CNNs is applied to develop failure
modes classification models in this research. Since this data/
image type represents a unique input for publicly available CNNs
pretrained on photographs of real-life situations, a comparative
analysis to determine how such data would perform is conducted
by retraining the following 14 CNNs with the data: AlexNet
(Alex), VGG, ResNet (Res), SqueezeNet (Squeeze), DenseNet
(Dense), InceptionNet V3 (Incept), GoogLeNet (GoogLe), Shuffle-
Net (Shuffle), MobileNet (Mobile), ResNeXt (NeXt), Wide ResNet
(Wide), MNASNet (MNAS), EfficientNet (Efficient), and RegNet
(Reg) [32-45]. For each network, the first half of the layers have
their weights frozen, the final half of the layers are unfrozen, and
the classification output layer is adjusted to fit the new output
space. If a network cannot be divided evenly, the extra layers are
frozen. Then, each pretrained network is retrained over 30 epochs
with the image data set from the engine model with a distribution
of 70% for training (11,620), 20% for validation (3320), and 10%
for testing (1660). This process is repeated five times with different
validation and training sets each time, with the results averaged to
account for overfitting. To center the pixel values in the images,
and reduce the possible range of the network features, the pixel
values in the images are normalized by subtracting the image
mean and dividing by the standard deviation obtained from the
ImageNet dataset. The mean and standard deviation of the RGB
images are [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225], respec-
tively. The batch size for each network is chosen to be 32, while the
learning rate is selected as 1 x 10™*. An apaM optimizer is employed
for training each network.

Due to the nature of multi-label classification, various complica-
tions exist in data preparation including inter-class imbalances due
to label co-occurrence and the positive-negative label imbalance
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[46,47]. As shown in Fig. 3, there are significant imbalances in
the occurrence of labels. However, unlike multi-class imbalance,
labels cannot be guaranteed to be balanced during preprocessing
without causing imbalance in the classes due to the uneven repre-
sentation of labels within the classes themselves, as shown by the
20 representative multi-mode failure classes in Table 6. For
example, while Class 1 has one label representing the Intercooler
failure mode, Class 17 also shares this label with the addition of
the Compressor label. As a result, upsampling for balancing
labels will likely lead to greater skew in the underlying classes
within the data. Similarly, common techniques such as SMOTE
to upsample minority classes, can lead to greater label imbalance
due to the uneven number of labels contained within individual
classes [48]. This is further complicated within this data as two
additional class structures, the 166 health condition cases and the
ten times operational range multiplier, are also hidden within the

Intercooler

Compressor

EGR

Injector2

Injector3

Injector4

Injectorl

0 1000

2000 3000 4000 5000 6000 7000 8000

Fig. 3 Label distribution within training and validation sets

Table 6 Multi-mode failure classes within the dataset with
assigned class ID

Class D Class ID
Inter 1 EGR 11
Inj4 2 EGR, Inj3 12
Inj3 3 EGR, Inj2, Inj3 13
Inj2 4 EGR, Injl, Inj4 14
Inj2, Inj4 5 EGR, Injl, Inj2, Inj3 15
Inj2, Inj3, Inter 6 Comp 16
Inj2, Inj3, Inj4 7  Comp, Inter 17
Injl 8  Comp, Injl, Inj2, Inj3, Inj4, Inter 18
Inj1, Inj2, Inj3, Inj4 9  Comp, EGR 19
Injl, Inj2, Inj3, Inj4, Inter 10  Comp, EGR, Inter 20
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data as shown in Fig. 4. As the health condition classes and opera-
tional range condition are balanced within the original data,
attempting to balance either labels or failure mode classes will
cause all other conditions to become imbalanced, as demonstrated
in Fig. 4.

