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migration- and diffusion-controlled mass transport

Andrew Cannon?, J. Gregory McDaniel*, Emily Ryan®%"
1. Department of Mechanical Engineering, Boston University, Boston, MA
2. Division of Materials Science and Engineering, Boston University, Boston, MA
3. Institute for Global Sustainability, Boston University, Boston, MA
*Corresponding author: ryanem@bu.edu, 617-353-7767

Abstract

In many electrochemical processes, the transport of charged species is governed by the Nernst-Planck
equation, which includes terms for both diffusion and electrochemical migration. In this work, a multi-
physics, multi-species model based on the smoothed particle hydrodynamics (SPH) method is presented
to model the Nernst-Planck equation in systems with electrodeposition. Electrodeposition occurs when
ions are deposited onto an electrode. These deposits create complex boundary geometries, which can be
challenging for numerical methods to resolve. SPH is a particularly effective numerical method for
systems with moving and deforming boundaries due to its particle nature. This paper discusses the SPH
implementation of the Nernst-Planck equations with electrodeposition and verifies the model with an
analytical solution and a numerical integrator. A convergence study of migration and precipitation is
presented to illustrate the model’s accuracy, along with comparisons of the deposition growth front to
experimental results.

Keywords: Electrochemical deposition, dendrite growth, mass transport, smoothed particle
hydrodynamics

Introduction

Electrochemical systems are ubiquitous, found in everything from commercial electronics to alternative
fuel vehicles. In electrochemical processes, mass transport and surface reactions are driven by complex,
coupled phenomena at the interfaces, such as electrodeposition[1]. Electrodeposition is the deposition of
metallic ions (disassociated in an electrolyte) onto an electrically conductive surface (the electrode) in the
presence of an electric field[2,3]. This process is used to plate materials such as automobile parts and
beverage containers[4,5] or to create thin metallic films for devices such as fuel cells and water
splitting[6,7], and also describes the process of charging lithium metal batteries (LMB)[8-11].

One of the primary challenges associated with the electrodeposition process is non-uniform deposition
and subsequent dendritic growth. Control over dendrite morphology is an important aspect of industrial
processes[12]. Additionally, dendritic growth can cause safety and performance issues in LMBs[8,10,13].
Experimentally observing the electrodeposition process and dendrite morphology in situ at an interface
is challenging due to its embedded nature and small scale. Alternatively, computational fluid dynamics
(CFD) methods can isolate this region and study the critical physics and driving forces at the interface
during electrodeposition[14,15].

Modeling geometrically and physically complex and moving reactive boundaries, i.e. non-uniform
deposition or dendritic growth, can be challenging for CFD methods, especially in mesh-based methods.
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The interfacial region is difficult to continuously track and the mesh must be updated at each time step
leading to computationally inefficient models[16]. Moreover, the predictions of complex structures, such
as dendrites, in mesh-based methods struggle to capture experimental data. These challenges make
mesh-based CFD methods less than ideal for modeling electrodeposition.

To simplify modeling, some approaches assume that the concentration of charged species is constant at
the interface[11,17]. However, fluctuations of ionic transport, which occur when the ionic concentration
varies spatially and temporally[18], are the primary cause of non-uniform deposition [19]. Tracking the
ionic concentration variation at the interface can enable greater understanding of the causes of non-
uniform deposition. Recent computational modeling has focused on alternative methods such as
Lagrangian methods, diffusion limited aggregation, and phase field methods (PFM). PFM has received the
most attention in recent years, however, PFM has struggled to accurately capture the dendrite
morphology and produces artificial symmetries and morphologies without modifications[20-22]. Chen
et al.[23] have made improvements to the PFM modeling of dendrite growth by using a rate modification
factor. Also, it is challenging to model complex structures in the diffusion region surrounding the anode
with PFM, such as separator microstructures or anode protective layers. PFM also requires an additional
differential equation (the phase-field equation) to resolve the interface which increases computational
time.

