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Abstract 

In many electrochemical processes, the transport of charged species is governed by the Nernst-Planck 
equation, which includes terms for both diffusion and electrochemical migration. In this work, a multi-
physics, multi-species model based on the smoothed particle hydrodynamics (SPH) method is presented 
to model the Nernst-Planck equation in systems with electrodeposition. Electrodeposition occurs when 
ions are deposited onto an electrode. These deposits create complex boundary geometries, which can be 
challenging for numerical methods to resolve.  SPH is a particularly effective numerical method for 
systems with moving and deforming boundaries due to its particle nature. This paper discusses the SPH 
implementation of the Nernst-Planck equations with electrodeposition and verifies the model with an 
analytical solution and a numerical integrator. A convergence study of migration and precipitation is 
presented to illustrate the model’s accuracy, along with comparisons of the deposition growth front to 
experimental results.  

Keywords: Electrochemical deposition, dendrite growth, mass transport, smoothed particle 
hydrodynamics 

Introduction 

Electrochemical systems are ubiquitous, found in everything from commercial electronics to alternative 
fuel vehicles. In electrochemical processes, mass transport and surface reactions are driven by complex, 
coupled phenomena at the interfaces, such as electrodeposition[1]. Electrodeposition is the deposition of 
metallic ions (disassociated in an electrolyte) onto an electrically conductive surface (the electrode) in the 
presence of an electric field[2,3]. This process is used to plate materials such as automobile parts and 
beverage containers[4,5] or to create thin metallic films for devices such as fuel cells and water 
splitting[6,7], and also describes the process of charging lithium metal batteries (LMB)[8–11].  

One of the primary challenges associated with the electrodeposition process is non-uniform deposition 
and subsequent dendritic growth. Control over dendrite morphology is an important aspect of industrial 
processes[12]. Additionally, dendritic growth can cause safety and performance issues in LMBs[8,10,13]. 
Experimentally observing the electrodeposition process and dendrite morphology in situ at an interface 
is challenging due to its embedded nature and small scale. Alternatively, computational fluid dynamics 
(CFD) methods can isolate this region and study the critical physics and driving forces at the interface 
during electrodeposition[14,15]. 

Modeling geometrically and physically complex and moving reactive boundaries, i.e. non-uniform 
deposition or dendritic growth, can be challenging for CFD methods, especially in mesh-based methods. 
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The interfacial region is difficult to continuously track and the mesh must be updated at each time step 
leading to computationally inefficient models[16]. Moreover, the predictions of complex structures, such 
as dendrites, in mesh-based methods struggle to capture experimental data. These challenges make 
mesh-based CFD methods less than ideal for modeling electrodeposition.  

To simplify modeling, some approaches assume that the concentration of charged species is constant at 
the interface[11,17]. However, fluctuations of ionic transport, which occur when the ionic concentration 
varies spatially and temporally[18], are the primary cause of non-uniform deposition [19]. Tracking the 
ionic concentration variation at the interface can enable greater understanding of the causes of non-
uniform deposition. Recent computational modeling has focused on alternative methods such as 
Lagrangian methods, diffusion limited aggregation, and phase field methods (PFM). PFM has received the 
most attention in recent years, however, PFM has struggled to accurately capture the dendrite 
morphology  and produces artificial symmetries and morphologies without modifications[20–22].  Chen 
et al.[23] have made improvements to the PFM modeling of dendrite growth by using a rate modification 
factor. Also, it is challenging to model complex structures in the diffusion region surrounding the anode 
with PFM, such as separator microstructures or anode protective layers. PFM also requires an additional 
differential equation (the phase-field equation) to resolve the interface which increases computational 
time.  

In this study, we present a mesh-free model of the electrode-electrolyte interface for the study of 
electrodeposition based on smoothed particle hydrodynamics (SPH).  The SPH method provides inherent 
solutions to many of the challenges of electrodeposition modeling [24]. SPH is a mesh-free, Lagrangian 
particle method that uses an interpolation scheme to solve the governing partial differential equations 
(PDE). The PDE’s can be solved explicitly and exactly which simplifies their implementation. SPH conserves 
mass and does not need to explicitly track interfaces so that complex geometric structures, such as 
dendrites, can be handled without undue computational resources[25].   

