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Abstract
We provide the first comprehensive study on how to classify trajectories using only their
spatial representations, measured on 5 real-world datasets. Our comparison considers 20
distinct classifiers arising either as aKNNclassifier of a popular distance, or as amore general
type of classifier using a vectorized representation of each trajectory.We additionally develop
newmethods for how to vectorize trajectories via a data-drivenmethod to select the associated
landmarks, and these methods prove among the most effective in our study. These vectorized
approaches are simple and efficient to use, and also provide state-of-the-art accuracy on an
established transportation mode classification task. In all, this study sets the standard for how
to classify trajectories, including introducing new simple techniques to achieve these results,
and sets a rigorous standard for the inevitable future study on this topic.

Keywords Computational geometry · Machine learning · Classification · Trajectory mining

1 Introduction

A trajectory is the tracing of an object through physical space, and is now a first-class object
in spatial data analysis due to the ease of creating these objects via GPS trackers. Also,
their analysis has been at the forefront of geo-spatial research in clustering [1–5], similarity
measures [6–9], classification [10–25], and transportation mode detection [26–35]. In this
paper, we do not factor in the absolute time these traces are made, but mostly treat the
trajectories as geometric objects in the plane. Moreover, in this setting, we focus on the
central machine learning tasks of being able to classify trajectories to predict if they belong
to one of two classes.

To instantiate what is spatial trajectory classification and why we need to do classification,
consider traffic data. Discovering driving behavior patterns are critical for any government
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(as part of infrastructure design), auto companies (to adapt products to future use cases), and
auto insurance companies (to adjust rates for safe versus reckless behavior). The simplest
version of this is classifying drivers or routes as part of a favorable/standard versus unfa-
vorable/divergent class. We posit that most driver analysis will either directly rely on such a
task, or build on it as part of larger model. For instance, consider an adversary that uploads
some corrupted trajectories in the road network database of a government. Then the need
for a discriminator is a must. In many cases, the spatial classifiers are used with the addition
of extra metadata information about the vehicle, timing, or the person generating that route.
The choice of which ones to use is very situation-dependent and such we do not focus on
this. However, we observe that the methods we recommend are easily adjustable to adding
these information to the classifiers, as we will demonstrate in two of our experiments.

While in some cases, these full applications are pre-mature or should enact ethical safe-
guards before deploying, the task of building a classifier for trajectories will surely play an
important role in their ultimate use. As part of this project we have identified 5 datasets with
at least two naturally occurring classes of trajectories, of which it makes sense to classify.
These data sets are publicly available, and our methodology is simple and reproducible, and
we hope that these evaluation tasks become benchmarks for future development in this area.

Moreover, by using known techniques to combine distances meant to model trajectories,
and other trajectory representations, the literature provides for dozens of ways classifiers can
be built. In particular, a distance between trajectories (e.g., dynamic time warping, discrete
Fréchet distance) can be used within a KNN (K-nearest neighbor) classifier. In addition,
methods for featurizing a trajectory [36, 37] into a vector representation can be paired with
off-the-shelf classifiers, from say sk-learn. Thus,we explore and evaluate a large cross-section
of classifiers in this paper seeking to provide guidance on which ones work the best.

Furthermore, we adapt and extend several of these techniques to produce new methods
which are among the best performing in the benchmarks we have designed. These methods
include a new data-driven method to select the landmark points which the vectorized repre-
sentations are derived from, and a voting mechanism to boost the effect of several classifiers.
Moreover, we show these vectorized approaches can be combined with other features (e.g.,
velocity) and this achieves state-of-the-art performance on the standard task for predicting
mode of transportation.

In all, this work initiates a formal study of classification tasks for spatial trajectories,
identifies state-of-the-art methods – some are developed as part of this work, and provides
as set of benchmarks so this field can continue to evolve in a reproducible way.

1.1 Existing previous work on trajectory classification

Classifying trajectories is a fundamental task in spatial data analysis, but as far as we are
aware, has not comprehensively been studied as a stand-alone challenge. Yet, the core tra-
jectory classification task factors into many important challenges, and is destined to have
an ever-expanding role as spatial data analysis increases in automation. For instance, given
a GPS trace, can we determine which individual most likely made it, or what the mode of
transportation was. Or does the trajectory represent favorable behavior (a healthy animal,
a customer who will make a large purchase) or an unfavorable one (a diseased animal, a
shoplifter).

Previous trajectory classificationwork includes [36]which constructs some specific exper-
iments similar to ours to demonstratewhere their proposed technique is effective; we compare
to and build on this work, but aim for a more objective and comprehensive comparative study.
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They have applied their technique to Car-Bus and Geolife trajectory datasets [38, 39] that
this paper will explore. Other prior work considers subtrajectory [10, 40] or segment [11]
classification, which is not analyzing trajectories as a whole, and so is not applicable to our
tasks. For instance, [10] builds a recurrent neural net (RNN) tuned to specific properties of
their datasets—it centrally uses an encoded location id of each waypoint not available in
general trajectory datasets, like the ones we consider. The focus of [11] is on mode-of-flight
identification from very short subsets of trajectories. Another line of work is on inferring
transportation modes [26–35, 41], our work will directly compare against this line of work
in Sect. 3.6; the methods we propose improve upon all prior work in these baselines. Most of
these papers use deep neural networks, except for [41] which uses the hidden Markov model
in order to infer travel modes.

Another method of trajectory classification, is to utilize a KNN classifier through a trajec-
tory distance metric. For a list of widely used trajectory distances, which we will use in our
studies, see Table 3. A binary/multi resolution trajectory sketch (for Hausdorff distance for
example) was introduced and employed to get a distance on trajectories [6]. It is then applied
for trajectory classification and clustering. In another example, a grid-based technique for
sketching spatial trajectories is given in [42]. This representation is then utilized to introduce
a Euclidean-type distance on trajectories in order to apply with KNN classifier. Two exper-
iments were conducted on two small-size real world datasets. However, unfortunately, the
datasets are not public and so not reproducible.