In this study, we present a mesh-free model of the electrode-electrolyte interface for the study of
electrodeposition based on smoothed particle hydrodynamics (SPH). The SPH method provides inherent
solutions to many of the challenges of electrodeposition modeling [24]. SPH is a mesh-free, Lagrangian
particle method that uses an interpolation scheme to solve the governing partial differential equations
(PDE). The PDE’s can be solved explicitly and exactly which simplifies their implementation. SPH conserves
mass and does not need to explicitly track interfaces so that complex geometric structures, such as
dendrites, can be handled without undue computational resources[25].

The model presented in this work builds upon a previous SPH model of diffusion and reactive interfaces
with precipitation[26-29]. As discussed in the following sections, two main additions to the model have
been included that enable more robust modeling of the electrodeposition process: (1) calculation of the
spatially and temporally varying electric field, which is dependent on the local ionic concentrations, and
(2) electrochemical migration mass transport. These additional physics allow the model to represent the
electrodeposition process more accurately at the electrode-electrolyte interface. The implementation of
the model is verified through comparison to an analytical solution and a numerical integrator. A
convergence study of ionic migration and deposition growth front is presented. Finally, a qualitative
validation of dendrite morphology is presented in comparison to experimental results for three operating
conditions: high reaction rate, low reaction rate and pulse plating.

Governing Equations

The model solves for the mass and species conservation near the electrode-electrolyte interface, including
the effects of an electric field, ionic diffusion-migration, and electrodeposition. The model assumes no
convection, and dilute solution theory. The ion concentration at location r—f’ in the electrolyte, (), is
governed by the Nernst-Planck equation, which includes mass transport mechanisms by both diffusion
and migration[18],
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where C; is the concentration of species i, D; is the diffusion coefficient of species i, y; is the migration
mobility coefficient of species i, and ¢ is the potential.

In a binary electrolyte, the two oppositely charged ions, denoted with subscripts a and ¢ for anions and
cations respectively, are dissolved in the electrolyte solution and remain electrically neutral[1]. If an
electric potential is applied to the solution, the cations migrate toward the negatively charged electrode
and the anions migrate away from the negatively charged electrode. As a result, the electric potential is
altered by the charge disparity in the solution. The electric potential distribution is governed by the
electrostatic Poisson equation [1],
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where p.is the electric charge density given by
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e is the elementary charge, z. and z, are the cation and anion electric charge, and € is the permittivity
constant of the electrolyte. Note that in this form of Eq. 2, the permittivity constant of the electrolyte is
assumed to be spatially independent.

During electrodeposition, cations (M*) are reduced at the electrode/dendrite surface,
M*+ e > M. (3)

This reaction is controlled by the reaction rate, k, and the ionic concentration at the electrode-electrolyte
interface, I'. The reduction reaction rate is mainly controlled by the operating conditions of the process,
although secondary reactions at the surface can also play a role in regulating the reaction rate[30,31]. A
general first order reaction equation is implemented[1],

Ss(s,t) = k(ﬁ)(cc@' t) — Ceq,c)'Fs) ert>0, (4)

that controls the deposition at the electrode surface and subsequent dendrite surface. The model uses a
first order reaction because the reduction reaction depends on the concentration of a single species (Li*).

Thus, the boundary condition for cations at the interface is
D.VC (75, t) + ucCc (s, OV (5, t) = S, (75, t), 75 € T, t > 0. (5)
There is a zero flux boundary condition for anions at the interface[18],
DyVCA (5, t) + paCa (s, OV (5, t) = 0,75 €T, £ > 0. (6)
The total change in mass in the solid due to interactions with the fluid is given by
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which balances the change in mass in the fluid domain. The specific mass in the model is used to track the
solute concentration in the solid particles and therefore has similar units as the concentration in the fluid
particles.

