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limitations are discussed in Sec. V along with a discussion

of planned future work in Sec. VI.

A. Background

Helical shapes, twisted surfaces, and chirality are found

throughout the natural world, such as the DNA molecule [9],

various seeds [10], [11], and human sperm [12]. These natural

phenomena have aroused a series of theoretical studies regard-

ing the self-assembly and transition of complex helical strands

such as cables, ropes, and ribbons [13], [14], [15]. Inspired by

nature and the mathematical properties of anisotropic, curved,

chiral, and helical shapes, scientists have developed soft sys-

tems that can generate complex asymmetric motion for use in

actuation [16], [17] and sensing [18], [19]. Various methods

have been proposed to utilize the stiffness and the geometry

change of continuous curved surfaces for locomotion [20],

[21], [4], [5]. Twisting mechanisms have also been applied

in the actuation of robotic fingers [22] and twisting tube

actuators [23]. Zhao et al. [24] developed a twisting ribbon

robot that can roll and maneuver in unstructured environments.

The above work demonstrates that curved geometry can play a

role in tuned dynamic gaits in soft and flexible robotic systems.

The large deflection effects and its dynamic application in

origami and foldable miniature walking robots have also been

studied [25], [26], [27]. Maruo et al. [28] propose a similar

mechanism using structural anisotropy and cyclic vibration

to create complex motion for manipulation. Our paper, con-

versely, studies how soft, twisted beams interacting with the

ground can generate complex walking locomotion via simple

vibratory input.

Though electric motors are most often used to actuate

legged robots[29], the mass and size constraints of centimeter

and millimeter-scale robots has also led researchers to inves-

tigate pneumatic [30], tendon-based [31], and piezoelectric

actuation strategies [32], [33]. In contrast to these approaches,

the coupled compliance of the soft twisted beams can be

used to directly generate complex, tunable walking patterns

that typically require coordinated control signals to multiple

actuators. This is the same principle behind bristlebots –

a well-studied and simple class of walking mechanisms –

which use oriented bristles and vibration-based actuation to

move forward [34]. This has also resulted in bristlebot-inspired

walking micro-robots [35].

While the above research demonstrates the capacity for

vibration-based actuation to drive terrestrial robots, the type of

motions observed in these systems is limited due to the direct

connection to the input actuator. This has artificially limited

applications to simpler tasks on lower-complexity terrains.

In contrast, we propose mechanisms for establishing more

complex leg dynamics using soft and compliant twisted beams

in this paper, which can be tuned via the geometric, inertial,

and material design parameters and used to simplify the

control signals typically associated with multi-DOF walking

robots.

B. Contributions

The contributions of this paper may be summarized as fol-

lows: 1) A new mechanism has been proposed for generating

walking locomotion using soft twisted beams under interaction

with the ground; 2) A new computationally-efficient pseudo-

rigid body (PRB) model has been developed that accurately

describes the dynamic behavior of the highly nonlinear system.

We then 3) demonstrate how walking direction and speed

can be tuned by the frequency of the input actuator both

experimentally and in simulation.

II. SYSTEM MODELING

We conduct a series of FEA-based dynamic simulations

with PyChrono [36], demonstrating how input frequency, beam

chirality, and the magnitude of beam twist angle alter the

dynamic motion of the beam. A simplified pseudo-rigid-body

(PRB) model is then proposed and evaluated for improving

simulation speed in the presence of contact.

A. Dynamic modeling using FEA approach

FEA model setup: We developed a FEM-based dynamic

model, which consists of a 120-element mesh generated from

a single layer of 6-field Reissner-Mindlin shells, seen in

Fig. 2(a). The mesh geometry replicates the beam design

outlined in Sec. III; the material properties for TPU came from

its datasheet.

The input actuator shakes the proximal end of the beam

along the z-axis as shown in Fig. 2(a). The input signal is

x = A sin(2πft), (1)

where x is the actuation travel position with the unit of mm,

f is the rotating frequency of the motor in Hz and A is the

amplitude in mm with A = 2mm.