For these reasons, it is a common practice to manage label imbal-
ance within the loss function during training, such as with weighting
or similar processes. If the focus of training is on the label-level uti-
lizing such a process, the imbalance in the classes can be ignored if
there is sufficient class representation within the data to allow an
approximately even split between the training, validation, and test
data. As shown in Figs. 5-7, this distribution of combinations of
labels is relatively consistent within the three sets for training, val-
idation, and test. Therefore, this inter-class imbalance is ignored for
this study and label-based weighting is applied. However, weight-
ing the loss function only is considered insufficient to account for
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the label imbalance given the dependency of the labels and the
class distribution. This is demonstrated by the positive-negative
label imbalance, as the data are biased toward negative labels
(62.3% of labels are O representing the healthy cases). Therefore,
the optimized asymmetric loss function developed by Ben-Baruch
etal. is also utilized to reduce the effect of imbalance during training
[47]. This loss function utilizes the ratio of positive and negative
labels within an image to dynamically down-weight trivial classifi-
cations to improve the probability of learning minority label cases.

Multi-Component Failure Prediction Results

For the evaluation of the performance of different CNNs, the fol-
lowing metrics are used: the precision-recall area under the curve
(PR AUC), the receiver operator curve area under the curve
(ROC AUC), the mean average precision (mAP), the exact match
ratio (EMR), the Hamming Loss, and the F1-Score [49-52]. The
PR AUC and ROC AUC are determined from numerical integration
of their respective curves via a trapezoidal method, while the mAP
is defined as the average of the PR AUC of each individual label for
a particular CNN. The EMR, Hamming Loss, and F1-Score are pre-
sented as well for the respective precision and recall values to
describe the nuances in behavior between the different CNN
models.

The primary metric used for describing classification perfor-
mance in this research is the PR AUC, which is commonly referred
to as average precision (AP). However, as there is imbalance in the
labels, it is necessary to normalize the PR AUC for each label to
compare the relative performance of training. This is accomplished
by determining the unachievable region of each PR curve based on
the proportion of positive labels within the label set, as shown in
Table 7 [53]. From this table, considering that a perfectly balanced
label has a value of 0.5, it is clear that the injectors have higher
average skew than the other components, meaning the minimum
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Fig.7 Class distribution of multiple failure modes within test set
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Table 7 Minimum PR AUC for given component and skew term
for training data

Comp EGR Injl Inj2 Inj3 Inj4  Inter

Skew term 0.496 0367 0.246 0.351 0.337 0.307 0.534
Minimum PR 0.304 0.211 0.135 0.201 0.192 0.172 0.334
AUC

Table 8 Normalized PR AUC for different components using
different CNNs

Net Comp EGR Injl Inj2 Inj3 Inj4 Inter
Alex 0.727 0.643 0562 0593 0579 0.567 0.754
Dense 0.742  0.632 0.577 0.610 0582 0.580 0.733
Efficient  0.750 0.701  0.562 0.591 0.565 0576 0.783
Google  0.747 0.708 0.563 0577 0.604 0.573  0.770
Incept 0.526  0.553 0.382 0426 0404 0403 0.541
MNAS 0262 0296 0.329 0303 0275 0347 0.398
Mobile 0.751  0.683 0.574 0593 0564 0.576 0.784
Reg 0.744 0710 0.585 0.625 0.604 0.589 0.778
Res 0.731 0.712 0572  0.621 0.604 0.586 0.789
NeXt 0750  0.721 0.583  0.626 0.607 0.590  0.798
Shuffle 0.727  0.633  0.565 0.536 0521 0.565  0.692
Squeeze  0.740  0.655 0.570 0.599 0581 0.578 0.788
VGG 0.713  0.680 0.568 0.612 0586 0.576  0.747
Wide 0.748 0.725 0.587 0.625 0.606 0.592 0.786