SPH discretization

The governing equations are discretized using the SPH method to simulate diffusion, ionic migration and
precipitation at the electrode-electrolyte interface. In SPH simulations, the domain is represented by
particles which obey continuum scale mechanics that can be approximated by a linear combination of
smoothed kernel functions centered around the particles[24]. Each particle has a set of explicit properties,
{a}, and a resultant scalar field A(r) approximated by
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where r, miand p; are the position, mass and density of particle i, respectively. W is the SPH smoothing

function, which is compact and non-zero up to the distance h from particle i. The distance between
particle iandjis ﬁ]’ Similarly, the gradient of the scalar field, VA, can be approximated by
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Many forms of the smoothing function with continuous derivatives have been used in SPH modeling. An
Ms smoothing function[32],
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for two spatial dimensions. W(ﬁ]’, h) will be denoted as W;; in the

following equations.

The SPH model discretizes the computational domain into two sub-domains of particles: (2 is discretized
with “fluid” particles that make up the electrolyte and (2, is discretized with “solid” particles that form the
electrode and precipitates. Since there is no convection in the current model, both particle sets do not
move but fluid particles can precipitate into solid particles and the solid particles can dissolve into fluid
particles as described in Tartakovsky et al[25].

Each fluid particle has a concentration of both anions and cations and a local potential. Building upon the
SPH formulation for diffusion by Tartakovsky et al[25], the cation concentration is calculated from the
Nernst-Plank equation (Eq. 1) as
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where the subscript c refers to the cation properties and C.;describes the cation concentration at position
ri. The SPH-CSR formulation developed by Ryan et al[33] reformulates the heterogeneous boundary
condition of Eg. 4 as a homogeneous boundary condition and a volumetric source term, S,. The volumetric
source term is calculated from S, (Eq. 3), a characteristic function (f), and the surface normal vectors (n;)
as,
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where the normal vector can be calculated by
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to distinguish the solid and fluid domains.
The anion concentration is discretized as
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Where the subscript a refers to anion properties and C,,idescribes the anion concentration at position r.

The electrostatic potential equation is discretized by

_ e(2ciCei — 24:Ca) N 1 z e(2,jCc,j = 7a,jCa,;)

€€ 4mee T,
0 0 i€ftuia Y

,1 € fluid particles (16)

i

where the subscripts i and j refer to particles i and j. The potential at the reactive surface (electrode and
dendritic growth) is the reference potential, which is equal to the ground potential,

P, t) =01, €T, t>0 (17)



and the potential at the top boundary outside of the diffusion layer has a fixed potential of ¢ relative to
the reference potential,

¢(y = L' t) = ¢0't >0 (18)
The potential throughout the fluid domain is calculated using the discretized Poisson equation, Eq. 16.

In the solid particles, diffusion and migration are neglected and the change of mass of the solid balances
the loss of ions in the liquid particles,

dm' m — N ="
d_tl = ki(C; — Ceq) Z p_:(nk + 7)) (Br + B.) VWi (19)

KEsolid

The process of precipitation and dendrite growth is simulated by tracking the mass, m;, in the solid. When
the mass of a particle surpasses twice the initial mass, my, the nearest fluid particle precipitates and
becomes a solid. The new solid particle has a mass of mg and the original solid particle’s mass becomes
(m,~- mo).

The SPH model is implemented into the LAMMPS code
base, as part of an SPH module[34]. The simulation domain
(Figure 1) is two dimensional and includes 262,144 particles,
discretizing a square domain of 128 by 128 units of h (except
in the convergence cases) with an average particle density
(number of particles within area h?) of 16. The domain is
divided between fluid and solid particles.

Constant Concentration

128h —|

Verification and Convergence Studies

L

While the implementation of the full Nernst-Planck Y1h
equation has not been previously verified, the Electrode
implementation of the diffusion and reaction terms have | Figure 1. Simulation domain of SPH model. The
been [26,28]. As such, the verification cases presented here | 9reen region represents the fluid particles

. . . (electrolyte) and the grey region represents the
focus on verifying the electrochemical potential and | (.4 particles (electrode). A constant
migration equations for two oppositely charged species. | concentration boundary layer is 128 kernel
Two separate verification cases are presented to assess the | lengths away from the electrode.

accuracy of the implemented mathematical models (i.e.