The model presented in this work builds upon a previous SPH model of diffusion and reactive interfaces 
with precipitation[26–29]. As discussed in the following sections, two main additions to the model have 
been included that enable more robust modeling of the electrodeposition process: (1) calculation of the 
spatially and temporally varying electric field, which is dependent on the local ionic concentrations, and 
(2) electrochemical migration mass transport. These additional physics allow the model to represent the 
electrodeposition process more accurately at the electrode-electrolyte interface. The implementation of 
the model is verified through comparison to an analytical solution and a numerical integrator. A 
convergence study of ionic migration and deposition growth front is presented. Finally, a qualitative 
validation of dendrite morphology is presented in comparison to experimental results for three operating 
conditions: high reaction rate, low reaction rate and pulse plating.  

Governing Equations 

The model solves for the mass and species conservation near the electrode-electrolyte interface, including 
the effects of an electric field, ionic diffusion-migration, and electrodeposition. The model assumes no 
convection, and dilute solution theory. The ion concentration at location 𝑟𝑟𝑓𝑓���⃗  in the electrolyte, Ω𝑓𝑓, is 
governed by the Nernst-Planck equation, which includes mass transport mechanisms by both diffusion 
and migration[18], 



𝜕𝜕𝐶𝐶𝑖𝑖(𝑟𝑟𝑓𝑓���⃗ , 𝑡𝑡)
𝜕𝜕𝜕𝜕

= ∇ ∙ �𝐷𝐷𝑖𝑖∇𝐶𝐶𝑖𝑖�𝑟𝑟𝑓𝑓���⃗ , 𝑡𝑡��  + 𝜇𝜇𝑖𝑖∇ ∙ �𝐶𝐶𝑖𝑖�𝑟𝑟𝑓𝑓���⃗ , t�∇𝜙𝜙�𝑟𝑟𝑓𝑓���⃗ , 𝑡𝑡�� , 𝑟𝑟𝑓𝑓���⃗ ∈ Ω𝑓𝑓 , 𝑡𝑡 > 0, (1) 

where Ci is the concentration of species i, Di is the diffusion coefficient of species i, μi is the migration 
mobility coefficient of species i, and ϕ is the potential. 

In a binary electrolyte, the two oppositely charged ions, denoted with subscripts a and c for anions and 
cations respectively, are dissolved in the electrolyte solution and remain electrically neutral[1]. If an 
electric potential is applied to the solution, the cations migrate toward the negatively charged electrode 
and the anions migrate away from the negatively charged electrode. As a result, the electric potential is 
altered by the charge disparity in the solution. The electric potential distribution is governed by the 
electrostatic Poisson equation [1], 

𝛻𝛻2𝜙𝜙�𝑟𝑟𝑓𝑓���⃗ , 𝑡𝑡� = −
𝜌𝜌𝑒𝑒
𝜖𝜖

, 𝑟𝑟𝑓𝑓���⃗ ∈ Ω𝑓𝑓 , 𝑡𝑡 > 0, (2) 

where ρe is the electric charge density given by 

𝜌𝜌𝑒𝑒 = 𝑒𝑒(𝑧𝑧𝑎𝑎𝐶𝐶𝑎𝑎 − 𝑧𝑧𝑐𝑐𝐶𝐶𝑐𝑐), 

e is the elementary charge, zc and za are the cation and anion electric charge, and 𝜖𝜖 is the permittivity 
constant of the electrolyte.  Note that in this form of Eq. 2, the permittivity constant of the electrolyte is 
assumed to be spatially independent. 

During electrodeposition, cations (M+) are reduced at the electrode/dendrite surface,  

𝑀𝑀+ + 𝑒𝑒− → 𝑀𝑀. (3) 

This reaction is controlled by the reaction rate, k, and the ionic concentration at the electrode-electrolyte 
interface, Γ. The reduction reaction rate is mainly controlled by the operating conditions of the process, 
although secondary reactions at the surface can also play a role in regulating the reaction rate[30,31]. A 
general first order reaction equation is implemented[1],  

𝑆𝑆𝑠𝑠(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡) = 𝑘𝑘(𝑟𝑟𝑠𝑠��⃗ )�𝐶𝐶𝑐𝑐(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡) − 𝐶𝐶𝑒𝑒𝑒𝑒,𝑐𝑐�, 𝑟𝑟𝑠𝑠��⃗ ∈ Γ, t > 0, (4) 

that controls the deposition at the electrode surface and subsequent dendrite surface. The model uses a 
first order reaction because the reduction reaction depends on the concentration of a single species (Li+). 