PR AUC for these components is lower. Normalized PR AUC
results from the testing set, shown in Table 8, correspond well
with the label distribution in Fig. 3, with the models having the
highest by-label performance placed in the order of intercooler,
compressor, EGR, and then injectors. The average ROC AUC
results, shown in Table 9, also correspond well with the label distri-
bution. In general, the CNNs are more proficient in properly classi-
fying intercooler and compressor failures, having normalized AP
values above 0.7 for most of the trained models. Notably, the Incep-
tionNet and MNAS show particularly poor performance, likely
attributed to an inability to converge on a solution within the
number of training epochs. When comparing the normalized AP
to the minimum AP, it is clear that the MNAS is no better than
random guessing in most cases, with the InceptionNet having
much lower performance compared to other CNNs. The EGR
appears to be one of the primary labels that differentiate the perfor-
mance of the CNNs as shown by comparing the overall mAP in
Table 10 to the by-label PR AUC in Table 6. In particular, the

Table 9 Average ROC AUC for different components using
different CNNs

RegNet, ResNet152, ResNeXt, and Wide ResNet have normalized
mAP values over 0.65 as a result of EGR PR AUCs of approxi-
mately 0.7. EfficientNet and GoogLeNet have similar proficiency
with EGR compared to the aforementioned CNNs, but have
poorer classification performance with the Injectors. The injectors,
on average, are appeared to be classified with lower precision
than the other system components. This is an expected result as
the injectors have high linear dependence among themselves, and
share similar signal characteristics with EGR failure. Notably, the
pattern shown by the biased-label distribution in Fig. 3 is less con-
sistent among the injectors, sometimes favoring injectors with less
sample data over others. However, comparing the normalized AP
values to the minimum AP values shows that this effect is signifi-
cantly lower than the proportional amount of skew, confirming
that the loss function effectively handles the label imbalance.

The average ROC AUC for each classification model shows rel-
atively good performance for each label. The EGR and intercooler
appear to have the most distinct failure mode among all types of
failures simulated for the purposes of classification. The compressor
and injectors appear to have a similar level of distinctiveness among
the classifiers, with Injector 3 standing out as less distinct on
average compared to the other labels. Most of the previously men-
tioned CNNs with high mAP values show high ROC AUC perfor-
mance in distinguishing between labels. Others, such as the
InceptionNet and DenseNet also show relatively higher ROC
AUC performance although their mAP is noticeably lower than
the aforementioned CNNs. This can primarily be attributed to a
lower EGR AP and Intercooler AP for the InceptionNet and a
lower EGR AP for the DenseNet, which implies that these
models have poor recall for higher precision values.

For determining the optimal threshold value for classifying a
binary health condition of each component, the Maximum
F1-Score, the EMR, and the Hamming Loss were investigated.
The calculated mAP, EMR, and Hamming Loss based on the
optimal thresholds can be found in Table 10. The micro (m),
macro (M), weighted (W), and samples (S) averages of the thresh-
olds associated with each metric are also presented in Figs. 8 and 9
[54]. The thresholds based on the F1-Score appear to be more
balanced, with values between 0.5 and 0.6 for most cases. The
EMR and Hamming Loss thresholds appear to be more restrictive,
having values in the range of 0.6-0.7. For maximizing the F1-Score,
the samples average is considered to be the most representative for
the multi-label case. For most CNNs, excluding the InceptionNet
and MNAS network, the F1-Score is around 0.7 as shown in
Figs. 10 and 11. As such, all CNNs are shown to have significantly
improved performances over a baseline classifier. The F1-Scores
corresponding to the maximum EMRs and minimum Hamming
Losses, are presented in Figs. 10 and 11, also show improvement
beyond the baseline. However, they show poorer performance