Egs. 11-19); the first case considers the cation concentration change due to migration under a constant
electric field. While the second case considers the concentration change for both cations and anions due
to migration subject to a varying electric field. The electric field is concentration-dependent; it changes
due to differences in local concentrations according to Eqg. 16. For the second case, an analytical solution
does not exist and so a comparison is made to numerical integration of the governing equations using the
Runge Kutta method. For both cases, the SPH simulations were conducted in a two dimensional square
domain (0<x<L, O<y<L) and the one dimensional concentration through the electrolyte was calculated by
dividing L into n bins in the x dimension and then taking the mean of each bin.

Case 1:



The 1-D governing equation of migration under constant electric field is
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where 0 > x> L =1 and uE = 1 and the initial concentration is given as
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where /L is 0.5 and (o/L)? is 0.01 and the boundary conditions are
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The analytical solution of Eq. 20 can then be derived as,
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Case 2:

In Case 2, the potential is governed by Eq. 2 and the concentration is governed by Eq. 1 with the diffusion
coefficient set to zero. The concentrations for the anions and cations are subject to the initial
concentration,

C.(t,t = 0) = Cy(x,t = 0) =1erfc(x_“m) (24)

2 o2
and the boundary conditions are C.(x = 0,t) = C,(x =0,t) =1land C.(x = L,t) = C,(x = L,t) = 0.
The initial concentration was selected so that the concentration varied smoothly; large disparities in
concentration between the two species are non-physical.

For Case 1, both the SPH model and the Runge-Kutta method are compared to the analytical solution and
in Case 2 the SPH model is compared to the Runge-Kutta method. As shown in Figure 2, the SPH model
compares well to both Cases 1 and 2. The average L1 relative error is less than 0.001 for both cases. The
L1 relative error, E; 1, is calculated as

n
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(25)

where C4; and Cp; are the concentrations predicted at location i for methods A and B over all particles,
n. Eq. 25 is used to calculate the L1 relative error between the SPH method, analytical solution and Runge-
Kutta numerical integrator.
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Figure 2. (a) Concentration profile for test Case 1 where the migration is driven by a constant electric field and compares the
results of the analytical solution, the SPH model and the Runge-Kutta method with an L1 average error of less than 1%. (b)
Concentration profile for test Case 2 where the migration is calculated for both the concentrations of anions and cations
and is driven by a concentration-dependent electric field.

The effects of particle ordering on the SPH results were also considered. In both Cases 1 and 2, the SPH
simulations were completed using particles placed with equal, ordered spacing. To consider the effects of
disordered particles, Case 2 was also run with randomly spaced particles. The particles are disordered by
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Figure 3. Concentration profile for the ordered and disordered particle placement of SPH simulations for Case 2
with 0.12% L1 relative error. This comparison was made to demonstrate the model’s ability to arrive at similar
concentration levels regardless of SPH particle positioning. This is what allows SPH to accurately model the
morphological evolution of dendritic growths.

shifting them randomly up to a maximum of 20% of their initial spacing. As seen in Figure 3, the ordered
particle SPH simulation and the disordered particle SPH simulation compare well with a maximum
difference between the ordered and disordered simulations of less than 0.11%.

Additionally, the effects of spatial resolution are compared for the SPH simulation of Case 2 in terms of
both the error and the computational cost. Figure 4 depicts the L1 error of the SPH simulations compared
to the numerical integrator at different spatial resolutions as well as the time for the simulation to run
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Figure 4. L1 error and computational run time for Case 2 between the SPH 262,144 particles).
simulation and the Runge-Kutta numerical integrator method at different
particle spacing in the SPH model. Simulations use a particle spacing of The average growth fronts of the
128h because of the high density and low run time. low- and high-resolution simulations

were compared in Figure 6. The
average growth fronts were calculated using bin averaging in the x-dimension. The simulations at the
two resolutions predict similar average growth fronts with less than 5% relative difference (Figure 7).