Input frequency V.S. resulting motion: The coupled

stiffness of twisted beams can be exploited by exciting it at

specific frequencies to create highly differentiated motion. To

demonstrate this effect, we swept the input frequency from

f = 1Hz to f = 45Hz in 1 Hz increments. The trajectory of

the beam’s distal end was recorded throughout the simulation

and is shown in Fig. 2(d). While the resulting trajectory is

in three dimensions, the Y-Z plane motion is observed to

dominate the resulting behavior. Thus Y-Z plane trajectories

were demonstrated throughout the paper. As can be seen, the

beam’s trajectory varies significantly in shape and size as

a function of input frequency. At certain input frequencies

such as 9 Hz, 17 Hz, 25 Hz, the trajectory exhibits an oval-

like shape, whereas at frequencies such as 1 Hz and 41 Hz the

trajectory appears more linear.

Beam twist V.S. resulting trajectory: A beam’s magnitude

of twist plays an important role in the generation of elliptical

motion, while its chirality (twist direction) can be used to

mirror the patterns observed at different magnitudes. We

explored the relationship between beam twist angle φ and

its resulting trajectory through a pair of studies. In the first

study, we modeled a series of beams with identical dimensions

but a range of twist angles from φ = 0◦ to φ = 180◦ with

a step of 5◦. The input amplitude and frequency was held

constant at f = 15Hz and A = 2mm. The distal end’s

trajectory was recorded during the simulation; the selected

result is shown in Fig. 2(e). As the twist angle φ increases,
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that, by reducing the number of degrees of freedom (DOF)

through a set of principled assumptions about deformation,

a more computationally efficient PRB representation can be

used within off-the-shelf rigid body simulators, which solve

problems of contact and friction more efficiently, allowing

us to more thoroughly explore the system-level dynamics of

the walking robot. An evolutionary-optimization-based fitting

process can then be more easily applied to quickly fit the

model to each prototype’s captured properties, allowing us to

simulate system motion with higher accuracy.

Pseudo-rigid-body model setup: Off-diagonal coupling

parameters, along with hyper-elastic material models, make

the dynamics of twisted soft systems more complex than

classical approaches such as Euler–Bernoulli models can ap-

proximate. Fundamental research has analyzed the behavior

of pre-twisted beams using variational formulations [38] and

geometrically intrinsic dynamic models [39], for the dynamics

of stiff, pre-twisted beams. Banerjee demonstrates the use

of approximate representations of twisted beam dynamics

using simplified models with two cooperative linear motions

across two mutually-orthogonal planes [40]. Other work by

Howell also demonstrates the suitability of cantilever-style

PRB models for large deflections [41], [42]. Due to this

prior art, the PRB model with revolute springs attached to

a number of joints subdividing the beam was selected to

describe the two-DOF orbit at the beam’s distal end. The

design parameters, stiffness, and damping values were then

calibrated to match the manufactured prototype’s behavior.

Although the kinematics are specifically selected for analyzing

the dynamic behaviors observed in our system, making it less

general, the computational cost savings over more general

approaches permitted more and better fitting to our prototype

and enabled more parameter exploration.

We use a linear spring-damper model of the form

τ = kθ+bθ̇ to describe the moments about each joint, where τ
represents the torque about each joint, k represents the linear

spring constant in bending, b represents linear joint damping,

and θ, θ̇ represent the local rotation and rotational velocity,

respectively, of each joint from its unloaded, natural shape.

Since the cross-sectional area of each beam is constant along

its axial length, the spring stiffness constant k represents a

distributed bending stiffness about three revolute joints – R1,

R2, and R3 – which are distributed perpendicularly along

the beam’s axial direction, as seen in the complete model in

Figure. 2(b). Two additional revolute joints – R4, and R5 –

are aligned with the beam’s local axial direction and capture

the twist of the beam, represented by φ. The same spring-

damper model is also applied to represent the twisting stiffness

between these two joints.

Together, these joints exhibit the same coupled stiffness

of twisted beams observed in experiments. Based on the

results from [41], [42], the location of joints in a compliant,

cantilever-style PRB model under large deflections should not

be evenly distributed along the beam; we thus parameterize

l1, l2, l3 as the distances between R1-R2, R2-R3, and R3

- distal end, respectively. The total length of the beam,

l = l1 + l2 + l3 = 50mm, is identical to the prototype. Mass

is evenly distributed using ρ = 1210kg/m3 (the density of

TPU), with an assumption of constant cross-sectional area.