Table 10 Average multi-label performance metrics

Net Comp EGR Inj1 Inj2 Inj3 Inj4 Inter  Net Normalized mAP EMR Hamming
Alex 0791 0.809 0.774 0.762 0.758 0.767 0.821  Alex 0.632 0.291 0.242
Dense 0.811 0826 0.795 0.782 0.776 0.787 0.819  Dense 0.637 0.289 0.240
Efficient  0.795 0.820 0.791 0.779 0.776  0.785 0.816  Efficient 0.647 0.305 0.239
Google  0.810 0.800 0.797 0.782 0.778 0.785 0.825 GooglLe 0.649 0.298 0.239
Incept 0.696 0.732  0.648 0.647 0.651 0.646 0.713  Incept 0.462 0.240 0.289
MNAS 0.547 0567 0.545 0514 0514 0552 0598 MNAS 0.316 0.175 0.309
Mobile 0.812 0815 0.789 0.775 0.775 0.780 0.818 Mobile 0.646 0.288 0.241
Reg 0813 0823 0.793 0.780 0.773 0.786  0.822 Reg 0.662 0.303 0.238
Res 0.802 0.816 0.790 0.777 0.772 0.780  0.819 Res 0.659 0.284 0.241
NeXt 0.807 0823 0.794 0.783 0.778 0.783  0.819  NeXt 0.668 0.306 0.238
Shuffle 0811 0.782 0.791 0.779 0.772 0.781 0.820  Shuffle 0.606 0.296 0.240
Squeeze  0.802 0.807 0.780 0.771 0.762 0.773  0.818  Squeeze 0.644 0.286 0.244
VGG 0.800 0.817 0.785 0.769 0.762 0.775 0.819 VGG 0.640 0.313 0.238
Wide 0.811 0.824 0.796 0.784 0.777 0.790 0.824 Wide 0.667 0.309 0.240
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Fig. 9 Optimal thresholds determined by Maximum F1-Score,
EMR, and Hamming Loss for the last seven CNNs
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Fig. 10 Average F1-Scores determined by Maximum F1-Score,
EMR, and Hamming Loss for the first seven CNNs

when compared to maximizing the F1-Score, with the EMR
showing better results as compared to the Hamming Loss.

The precision and recall for each metric, shown in Figs. 12-15,
provide more detailed characterization of each classifier. From the
figures, maximizing the F1-Score reveals that the CNNs are gener-
ally biased toward high recall in terms of performance. This is
expected behavior for data that are imbalanced and biased toward
negative values, showing that they are more cost-efficient for the
classifiers to accept wrong predictions in certain situations as
opposed to learning to differentiate between the positive and nega-
tive cases. The EMR thresholding produced a more balanced
approach between precision and recall as compared to maximizing
the F1-Score. As the recall is reduced significantly to achieve the
higher precision, this approach confirms that the recall bias is
present within the classifiers. Minimizing the Hamming Loss
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Fig. 11 Average F1-Scores determined by Maximum F1-Score,
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shows that improving precision leads to a disproportionately greater
reduction in recall compared to the cost of reducing precision when
choosing to increase recall, as observed in the results from the
maximum F1-Scores and EMRs.

Finally, it is of interest to know which the CNN has the highest
amount of classification variance. To accomplish this, the mean and
coefficient of variation of all pretrained CNNs’ confusion matrices
normalized with ground truth for each thresholding approach are
presented in Figs. 16—18. The true positive distribution percentage

Compressor 0.04657 | 0.2119 | 0.07495 | 0.06756 | 0.07622 |0.005312

EGR | 0.0139%4 0.1391 | 0.03957 | 0.03778 | 0.06191 | 0.01072

Injector1 |0.009359 | 0.04753 0.006105 | 0.006291 | 0.008418 | 0.009557

Injector2 | 0.04243 | 0.1141 | 0.0677 [WeX:EZERY 0.004479 | 0.01404 | 0.01964

for the mean values is represented by the diagonal of the confusion
matrix. In Fig. 16, it can be seen that the predictions by the
maximum F1-Score thresholding best match the ground truth,
with a relatively uniform offset corresponding to incorrect predic-
tions. Fig. 17 shows that the EMR approach sacrifices EGR and
injector accuracies for improved classification accuracies of the
compressor and intercooler. The Hamming Loss thresholding, pre-
sented in Fig. 18, shows a similar trend to Fig. 17 without the trade-
off in EGR prediction accuracy.

