

Chemical durability and corrosion-induced microstructure evolution of compositionally complex titanate pyrochlore waste forms with uranium incorporation

Kun Yang¹, Keith Bryce¹, Tiankai Yao,² Dong Zhao¹, Jie Lian^{1,3*}

¹*Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, NY, US, 12180*

²*Idaho National Laboratory, Idaho Falls, ID*

³Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, NY, US, 12180

10 * Corresponding author, Email: lianj@rpi.edu; Office: 518-276-6081; Fax: 518-276-6025

11 Chemical durability of compositionally-complex rare-earth titanate pyrochlore solid
12 solutions with or without uranium incorporation were investigated by semi-dynamic
13 leaching testing. A Ti-enriched amorphous passivation film covered on surface due to the
14 surface alteration-reorganization mechanism with preferential release of the weakly
15 oxygen-bonded rare earth elements. Elemental release is found to be strongly correlated
16 with chemical disorder, with a negligible correlation with entropy. The release rate of the
17 uranium gradually decreases with increasing numbers of components, implying a
18 possibility of designing and optimizing waste form performance with enhanced chemical
19 durability by controlling composition complexity and chemical disorder for effective
20 nuclear waste management.

21 1 Introduction

22 The safe disposal of nuclear wastes including fission products, U, Pu and minor actinides
23 generated by commercial reactors and dismantled nuclear weapons has long been a major subject
24 for effective nuclear waste management [1,2]. Significant efforts have been developed to
25 immobilize nuclear waste in highly stable and durable host matrices, including SYNROC, apatite,
26 vanadate, perovskite, and pyrochlore, *etc* [3-10]. Among these conventional nuclear waste forms,
27 rare earth titante and zirconate pyrochlores ($A_2B_2O_7$ with A = REE, B = Ti and Zr) have been
28 widely recognized as important host matrices in immobilizing nuclear waste due to their
29 structural flexibility that can accommodate U, Pu and minor actinides with multiple valence
30 states [11,12]. Pyrochlore structure types also possess diverse crystal chemistry and tunable
31 structures with different combinations of elemental substitutions at the A and B-sites [11,16,17].
32 Besides, pyrochlore-type ceramics are also potential inert matrix fuels to incorporate multivalent
33 uranium, plutonium, and transuranic actinides [2,12].

34 An order-disorder structural transition can occur in pyrochlore structure by disordering
35 cation and anion sublattices, leading to the phase transformation from the ordered pyrochlore to a
36 defect fluorite structure which can be induced by chemical substitution, temperature and intense
37 beam irradiation [18-22]. The tendency towards the pyrochlore-to-fluorite phase transformation is
38 dictated by the ionic radius ratio of cations at the A- and B-sites, which play a dominant role in
39 controlling radiation tolerance and corrosion resistance of materials. In addition to host phases for
40 nuclear waste management and inert matrix fuels, rare earth zirconate pyrochlores $Re_2Zr_2O_7$ are

41 also leading materials for thermal barrier coatings to enhance the operation temperature and
42 increase longevity of the structural components for aerospace and space applications [23-25]. The
43 phase and structural stability, chemical durability and oxidation/corrosion resistance of the
44 pyrochlore structural types are essential for the evaluation of their performance as leading
45 candidate materials for nuclear waste forms, inert matrix fuels and thermal barrier coatings in
46 which materials are utilized either in separate or coupled extremes of high temperature, oxidative
47 and corrosion environments.

48 Recently, high-entropy ceramics (HECs) has been emerging as a new class of materials with
49 unique properties as compared with monolithic and single component materials resulting from
50 their composition complexity, structural disordering and reduced atomic and thermal transport
51 behavior. High entropy ceramics including boride, carbide, phosphate, silicate etc. attract great
52 scientific interests due to their improved thermal and mechanical properties [14,15].
53 Multi-principal ceramics (MPCs) extended to both medium-entropy and non-equiautomic
54 compositions may demonstrate excellent mechanical strength and ductility,
55 significantly-lower thermal conductivity, superior corrosion resistance, and radiation tolerance.
56 Multicomponent and high entropy ceramics may possess immense potentials with extended
57 performance when utilized under extreme environments encountered for advanced nuclear energy
58 systems and space/aerospace applications in which high thermo-mechanical properties, robust
59 radiation tolerance, and high-temperature oxidation/corrosion are desirable [13,14].

60 Compositionally complex oxide solid solutions in pyrochlore and fluorite structures with
61 varied A and B-site cationic combinations have been successfully fabricated, and their
62 thermo-mechanical properties have been investigated systematically in order to understand the
63 key materials parameters (such as size disorder, mass disorder, entropy, etc.) governing their
64 properties. For example, Luo (2021) and Wright (2021) fabricated compositionally complex
65 pyrochlore or fluorite solid solutions and high-entropy ceramics exhibiting superior low thermal
66 conductivity and high mechanical strength [14,15]. A synergistic effect of the oxygen vacancies
67 and the size disorder in influencing the thermal conductivities in compositionally complex
68 fluorite and pyrochlore oxides was reported. It has also been reported that the chemical disorder
69 instead of high entropy actually plays a dominant role in controlling their thermal-mechanical
70 properties. Particularly, medium entropy pyrochlore solid solutions outperform their high-entropy
71 counterparts with significantly lower thermal conductivity and better mechanical strength [14,15],
72 desirable for the application of thermal/environmental barrier coatings. Similarly, titanate
73 pyrochlore solid solutions from binary, multicomponent to high entropy materials containing
74 with or without uranium have also been fabricated [23] in order to explore their potential
75 applications as nuclear waste forms and inert matrix fuels. It was found that binary titanate
76 pyrochlore solid solutions with uranium incorporation exhibit lower thermal conductivity and
77 higher hardness, while a high entropy titanate pyrochlore solid solution
78 $(\text{Sm},\text{Gd},\text{Dy},\text{Er},\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$ demonstrates higher thermal conductivity [26]. A close correlation

79 can be identified in the thermal conductivity with the size disorder and mixing entropy for
80 multicomponent titanate pyrochlores as demonstrated by our previous research [26]. Therefore,
81 the thermal and mechanical properties can be tailored by controlling its chemical disorder
82 associated with the compositional complexity, greatly expanding the design window to develop
83 high performance materials for both thermal barrier coatings and engineering materials for
84 nuclear applications [26].

85 This work mainly deals with the chemical durability and corrosion resistance of the
86 multicomponent titanate pyrochlore as potential nuclear waste forms and their microstructure
87 evolution under near field environment. We hypothesized that the chemical durability and
88 corrosion resistance of pyrochlore or fluorite structure types may also be impacted significantly
89 by the chemical disorder and composition complexity. A systematic study on single component
90 rare earth pyrochlore or fluorite demonstrates a clear trend of the elemental release rates
91 decreasing with the smaller A-site ionic radii from La to Yb [27,28]. A previous study by Xu
92 (2004) studied the chemical durability of a natural pyrochlore mineral $\text{CaU}_{0.5}\text{Ce}_{0.25}\text{Hf}_{0.25}\text{Ti}_2\text{O}_7$,
93 essentially a multicomponent crystalline solid solution [7], and the long-term uranium release
94 rate was around $10^{-5} \text{ g m}^{-2} \cdot \text{d}^{-1}$ in an acidic solution with $\text{pH} = 2.0$, demonstrating its excellent
95 long-term chemical durability [29]. However, mechanistic understanding is limited in the
96 chemical durability and corrosion resistance of compositionally complex pyrochlore and fluorite
97 solid solutions. As inspired by the greatly improved thermal and mechanical properties of the

98 compositionally complex pyrochlore solid solutions, it is possible to design advanced waste form
99 materials with enhanced chemical durability and corrosion resistance based on multicomponent
100 pyrochlore solid solutions by controlling its chemical disorder and structural distortion associated
101 with the compositional complexity.

102 To test our hypothesize and design advanced waste form materials with optimized chemical
103 stability and corrosion resistance, in this work, multicomponent titanate pyrochlore solid
104 solutions with or without uranium incorporation were fabricated, and their chemical durability
105 was evaluated in order to develop and understand the underlying mechanism that governs the
106 chemical durability of the compositionally complex pyrochlore solid solutions. A systematic
107 investigation of the corrosion behavior and degradation in aqueous solution in the near field
108 environment was conducted, and their structural characteristics and properties were compared
109 with multicomponent pyrochlore compositions without uranium. Specifically, a total of 9
110 pyrochlore compositions from binary, ternary, and quaternary to five-components with and
111 without uranium incorporation were synthesized, corresponding to low entropy, medium entropy
112 and high entropy materials. The short-term and long-term elemental release rates were further
113 determined by solution chemistry analysis using an inductively-coupled plasma mass
114 spectroscopy (ICP-MS). The chemical durability of the compositionally complex pyrochlore
115 solid solutions was linked with structural/chemical disorder in order to reveal the dominant
116 mechanisms in guiding the design and optimization of multicomponent oxide solid solutions and

117 predicting their performance under the near field environment for waste form applications.