 Thus, the boundary condition for cations at the interface is  

𝐷𝐷𝑐𝑐∇𝐶𝐶𝑐𝑐(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡) + 𝜇𝜇𝑐𝑐Cc(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡)∇𝜙𝜙(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡) = 𝑆𝑆𝑠𝑠(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡), 𝑟𝑟𝑠𝑠��⃗ ∈ Γ, 𝑡𝑡 > 0. (5) 

There is a zero flux boundary condition for anions at the interface[18],  

𝐷𝐷𝐴𝐴∇𝐶𝐶𝐴𝐴(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡) + 𝜇𝜇𝐴𝐴CA(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡)∇𝜙𝜙(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡) = 0, 𝑟𝑟𝑠𝑠��⃗ ∈ Γ, 𝑡𝑡 > 0. (6) 

The total change in mass in the solid due to interactions with the fluid is given by  

𝛿𝛿𝛿𝛿(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡)
𝛿𝛿𝛿𝛿

= 𝑘𝑘(𝑟𝑟𝑠𝑠��⃗ )�𝐶𝐶𝑐𝑐(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡) − 𝐶𝐶𝑒𝑒𝑒𝑒,𝑐𝑐�, 𝑟𝑟𝑠𝑠��⃗ ∈ Γ, t > 0, (7) 



which balances the change in mass in the fluid domain. The specific mass in the model is used to track the 
solute concentration in the solid particles and therefore has similar units as the concentration in the fluid 
particles. 

SPH discretization 

The governing equations are discretized using the SPH method to simulate diffusion, ionic migration and 
precipitation at the electrode-electrolyte interface. In SPH simulations, the domain is represented by 
particles which obey continuum scale mechanics that can be approximated by a linear combination of 
smoothed kernel functions centered around the particles[24]. Each particle has a set of explicit properties, 
{a}, and a resultant scalar field A(r) approximated by 

𝐴𝐴(𝒓𝒓𝑖𝑖) = �
𝑚𝑚𝑗𝑗𝑎𝑎𝑗𝑗
𝜌𝜌𝑗𝑗

𝑊𝑊�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ ,ℎ�
𝑗𝑗

(8) 

where ri, mi and ρi are the position, mass and density of particle i, respectively. W is the SPH smoothing 
function, which is compact and non-zero up to the distance h from particle i. The distance between 
particle i and j is 𝑟𝑟𝚤𝚤𝚤𝚤���⃗ . Similarly, the gradient of the scalar field, 𝛻𝛻𝛻𝛻, can be approximated by 

∇𝐴𝐴(𝒓𝒓𝑖𝑖) = �
𝑚𝑚𝑗𝑗𝑎𝑎𝑗𝑗
𝜌𝜌𝑗𝑗

∇𝑊𝑊�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ ,ℎ�
𝑗𝑗

(9) 

Many forms of the smoothing function with continuous derivatives have been used in SPH modeling. An 
M6 smoothing function[32],  

𝑊𝑊�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ ,ℎ� = 𝛼𝛼

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧�3 −

3�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
ℎ �

5

−6�2 −
3�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
ℎ �

5

+ 15�1 −
3�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
ℎ �

5

0 ≤ �𝑟𝑟𝚤𝚤𝚤𝚤���⃗ � < ℎ/3 

�3−
3�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
ℎ �

5

−6�2−
3�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
ℎ �

5

ℎ/3 ≤ �𝑟𝑟𝚤𝚤𝚤𝚤���⃗ � < 2ℎ/3 

�3 −
3�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
ℎ �

5

2ℎ/3 ≤ �𝑟𝑟𝚤𝚤𝚤𝚤���⃗ � < ℎ 

0 ℎ < �𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �

, (10) 

 

is used in this work where 𝛼𝛼 = 63
478𝜋𝜋ℎ2

 for two spatial dimensions. 𝑊𝑊�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ ,ℎ� will be denoted as 𝑊𝑊𝑖𝑖𝑖𝑖   in the 
following equations. 

The SPH model discretizes the computational domain into two sub-domains of particles: 𝛺𝛺𝑓𝑓 is discretized 
with “fluid” particles that make up the electrolyte and 𝛺𝛺𝑠𝑠 is discretized with “solid” particles that form the 
electrode and precipitates. Since there is no convection in the current model, both particle sets do not 
move but fluid particles can precipitate into solid particles and the solid particles can dissolve into fluid 
particles as described in Tartakovsky et al[25].  