2 Preliminaries

In this section first we describe existing landmark-based feature mappings for curves that not
only allow us to define a distance on curves but also enables using almost all machine learning
algorithms on curves. Then we provide a couple of simple enhancements to these methods.
The first one is a data-drivenmethod to select the landmark points based onwhich one is often
causing a mistake, and the second uses multiple such classifiers built from different randomly
chosen landmarks and returns the majority vote of all of the classifiers. We will see that both
methods provide small but tangible improvements in classification results thereafter.

2.1 Existing work on curve vectorization

Formally, by a curvewe mean the image of a continuous non-constant mapping γ : [0, 1] →
R
2. The set of all curves is denoted by �. We recall the notions of landmark-based feature

mapping and distance which were introduced in [36]. For any landmark q ∈ R
2 one can

consider the distance function vq : � → R defined by

vq(γ ) = dist(q, γ ) = min
p∈γ

‖q − p‖.
Now for a set of landmarks Q = {q1, . . . , qn} we can vectorize the vq function to get a
feature mapping vQ : � → R

n by

vQ(γ ) = (v1(γ ), . . . , vn(γ )),

where vi (γ ) = vqi (γ ) for 1 ≤ i ≤ n. Indeed, this contribution of each landmark are stacked
to get an appropriate vector representation of curves which enables us to take advantage of
machine learningmodels for trajectory datasets, makes some clustering (likeK-means) trivial
and K-nearest neighbor classifier very efficient using fast Euclidean near-neighbor libraries.
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Fig. 1 Left: Example of feature mapping vq for a curve. Middle: Example of feature mapping v
exp
q for a curve

(η = 2). Right: Example of feature mapping v
ς
q for a curve, with sidedness encoded by positive/negative

values (ς = 1)

Now the landmark-based distance dQ : � × � → R is defined by

dQ(γ, γ ′) = 1√
n

‖vQ(γ ) − vQ(γ ′)‖,

where ‖ · ‖ denotes the Euclidean distance in R
n . We next consider 2 alternative ways to

define the vq mapping, but for a set of landmarks Q they create a vector and distance in an
analogous way.

The second feature mapping is v
exp
q , which is a vectorization of the function

v
exp
q (γ ) = exp

( − vq(γ )2/η2
)
,

and localizes the feature mapping vq to a neighborhood induced by a learned scale term η.
We remark that, however, the feature mappings vQ and v

exp
Q and the distance dQ do not

capture the orientation of curves,which encode the direction of the trajectories.An orientation
preserving versionwhich extends v

exp
Q is introduced in [37]. First assumewe can define n p(q)

the normal vector of a curve γ (using the curve orientation to keep its direction consistent),
where p is the closest point on γ to q , and a few other technical conditions [37]. Assume �′
shows the set of all simple curves which are differentiable almost everywhere. Then define
v

ς
q : �′ → R for some scale parameter ς > 0 by

vς
q (γ ) = 〈n p(q), q − p〉 exp ( − ‖q − p‖2/ς2)/ς.

When p is an endpoint (i.e., p = γ (0) or p = γ (1)), we need a slightly different definition
which keeps the values local and continuous

vς
q (γ ) = 1

ς
〈n p,

q − p

‖q − p‖〉‖q‖∞,p exp
( − ‖q − p‖2/ς2),

where ‖q‖∞,p is the l∞-norm of q in the coordinate system with axis parallel to n p and
tangent line at p and origin at p.

Another landmark-based distance, denoted dπ
Q , was introduced in [36], which we will

evaluate via KNN classifier. Considering a landmark set Q = {q1, . . . , qn} and two curves
γ, γ ′ we can define dπ

Q(γ, γ ′) = 1
n

∑n
i=1 ‖pi − p′

i‖, where pi = argminp∈γ ‖qi − p‖ and
p′
i = argminp∈γ ′ ‖qi − p‖. Notice if there are multiple points available as argmin points,

considering the natural parametrization of curves on the interval [0, 1] and thus a linear order
on the curve, the first point will be chosen. For an illustration of feature mappings vq , v

exp
q ,

v
ς
q see Fig. 1.
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2.2 Proposedmethods: mistake-driven algorithm for choosing landmarks

In previous work [36, 37], the landmarks were chosen randomly (from some bounding
domain) for experimental evaluation, or sometimes on a fine grid within theoretical analysis.
In this section we propose a new and more data-driven mechanism to select the landmarks.
We refer to has amistake-driven approach since it selects points nearby trajectories for which
a classifier makes a mistake on, reminiscent of the perceptron algorithm.

Consider two training trajectory datasets T1 (examples with label 1) and T2 (examples with
label 0) and set T = T1 ∪ T2 (as the training set), and a particular classifier we denote clf.
Our goal here is to identify a set of landmarks that help to improve misclassification error
rates for use with clf. To accomplish this, first we designate a scale parameter, say η, which
controls the standard deviation of a random process placing landmarks near curves. We set
η = ‖m1−m2‖, wherem1 andm2 are themean of (x, y)-coordinates of trajectories in the first
and second training datasets, respectively. Next, we choose a random landmark q0 by adding
a Gaussian noise with standard deviation of η to a uniformly randomly chosen waypoint of a
uniformly randomly chosen trajectory. Then we train a classifier of type clf on the mapped
data v

exp
Q (T , η), where Q = {q0}. Then we choose the most misclassified trajectory, say γ ,

according to their scores given by the trained classifier and select a random landmark q1
by adding a Gaussian noise with standard deviation of η to a uniformly randomly chosen
waypoint of γ and append it to Q. We do the same process with Q = {q0, q1} to choose
another landmark. We repeat this process until we get the desired number of landmarks. The
pseudo code is given in Algorithm 1. These landmarks are then used to generate a vector
representation for trajectories, and a final clf classifier is trained.