118 **2 Materials and Methods**

119 **2.1 Powder Fabrication**

120 Multicomponent or high-entropy pyrochlores can be synthesized via wet chemical

121 approaches such as sol-gel processing, hydrothermal route, co-precipitation, polymeric Pechini

122 method and pyrolysis of aerosols [30-32]. These methods usually require a long dwell time with

123 relatively high temperatures, and it is difficult to control the phase purity due to the addition of

124 precipitation agents for the wet chemical approaches [33-35]. Therefore, in this work,

125 multicomponent titanate pyrochlore solid solutions were synthesized by solid state reaction of the

126 precursor chemicals (RE_2O_3 and TiO_2) through high-energy ball milling. Multicomponent

127 $\text{REE}_2\text{Ti}_2\text{O}_7$ with different combinations of rare-earth elements varying from Sm to Yb were

128 targeted to represent medium to high entropy materials. In addition, the $\text{REE}_2\text{Ti}_2\text{O}_7$ ($\text{REE} = \text{Sm}$

129 to Yb) solid solutions with 5 at.% uranium incorporation into the structural lattice (target formula

130 of $\text{REE}_{1.95}\text{U}_{0.05}\text{Ti}_2\text{O}_7$) were also fabricated using UO_2 as the precursor chemical. The amount of

131 UO_2 was deliberately selected as 5 at.% based on our previous research, which suggested that the

132 maximum 10 at% UO_2 can be incorporated into the pyrochlore lattice structure [26]. Above 10

133 at%, a secondary phase, namely U_3O_8 can be found for the pyrochlore sample. The REE_2O_3 , UO_2 ,

134 and TiO_2 powders were thermally pre-treated in a digitally-controlled oven at 500 °C for 24 hours

135 in order to remove adsorbed moisture. Stoichiometric amounts of the precursor materials (about 5

136 grams) were mixed in 10 ml pure ethanol with a solid weight/liquid volume (w/v) ratio of 1 to 2.
137 The mixed powders were then ball-milled for 80 cycles at 500 rpm with ZrO_2 milling apparatus,
138 for which each cycle was equal to 30 min with a pause of 5 min between each cycle to prevent
139 the mixture solution from overheating. The ball milling was conducted with high-energy ball
140 milling equipment (FRITSCH). After the ball milling, the mixture slurry was then dried for 24
141 hours in the air at 90 °C to remove any remaining ethanol.

142 **Table 1. Target chemical formula of the samples studied herein**

No.	A-site (at.%)					B-site (at.%)		chemical composition
	Sm_2O_3	Gd_2O_3	Dy_2O_3	Er_2O_3	Yb_2O_3	UO_2	TiO_2	
1	25	0	0	0	25	0	50	$(\text{Sm},\text{Yb})_2\text{Ti}_2\text{O}_7$
2	16.7	16.7	0	0	16.7	0	50	$(\text{Sm},\text{Gd},\text{Yb})_2\text{Ti}_2\text{O}_7$
3	12.5	12.5	0	12.5	12.5	0	50	$(\text{Sm},\text{Gd},\text{Er},\text{Yb})_2\text{Ti}_2\text{O}_7$
4	10	10	10	10	10	0	50	$(\text{Sm},\text{Gd},\text{Dy},\text{Er},\text{Yb})_2\text{Ti}_2\text{O}_7$
5	0	0	0	0	45	5	50	$(\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$
6	22.5	0	0	0	22.5	5	50	$(\text{Sm},\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$
7	15	15	0	0	15	5	50	$(\text{Sm},\text{Gd},\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$
8	11.3	11.3	0	11.3	11.3	5	50	$(\text{Sm},\text{Gd},\text{Er},\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$
9	9	9	9	9	9	5	50	$(\text{Sm},\text{Gd},\text{Dy},\text{Er},\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$

143

144 **2.2 Pellet Sintering**

145 The targeted pyrochlore solid solutions in dense ceramic pellets were consolidated by spark
146 plasma sintering (SPS) using a Model 10-3 SPS system (Thermal Tech, LLC, Santa Rosa,
147 California). A portion of 0.75 g of the dried powders was consolidated with an 8 mm graphite die.
148 Graphite foils sprayed with boron nitride paste were placed between the graphite die and the

149 powder compact to act as a physical barrier (thickness around 0.2 mm). A thick graphite coat
150 surrounded the graphite die was applied to prevent over-heat loss during the sintering process. A
151 steady flow of argon gas with the flow rate of 1 L/min passed through the chamber during SPS
152 sintering. The sintering temperature was monitored and controlled using a pyrometer. The
153 sintering temperature was increased from 25 to 1250 °C with a heating rate of 200 °C/min, and
154 the uniaxial pressure was increased to 40 MPa simultaneously. The maximum temperature and
155 pressure were held for 15 min to allow the grain coarsening and densification. After the thermal
156 holding period, the graphite die and sintered pellets were cooled down with a continuous argon
157 gas flow (1 L/min) to room temperature. The as-sintered pellets were first roughly polished by
158 1200 grit sandpapers with water acting as the polishing agent, then deeply polished and finished
159 using 1 µm diamond paste and 0.03 µm silica gel paste. Sample pellets were then rinsed and
160 cleaned with deionized water in an ultrasonic cleaner. The density of sintered pellets was
161 measured based on Archimedes method using an Adam analytical scale (Danbury, NY, USA).

162 **2.3 Phase and microstructure characterization**

163 The phase of the densified pellets obtained after final polishing was characterized by X-ray
164 diffraction (XRD) using a Panalytical X'Pert Pro system. The scanning ranges from 10° to 90°
165 (Westborough, MA, USA) along with a copper target ($\text{CuK}_{\alpha\text{ I}} = 0.15406 \text{ nm}$, $\text{CuK}_{\alpha\text{ II}} = 0.15443 \text{ nm}$)
166 and a step size of 0.0131°. The surface microstructure before and after the chemical durability test
167 by leaching in nitric acid solutions (pH = 1) was characterized using a scanning electron

168 microscope (SEM) equipped with an energy dispersive spectroscope (EDS) (FEI Versa, USA).
169 The properties of the chemical bonding environment of the as-sintered pellets before and post
170 accelerated leaching tests were further characterized by Raman spectroscopy (using a Renishaw
171 system, model DXR2). The surface morphology and microstructure evolution and corresponding
172 semi-quantitative elemental analysis were characterized using a scanning transmission electron
173 microscopy (STEM, FEI Titan Model 80-200, USA) system coupled with an energy dispersive
174 spectroscope (EDS, Oxford Instruments, Abingdon, UK). Samples for analysis by STEM were
175 prepared by a focused ion beam (FIB) (FEI Versa, USA) to obtain thin lamellas with the
176 thickness to 50 nm. A 100 nm Pt protection layer was coated onto the cutting area to avoid
177 possible beam damage and artifacts on the ceramic surface.

178 **2.4 Semi-dynamic leaching test**

179 Short-term (1-day) and long-term (14-day) semi-dynamic leaching tests were carried out in
180 (18 Ω) deionized water solution with pH =1.0 using highly purified nitric acid following an
181 accelerated leaching method ASTM C1308 standard test [34]. Aggressive leaching experiments
182 were conducted at 90 °C in a cap-covered PTFE vessel in a digitally controlled oven. The
183 leachates were sampled and exchanged for 3 hours intervals for the first 24 hours short-term
184 period and a 1-day interval for the long-term leaching period until 14-days. The sample's surface
185 area/leachate volume (S/V) ratio was kept at 5.0 throughout the experiment, and the elemental
186 release rates were analyzed using an ICP-MS (Varian 820, California, US). The corresponding

187 leaching rates (as $\text{mg}\cdot\text{m}^{-2}\cdot\text{hr}^{-1}$) or ($\text{mg}\cdot\text{m}^{-2}\cdot\text{d}^{-1}$), were calculated according to equation (1):

$$188 \quad m(i) = \frac{C_i V}{S T} \quad (1)$$

189 in which C_i is the concentration measured with ICP-MS in milligrams per liter, V is the leachate
190 volume in liters, and S is the surface area in square meters and T stands for the sampling interval
191 which equals to 3 hours for first 24 hours and 1-day from day-2 to day-14. The value of S/V was
192 assumed to be consistent during the leaching experiment ($S/V = 5.0$).