Each fluid particle has a concentration of both anions and cations and a local potential. Building upon the 
SPH formulation for diffusion by Tartakovsky et al[25], the cation concentration is calculated from the 
Nernst-Plank equation (Eq. 1) as  



D𝐶𝐶𝑐𝑐,𝑖𝑖

D𝑡𝑡
= �

2𝐷𝐷𝑐𝑐𝑚𝑚𝑗𝑗𝑟𝑟𝚤𝚤𝚤𝚤���⃗

𝜌𝜌𝑗𝑗�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
2 �𝐶𝐶𝑐𝑐,𝑖𝑖 − 𝐶𝐶𝑐𝑐,𝑗𝑗�∇𝑊𝑊𝑖𝑖𝑖𝑖

𝑗𝑗∈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+ �
𝑚𝑚𝑗𝑗𝑟𝑟𝚤𝚤𝚤𝚤���⃗

𝜌𝜌𝑗𝑗�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
2 𝜇𝜇𝑐𝑐�𝐶𝐶𝑐𝑐,𝑖𝑖 − 𝐶𝐶𝑐𝑐,𝑗𝑗��𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗�∇𝑊𝑊𝑖𝑖,𝑗𝑗

𝑗𝑗∈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
−𝑆𝑆𝑉𝑉,𝑖𝑖 , 𝑖𝑖 ∈ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (11)

 

where the subscript c refers to the cation properties and Cc,i describes the cation concentration at position 
ri. The SPH-CSR formulation developed by Ryan et al[33] reformulates the heterogeneous boundary 
condition of Eq. 4 as a homogeneous boundary condition and a volumetric source term, Sv. The volumetric 
source term is calculated from Ss (Eq. 3), a characteristic function (β), and the surface normal vectors (ni) 
as, 

𝑆𝑆𝑉𝑉,𝑖𝑖 = 𝑆𝑆𝑠𝑠 ∑
𝑚𝑚𝑘𝑘
𝜌𝜌𝑘𝑘𝜅𝜅∈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑛𝑛𝑘𝑘����⃗ + 𝑛𝑛𝚤𝚤���⃗ )�𝛽𝛽𝑘𝑘����⃗ + β𝚤𝚤���⃗ �∇𝑊𝑊𝑖𝑖,𝑘𝑘 (12)    

where the normal vector can be calculated by  

𝑛𝑛𝚤𝚤���⃗ =
∑
𝑚𝑚𝑗𝑗
𝜌𝜌𝑗𝑗𝑗𝑗 �𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑖𝑖�∇𝑊𝑊𝑖𝑖,𝑗𝑗

�∑
𝑚𝑚𝑗𝑗
𝜌𝜌𝑗𝑗𝑗𝑗 �𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑖𝑖�∇𝑊𝑊𝑖𝑖,𝑗𝑗�

, (13) 

and 𝛽𝛽 is defined as, 

𝛽𝛽𝑖𝑖 = �
𝛽𝛽𝑓𝑓 = 0, 𝑖𝑖 ∈ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝛽𝛽𝑠𝑠 = 1, 𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(14) 

to distinguish the solid and fluid domains. 

The anion concentration is discretized as 

D𝐶𝐶𝑎𝑎,𝑖𝑖

D𝑡𝑡
= �

2𝐷𝐷𝑎𝑎𝑚𝑚𝑗𝑗𝑟𝑟𝚤𝚤𝚤𝚤���⃗

𝜌𝜌𝑗𝑗�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
2 �𝐶𝐶𝑎𝑎,𝑖𝑖 − 𝐶𝐶𝑎𝑎,𝑗𝑗�∇𝑊𝑊𝑖𝑖,𝑗𝑗

𝑗𝑗∈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+

�
𝑚𝑚𝑗𝑗𝑟𝑟𝚤𝚤𝚤𝚤���⃗

𝜌𝜌𝑗𝑗�𝑟𝑟𝚤𝚤𝚤𝚤���⃗ �
2 �𝜇𝜇𝑎𝑎𝐶𝐶𝑎𝑎,𝑖𝑖 − 𝜇𝜇𝑎𝑎𝐶𝐶𝑎𝑎,𝑗𝑗��𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗�∇𝑊𝑊𝑖𝑖,𝑗𝑗

𝑗𝑗∈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

, 𝑖𝑖 ∈ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. (15)

 

Where the subscript a refers to anion properties and Ca,i describes the anion concentration at position ri.  