The coefficient of variation matrices in Figs. 16-18 shows
where the CNNs have the largest variance in prediction distribu-
tion. From Fig. 16, a threshold chosen by maximizing the
F1-Score reveals that most variation in the correct answers
involves failure modes related to the compressor, Injector 1, and
Injector 4. For the compressor, the variance is associated with
EGR failure. For Injector 1, most differentiation involves Injectors
2 and 3, while Injector 4 is related to variance involving Injector
3. For thresholding based on the maximum F1-Score, the variance
shows that the models are biased toward predicting Intercooler
failure even when it is not present. This behavior can also be
shown in Figs. 17 and 18. For the EMR thresholding, there is
greater variance in the true positive predictions, implying that
the CNNs tend to prioritize learning distinct labels for classifica-
tion. From this approach, it can be seen that most variation in erro-
neous predictions appears to involve Injector 1, which is
associated with all failure modes except the EGR. The Hamming
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Fig. 16 Mean of all pretrained CNNs’ confusion matrices (left) and coefficient of variation (right) from by-label maximum
F1-Score thresholding
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Fig. 18 Mean of all pretrained CNNs’ confusion matrices (left) and coefficient of variation (right) from by-label minimum

Hamming loss thresholding

Loss shows similar behavior to the EMR although its true positive
predictions are more stable.

Conclusion

This paper presented a multi-label transfer learning approach,
which involves retraining fourteen different pretrained CNNs with
multi-mode component failure data to predict the binary failure
states of targeted components. In this approach, a preprocessing
procedure was proposed to represent non-mutually exclusive multi-
mode component failure data from an automotive system, in a sui-
table form for retraining the pretrained CNNs. The retrained CNNs
were designed such that the failure modes of an EGR, compressor,
injectors, and intercooler of a diesel engine can be identified.
Although there have been many studies to determine a single spe-
cific component failure using machine learning and deep learning
algorithms, to the best of the authors’ knowledge, this is the first
attempt to predict concurrent failures of multiple components utiliz-
ing a multi-label deep learning approach.

When the retrained classifier models based on CNNs were
applied to the preprocessed simulation data, the test results
showed good overall classification performance. The normalized
mAP varied from 0.6 to 0.65 for most CNNs, which is comparable
to performance with conventional image datasets. To characterize
the prediction results, three thresholding procedures were pre-
sented: maximum FI1-Score, maximum EMR, and minimum
Hamming Loss. The results revealed a preference of higher recall
over precision with the CNNs, which is in agreement with previous
reports concerning biased multi-label data. However, the CNNs
showed significant improvement over baseline -classification
models for the expected unachievable regions. Finally, the mean
and coefficient of variation of the normalized confusion matrices
were presented to characterize the differences in learning perfor-
mance within the CNNs for each label. The results showed a true
positive distribution in line with the expected distribution, with a
bias toward predicting Intercooler failure. Injectors 1 and 4 were
found to have the highest labeling variance among CNNs, with
most differentiation involving the relation to the EGR. Therefore,
for accurate prediction of component failure, it is important that
the training dataset includes a balanced label distribution as much
as possible. However, as the performance metrics between the injec-
tors do deviate from this trend, it is suggested that the dependencies
between similar components play a much more significant role than
label imbalance for the purposes of classifying failure modes in this
regime.

The process presented in this paper is for detecting concurrent
failure of multiple components that are inherently correlated and

Journal of Computing and Information Science in Engineering

can have different health conditions over time within the operational
range of a vehicle. This paper has demonstrated that it is possible to
determine which components are failing regardless of their severity
in the vehicle when the health conditions are hidden, though this
predictive capability decreases as failure modes become increas-
ingly ambiguous such as seen with the Injectors. Based on the
results of this research, more thorough analyses on the effects of
the health condition, signal randomness, and RGB image random-
ness as well as increasing the dataset size and improving the label
and class balance of the training and validation datasets will be con-
ducted in the future. Also, the studied CNNs will be extended in
future work to improve the classification performance by combining
the CNNs into a consensus learning model. Finally, the effective-
ness of different preprocessing techniques will also be examined.
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