193 The initial or short-term rates (as $\text{mg}\cdot\text{m}^{-2}\cdot\text{d}^{-1}$) were obtained by averaging the leaching rates
194 within 24 hours by assuming that the initial leaching was regulated by the dissolution mechanism.

195 The long-term rate (as $\text{mg}\cdot\text{m}^{-2}\cdot\text{d}^{-1}$) was calculated based on the modified Cote's model [37],
196 assuming that the long-term leaching behavior was dominated by the dissolution and diffusion
197 mechanisms only:

$$198 \quad m(t) = k_1 t + k_2 t^{1/2} + k_3 (1 - e^{-k_4 t}) \quad (2)$$

199 The Cote's model is a semi-empirical mathematical model designed to explain surface
200 leaching behavior by considering dissolution, surface effect and diffusion [34]. The first term, $k_1 t$,
201 on the equation (2) represents the linear dissolution behavior, while the second term stands for
202 the mass transport by diffusion [37], and the third part represents the dissolution behavior
203 dominated by surface ion-exchange. The short-term rate can be derived by assuming a constant
204 initial fast dissolution rate, while the long-term rate can be determined by assuming infinite
205 leaching time and the long-term behavior is dominated by dissolution and diffusion without

206 surface effects, and the long-term dissolution rate can be approximated by k_1 .

207 **3 Results and Discussion**

208 **3.1 Surface morphology and phase of the as-sintered pellets**

209 The XRD patterns for the as-sintered multicomponent pyrochlore solid solutions can be seen

210 in Figure 1a-b and the calculated lattice constant is shown in supplemental Figure s1. Results

211 denote the highly crystallized cubic pyrochlore structure dominating in the multicomponent

212 pyrochlore solid solutions with superlattice diffraction peaks indexed as (111), (222) and (331) of

213 the ordered pyrochlore structure. The XRD patterns for the uranium-incorporated pyrochlore

214 solid solutions do not show impurity phases, indicating that the 5 at.% uranium was successfully

215 incorporated into the pyrochlore lattice structure by partially substituting the A-site in the lattice

216 structure without phase segregation, consistent with our previous study [26]. The lattice constants

217 vary from 10.04 to 10.2 angstrom for the cubic pyrochlore structure based on the Rietveld

218 refinement. The lattice expansion can be observed for the $(\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$ as compared to $\text{Yb}_2\text{Ti}_2\text{O}_7$

219 as confirmed by our previous research due to the incorporation of uranium [26]. Figure 1c shows

220 the surface morphology and corresponding elemental distributions of the uranium-incorporated

221 high-entropy pyrochlore. The SEM image shows that the as-sintered pellets are highly densified

222 without manifest porosity, and multicomponent elements including uranium are homogeneously

223 distributed without phase segregation or agglomeration.

224 Raman microscopy has been used as a powerful approach to characterize the chemical

225 bonding of pyrochlore materials [38]. The as-sintered pyrochlore solid solutions were
226 characterized by Raman spectroscopy under ambient conditions to better understand the
227 structural evolution before and post leaching test, as shown in Figure 2b. The pyrochlore
228 structure belongs to the $Fd\bar{3}m$ space group and has six Raman active modes in the center of the
229 Brillouin zone: $\Gamma = A_{1g} + E_g + 4F_{2g}$, according to the group theory [38]. The pyrochlore solid
230 solutions studied herein all exhibit three typical vibration modes in the range of 200-800 cm^{-1} ,
231 namely, A_{1g} , E_g and F_{2g} , with no other vibration modes, suggesting a high purity pyrochlore
232 phase [39-41]. The most intensive Raman peak vibration around 306 cm^{-1} corresponds to the E_g
233 mode which is related to the Ti-O bending vibration. The band at around 520 cm^{-1} corresponds to
234 the A_{1g} mode and is related to the O-Ti-O bending vibration of the TiO_6 octahedron. The band at
235 580 cm^{-1} corresponds to the F_{2g} vibration mode and is related to the Ti-O stretching vibration
236 [39-41]. Detailed analysis was carried out by a Gaussian fit of the Raman peaks, as shown in
237 Figure 2 and the corresponding peak positions are summarized in supplemental Figure S1b. It can
238 be observed that three Raman modes move to higher frequency (blue shift) from
239 $(\text{Sm},\text{Gd},\text{Yb})_2\text{Ti}_2\text{O}_7$ to high entropy ceramics (HEC(5)), corresponding to the decrease of average
240 ionic radii and the strengthening of the corresponding chemical bond [40,41]. It is worthy of
241 noting that the shift of Raman modes and the shift of X-ray diffraction peaks show a very similar
242 tendency, further suggesting that the blue shift of the Raman modes is accompanied with the
243 decrease in lattice parameters.

244 **3.2. Microstructure evolution and surface alteration of the pyrochlore solid solutions after**
245 **leaching**

246 The surface microstructure and morphology evolution of the pyrochlore solid solution
247 samples post 14-days leaching are shown in Figure 2a, while the surface structure of the
248 as-fabricated samples can be seen in the Supplemental Information Figure s3. The original
249 surface structure is not visible due to the formation of a dense passivation film on the leached
250 surfaces for the samples with or without uranium post the 14-days' alteration in a nitric acid
251 solution. The dense passive film is composed of nano-sized alteration products with irregular
252 structure and average grain size around 20 nm homogeneously, similar to the observation on the
253 single component pyrochlores reported previously [27,28]. The surface alteration of the high
254 entropy pyrochlore solid solution $(\text{Sm},\text{Gd},\text{Dy},\text{Er},\text{Yb})_2\text{Ti}_2\text{O}_7$ post 14-days' leaching test was
255 further characterized by Raman spectroscopy as shown in Figure 2c. Compared to the
256 as-fabricated sample pellet, peak intensities of the F_{2g} are significantly increased after 14-day's
257 leaching period, suggesting significant changes in the structure of corroded materials with an
258 enhancement of the Ti-O stretching band. The increase of the Ti-O stretching mode intensity
259 might suggest the surface passivation film with a chemical composition featured by a Ti-enriched
260 layer. The Ti-enriched surface passivation film can be further evidenced by the STEM analysis.

261 In order to understand the impact of dissolution on surface alteration and passivation film
262 formation on high-entropy Ti-pyrochlore, STEM study was carried out on the cross-section of the
263 leached sample of $(\text{Sm},\text{Gd},\text{Dy},\text{Er},\text{Yb})_2\text{Ti}_2\text{O}_7$ and the results are shown in Figures 3 and 4. The

264 alteration zone of 50 nm underneath the Pt protective layer can be seen in Figure 3a and the
265 high-resolution image in Figure 3c. A 25 nm thick passivation film featured by both the
266 amorphous and fluorite structure coves on the altered matrix, as evidenced by the FFT of the
267 image showing bright diffraction spots and amorphous hallow rings (see Figure 3c). The
268 nano-sized particles embedded in the amorphous passivation film maintain a fluorite structure as
269 shown by the bright spots in Fourier-transferred image (FFT) (Figure 3f). The altered matrix
270 underneath demonstrates an ordered pyrochlore structure, as evidenced by the existence of the
271 superlattice in the FFT pattern (Figure 3e). The high resolution TEM image (Fig. 3b) and the
272 SAED (Fig. 3e) view along a zone axis of [110] show a perfect pyrochlore superstructure for the
273 original unaltered matrix beneath the altered matrix.

274 The cross-sectional microstructure and elemental line scanning across on the alteration zone
275 of HEC with U incorporation (HEC(U)) are shown in Figure 4. The surface passivation layer
276 with a thickness of around 25 nm with a coexisted of amorphous and disordered fluorite structure
277 can be evidenced by the HAADF image in Figure 4b, consistent with the STEM analysis in
278 Figure 3. The elemental line scanning focused on the passivation film and the altered matrix
279 clearly indicates that the passivation film is enriched with Ti but depleted with rare earth
280 elements, and the atomic ratio of REE/Ti is significantly below the stoichiometric ratio of 1.0 for
281 high entropy titanate pyrochlore. The Ti-enriched passivation film display the amorphous feature,
282 implying that the formation of the surface passivation film might be dominated by a surface

283 alteration-reorganization mechanism instead of dissolution-reprecipitation mechanism [42]. The
284 preferential release of rare earth elements from weakly-bonded REE-O followed by a
285 reorganization of the surface alteration layer enriched with the strongly-bonded Ti, lead to the
286 formation of the passivation film. The surface alteration and reorganization mechanism has been
287 previously applied to explain the formation of passivation films in borosilicate glass and
288 titanate-based ceramics, *e.g.*, CaTiO_3 [43]. The formation of the Ti-enriched amorphous layer was
289 also reported for the U-bearing natural pyrochlore post long-term dissolution though the
290 formation mechanism of the amorphous film was not discussed [42].