Algorithm 1Mistake-driven approach to choose landmarks
Input: Two sets of trajectories T1,T2, n (the number of needed landmarks), η and a classifier clf.
Output: A set of landmarks Q of size n.
Randomly select a trajectory γ0 in T = T1 ∪T2.
With standard deviation of η, select a random landmark q0 near to a point of γ0; initialize Q = {q0}.
for i = 1, . . . , n − 1 do

Train a model using clf on the vectorized data v
exp
Q (T , η).

Select a trajectory γi that is most misclassified among T .
With standard deviation of η, select a random landmark qi near to a point of γi and append it to Q.

end for
return Q

3 Experimental evaluation of trajectories classificationmethods

Datasets
We have done experiments on 5 real world and 1 synthetic datasets which are explained in
detail in the following subsections. Table 1 shows an overview of these datasets, detailing
the data size and also the size of a bounding box. We also show the scale parameter ς used
in experiments, we generally aim to set it about the same or a bit larger than the bounding
box. In the Characters, T-drive and Geolife datasets where the data spread changes over the
same domain, we keep it fixed for all experiments in that dataset type.

As a general preprocessing step for all experiments first we remove stationary waypoints
(i.e., consecutive waypoints with no movement in between) and then remove all trajectories
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Table 1 This table represents an overview of datasets used in the experiments in this paper. Here “Size” shows
the number of selected trajectories after preprocessing step and “L × W” shows the length and width of the
rectangular region containing all the sampled trajectories

Dataset Pairs Size L × W ς

Car-Bus – 76, 44 0.67 × 0.61 1

Simulated Car-Bus – 228, 220 0.67 × 0.62 1

Two Persons – 124, 89 30.53 × 15.64 100

Characters u, w 125, 131 112.63 × 80.55 100

n, w 125, 130 121.38 × 87.84 100

n, u 131, 130 124.82 × 84.34 100

b,c 174, 141 83.11 × 82.55 100

c, o 141, 142 98.75 × 61.08 100

T-drive 3142,6834 143, 116 14.97 × 16.64 10

6168, 9513 143,119 0.97 × 0.83 10

1950, 5896 140, 123 1.16 × 1.31 10

2876, 3260 100, 132 0.81 × 0.51 10

1350, 5970 132, 127 0.76 × 0.48 10

Geolife 15, 44 154, 197 0.32 × 0.6 1

15, 125 154, 122 14.37 × 4.07 1

16, 44 140, 197 0.18 × 0.32 1

33, 40 117, 193 0.21 × 0.52 1

The notation ς shows the scale parameter

with less than 10 waypoints. The trajectories are randomly split (70/30) into train and test
data and we report misclassification error on test data for several classifiers, averaged over
50 random train-test splits.

The experimental setup for the mistake-driven algorithm is as follows. We split data into
train and test data (70/30) and calculate the threshold value η using the training data. Then we
apply our method of choosing landmarks (Algorithm 1) 3 times (unless otherwise specified)
on training data and opt for one with the lowest training error. This one is then used on test
data to report the results in tables (as usual, averaged over 50 test/train splits).

We apply the same methodology for different choices of landmarks vQ , v
exp
Q , v

ς
Q and

using endpoints, when appropriate. The generic random landmarks are chosen from normal
distribution with mean of all waypoints and standard deviation 4 times the standard deviation
of all waypoints, and are denoted “Rand vQ”. The ones that are mistake-driven are denoted
“MD vQ”. When voting is used it is marked Vote(·).

Classification methods used. Given the various ways of achieving vectorized representa-
tions (including just mapping toR4 via the coordinates of the endpoints), we experiment with
Convolutional Neural Networks and 7 classifiers from sklearn that are given in Table 2.
The parameter ς in v

ς
Q vectorization for all experiments in this section is chosen sufficiently

large with respect to the length of the rectangular region containing all trajectories in order
to reduce the Gaussian weight impact on the vectorization while capturing the orientation.
For the CNN we use a 1-layer architecture with 10 filters for the hidden layer. Padding and
stride of 1 are utilized and convolution kernel size is set to 2 or 5 depending on the dimension
of the input data.
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Table 2 This table shows an overview of classification methods used. All other hyperparameters/parameters
are set to the default ones

Classification method In short Hyperparameters

Linear Kernel SVM LSVM C = 100

Gaussian Kernel SVM GSVM C = 100

Polynomial Kernel SVM PSVM C = 100, deg = ‘auto’

Decision Tree DT No limit on ‘max_depth’

Random Forest RF 50 Estimators

K-Nearest Neighbor KNN 5 Neighbors

Logistic Regression LR –

Convolutional Neural Network CNN See the text

Table 3 The table shows 12 famous trajectory distances used for KNN classifier

Distances Reference Implementation

Continuous Fréchet Distance [44] [45]

Discrete Fréchet Distance [46] [45]

Hausdorff Distance [47] [45]

Dynamic Time Warping (DTW) [48] tslearn

Fast Dynamic Time Warping (fastdtw) [49] [50]

Soft Dynamic Time Warping (soft-dtw) [51] [52]

Symmetric Segment-Path Distance (SSPD) [1] [45]

Longest Common Subsequence (LCSS) [53] [45]

Edit Distance on Real sequence (EDR) [54] [45]

Edit distance with Real Penalty (ERP) [55] [45]

dπ
Q (Landmark-based distance) [36] [56]

LSH (with binary sketches for Hausdorff distance) [6] By authors

We compare these resultswithKNN (K-nearest neighbor) classifierwith K = 5 estimators
from sklearn library, using 12 different distances given in Table 3. In all experiments with
KNN using LSH, we have applied 20 random circles to get binary sketches utilized in LSH
distance. To choose the circles’ radius r , like computing η in the mistake-driven algorithm,
we set r = ‖r1 − r2‖, where r1 and r2 are the mean of (x, y)-coordinates of trajectories
in the 70% of the first and second datasets used as training data. Finally, in all landmark-
based experiments in this paper we use 20 landmarks. Indeed, in random vQ , v

exp
Q and

v
ς
Q we randomly generate 20 landmarks around the curves. For mistake-driven approaches,

Algorithm 1 chooses 20 landmarks accordingly. To make it easy to reproduce or compare
against our results, we link to all datasets, and host cleaning and testing methods on a public
github page [43].