The sum of all links’ mass is equal to the prototypes’ mass of

m = 5.17 g.

Model fitting: A set of dynamic experiments was conducted

to obtain the motion of the end of the beam when released

from an initial deformed state. The test setup can be seen

in Fig. 2(c). At the beginning of the test, the beam was

deformed with a 200 g load applied to the end. The load was

instantaneously released from the beam while the position of

the beam’s tip was recorded as the beam returned to rest at its

natural unloaded position. Three optical tracking markers were

attached to the end of the beam to obtain the tip’s motion. After

the data was recorded, a differential evolution optimizer [43]

was implemented to fit the model variables (k, b, l1, l2, l3)

by minimizing the averaged error between simulation marker

position data (Mi) and the reference data from experiments

(M̂i) and objective function

Min

{

√

√

√

√

n
∑

j=0

3
∑

i=1

[

(Mi(j)− M̂i(j))2
]

/(3n)

}

. (2)

The optimization variable set is defined by (k, b, l1, l2,

l3), where l3 = 50 − l1 − l2. In this fitting progress, the

proposed model was simulated in MuJoCo [44] and Python.

We observed that l1 tended to converge at the minimum

bound of 1mm; We therefore simplified the model by setting

l1 = 0, which yields the variable set as (k, b, l2, l3), where

l3 = 50−l2. The optimizer finally converged with an averaged

dynamic tracking error of 9.38%, where k = 0.340N·m/rad,

b = 0.0029N·m/(rad/s), l2 = 23.66mm, l3 = 26.34mm.

To compare the two models with the prototype, we con-

ducted the FEA simulation using the same test setup as shown

in Fig. 2(c). The marker tracking data from the test is shown

in Fig. 2(g). As can be seen, the proposed simplified model

with calibration outperforms the FEA model on tracking the

dynamic motion of the twisted beam prototype. The averaged

dynamic tracking error using the simplified model is 9.38%,

and 34.79% using the uncalibrated FEA model. The average

time cost for a 10 s simulation with an Intel i9-7900K CPU

and 32GB RAM was also shortened from 82.5 s with the FEA

model to 1.2 s using the PRB model.

Simulation of single beam vibration with contact: Using

the newly proposed PRB model, we conducted a series of

beam vibration simulations with contact in MuJoCo. The test

setup is identical to that described in Sec. IV-A. During the

simulation, the slider is actuated to sweep from f = 1Hz to

f = 45Hz using (1) with amplitude A = 2mm while the

beam’s endpoint position is recorded. The resulting trajectory

and the direction of motion at the contact point are shown

in Fig. 2(h). As can be seen, the resulting motion differs from

the free vibrating beam due to contact with the floor. A figure

’8’ loop is observed at the input frequency f = 16Hz and

f = 26Hz. Moreover, the direction of motion at the contact

point, as indicated by orange arrows, also alters as a function

of the input frequency.
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III. DESIGN AND MANUFACTURING OF THE PROTOTYPE

BEAM

We designed and manufactured a series of prototypes to

validate the proposed concept. 3D printing was selected to

reduce manufacturing time and to permit a broad design space.

Because hard printable plastics must be printed with very

thin geometries and at higher precision to achieve the desired

range of leg stiffnesses, we selected soft printable materials

that could be printed at millimeter to centimeter scales, more

than 30 layers thick, while achieving the desired range of

leg stiffness in all dimensions, in order to ensure a wide

design space. We compared two commercial soft filaments:

thermoplastic elastomer (TPE)1 with a Shore hardness of 92A,

and thermoplastic polyurethane (TPU)2 with a Shore hardness

of 95A. The Young’s modulus of the TPE is reported as

7.8 MPa in the datasheet, whereas the Young’s modulus of

the TPU is reported as 26 MPa. Although the difference in

the hardness between the two materials is relatively small,

the TPU 95A ’s higher stiffness supports our target payload

and deflects less at the same dimensions compared to the

TPE, while demonstrating the dynamic behavior desired for

terrestrial locomotion. Thus, we selected the TPU 95A as the

prototyping material.

Based on the results from Sec. II-A, a number of prototypes

with φ = 90◦ and φ = −90◦ were manufactured with all other

design parameters held constant, as shown in Fig. 3(b). The

beam is right-handed chiral if φ > 0 and left-handed if φ < 0.