291 **3.3 Chemical durability and semi-dynamic leaching of pyrochlore solid solutions**

292 The chemical durability of the as-sintered titanate pyrochlore solid solutions was evaluated
293 through semi-dynamic leaching tests in nitric acid ($\text{pH} = 1$, 90°C) for 14-days. The normalized
294 leaching rates corresponding to the A-site elements are shown in Figures 5 and 6. The short-term
295 elemental release rates can be calculated by assuming that the initial dissolution mechanism is
296 dominated by a constant elemental release rate within the first 24 hours. The long-term elemental
297 release rates can be further determined by fitting the elemental release curve with the Cote's
298 model (the fitting parameters summarized in Supplemental Table S1).

299 In general, no significant difference in the element release rates for lanthanide elements at
300 the A-site except Gd can be observed regardless their compositions. Interestingly, Gd has the
301 lowest release rate among the A-site elements from Sm to Yb for the multicomponent solid

302 solutions without uranium incorporation. This is in drastically different to the single component
303 Ti-pyrochlore as reported previously [27,28], in which the A-site elemental release rate increases
304 from Yb to La with larger ionic radii of lanthanides and reduced metal-oxygen (A-O) bonding
305 strength [27,43]. By forming multicomponent solid solutions, the leaching rates of large
306 ionic-sized Sm and Gd are greatly suppressed by the structural and chemical disorder
307 accompanying with the increase of the dissolution rate for smaller-sized lanthanides such as Dy,
308 Er and Yb. The similar leaching rates in the binary and multicomponent solid solutions among
309 different rare-earth elements observed here implies a similar bond environment for lanthanides in
310 the solid solutions. A similar phenomenon can also be observed for the uranium-incorporated
311 titanate pyrochlore solid solutions, and the rare earth elemental release rates are among the same
312 order of magnitude.

313 The elemental release rates in general for each major element decreases accordingly with the
314 increased numbers of component in the solid solution, suggesting improved chemical durability
315 of materials from the binary $(\text{Sm},\text{Yb})_2\text{Ti}_2\text{O}_7$ to high-entropy ceramics
316 $(\text{Sm},\text{Gd},\text{Dy},\text{Er},\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$. In addition, the normalized uranium release rate is significantly
317 reduced from binary to high-entropy uranium-incorporated titanate pyrochlore solid solutions, as
318 shown in Figure 7a, with the lowest normalized long-term uranium release rate around 10
319 $\text{mgN}\cdot\text{m}^{-2}\text{d}^{-1}$ in nitric acid solution at pH=1 for HEC(U). The greatly improved corrosion
320 resistance of the high entropy materials as evaluated by the release rate of uranium can be

321 attributed to the synergistic effect of strong chemical disorder and surface passivation resulting
322 from the surface alteration-reorganization.

323 **3.4. Dissolution mechanisms of the compositionally complex pyrochlore solid solutions**

324 The leaching mechanism changes from incongruent dissolution to congruent dissolution and
325 then to incongruent dissolution, which can be clearly evidenced by the change in the atomic ratio
326 (A/Ti) in leachate (shown in Figs. 7b). Specifically, the atomic ratio of $(Sm,Yb)_2Ti_2O_7$ is
327 well-below 1.0, suggesting a preferentially release of Ti than A-site element, consistent with our
328 previous observation for the single component pyrochlore with smaller-sized lanthanide (e.g.,
329 $Er_2Ti_2O_7$ or $Yb_2Ti_2O_7$). The preferential release of Ti might be attributed to the metal-bond
330 strength itself, and we hypothesize that the incorporation of the smaller-sized lanthanide, e.g., Yb
331 or Er into the pyrochlore structure, not only alters the bond strength of the A-O polyhedron but
332 also the bonding environment of the Ti-O octahedral. This results in the variation of their relative
333 bond strengths and thus resistance against bond-breaking with aqueous corrosion. However, how
334 the chemical disorder impact the bonding environment needs a thoroughly characterization of
335 their bond strength. From the A/Ti ratio shown in Fig. 7b, the incorporation of large-sized REE
336 elements into multicomponent solid solution leads to the preferential release of A-site elements,
337 with the atomic ratio of A/Ti gradually increasing and higher than 1.0 for the ternary and
338 quaternary compositions and then reduced for the high entropy ceramics, as shown in Figure 7b.
339 The change in the corrosion mechanisms from incongruent dissolution to congruent and then

340 back to incongruent dissolution is also consistent with our previous observation of the single
341 component rare earth titanate and zirconate pyrochlores [27,28]. These results suggest complex
342 dissolution behavior and corrosion mechanisms, and the underlying dominated mechanism will
343 be further discussed in the next section.

344 Similar to the single component Ti-pyrochlore previously studied [27,28], the short-term
345 and long-term dissolution kinetics of the as-sintered pyrochlore solid solution are obtained and
346 elaborated in Figures 7c-d for the multicomponent compositions with or without uranium
347 incorporation. Three different stages can be classified in terms of the dissolution kinetics based
348 on the transition stage theory (TST) [44]: (1) matrix dissolution, (2) transition stage and (3)
349 diffusion dominated long term dissolution. According to the TST theory, the crystals with defects
350 such as dislocations can dissolve rapidly [45], which can be attributed to either surface defects
351 and edge dislocations as a result of significantly high surface energy or chemical inhomogeneity,
352 resulting in rapid release from these energetically favorable sites [46,47]. After the first 3 hrs with
353 rapid initial matrix dissolution, a constant dissolution rate can be observed for the leaching up to
354 24 hrs, corresponding to the rate plateau for crystal dissolution far from equilibrium condition
355 without solution feedback for semi-dynamic leaching experiments. The rapid dissolution from the
356 matrix will likely accelerate the mechanism transition from initial dissolution to long-term
357 diffusion with the formation of the passivation film due to the dissolution-surface reorganization
358 or dissolution-reprecipitation mechanisms, as shown in Figure 7c-d. This can be supported by a

359 previous static leaching test conducted on $\text{Ca}(\text{U}_{0.5}\text{Ce}_{0.25}\text{Hf}_{0.25})_2\text{Ti}_2\text{O}_7$ by Xu et al. (2004), who
360 observed the formation of an amorphous Ti enriched layer [7]. The continuous formation of a
361 surface passivation film results in the gradual reduction of the A-site element release rate,
362 denoted by the transition stage from day 2 to day 6. The long-term dissolution up to 14-day
363 testing is dominated by the diffusion controlled stage through the dense passivation film when
364 fully covering on the sample surface.

365 **4. Impact of structural/material parameters on chemical durability**

366 The initial rate and long-term rate of the A-site elements, and their correlation with mixing
367 entropy and chemical disorder can be found in Figures 8c-d. However, no clear trends can be
368 observed in both short time and long term release rates of the A-site cations with increased
369 entropy from binary, ternary, quaternary to high-entropy compositions with or without uranium
370 incorporation. The highest elemental release rate of A-site cations for $(\text{Sm},\text{Yb},\text{Gd})_2\text{Ti}_2\text{O}_7$ and
371 $(\text{Sm},\text{Yb},\text{Gd},\text{U})_2\text{Ti}_2\text{O}_7$ cannot be explained simply by entropy variation. In our previous study,
372 mixing entropy itself cannot be used to explain the variation of thermal conductivity in
373 multicomponent Ti-pyrochlore solid solutions due to the strong lattice distortion, leading to the
374 variation in phonon scattering [26]. Similar strong atomic displacement and lattice distortion of
375 high-entropy rare-earth niobates were also revealed by Wright (2022) due to the increased size
376 mismatch [49]. Different from high-entropy alloys with a relatively simple crystalline structure,
377 the strong chemical disorder accompanying with the lattice distortion and variation in the oxygen

378 sublattice for multicomponent Ti-pyrochlore solid solution may significantly impact the chemical
379 durability instead of mixing entropy, which has not been reported previously.

380 A strong correlation in the dissolution rate of mono-component pyrochlore with ionic radius
381 of the A-site cation was reported, in which materials display improved corrosion resistance for
382 smaller-sized lanthanide pyrochlores, consistent with the increased strength in the RE-oxygen
383 bonds [48]. Compared to the single component Ti-pyrochlore, the single phase Ti-pyrchlore solid
384 solution has greater chemical disorder through strong atomic displacement and lattice distortion,
385 exhibiting complex mechanisms that govern the chemical durability than the mixing entropy.