The electrostatic potential equation is discretized by 

𝜙𝜙𝑖𝑖 =  
𝑒𝑒�𝑧𝑧𝑐𝑐,𝑖𝑖𝐶𝐶𝑐𝑐,𝑖𝑖 − 𝑧𝑧𝑎𝑎,𝑖𝑖𝐶𝐶𝑎𝑎,𝑖𝑖�

𝜖𝜖𝜖𝜖0
+

1
4𝜋𝜋𝜋𝜋𝜖𝜖0

�
𝑒𝑒�𝑧𝑧𝑐𝑐,𝑗𝑗𝐶𝐶𝑐𝑐,𝑗𝑗 − 𝑧𝑧𝑎𝑎,𝑗𝑗𝐶𝐶𝑎𝑎,𝑗𝑗�

𝑟𝑟𝚤𝚤𝚤𝚤���⃗𝑗𝑗∈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

, 𝑖𝑖 ∈ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (16) 

where the subscripts i and j refer to particles i and j. The potential at the reactive surface (electrode and 
dendritic growth) is the reference potential, which is equal to the ground potential, 

𝜙𝜙(𝑟𝑟𝑠𝑠��⃗ , 𝑡𝑡) = 0, 𝑟𝑟𝑠𝑠��⃗ ∈ Γ, t > 0 (17) 



and the potential at the top boundary outside of the diffusion layer has a fixed potential of 𝜙𝜙0 relative to 
the reference potential,  

𝜙𝜙(𝑦𝑦 = 𝐿𝐿, 𝑡𝑡) = 𝜙𝜙0, t > 0 (18) 

The potential throughout the fluid domain is calculated using the discretized Poisson equation, Eq. 16. 

In the solid particles, diffusion and migration are neglected and the change of mass of the solid balances 
the loss of ions in the liquid particles, 

𝑑𝑑𝑚𝑚𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑖𝑖�𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑒𝑒𝑒𝑒� �

𝑚𝑚𝑘𝑘

𝜌𝜌𝑘𝑘𝜅𝜅∈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

(𝑛𝑛𝑘𝑘����⃗ + 𝑛𝑛𝚤𝚤���⃗ )�𝛽𝛽𝑘𝑘����⃗ + β𝚤𝚤���⃗ �∇𝑊𝑊𝑖𝑖,𝑘𝑘. (19) 

The process of precipitation and dendrite growth is simulated by tracking the mass, mi, in the solid. When 
the mass of a particle surpasses twice the initial mass, m0, the nearest fluid particle precipitates and 
becomes a solid. The new solid particle has a mass of m0 and the original solid particle’s mass becomes 
(mi - m0). 

The SPH model is implemented into the LAMMPS code 
base, as part of an SPH module[34]. The simulation domain 
(Figure 1) is two dimensional and includes 262,144 particles, 
discretizing a square domain of 128 by 128 units of h (except 
in the convergence cases) with an average particle density 
(number of particles within area h2) of 16. The domain is 
divided between fluid and solid particles.   

Verification and Convergence Studies 

While the implementation of the full Nernst-Planck 
equation has not been previously verified, the 
implementation of the diffusion and reaction terms have 
been [26,28]. As such, the verification cases presented here 
focus on verifying the electrochemical potential and 
migration equations for two oppositely charged species. 
Two separate verification cases are presented to assess the 
accuracy of the implemented mathematical models (i.e. 
Eqs. 11-19); the first case considers the cation concentration change due to migration under a constant 
electric field. While the second case considers the concentration change for both cations and anions due 
to migration subject to a varying electric field. The electric field is concentration-dependent; it changes 
due to differences in local concentrations according to Eq. 16. For the second case, an analytical solution 
does not exist and so a comparison is made to numerical integration of the governing equations using the 
Runge Kutta method.  For both cases, the SPH simulations were conducted in a two dimensional square 
domain (0<x<L, 0<y<L) and the one dimensional concentration through the electrolyte was calculated by 
dividing L into n bins in the x dimension and then taking the mean of each bin. 

Case 1: 

Figure 1. Simulation domain of SPH model. The 
green region represents the fluid particles 
(electrolyte) and the grey region represents the 
solid particles (electrode). A constant 
concentration boundary layer is 128 kernel 
lengths away from the electrode. 