The design diagram is shown in Fig. 3(a); design parameters

can be found in Table I.

TABLE I
DESIGN PARAMETERS

Parameter Symbol Value Unit

Beam length l 50 mm
Beam width w 20 mm

Beam thickness t 3 mm
Beam total twist angle φ 90 degree

Beam segmental twist angle α 45 degree

IV. PROTOTYPE TESTS

The results of our experiments demonstrate how vibrating,

twisted beams with terrain interactions exhibit similar behavior

in real life to model-based results.

A. Single Beam Contact Test

This experiment demonstrates how the output trajectory and

its orientation can be influenced by the input signal driving fre-

quency in the presence of highly nonlinear ground interactions.

This section demonstrates a relatively constrained, prescribed

experiment, whereas the next section demonstrates the same

phenomonon observed in a less prescribed manner with a free-

walking platform.

The test setup in Fig. 3(c) and (d) shows a linear stage

whose oscillating, forward-backward motion is dictated by the

1Arkema 3DXFLEX™ TPE
2Ultimaker TPU 95A

rotating crank of a brushless motor3. The motor is controlled

by an ODrive4 motor control board. We again use (1) to control

the speed of the motor, with A = 2mm, and f = {1−40}Hz.

The beam is mounted to the linear stage and optical tracking

markers are mounted to the proximal and distal ends of the

beam. An OptiTrack Prime 17W optical motion tracking sys-

tem is then used to track the position of the system at a rate of

360 Hz. A plate with four load cells mounted perpendicularly

in sets of two, to measure contact forces between the leg and

ground along the Y and Z axes, as shown in Fig. 3(c) (normal

and tangential to the ground, respectively). The test setup is

shown in Fig. 3(d) and the test results are shown in Fig. 4. The

beam sample with φ = 90◦ was used, and the mass of the foot

is represented by a 20 g load attached to the lower left corner

of the load frame. The length of the rigid foot is 66.5mm,

and the distance between the translational stage and the plate

is h = 72mm as shown in Fig. 3(c). Therefore the contact

distance between the foot at its unload, natural position and

the plate, as depicted by h′ in Fig. 3(c) is fixed at 5.5mm.

Typical trajectories have been selected and plotted in

Fig. 4(a). As can be seen, the trajectory evolves as a function of

input frequency. In the low-frequency region, where the input

frequency is less than 18 Hz, contact interactions dominate the

motion observed in the leg, because the ”foot” never breaks

contact with the ground. This results in trajectories which are

a flat line along the Z axis. As the input frequency increases to

26 Hz, ground contact becomes more intermittent and the leg’s

motion becomes dominated by its own dynamic properties.

This results in trajectories that look like a figure ’8’, or a loop

with a single inversion. At the point of contact, the inverted

trajectory results in a change in the direction of motion, shown

by the orange arrows in Fig. 4(a). At frequencies higher than

38 Hz, the trajectory inverts a second time and the direction

of motion at the point of contact reverses again.

The tangential forces measured by the load cells also

capture direction changes at the same transition frequencies.

In Fig. 4(b), two typical force data are plotted at frequencies

of 26 Hz and 40 Hz. By comparing the tangential forces, one

can see that the direction is opposite, in line with the change

in motion observed in Fig. 4(a). The vertical force data can be

used to capture the contact frequency, which is not necessarily

the same as the driving frequency. Since contact dominates at

frequencies below 18 Hz, we focus on frequencies from 18 Hz

to 44 Hz. The result is shown in Fig. 4(c). We highlight three

distinct shapes observed with different colors. In each regime,

the contact frequency increases with the input frequency. At

the transition frequencies noted previously (26 Hz and 38 Hz),

the contact frequency drops by ( 1
2

and 1

3
, respectively), the

same frequencies at which the foot’s trajectory inverts itself

and then reverses its direction of motion (and force) on the

ground.

It should be noted that this experiment was conducted at a

fixed height off the ground. The next section explores how a

less-constrained system exhibits similar behavior to produce

controllable, walking gaits.

3ODrive Dual Shaft Motor D6374 - 150KV
4Odrive V3.6 High Performance Motor Control.
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