386 Therefore, to further elucidate the dominant factors in governing the dissolution behavior of
387 multicomponent titanate solid solutions, the correlations in the short-term and long-term release
388 rates of the A-site cations with chemical disorder (size disorder and mass disorder) and mixing
389 entropy are identified and shown in Figure 8 and 9. A negative correlation with high fitting
390 coefficient between chemical disorder (size or mass) and A-site release rate can be observed,
391 except for the long-term release rate for mass disorder as shown in Figure 8a and 8b. This is
392 consistent with the previous research by Wright (2021), supporting the idea that chemical
393 disorder plays an important role in structure and chemical stability. Meantime, a moderately
394 negative correlation can be observed for mixing entropy, especially for the short-term A-site
395 release rate, which indicates the mixing entropy might not dominate the chemical durability of
396 the multi-component pyrochlore solid solution, as shown in Figure 8c [26]. Notably, the

397 correlation coefficient can be significantly reduced for both chemical disorder and mixing
398 entropy by including the $(\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$, as shown in Figure 9. The weak correlation by taking
399 consideration of $(\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$ might be attributed to the large atomic weight and Shannon ionic
400 radii of U^{4+} as compared to Yb^{3+} . Specifically, the shannon ionic radii for an 8-coordinated U^{4+}
401 are 1.14 Å, respectively), larger than that of Yb^{3+} (shannon ionic radii for an 8-coordinated and
402 6-coordinated Yb^{3+} are 1.125 Å) . As a result, the mixing entropy, size disorder and mass
403 disorder of the corresponding $(\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$ are 1.49, 0.26% and 5%, respectively
404 (Supplemental Table s2), which are lower than these of other multi-component pyrochlore solid
405 solutions, leading to the misfitting of the curves as demonstrated in the Figure 8 and 9. Thus, the
406 incorporation of a small amount of uranium can lead to a large size disorder and mass deviation
407 from that of the multicomponent solid solutions without uranium incorporation, which cannot be
408 simply reflected by mixing entropy effect. For instance, the calculated mass disorder for
409 $(\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$ and $(\text{Sm},\text{Gd},\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$ is determined as 5% and 23% separately; while the mass
410 disorder for the undoped $(\text{Sm},\text{Yb})_2\text{Ti}_2\text{O}_7$ and $(\text{Sm},\text{Gd},\text{Yb})_2\text{Ti}_2\text{O}_7$ are only 7.4% and 8.1%,
411 respectively. The incorporation of smaller-sized rare-earth elements (reduction of the cationic
412 ionic radius ratio) and tetravalent uranium increase the tendency of the structural transition from
413 more ordered pyrochlore towards defect fluorite, and likely alter the bonding environment of the
414 A-O and B-O polyhedrons, significantly impacting the chemical durability.
415 On the other hand, the short term and long term uranium release rate itself can be well

416 associated with either chemical disorder or mixing entropy. Similar with A-site release rate, the
417 $(\text{Yb},\text{U})_2\text{Ti}_2\text{O}_7$ seems to be an outlier in the fitting curves, especially for size disorder, which can
418 be attributed to the incorporation of much heavier and large ionic radii U into the lattice leading
419 to the significant distortion in the size, mass and entropy. However, the discrepancy of U release
420 rates between short-term and long-term was observed which further implies a potential
421 mechanism beyond lattice distortion exist. The fast A-site element dissolution and surface
422 alteration for binary and ternary U-incorporated Ti pyrochlore induce the simultaneous surface
423 reorganization and gradually growth of passivation film, delaying the uranium dissolution, by
424 acting as a protective layer as denoted in Figure 7d and Figure 10. Therefore, the dissolution
425 behavior of multi-component pyrochlore solid solution is not intrinsic, displaying a strong
426 microstructure dependence. The long-term U release rate in the high-entropy pyrochlore solid
427 solution as compared to the literature data can be further seen in Figure 10d. The high-entropy
428 pyrochlore shows significantly-low U release rate and much better chemical durability than
429 single component pyrochlore, zirconolite or iron phosphate glass even in aggressive acidic
430 solutions, further implying its potential application in the nuclear waste form [7,51,52,53]. It is of
431 worthy noting that different testing protocols have a significant impact on the uranium
432 dissolution rate. In this work, we performed an aggressive leaching test (ASTM C1280) to
433 accelerate the evaluation of the chemical durability of the sample coupons herein with nitric acid
434 acted as the dissolution agent as pyrochlore in generally is highly corrosion resistant. For

435 comparison, a PCT test was carried out to appraise the chemical durability of zirconia, SYNROC
436 or (Ca,U)HfTi₂O₇ with deionized water acted as an agent [7,51,52,53]. The significantly lower
437 uranium release rate for high-entropy pyrochlore in this study by accelerated corrosive testing as
438 compared to the conventional U-bearing waste form (Ti-pyrochlore, SYNROC, cubic zirconia or
439 pron phosphate glas) suggests the robust chemical durability of the high-entropy pyrochlore solid
440 solution, which facilitates its application in the nuclear waste geological repository (Figure 10d).

441 In summary, the chemical disorder, especially the size disorder, appears to be an effective
442 indicator for the prediction of chemical durability for multicomponent Ti-pyrochlore solid
443 solutions. The deviation of chemical durability indicates that mixing configurational entropy may
444 not be ideal as a descriptor in correlating the chemical durability of multicomponent oxide solid
445 solutions with or without uranium incorporation. The study herein implies the elemental
446 dissolution behavior and chemical durability can possibly be tailored by tuning its chemical
447 disorder with the ionic size difference, which has a strong impact on the lattice distortion. A
448 detailed understanding of how composition complexity associated with multiple cation
449 substitutions affecting the chemical disorder, and structural characteristics (particularly structural
450 transition from ordered pyrochlore to defect fluorite and the variation of oxygen vacancies at the
451 8a site) is essential to reveal the underlying mechanisms and key structural parameters governing
452 the corrosion behavior of multicomponent pyrochlore solid-solutions. Nevertheless, the chemical
453 and size disorder appears to be a robust indicator for representing the chemical durability

454 behavior of multicomponent Ti-pyrochlore solid solutions. This will be helpful for guiding
455 material design with desired thermal and chemical behavior for the nuclear waste forms with
456 comparable or even lower radionuclide release rates as compared to the state-of-art nuclear waste
457 forms, e.g., SYNROC, zirconia, iron phosphate, etc.

458 **5 Conclusions**

459 In this work, single-phase multicomponent Ti-pyrochlore solid solutions with and without
460 uranium incorporation were fabricated via solid-state reaction and sparking plasma sintering, and
461 their chemical durability was evaluated by accelerated semi-dynamic leaching testing. Both short
462 and long term dissolution rates were measured by solution chemistry analysis and the
463 microstructure evolution of pyrochlore solid solutions was characterized. A transition in
464 dissolution mechanisms can be observed from incongruent dissolution with preferential release of
465 A-site element to preferential release of Ti. Of particular interest, the incongruent dissolution
466 mechanism and the surface alteration-reorganization result in the formation of a Ti-enriched
467 passivation film in high entropy pyrochlore composition. The heterogeneity of the A-site rare
468 earth elemental (REE) release rates can be attributed to the strong chemical disorder and lattice
469 distortion for the multicomponent Ti pyrochlore solid solutions. Mixing entropy alone cannot
470 solely explain the heterogeneity of the chemical durability, and a strong positive correlation
471 between size disorder and A-site release rate can be observed. For uranium-incorporated
472 multicomponent solid solutions, the release rate of uranium gradually decreases with increased

473 entropy in the multicomponent compositions, and the tunable release rate of radionuclides
474 implies great potential in designing advanced waste form materials with optimized performance
475 for effective waste management by controlling chemical/structural disorder in compositionally
476 complex materials.

477 **Acknowledgment**

478 The synthesis of the multicomponent titanate pyrochlore solid solutions was supported by
479 NSF under the Award DMREF-2119423. The dissolution testing of the multicomponent
480 pyrochlore solid solution was supported as part of the Center for Performance and Design of
481 Nuclear Waste Forms and Containers (WastePD), an Energy Frontier Research Center (EFRC)
482 funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under
483 Award DE-SC0016584. The TEM characterization was supported by Laboratory Directed
484 Research and Development (LDRD) (21A1050-075FP) project of Idaho National Laboratory
485 (INL) which is operated by U.S. Department of Energy, Office of Nuclear Energy under DOE
486 Idaho Operations Office Contract DE-AC07-05ID14517.

487 **Data Availability**

488 The data will be available upon request. Please contact the corresponding author if you need
489 any further assistance.