 



The 1-D governing equation of migration under constant electric field is 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜇𝜇𝑬𝑬
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(20) 

where 0 > x > L = 1 and μE = 1 and the initial concentration is given as 

𝐶𝐶(𝑥𝑥, 𝑡𝑡 = 0) = exp �−
1
2�

(𝑥𝑥 − 𝜇𝜇𝑚𝑚)
𝜎𝜎 �

2

� (21) 

where μm/L is 0.5 and (σ/L)2 is 0.01 and the boundary conditions are 

𝐶𝐶(𝑥𝑥 = 0, 𝑡𝑡) = 𝑐𝑐(𝑥𝑥 = 𝐿𝐿, 𝑡𝑡) = 0. (22) 

The analytical solution of Eq. 20 can then be derived as, 

𝐶𝐶(𝑥𝑥, 𝑡𝑡) = exp �−
1
2�

(𝑥𝑥 + 𝜇𝜇𝑬𝑬𝑡𝑡) − 𝜇𝜇𝑚𝑚
𝜎𝜎 �

2

� . (23) 

 

Case 2: 

In Case 2, the potential is governed by Eq. 2 and the concentration is governed by Eq. 1 with the diffusion 
coefficient set to zero. The concentrations for the anions and cations are subject to the initial 
concentration, 

𝐶𝐶𝑐𝑐(𝑥𝑥, 𝑡𝑡 = 0) = 𝐶𝐶𝑎𝑎(𝑥𝑥, 𝑡𝑡 = 0) =
1
2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑥𝑥 − 𝜇𝜇𝑚𝑚
𝜎𝜎√2

� (24) 

and the boundary conditions are 𝐶𝐶𝑐𝑐(𝑥𝑥 = 0, 𝑡𝑡) = 𝐶𝐶𝑎𝑎(𝑥𝑥 = 0, 𝑡𝑡) = 1 and 𝐶𝐶𝑐𝑐(𝑥𝑥 = 𝐿𝐿, 𝑡𝑡) = 𝐶𝐶𝑎𝑎(𝑥𝑥 = 𝐿𝐿, 𝑡𝑡) = 0. 
The initial concentration was selected so that the concentration varied smoothly; large disparities in 
concentration between the two species are non-physical. 

For Case 1, both the SPH model and the Runge-Kutta method are compared to the analytical solution and 
in Case 2 the SPH model is compared to the Runge-Kutta method.  As shown in Figure 2, the SPH model 
compares well to both Cases 1 and 2. The average L1 relative error is less than 0.001 for both cases. The 
L1 relative error, 𝐸𝐸𝐿𝐿1, is calculated as 

𝐸𝐸𝐿𝐿1 =
1
𝑛𝑛
�

|𝐶𝐶𝐴𝐴,𝑖𝑖 − 𝐶𝐶𝐵𝐵,𝑖𝑖|
max�𝐶𝐶𝐵𝐵,𝑖𝑖�

𝑛𝑛

1

(25) 

where 𝐶𝐶𝐴𝐴,𝑖𝑖  and 𝐶𝐶𝐵𝐵,𝑖𝑖 are the concentrations predicted at location i for methods A and B over all particles, 
n. Eq. 25 is used to calculate the L1 relative error between the SPH method, analytical solution and Runge-
Kutta numerical integrator.  



The effects of particle ordering on the SPH results were also considered. In both Cases 1 and 2, the SPH 
simulations were completed using particles placed with equal, ordered spacing. To consider the effects of 
disordered particles, Case 2 was also run with randomly spaced particles. The particles are disordered by 

shifting them randomly up to a maximum of 20% of their initial spacing. As seen in Figure 3, the ordered 
particle SPH simulation and the disordered particle SPH simulation compare well with a maximum 
difference between the ordered and disordered simulations of less than 0.11%.  

Additionally, the effects of spatial resolution are compared for the SPH simulation of Case 2 in terms of 
both the error and the computational cost. Figure 4 depicts the L1 error of the SPH simulations compared 
to the numerical integrator at different spatial resolutions as well as the time for the simulation to run 

 
Figure 3. Concentration profile for the ordered and disordered particle placement of SPH simulations for Case 2 
with 0.12% L1 relative error. This comparison was made to demonstrate the model’s ability to arrive at similar 

concentration levels regardless of SPH particle positioning. This is what allows SPH to accurately model the 
morphological evolution of dendritic growths. 

 

 

  a)                 b) 

          
Figure 2. (a) Concentration profile for test Case 1 where the migration is driven by a constant electric field and compares the 
results of the analytical solution, the SPH model and the Runge-Kutta method with an L1 average error of less than 1%. (b) 
Concentration profile for test Case 2 where the migration is calculated for both the concentrations of anions and cations 
and is driven by a concentration-dependent electric field. 