Application to Dendritic growth in Electrodeposition

As mentioned previously, non-uniform deposition can lead to dendritic growth, which is problematicin a
variety of electrodeposition processes where precision is required. To further evaluate the SPH model’s
ability to capture dendritic growth and morphology, the SPH model was used to simulate experimental
data of dendrite growth under high and low current scenarios and under pulsed plating conditions.
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Figure 5. Simulations of dendritic growth low (a) and high (b) spatial resolution.

Experimental data from Schneider et al[35] on electrodeposition of copper under galvanostatic conditions
under various growth rates and pulsed plating conditions are used for comparison to the SPH model. The
growth front lengths are ploted based on the experimental imaging (Figure 8b). The growth front length
is a normalized length, to measure surface roughness. It is normalized by the length for a smooth surface
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Figure 6. Average growth front for low and high spatial
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such that a smoother deposition will have a value close to 1 and dendritic growth will have a value higher

than 1.

The first two experimental tests are conducted at a lower and higher growth rate. In the experimental
work the higher growth rate condition used an applied current that was five times higher than that of the
lower growth rate condition. These were conducted to provide baseline evidence for different
electrodeposition regimes where the lower growth rate from lower applied current produces reaction
rate limited conditions and relatively uniform electrodeposition (Figure 8a, top), and the higher growth
rate from higher applied current produces mass transport limited conditions and high dendritic growth

(Figure 8b, bottom).
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Figure 8. Experimental observations of dendritic growth. (a) Images of dendrites under low growth rate (top) and high
growth rate (bottom). Note the values in upper left corner of images are the experimental time. (b) Measurements of
the dendritic growth front over time for the low and high growth rates. Image from Schneider et al[30] is licensed




At lower growth rates (Figure 8, top), the deposition is relatively uniform along the electrode surface as
demonstrated by the normalized growth front length close to 1. The growth front moves in unison
suggesting the system is reaction rate limited and the local current density is also relatively uniform. At
higher growth rates (Figure 8, bottom), the applied current is increased 5x higher than the low growth
rate conditions. The ionic deposition forms dendrites suggesting mass transport limited conditions. Under
the high growth rate, the deposition morphology is a long, thin branching structure. There is rapid growth
at the tips of the dendrites and hardly any deposition in the regions without dendrites. The normalized
growth front length (Figure 8b, bottom) increases rapidly once there are mass transport limited condition
for the reaction at the anode.

x/L x/L

Figure 9. SPH simulations of dendritic growth (grey) for a high reaction rate (a) and a low reaction rate (b). A high reaction
rate condition — also known as diffusion limited condition — favors dendritic morphologies due to precipitation being more
likely to occur away from the surface where there are higher ion concentrations creating more elongated structures.
Whereas the low reaction rate condition — also known as reaction rate limited condition — has a more uniform deposition
morphology as ion transport to the surface replenishes deposited ions.

The SPH model is able to capture similar dendritic behavior. The reaction rate is the model parameter that
is comparable to the applied current in the experimental tests. Initially, there is a 1 h thick layer of solid
particles at y=0 and the rest of the domain is fluid particles. The concentration at y=L is held constant
throughout the simulations to represent the concentration outside of the diffusion layer, which is a
common assumption in modeling electrochemical systems, and has been shown to accurately represent
the physical system[1,36]. In Figure 9, a simulation of dendritic growth (grey) is presented at a high (a)
and low (b) reaction rate. The high reaction rate is five times higher than the lower reaction rate, matching
the conditions in the experimental tests. Long, thin dendritic branching occurs in the high reaction rate
case and a more uniform deposition occurs at the lower reaction rate.