490 **Reference**

- 491 1. Zhang K.B., He Z.S., Peng L., Zhang H.B., Lu X.R. Self-propagating synthesis of
492 $Y_{2-x}Nd_xTi_2O_7$ Pyrochlore and its aqueous durability as nuclear waste form. Scripta Materialia,
493 146(2018)300-303.
- 494 2. Jafar M., Sengupta P., Achary S.N., Tyagi A.K. Phase evolution and microstructural studies in
495 $CaZrTi_2O_7$ (zirconolite)- $Sm_2Ti_2O_7$ (Pyrochlore) system. Journal of European ceramic society, 34

496 (2014) 4373-4381.

497 3. Ringwood A.E., Oversby V.M., Kesson S.E., Sinclair W., Ware N., Hibberson W., Major A.

498 Immobilization of high-level nuclear reactor wastes in SYNROC: A current appraisal. Nuclear

499 and chemical waste management. 2(1981)287-305.

500 4. Yudintsev R.S.V., Stefanovsky S.V., Nikonov B.S. A Pyrochlore based matrix for isolation of

501 the REE-Actinide fraction of wastes from spent nuclear fuel reprocessing. Geochemistry, 454

502 (2014) 211-215.

503 5. Yang J.W., Tang B.L., Luo S.G. Pyrochlore-rich Synroc as a host for immobilization of

504 actinides. Mat. Res. Soc. Symp. Proc., 663 (2001) 1-8.

505 6. Kong L.G., Zhang Y.J., Karatchevtseva I. Preparation of $Y_2Ti_2O_7$ pyrochlore glass-ceramics as

506 potential waste forms for actinides: the effects of processing conditions. Journal of Nuclear

507 Materials, 494 (2017) 29-36.

508 7. Xu H.F., Wang Y.F., Zhao P.H., Bourcier W.L., Konynenburg R.V., Shaw H.F. Investigation

509 of pyrochlore-based U-Bearing ceramic nuclear waste: uranium leaching test and TEM

510 observation. Environmental Science and Technology, 38 (2004) 1480-1486.

511 8. Farmer J.M., Boatner L.A., Chakoumakos B.C., et al. Structural and crystal-chemical

512 properties of rare-earth titanate pyrochlores. Journal of alloys and compounds, 605 (2014) 63-70.

513 9. Shu X.Y., Qing Q., Li B.S., et al. Rapid immobilization of complex simulated radionuclides by

514 as-prepared $Gd_2Zr_2O_7$ ceramics without structural design. Journal of nuclear materials, 526 (2019)

515 1-8.

516 10. Zhang K.B., Wen G.J., Zhang H.B., et al. Self-propagating high-temperature synthesis of

517 $Y_2Ti_2O_7$ Pyrochlore and its aqueous durability. Journal of nuclear materials, 465 (2015) 1-5.

518 11. Hippel F.V., Ewing R.C., Garwin R., Macfarlane A. Time to bury plutonium. Nature,

519 485(2012)167-168.

520 12. Wang J., Wang J.X., Zhang Y.B., et al. Flux synthesis and chemical stability of Nd and Ce
521 co-doped $(\text{Gd}_{1-x}\text{Nd}_x)_2(\text{Zr}_{1-x}\text{Ce}_x)_2\text{O}_7$ ($0 < x < 1$) pyrochlore ceramics for nuclear waste forms.
522 Ceramic International, 43 (2017) 17064-17070.

523 13. Gild J., Samiee M., Braun J.F., Harrington T., Vega H., Hopkins P.E., Vecchio K., Luo J.
524 High entropy fluorite oxides. J. Eur. Ceram. Soc., 38(2018)3578-3584

525 14. Wright A.J., Wang Q.Y., Ko S.T., Chung K.M., Chen R.K., Luo J. Size disorder as a
526 descriptor for predicting reduced thermal conductivity in medium and high entropy pyrochlore
527 oxides. Scr. Mater., 181 (2020)76-81

528 15. Wright A.J., Luo J. A step forward from high entropy ceramics to compositionally complex
529 ceramics: a new perspective. J. Mater. Sci., 274 (2020)1-31

530 16. Peng L., Zhang K.B., He Z.S., Yin D., Xue J.L., Xu C., Zhang H.B. Self-propagating high
531 temperature synthesis of ZrO_2 incorporated $\text{Gd}_2\text{Ti}_2\text{O}_7$ pyrochlore. Journal of advanced ceramics,
532 7(2018)41-49.

533 17. F. Li, L. Zhou, J.X. Liu, Y.C. Liang, G.J. Zhang. High entropy pyrochlores with low thermal
534 conductivity for thermal barrier coating materials. J. Adv. Ceram., 8 (2019), pp. 576-582

535 18. Lian J., Helena K.B., Kennedy B.J., et al. effect of structure and thermodynamic stability on
536 the response of lanthanide stannate pyrochlores to ion beam irradiation. Journal of Physical
537 Chemistry B., 110 (2006) 2343-2350.

538 19. Shlyakhtina A.V., Sokolov A.E., Ulyanov V.A., et al. neutron diffraction investigation of the
539 evolution of the crystal structure of oxygen conducting solid solutions $(\text{Yb}_{1-x}\text{Ca}_x)_2\text{Ti}_2\text{O}_7$ ($x=0,$
540 $0.05, 0.1$). Structure of inorganic compounds, 54 (2009) 25-30.

541 20. Wang J., Wang J.X., Zhang Y.B., et al. Flux synthesis and chemical stability of Nd and Ce
542 co-doped $(\text{Gd}_{1-x}\text{Nd}_x)_2(\text{Zr}_{1-x}\text{Ce}_x)_2\text{O}_7$ ($0 < x < 1$) pyrochlore ceramics for nuclear waste forms.
543 Ceramic International, 43 (2017) 17064-17070.

544 21. Ewing R.C., Weber W.J., Lian J. Nuclear waste disposal-pyrochlore ($\text{A}_2\text{B}_2\text{O}_7$): nuclear waste

545 form for the immobilization of plutonium and “minor” actinides. *Journal of applied physics*, 95
546 (2004) 5949-5971.

547 22. Patwe S.J., Katari V., Salke N.P., et al. Structural and electrical properties of layered
548 perovskite type $\text{Pr}_2\text{Ti}_2\text{O}_7$: experimental and theoretical investigations. *Journal of materials*
549 *chemistry C*, 3 (2015) 4570-4584.

550 23. Liu D.B., Shi B.L., Geng L.Y. High-entropy rare-earth zirconate ceramics with low thermal
551 conductivity for advanced thermal-barrier coatings. *Journal of Advanced ceramic society*,
552 11(2022)961-973.

553 24. Chen Y.Y., Qi J.L., Zhang M.H. Pyrochlore-based high-entropy ceramics for capacitive
554 energy storage. *Journal of Advanced ceramics*, 11(2022)7.

555 25. Wang Z.J., Zhou G.H., Jiang D.Y., Wang S.W. Recent development of $\text{A}_2\text{B}_2\text{O}_7$ system
556 transparent ceramics. *Journal of Advanced Ceramics*, 7(2018)289-306.

557 26. Yang K., Bryce K., Zhu W.G., Zhao D., Lian J. Multicomponent pyrochlore solid solutions
558 with uranium incorporation – A new perspective of materials design for nuclear applications.
559 *Journal of the European Ceramic Society*, 41(2021)2870-2882.

560 27. Yang K., Lei P.H., Yao T.K., Gong B.W., Wang Y.C., Li M.X., Lian J. A systematic study of
561 lanthanide titanates ($\text{A}_2\text{Ti}_2\text{O}_7$) chemical durability: corrosion mechanisms and control parameters.
562 *Corrosion Science*, 185(2021)109394.

563 28. Yang K., Wang Y.C., Lei P.H., Zhao D., Lian J. Chemical durability and surface alteration of
564 lanthanide zirconates ($\text{A}_2\text{Zr}_2\text{O}_7$: A = La-Yb). *Journal of the European Ceramic Society*,
565 41(2021)6018-6028.

566 29. BraunJ.L., Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.P. M
567 aria, P.E. Hopkins. Charge-induced disorder controls the thermal conductivity of
568 entropy-stabilized oxides. *Adv. Mater.*, 30 (2018)1805004.

569 30. Yu T.H., Tuller H.L. Electrical Conduction and Disorder in the Pyrochlore System
570 ($\text{Gd}_1\text{x}\text{Cax})_2\text{Sn}_2\text{O}_7$. *J. Electroceram.*, 2(1998)49–55 .

571 31. Yu T.H., Tuller H.L. Ionic Conduction and Disorder in the Gd₂Sn₂O₇ pyrochlore System.
572 Solid State Ionics, 86–88 (part 1) (1996)177–182 .