 



~1.3 million time steps. Based on the 
relative low error and fast run time, 
L=128h was chosen for the particle 
spacing.  
A dendritic growth convergence 
study was conducted to 
demonstrate the model's ability to 
accurately simulate dendritic 
growth. In Figure 5, simulations are 
presented at differing resolutions 
(Figure 5a: L=64h and 65,536 
particles, Figure 5b: L=128h and 
262,144 particles).  

The average growth fronts of the 
low- and high-resolution simulations 
were compared in Figure 6. The 

average growth fronts were calculated using bin averaging in the x-dimension. The simulations at the 
two resolutions predict similar average growth fronts with less than 5% relative difference (Figure 7). 

Application to Dendritic growth in Electrodeposition 

As mentioned previously, non-uniform deposition can lead to dendritic growth, which is problematic in a 
variety of electrodeposition processes where precision is required. To further evaluate the SPH model’s 
ability to capture dendritic growth and morphology, the SPH model was used to simulate experimental 
data of dendrite growth under high and low current scenarios and under pulsed plating conditions.  

Experimental data from Schneider et al[35] on electrodeposition of copper under galvanostatic conditions 
under various growth rates and pulsed plating conditions are used for comparison to the SPH model. The  
growth front lengths are ploted based on the experimental imaging (Figure 8b). The growth front length 
is a normalized length, to measure surface roughness. It is normalized by the length for a smooth surface 

 

Figure 5. Simulations of dendritic growth low (a) and high (b) spatial resolution. 

 

Figure 4. L1 error and computational run time for Case 2 between the SPH 
simulation and the Runge-Kutta numerical integrator method at different 

particle spacing in the SPH model. Simulations use a particle spacing of 
128h because of the high density and low run time. 

 



such that a smoother deposition will have a value close to 1 and dendritic growth will have a value higher 
than 1. 

The first two experimental tests are conducted at a lower and higher growth rate. In the experimental 
work the higher growth rate condition used an applied current that was five times higher than that of the 
lower growth rate condition. These were conducted to provide baseline evidence for different 
electrodeposition regimes where the lower growth rate from lower applied current produces reaction 
rate limited conditions and relatively uniform electrodeposition (Figure 8a, top), and the higher growth 
rate from higher applied current produces mass transport limited conditions and high dendritic growth 
(Figure 8b, bottom).   

Figure 6. Average growth front for low and high spatial 
resolution along the x direction. 

  

 

 

 

Figure 7. Relative difference between the average growth 
fronts for low and high spatial resolutions. 

 

 

 

Figure 8. Experimental observations of dendritic growth. (a) Images of dendrites under low growth rate (top) and high 
growth rate (bottom). Note the values in upper left corner of images are the experimental time. (b) Measurements of 
the dendritic growth front over time for the low and high growth rates. Image from Schneider et al[30] is licensed 
under creativecommons.org/licenses/by/4.0/. 

 



At lower growth rates (Figure 8, top), the deposition is relatively uniform along the electrode surface as 
demonstrated by the normalized growth front length close to 1. The growth front moves in unison 
suggesting the system is reaction rate limited and the local current density is also relatively uniform. At 
higher growth rates (Figure 8, bottom), the applied current is increased 5x higher than the low growth 
rate conditions. The ionic deposition forms dendrites suggesting mass transport limited conditions. Under 
the high growth rate, the deposition morphology is a long, thin branching structure. There is rapid growth 
at the tips of the dendrites and hardly any deposition in the regions without dendrites. The normalized 
growth front length (Figure 8b, bottom) increases rapidly once there are mass transport limited condition 
for the reaction at the anode.  

The SPH model is able to capture similar dendritic behavior. The reaction rate is the model parameter that 
is comparable to the applied current in the experimental tests. Initially, there is a 1 h thick layer of solid 
particles at y=0 and the rest of the domain is fluid particles. The concentration at y=L is held constant 
throughout the simulations to represent the concentration outside of the diffusion layer, which is a 
common assumption in modeling electrochemical systems, and has been shown to accurately represent 
the physical system[1,36].  In Figure 9, a simulation of dendritic growth (grey) is presented at a high (a) 
and low (b) reaction rate. The high reaction rate is five times higher than the lower reaction rate, matching 
the conditions in the experimental tests. Long, thin dendritic branching occurs in the high reaction rate 
case and a more uniform deposition occurs at the lower reaction rate. 