All resulting figures (Figures 3, 4, 6, 12, 13, 8, and 10 and Table 4) show the average
classification error over 50 trials on random test/train splits. The error bars show standard-
deviation of these 50 trials.
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Fig. 2 Left: Car (blue) and bus (red) trajectories (full original dataset used in experiments). Middle: zooms in
for a close up of most interesting data. Right: shows zoomed in region of the simulated car-bus dataset (Color
figure online)

Fig. 3 Average classification test errors of Car-Bus dataset of several classification techniques (in bar charts)
with different methods of featurizing the data (in color), mostly based on the way the landmark set Q is chosen.
Also, average KNN-classification test errors with various distances. Parameters: soft-dtw: γ = 1e−15, LCSS
and EDR: ε = 0.02

3.1 Car-Bus dataset

We first consider the GPS Trajectories Dataset from UCIMachine Learning Repository [38],
recorded in Aracuja, Brazil (see Fig. 2). There are 87 car and 76 bus trajectories in this
dataset. After the preprocessing step described above, a set of 78 car and 45 bus trajectories
remained. Moreover, in order to make the problemmore challenging, we removed the 2 clear
outliers from car and 1 from bus trajectories and ended up with 76 car and 44 bus trajectories.
In this experiments C = 10 is applied for PSVM classifier.

The misclassification rates are shown in Fig. 3. The figure shows results of applying a
variety of baseline distances, and classification using KNN; all of these approaches have
error of at least 22% on the test data. Other methods like decision trees are not generically
possible to do with only access to a distance. The best misclassification rate on the test error
of 15.46% is shown in Fig. 3 and achieved by Random Forest using voting technique with
mistake-driven landmarks. In general, the mistake-driven landmarks perform better than the
similar methods with randomly chosen landmarks or just endpoints as shown in Fig. 3. The
v
exp
Q landmarks mostly work a bit better than vQ and v

ς
Q landmarks across techniques. The

Random Forest methods do consistently well (with between 15% and 19% error). In addition
to the good performance of Random Forest classifier, Gaussian SVM tends to perform well
with between 17% and 24% error, but in this case does not achieve the smallest overall
test error. In fact, just using endpoints (see Fig. 3), Random Forest achieves the third best
result of 16.11% error—however, other classifier types other than DT, do poorly with this
representation, so this does not appear to be a good general purpose way to vectorize the
trajectories.
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Fig. 4 Average classification test errors of Simulated Car-Bus dataset of several classification techniques (in
bar charts) with different methods of featurizing the data (in color), mostly based on the way the landmark set
Q is chosen. Also, average KNN-classification test errors with various distances on trajectories. Parameters:
soft-dtw: γ = 1e − 15, LCSS and EDR: ε = 0.02

3.2 Simulated car-bus dataset

In this experiment, to create a larger and more balanced dataset, we add some noise to the
preprocessed trajectories in car-bus dataset in Sect. 3.1 to get 2 noisy copies of each car and
4 noisy copies of each bus trajectories and combine them with the original preprocessed car
and bus trajectories. Thus we end up with a roughly balanced data including 226 car and
220 bus trajectories (see Fig. 2). To be more precise, we add a noise offset vector v ∈ R

2 to
each waypoint. We initialize v = 0.001, and this is the noise added to the start point. Then
before modifying each subsequent waypoint we update v ← v + N (0, 0.0001), which is the
two-dimensional normal distribution with mean (0, 0) and standard deviation 0.0001.

The misclassification rates are presented in Fig. 4. The relative accuracy of classification
methods is similar to that of the original car-bus dataset, but the accuracy in this setting is
generally better. The left side bars show results of applying 12 baseline distances, and classi-
fication usingKNN. They all have error of at least 8% on the test data; the best performing one
is SSPD-KNN. The overall best misclassification rate of 4.64% shown in Fig. 4 is achieved by
Gaussian SVM using voting technique of mistake-driven landmarks. In general, the voting
method with mistake-driven landmarks does better than other vectorization techniques or
just endpoints as shown in Fig. 4. Comparing the performance of featurization methods we
observe that random vQ vectorization technique tends to perform a bit better than v

ς
Q and v

exp
Q

vectorizations. Perhaps surprisingly, with just using endpoints as the vectorized features (see
Fig. 4), Random Forest achieves a low error rate of 6.49%; this may be partially explainable
due to the relatively low noise of starting points in the noisy copies of each trajectory. Linear
classifiers generally perform poorly on most featurizations.

3.3 Two persons trajectory data

The trajectory data in this experiment was obtained from the GPS carried by two members of
“Databases and Mobile Computing Laboratory in University of Illinois at Chicago” during
their daily commute for 6 months (see Fig. 5). The dataset was created in 2006 and is
available for public [57]. Each trajectory represents a continuous trip of a member in Cook
county and/orDupage county, Illinois. One of the persons has 124 trajectories and the other 89
trajectories.We removed all stationarywaypoints and trajectories with less than 10waypoints
as the general preprocessing step; however, the number of trajectories for each person did
not change. Similar to other experiments the goal is to classify each person’s trajectory.
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Fig. 5 GPS trajectories of twomembers (one in blue and the other in red) of “Databases andMobile Computing
Laboratory in University of Illinois at Chicago” during their daily commute for 6 months which are captured
in the Cook county and/or the Dupage county of Illinois

Most of the trajectories in this dataset are very long and thus the running time of KNN
classifier with almost all distances are high. Specially, the continuous Fréchet distance did not
complete in 48 hours, and so we do not report any results. Note that since our vectorization
methods are efficient using optimized Euclidean libraries, they are very fast in comparison
with KNN classifier using variety of distances (running times are discussed more in Sect. 5).