573 32. Chen Y.H., Kanan M.W. Tin Oxide Dependence of the CO₂ Reduction Efficiency on Tin
574 Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts. Journal of American
575 chemistry society, 134(2012)1986-1989.

576 33. Park S., Hwang H.J., Moon J. Catalytic Combustion of Methane Over Rare Earth Stannate
577 Pyrochlore. Catal. Lett., 87(2003)219–223 .

578 34. Moon J., Awano M., Maeda K, Hydrothermal Synthesis and Formation Mechanisms of
579 Lanthanum Tin Pyrochlore Oxide. J. Am. Ceram. Soc., 84 (2001)2531–2536 .

580 35. Mao Y., Li G., Xu W., Feng S, Hydrothermal Synthesis and Characterization of
581 Nanocrystalline Pyrochlore Oxides M₂Sn₂O₇ (M = La, Bi, Gd or Y). J. Mater. Chem., 10
582 (2000)479–482.

583 36. ASTM-C1308-08, accelerated leach test for diffusive releases from solidified waste and a
584 computer program to model diffusive, fractional leaching from cylindrical waste forms, ASTM
585 International, west Conshohocken, PA, 2009.

586 37. Cote P.L., Constable T.W., Moreira A.J.N. An evaluation of cement-based waste forms using
587 the results of approximately two years of dynamic leaching. Nuclear and Chemical Waste
588 Management, 7(1987)129-139.

589 38. Wan C.L., Qu Z.X., Du A.B., Pan W. (2011). Order-disorder transition and unconventional
590 thermal conductivities of the (Sm_{1-x},Y_x)₂Zr₂O₇ series. Journal of American Ceramic Society,
591 94(2011)592-596.

592 39. Liu K., Zhang K.B., Deng T., Zheng J.J., Luo B.Z., Zhang H.B. Grain size effects on the
593 aqueous durability of Gd₂Zr₂O₇ ceramics as high-level radioactive wastes matrix and its
594 leaching mechanism. Ceramic International, 47(2021)13363-13373.

595 40. Du M.R., Liu S.X., Ge Y.F., Li Z.P., Wei T., Yang X., Dong J.J. Preparation and effect of
596 grain size on the thermal stability, phase transition, mechanical property, and photocatalytic

597 property of pyrochlore $(La_{0.2}Nd_{0.2}Sm_{0.2}Gd_{0.2}Y_{0.2})_2Zr_2O_7$ high-entropy oxide. Ceramic
598 International, 12(2022)12434-12442.

599 41. Han Y.J., Yu R.W., Liu H.H., Chu Y.H. Synthesis of the superfine high-entropy zirconate
600 nanopowders by polymerized complex method. Journal of Advanced Ceramics,
601 11(2022)136-144.

602 42. Wang Y.F., Yang F., Xiao P. Role and determining factor of substitutional defects on thermal
603 conductivity: A study of $La_2(Zr_{1-x}B_x)_2O_7$ ($B=Hf,Ce$, $0 \leq x \leq 0.5$) pyrochlore solid solutions. Acta
604 Materialia, 68(2014)106-115.

605 43. Zhang Z.M., Blackford M.G., Lumpkin G.R., Smith K.L., Vance E.R. Aqueous dissolution of
606 perovskite ($CaTiO_3$): Effect of surface damage and Ca in the leachant. Journal of Materials
607 Research, 20(2005)2462-2473.

608 44. Gong B.W., Yang K., Lian J., Wang J.W. Machine Learning-enabled Prediction of Chemical
609 Durability of $A_2B_2O_7$ Pyrochlore and Fluorite. Computational Materials Science,
610 200(2021)110820.

611 45. Lasaga A., Luttge A. Variation of crystal dissolution rate based on a dissolution step wave
612 model. Science, 291 (2001) 2400-2404.

613 46. Finkelstein S., Brandt F., Rozov K., et al. Dissolution of ZrO_2 based pyrochlores in the acid
614 pH range: a macroscopic and electron microscopy study. Applied Geochemistry, 49(2014) 31-41.

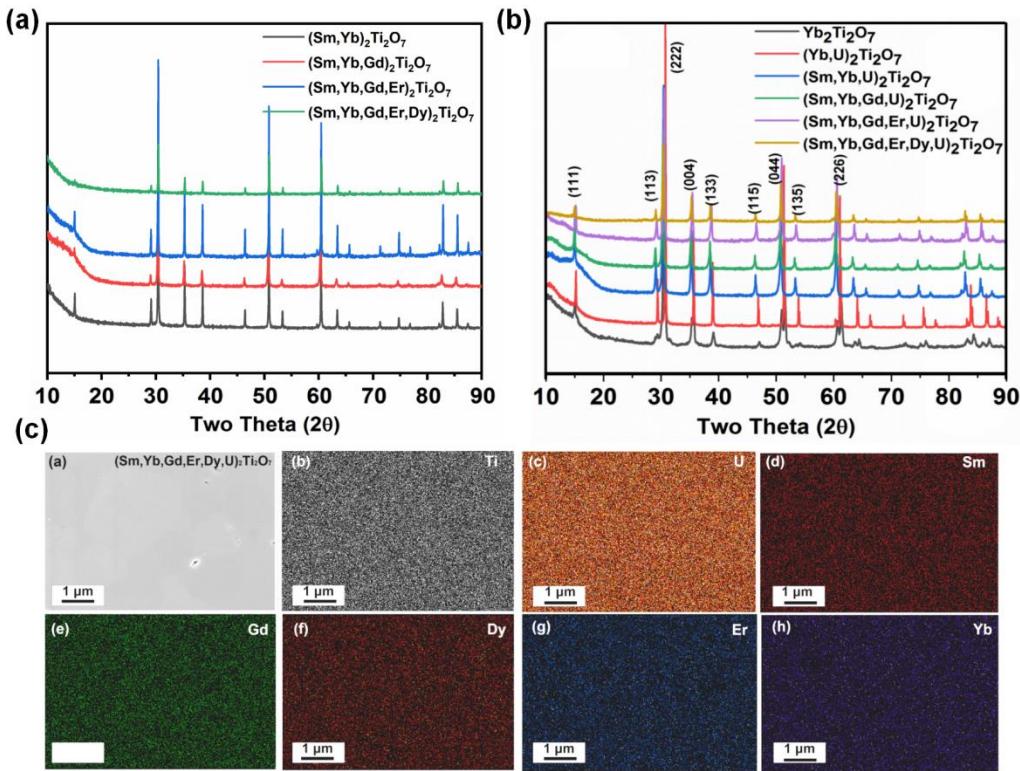
615 47. Zhang Y. Hart K.P., Blackford M.G., et al. durability of pyrochlore-rich titanate ceramics
616 designed for immobilization of surplus plutonium. Mat. Res. Soc. Symp. Proc. 663 (2001) 1-8.

617 48. Leturcq G., McGlinn P.J., Barbe C., et al. Aqueous alteration of nearly pure Nd-doped
618 zirconolite ($Ca_{0.8}Nd_{0.2}ZrTi_{1.8}Al_{0.2}O_7$), a passivating layer control. Applied Geochemistry,
619 20(2005) 899-906.

620 49. Popov V.V., Menushenkov A.P., Ivanov A.A., et al. A XAFS investigation of amorphous to
621 crystalline and fluorite to pyrochlore phase transitions in $Ln_2M_2O_7$ ($Ln=Gd, Tb, Dy$; $M=Ti, Zr$).
622 Radiation physics and chemistry, 175(2020)1-5.

623 50. Wright A.J., Wang Q.Y., Yeh Y.T., Zhang D.W., Everett M., Luo J. Short-range order and
624 origin of the low thermal conductivity in compositionally complex rare earth niobates and
625 tantalates. *Acta Materialia*, 235(2022)118056.

626 51. Yang J.W., Tang B.L., Luo S.G. Pyrochlore-Rich Synroc as a Host for Immobilization of
627 Actinides. *MRS Proceeding*, 663(2000)333.