The normalized growth front length at different times is shown in Figure 10. The curves for the low and
high reaction rate simulations compare well with the trends of the growth front curves from the
experimental tests. At the low reaction rate, the normalized growth front length remains between 1 and
2 indicating uniform deposition but at the higher reaction rate, the growth front length increases
exponentially as expected when there are long dendrite growths and regions without growth.



Schnieder et al also conducted experiments on the effects of pulse plating on dendrite growth (Figure 11).
Pulse plating has been suggested as a method for rapidly charging batteries while concurrently
maintaining smoother deposition[37]. Schneider et al conducted experimental tests using the high growth
rate of Figure 8 for 1 s followed by a 5 s rest period, allowing the ionic concentration near the interface to
equilibrate. The SPH model was also used to test pulse plating with a matching high reaction rate to rest
period ratio. As demonstrated by both the experimental data and SPH simulations, pulse plating allows
the deposition to occur more uniformly along the electrode surface resulting in a smaller normalized
growth front length, Figure 10. Note that the experiments by Schnieder et al [37] focused on surface
roughness and plating in electrochemical deposition on a copper plate and did not consider battery
applications. In recent work, we have expanded these initial pulse plating studies to consider pulse plating
effects for fast charging of batteries[38].
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Figure 10. Normalized growth front length for the SPH simulations of high reaction rate, low reaction rate and pulse plating.
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Figure 11. Experimental observations (a) and normalized growth front length (b) of dendrite growth under pulse plating
conditions. Image from Schneider et al[30] is licensed under creativecommons.org/licenses/by/4.0/.

Conclusion

Electrodeposition is used in a variety of industrial applications and is critical to the fabrication of
electronics and the performance of batteries. Experimentally observing the electrodeposition process in
situ at the electrolyte-electrode interface is challenging. However, computational models are able to
isolate this region to understand the critical phenomena occurring at the interface during
electrodeposition. With this understanding, the electrodeposition process can be better controlled
leading to improved deposition in fabrication processes, and improved performance in battery
applications.

A numerical model based on the SPH method was presented for simulating mass transport and
electrodeposition near an interface. The Nernst-Planck equations were implemented in the model to track
concentration changes of two oppositely charged species due to diffusion and ionic migration. The Poisson
equation is solved to calculate the local potential throughout the domain. The expanded physics of the
SPH model presented here allows more accurate modeling of the physical processes at the interface then
previous SPH models that did not include electric field effects, and is better able to simulate experimental
conditions. The implementation of the Nernst-Planck equation was verified with an analytical solution and
a numerical integration method. The SPH model was shown to accurately reproduce the verification cases.

Dendritic morphology predicted by the SPH model qualitatively matches experimental data for both low
and high reaction rate scenarios. Additionally, the growth front length of the dendrites predicted by SPH
agree with experimental data and show that for the high reaction rate the growth front increases
exponentially, while the growth front length is stable for the low reaction rate. Pulse plating simulations
were also presented as a viable technique for reducing dendritic growth. The SPH model accurately
captures the behavior of ionic deposition for pulsed plating and predicts a growth front comparable to
the experimental data. Further work on pulsed plating for fast charging applications, and current-voltage
relations with the SPH model have been considered and are presented in Morey et al[39], and Melsheimer
et al[38].

Explicitly tracking conditions, i.e. concentration and potential, near the electrode-electrolyte interface can
lend insight into advanced methods for controlling the deposition morphology, such as structured
electrolytes[40,41], novel separator designs[42—44], and surface treatments[39,45]. The results of the
computational studies demonstrate the model’s ability to capture the complex interfacial physics
occurring during the electrodeposition process. Additionally, the model could be used to understand the



mechanical effects of dendrite growth in non-liquid electrolytes with the addition of solid mechanics
equations, which have been used in SPH modeling of other multiphase systems for biological and
geological applications[46—48].
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