The results in Fig. 6 show the misclassification errors on test data. The lowest misclas-
sification rate of 4.49% is achieved by mistake-driven landmarks using Linear SVM and
also by Convolutional neural networks applying voting technique on v

exp
Q -vectorization.

Other classifiers included cannot achieve an error rate less than 4.83% (which is also gained
by mistake-driven landmarks) and KNN with variety of popular distances cannot do better
than 5.26%. All other vectorization techniques tend to work roughly similar on this dataset,
where all could get under 6% misclassification rate with at least one classifier. It seems that
the direction of trajectories is not essential as the v

ς
Q-vectorization did comparatively poorly

with about 8% test error applying Random Forest and KNN classifier using voting technique
except CNN that could get 5.69% misclassification rate.

3.4 Characters dataset

For a change of pace, this experiment is done on the Character Trajectories Dataset from
UCI Machine Learning Repository that consists of handwritten characters captured using a
WACOM tablet – so is not mobility data. We chose 5 similar pairs of letters {(u, w), (n, w),
(n, u), (b, c), (c, o)} (see Fig. 7) to perform a binary classification for each pair. For other pairs
of characters we did a binary classification with vQ-vectorization using random landmarks
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Fig. 6 Average classification test errors of Two Persons dataset of several classification techniques (in bar
charts) with different methods of featurizing the data (in color), mostly based on the way the landmark set Q is
chosen.Also, averageKNN-classification test errorswith various distances. Parameters: soft-dtw: γ = 1e−10,
LCSS and EDR: ε = 0.1

Fig. 7 A subset of trajectories (10 trajectories of each character) are presented

Fig. 8 Average classification test errors of 5 pairs from Characters dataset of several classification techniques
(in bar charts) with different methods of featurizing the data (in color), mostly based on the way the landmark
set Q is chosen. Also, average KNN-classification test errors with various distances. Parameters: soft-dtw:
γ = 0.15, LCSS: ε = 1 and EDR: ε = 1, 2

and got near zero test error. The selected pairs are the more challenging ones. Here ς = 100
is considered for v

ς
Q-featurization.

Aggregated test errors for 5 chosen pairs are given in Fig. 8. The KNN classifier using
edit distance with real penalty (ERP) achieves the best misclassification rate. There is a
considerable gap between the best misclassification rate of 1.67% and the next best per-
formed classifier with 4.70% misclassification rate which is achieved by Gaussian SVM
classifier employing v

ς
Q-vectorization with voting technique. KNN with fastdtw also gener-

ated a low error rate of 4.73%. Other vectorized GSVM classifiers did well, but most others
had misclassification rate higher than 6%, and often above 10%. Generically, however, the
mistake-driven vectorized technique, as well as Vote(vς

Q) and endpoints, tends to work bet-
ter than other landmark-based featurization methods across all classifiers, which are better
than other KNN-based ones. The best classifiers among these are SVM-based ones, Random
Forest, and Fréchet- or DTW-based KNN classifiers.
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Fig. 9 A subset of trajectories (50 trajectories of each user) of each pair of taxies from T-drive dataset are
presented

Fig. 10 Average classification test errors of 5 pairs from T-drive Trajectory dataset of several classification
techniques (in bar charts) with different methods of featurizing the data (in color), mostly based on the way
the landmark set Q is chosen. Also, average KNN-classification test errors with various distances. Parameters:
soft-dtw: γ = 1e − 14, LCSS: ε = 0.0055 and EDR: ε = 0.005

3.5 T-drive trajectory dataset

In this experiment we consider the T-drive Trajectory dataset released by Microsoft in 2011
[58, 59]. It consists of trajectories of 10,357 taxis captured by GPS within 6 months in
Beijing. Each taxi’s trajectories are stacked together so that each taxi has one very long
trajectory. We have chosen 5 pairs of taxis ((3142, 6834), (6168, 9513), (1950, 5896), (2876,
3260), (1350, 5970)) with high misclassification rate (measured with both KNN classifier
with different distances and featurization via vQ with 20 random landmarks). Then, after
removing stationary waypoints, we partitioned each selected taxi’s long trajectory to short
trajectories with trip duration of at most 20 minutes and removed all trips with less than 10
and more than 200 waypoints. This way we ended up with between 100 and 200 trajectories
for each taxi (see Table 1 for exact numbers and see Fig. 9).

The misclassification rates on test data are reported in Fig. 10. The best performing clas-
sifier is Random Forest with 27.1% error rate applying with/without voting technique with
the mistake-driven landmarks. KNN with SSPD is the next well performed classifier with
error rate of 27.26%. KNN with 4 distances, the mistake-driven algorithm with all classifiers
but CNN, and voting technique with vQ-vectorization with all classifiers but LR could get
misclassification rates between 28% and 29%.We can easily observe that the mistake-driven
technique tends to do a better job. Furthermore, in contrast to Characters dataset, we see that
KNN classifier with ERP could not achieve a low test error.