The normalized growth front length at different times is shown in Figure 10. The curves for the low and 
high reaction rate simulations compare well with the trends of the growth front curves from the 
experimental tests. At the low reaction rate, the normalized growth front length remains between 1 and 
2 indicating uniform deposition but at the higher reaction rate, the growth front length increases 
exponentially as expected when there are long dendrite growths and regions without growth. 

 
Figure 9. SPH simulations of dendritic growth (grey) for a high reaction rate (a) and a low reaction rate (b). A high reaction 
rate condition – also known as diffusion limited condition – favors dendritic morphologies due to precipitation being more 
likely to occur away from the surface where there are higher ion concentrations creating more elongated structures. 
Whereas the low reaction rate condition – also known as reaction rate limited condition – has a more uniform deposition 
morphology as ion transport to the surface replenishes deposited ions. 

 



Schnieder et al also conducted experiments on the effects of pulse plating on dendrite growth (Figure 11). 
Pulse plating has been suggested as a method for rapidly charging batteries while concurrently 
maintaining smoother deposition[37]. Schneider et al conducted experimental tests using the high growth 
rate of Figure 8 for 1 s followed by a 5 s rest period, allowing the ionic concentration near the interface to 
equilibrate. The SPH model was also used to test pulse plating with a matching high reaction rate to rest 
period ratio. As demonstrated by both the experimental data and SPH simulations, pulse plating allows 
the deposition to occur more uniformly along the electrode surface resulting in a smaller normalized 
growth front length, Figure 10. Note that the experiments by Schnieder et al [37] focused on surface 
roughness and plating in electrochemical deposition on a copper plate and did not consider battery 
applications. In recent work, we have expanded these initial pulse plating studies to consider pulse plating 
effects for fast charging of batteries[38]. 

 

 

 

Figure 10. Normalized growth front length for the SPH simulations of high reaction rate, low reaction rate and pulse plating. 

 



  

Conclusion 

Electrodeposition is used in a variety of industrial applications and is critical to the fabrication of 
electronics and the performance of batteries. Experimentally observing the electrodeposition process in 
situ at the electrolyte-electrode interface is challenging. However, computational models are able to 
isolate this region to understand the critical phenomena occurring at the interface during 
electrodeposition. With this understanding, the electrodeposition process can be better controlled 
leading to improved deposition in fabrication processes, and improved performance in battery 
applications. 

A numerical model based on the SPH method was presented for simulating mass transport and 
electrodeposition near an interface. The Nernst-Planck equations were implemented in the model to track 
concentration changes of two oppositely charged species due to diffusion and ionic migration. The Poisson 
equation is solved to calculate the local potential throughout the domain. The expanded physics of the 
SPH model presented here allows more accurate modeling of the physical processes at the interface then 
previous SPH models that did not include electric field effects, and is better able to simulate experimental 
conditions. The implementation of the Nernst-Planck equation was verified with an analytical solution and 
a numerical integration method. The SPH model was shown to accurately reproduce the verification cases. 

Dendritic morphology predicted by the SPH model qualitatively matches experimental data for both low 
and high reaction rate scenarios. Additionally, the growth front length of the dendrites predicted by SPH 
agree with experimental data and show that for the high reaction rate the growth front increases 
exponentially, while the growth front length is stable for the low reaction rate. Pulse plating simulations 
were also presented as a viable technique for reducing dendritic growth. The SPH model accurately 
captures the behavior of ionic deposition for pulsed plating and predicts a growth front comparable to 
the experimental data. Further work on pulsed plating for fast charging applications, and current-voltage 
relations with the SPH model have been considered and are presented in Morey et al[39], and Melsheimer 
et al[38]. 

Explicitly tracking conditions, i.e. concentration and potential, near the electrode-electrolyte interface can 
lend insight into advanced methods for controlling the deposition morphology, such as structured 
electrolytes[40,41], novel separator designs[42–44], and surface treatments[39,45]. The results of the 
computational studies demonstrate the model’s ability to capture the complex interfacial physics 
occurring during the electrodeposition process.  Additionally, the model could be used to understand the 

      a)                                                          b) 

                           

Figure 11. Experimental observations (a) and normalized growth front length (b) of dendrite growth under pulse plating 
conditions. Image from Schneider et al[30] is licensed under creativecommons.org/licenses/by/4.0/. 

 

 



mechanical effects of dendrite growth in non-liquid electrolytes with the addition of solid mechanics 
equations, which have been used in SPH modeling of other multiphase systems for biological and 
geological applications[46–48]. 
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