3.6 Geolife GPS trajectory dataset

The dataset we employ here is Geolife GPS Trajectory dataset [39], which was released
by Microsoft in 2012. It consists of trajectories of 182 users from 2007 to 2012. In total
there are 17,621 trajectories which are mostly recorded in Beijing, China. Here we took 4
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Fig. 11 4 pairs of users from Geolife trajectory data after applying 20 minutes partitioning

Fig. 12 Average classification test errors of 4 pairs from Geolife GPS Trajectory dataset of several classifi-
cation techniques (in bar charts) with different methods of featurizing the data (in color), mostly based on
the way the landmark set Q is chosen. Also average KNN-classification test errors with various distances on
trajectories. Parameters: soft-dtw: γ = 1e − 15, LCSS and EDR: ε = 0.001

pairs of users {(15, 44), (15, 125), (16, 44), (33, 40)} with a high binary misclassification
error rate using both KNN (with different distances) and vQ featurization via a random set
of landmarks. Then we tried to classify trajectories of users in each pair from each other.
In the preprocessing phase after removing stationary waypoints, like in T-drive dataset, we
partitioned each trajectory to trips with a duration of at most 20 minutes, and then applied
our standard filtering and cleaning. We ended up with users including between 100 and 200
trajectories (see Fig. 11).

Most raw trajectories were quite long and so classification with KNN using most dis-
tances is inefficient as their run time is quadratic in the number of waypoints of trajectories.
Therefore, we used the 20 minutes threshold to partition trajectories into smaller and perhaps
meaningful (sub-)trajectories. The landmark-based vectorization methods’ complexities are
linear in the number of waypoints of trajectories and thus very efficient.

The aggregated misclassification results for the chosen 4 pairs are given in Fig. 12. The
best performed method is the mistake-driven algorithm with voting technique using Random
Forest with 16.52% error rate on test data. The KNN classifier with SSPD, endpoint classi-
fication with Random Forest and the mistake-driven landmarks with Random Forest gained
next lowest misclassification rates between 17% and 18%. In general, Random Forest tends
to perform better than other classifiers across all vectorization methods. Moreover, like in
T-drive dataset and unlike Characters dataset, on the Geolife trajectory dataset KNN-ERP
performed poorly with a high misclassification rate of 44.13% on test data.

Key observationsA broad take away is that Random Forest and Gaussian SVM on vector-
ized representations are consistently among the best performing. Amore detailed and holistic
analysis in deferred to Sect. 5.
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4 Including other features

Recall that a trajectory is a finite sequence of waypoints, which we transform into a curve
connecting consecutive waypoints by line segments. In this section, we associate a time value
ti with eachwaypoint as well – this is common but not universal in their collection. In addition
to an average length of a segment, this allows us to define other features, namely average
velocity, acceleration and jerk. Using these features, in addition to vQ and v

ς
Q , we can have

the following feature mappings which are a combination of vQ or v
ς
Q and average length,

velocity, acceleration and jerk.

v+
Q(γ ) = (vQ(γ ), length, velocity, acceleration, jerk) ∈ R

|Q|+4,

v
ς+
Q (γ ) = (v

ς
Q(γ ), length, velocity, acceleration, jerk) ∈ R

|Q|+4.

The motivation for introducing these physical features is that usually these features vary for
different types of transportation modes. For example, the velocity and acceleration of a car is
completely different from that of a train and both different from hiking or biking. Thus, these
features will likely be useful in trajectory classification tasks for transportation data. There-
fore, these feature mappings will be capable of capturing both geometric and physical aspects
of trajectories. To be able to compare the contribution of geometric and physical attributes, we
will evaluate misclassification rates with geometric features and physical features separately
as well.

4.1 Car-Bus

We reconsider the car-bus dataset utilized in Sect. 3.1. We use the same preprocessing step
here and try to classify car versus bus trajectories using 20 landmarks. As it can be observed
from Fig. 13, the lowest misclassification rate of 1.95% is achieved by Linear SVM using
v

ς+
Q featurization (i.e., the signed feature mapping v

ς
Q plus physical features). The next well

performed method is again Linear SVM but with mistake-driven algorithm with 2.59% test
error, where we combined the physical features with geometric features from landmarks.
Recall that the best performance without physical features in Fig. 3 was 15.46% misclassi-
fication rate; so this is a significant improvement. Also an improvement over 3.89%, which
is the best error rate with only physical features, which uses Linear SVM again. Looking
at linear classifiers (Linear SVM and Logistic Regression) in Fig. 13 and misclassification
rates reported in Fig. 3, one may conclude that adding physical features makes the car-bus
data almost linearly separable. Other classifiers with all kinds of vectorizations have at least
5% error rate on test data. Figure 13 shows that on car-bus dataset the v

ς+
Q vectorization

generically works better than other vectorization techniques in presence of physical features.
C = 100 (LSVM and GSVM), γ = auto (GSVM), C = 1000 and deg = auto (PSVM),
n_estimators = 50 (RF) and n_neighbors = 5 (KNN) are selected hyperparameters.

4.2 Transportationmodes

The Geolife GPS Trajectory dataset used in Sect. 3.6 has a standard mode-of-transportation
prediction task.Among182users 69of themhave labeled their trajectorieswith transportation
modes such as walk, bike, bus, car, taxi, subway, railway, train, airplane, motorcycle, run. As
other modes are in extreme minority in the labeled data, we only consider walk, bike, bus,
car, taxi, subway, railway, and train. Moreover, as it is recommended in the user guide of
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Fig. 13 Car-Bus classification test errors with different classifiers and vectorizations

data, we regard car and taxi as one transportation mode, namely car, and similarly, we regard
all three labels train, railway and subway as train. Therefore, we deal with 5 labels (walk,
bike, bus, car, and train).

In this experiment we try to identify transportation modes of GPS trajectories in the data,
so it is a multi-class classification task. First we apply our usual preprocessing step including
removing stationary points and trajectories less than 10 waypoints. Since we would like to
fairly compare our results with the results from state-of-the-art papers, we try to apply the
experimental setup used in [26, 27], for example. Thus, in this experiment we use 80-20
train-test split. Moreover, each trajectory is partitioned into short trajectories if the time
interval between two consecutive waypoints exceeds the 20 minutes threshold according to
the recommendation in [32], which is also employed in the aforementioned references. The
distribution of transportation modes after the preprocessing step is as follows: walk: 2060,
bike 1110, bus: 1094, car: 975, train: 359, which in total are 5174 trajectories.

Themisclassification rates on test data are provided in Table 4. The hyperparameter ς , like
in Sect. 3.6 is set to 1. As it can be viewed fromTable 4, Random Forest with v+

Q vectorization
achieves the best misclassification rate of 11.89%. Furthermore, Random Forest consistently
performs better than other classifiers on all vectorization methods, where the next lowest
test errors rates of 15.46% and 16.42% are obtained by Random Forest with MD+ and v

ς+
Q

featurizations. As it can be seen, the mistake-driven technique for choosing landmarks does
not work as well as random choice of them. We believe this is because (a) the mistake-driven
algorithm is designed for binary classification tasks but this task is a multi-class classification
task, and (b) themistake-driven algorithmhelps optimize the landmarks, but does not factor in
the physical characteristics which are critical for this task. Moreover, without using physical
features, with random choice of landmarks we could achieve misclassification error rate of
18.08% using Random Forest whilst using only physical features the best gained test error
rate is 22.73%. Therefore, the contribution of both physical and geometric features helps to
improve the misclassification rate.
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Table 4 Transportation modes classification test errors of Labeled Geolife Trajectory dataset with different
classifiers and different vectorizations. Hyperparameters: LSVM:C = 1e10, GSVM:C = γ = 1000, PSVM:
C = 1000, deg = 3, RF: n_estimators = 100 and KNN: n_neighbors = 5

FM Rand v+
Q Rand v

ς+
Q MD+

Clf Mean (std) Mean (std) Mean (std)

LSVM 0.2869 (0.0139) 0.4059 (0.0138) 0.4416 (0.0178)

GSVM 0.2068 (0.0126) 0.5696 (0.0145) 0.2251 (0.0160)

PSVM 0.6335 (0.0326) 0.5379 (0.0149) 0.6292 (0.0114)

DT 0.1973 (0.0116) 0.2688 (0.0123) 0.2289 (0.0131)

RF 0.1189 (0.0094) 0.1642 (0.0100) 0.1546 (0.0085)

KNN 0.2086 (0.0105) 0.2611 (0.0111) 0.2303 (0.0300)

LR 0.6564 (0.1775) 0.6840 (0.1552) 0.6261 (0.0109)

FM Rand vQ Rand v
ς
Q Physical Features

Clf Mean (std) Mean (std) Mean (std)

LSVM 0.4959 (0.0289) 0.6772 (0.0141) 0.3978 (0.0137)

GSVM 0.2313 (0.0126) 0.5711 (0.0150) 0.2906 (0.0134)

PSVM 0.6332 (0.0141) 0.6537 (0.0225) 0.7349 (0.0927)

DT 0.2418 (0.0143) 0.4167 (0.0126) 0.2915 (0.0112)

RF 0.1808 (0.0120) 0.3022 (0.0120) 0.2273 (0.0097)

KNN 0.2241 (0.0131) 0.5271 (0.0148) 0.2464 (0.0106)

LR 0.6183 (0.0233) 0.6282 (0.0150) 0.7449 (0.1371)

Note that for two reasons we avoided doing KNN classification with different distances
like in previous experiments. Themain reason is that our aim here is to compare our methods’
performancewith state-of-the-art papers’ results as a baseline. Furthermore, since the physical
characteristic features are clearly important, yet it is not clear how to integrate them with
other distances. The next reason is that most of the preprocessed trajectories are too long –
even though the trajectories are partitioned by time – and thus the KNN approach can be very
inefficient. We remark that the partitioning method in this experiment, as explained above,
differs from the method used in binary classification task for Geolife and T-drive trajectory
datasets in Sects. 3 and 4.

Comparison with previous studies. To the best of authors’ knowledge the best reported
misclassification rate is 15.2% [26], which is achieved by intricately designed convolutional
neural network. The average misclassification rate of 11.9% we achieved with our vector-
ized model, using vQ featurization plus the above 4 physical features, with Random Forest,
outperforms this state-of-the-art result. In addition, notice that our method is very efficient
and easy to apply as we use simple featurization and simple out-of-the-box machine learn-
ing algorithms. Moreover, we only need to tune a single benign hyperparameter in Random
Forest for example, namely, the number of estimators, while in CNN one needs to tune many
hyperparameters in addition to the design of a useful architecture.

To compare more, our method outperforms misclassification rates reported in many other
studies like [28] with 32.1%, [30] with 25.9% and [31] with 25.8%. A summary of these
misclassification rates is given in Table 5. Note that the experimental setup of each study is
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Table 5 Test error comparison with previous studies

Study Misclassification rate

Using CNN [28] 32.1%

Using CNN [30] 25.9%

Inference plus Decision Tree [31] 23.8%

Using CNN [27] 23.2%

Our Model with vQ vectorization 18.1%

Our Model with v
ς+
Q vectorization 16.4%

Our Model with MDv+
Q vectorization 15.4%

Using CNN [26] 15.2%

Our Model with v+
Q vectorization 11.9%

a bit different (we did our best to match the state-of-the-art results [26]) but all are trying to
infer transportation modes.

5 Discussion

This paper establishes the first comprehensive and large-scale empirical comparison of meth-
ods to classify trajectories based on their spatial position. It compares KNN classifiers using
standard distance measures, along with new techniques that first create a vectorized feature
representation, and can then apply a wide variety of classifiers. Data for trajectories in these
experiments mostly comes from human movement, potentially via a vehicle. On these tasks,
the vectorized representations typically performed superior to the KNN-based ones across
various distance measures. Moreover, the Random Forest classifier (as is common in other
settings [60]) was typically the one that achieved the best or nearly best performance.

Other experiments considered different data sources including characters (written on a
tablet), and other features including physical properties such as speed and acceleration. In
these tasks, other methods sometimes showed better performance, specifically a KNN classi-
fier using edit distance with real penalties [55] performed exceedingly well on the character
classification tasks, and linear classifiers on the mode-of-transportation tasks. We did not
specifically design tasks to take advantage of the distances or embeddings that preserved the
orientation of direction of the trajectories (as has been done elsewhere [37], e.g., by modi-
fying the Pigeons dataset [61–63]), and there was no significant observed advantage of that
class of techniques over ones that simply treated trajectories as geometric objects. Identify-
ing naturally occurring tasks where this is needed, and performing the empirical study is an
intriguing future direction.

Beyond the large empirical study, we introduced a newmechanism to select the landmarks
for the vectorized representations. These are dubbed mistake-driven and are inspired by the
perceptron algorithm and other active learning paradigms. At each step one of the most
misclassified training data trajectories is identified, and a new landmark is selected, with some
randomness, near this trajectory with the goal of being informative toward its prediction. This
approach is mostly effective, but can be noisy since (unlike the perceptron algorithm where a
data element serves as a support vector) the selected landmark is not guaranteed to boost the
accuracy of the identified trajectory. As a result, we also introduce a simple voting method
to aggregate these mistake-driven collections of landmarks. This approach generates several
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Fig. 14 Co-clustered correlation matrix for test errors with 19 classifiers

landmark sets this way, or just chosen from normal distribution at random, and then classifies
each trajectory by a majority vote of the classifiers from each landmark set. The combination
of new methods in the mistake-driven landmarks and voting shows to be especially effective.
Note that it is not obvious how to achieve similar voting-based improvements with the KNN-
based classifiers for the various distances since the classifiers themselves are deterministic,
and would thus all vote the same way.

We remark that we investigated (but do not present) several other potential data-driven
mechanisms to choose landmarks. These include deriving the gradient for the position of
a landmark and performing various gradient-descent-based approaches. These appeared to
consistently get stuck in local minimum, and this line of attack proved unfruitful.

Correlation among classifiers.This paper compared 20 different types of classifiers across
6 main experimental tables, each one may be aggregating several related tasks. Most of the
discussion focused on which classifiers performed the best. However, many of the classifiers
are fairly effective at many of the tasks. One lingering question is how correlated are the
performances of similar classifiers – if they are clustered, in practice it may be useful to
check one technique from each grouping. This we summarize in a correlation matrix.

Figure 14 shows the co-clustered correlation matrix of misclassification rates calculated
for 217 experiments with the 19 classifiers discussed in Sect. 3. The correlation is calculated
from the 6 main tables, where several experiments are aggregated in the figures. 200 more are
included from 100 randomly chosen pairs from Geolife trajectory data, and 100 randomly
chosen pairs from T-drive trajectory data. The big cluster in the figure indicates that Decision
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Tree, Random Forest and KNN classifier with vQ-vectorization and KNN with discrete
Fréchet, Hausdorff, SSPD and LCSS are highly positively correlated. There is another cluster
containing all variants of DTW and KNN with dπ

Q . Moreover, all variants of SVM, Logistic
Regression and CNN with vQ-vectorization and KNN with LSH have a positive correlation.
The clear outlier is theKNNclassifier for edit distance on real penalties (erp-KNN), including
negative correlations with all but the vectorized SVM-based methods and CNN. The KNN
classifier with continuous Fréchet distance is not included in Fig. 14 as its complexity is high
and for most pairs in Geolife and T-drive trajectory datasets it could not be completed within
24 hours (remember that we have chosen more than 200 pairs from these two datasets).

Efficiency. In general, the vectorized approaches are significantly more efficient and scal-
able. For instance, training a vectorized classifier on the entire car-bus dataset takes between
0.05 and 0.2 seconds, or a factor 11 more (typically under 2 seconds) with the mistake-driven
approach which takes the best of 11 trials. In contrast the KNN-based approaches typically
took 6 to 15 seconds, with only fastdtw (about 1.5 seconds) and LSH (0.08 seconds, using
a similar sketch-based approach) nearly as efficient. On the Two Persons dataset where the
trajectories are larger, the difference is more dramatic. Verctorized classifiers take 1 to 2.5
seconds, with mistake-driven approach again a factor 11 more. Where as KNN classifiers
typically took 1,000 to 10,000 seconds; with exceptions fastdtw (32 seconds) and LSH (1.5
seconds). And among the KNN classifiers, the most divergent one in terms of performance
(erp-KNN)was typically the slowest measured (Fréchet was even slower –more than 80, 000
seconds on Two Persons).

Size of landmarks |Q |. To choose the right landmark size for experiments, we opted for
20 as we observed 20 landmarks are enough to get a good performance on most datasets.
However, we did a simple experiment on the car-bus dataset for different values of |Q| (10,
20, 30, 40 and 50). As it can be observed, generally speaking, increasing the number of
landmarks slightly improves the test errors but kind of flattening at about 20. As an example,
we have given the results with vQ-vectorization in Fig. 15.

Fig. 15 Classification test errors of Car-Bus data with 8 classifiers employing vQ -vectorization and different
number of random set of landmarks
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Final Recommendations Ultimately, for the consistent best accuracy, we recommend
Random Forest (RF) with Vote(MD vQ) features as a first choice to most likely achieve the
best accuracy. However, RF with vQ features offers a very simple, effective, and efficient
classifier. Still, one may want to try several approaches, for instance KNN with ERP. Finally,
if one has meta data available, or physical characteristics (e.g., length, velocity, acceleration,
jerk) make sense for the application, it is recommended to append them to the featurized
representation.
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