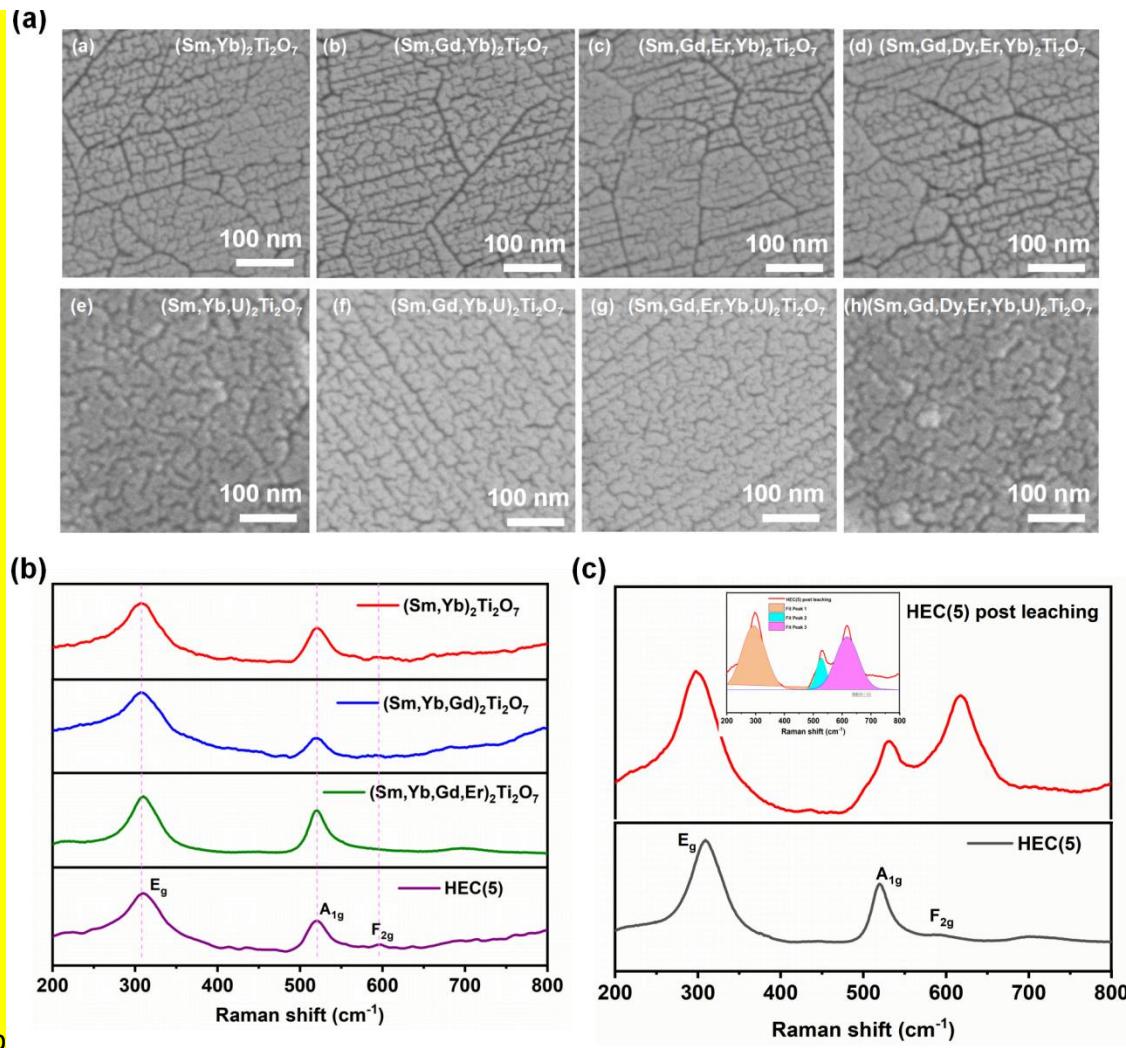

628 52. Burakov B., Anderson E., Yagovkina M. Behavior of Pu-doped ceramics based on cubic
629 zirconia and pyrochlore under radiation damage. *Journal of nuclear science and technology*,
630 39(2002)733-736.

631 53. Danilov S.S., Vinokurov S.E., Stefanovsky S.V., Myasoedov B.F. Hydrolytic Durability of
632 Uranium-Containing Sodium Aluminum (Iron) Phosphate Glasses. *Radiochemistry*,
633 59(2017)226-229.

634

635

636

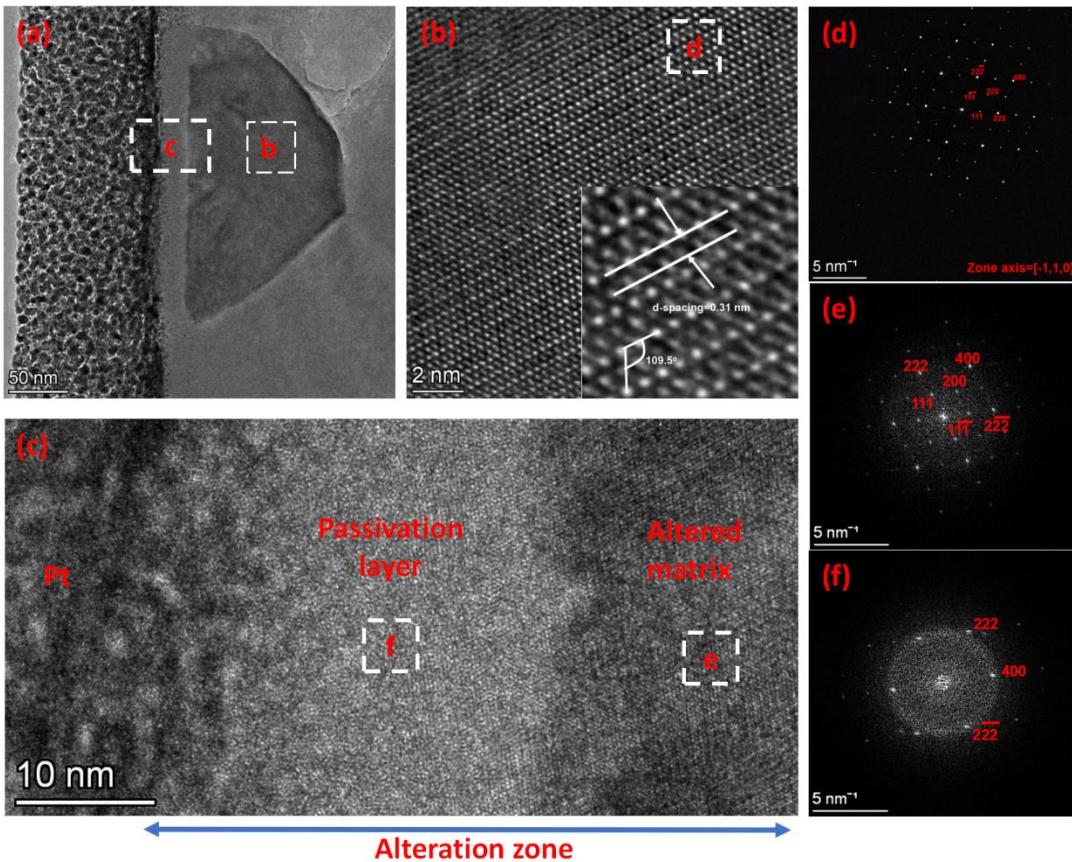

637

638 **Fig. 1** (a,b) XRD patterns of the as-fabricated titanate pyrochlore solid solutions with and without
 639 uranium incorporation; and (c) Surface microstructure and elemental mappings of the
 640 $(\text{Sm},\text{Yb},\text{Gd},\text{Er},\text{Dy},\text{U})_2\text{Ti}_2\text{O}_7$ (c).

641

642

643


644

p

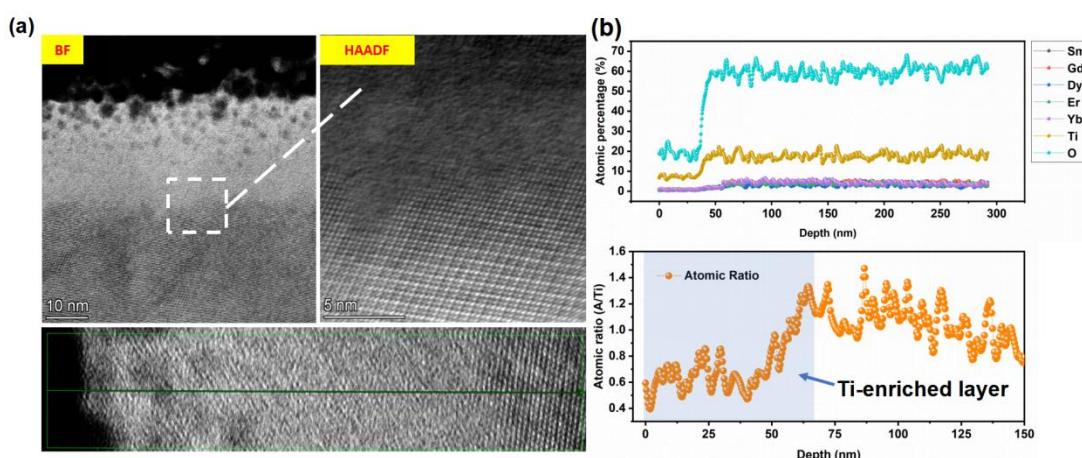
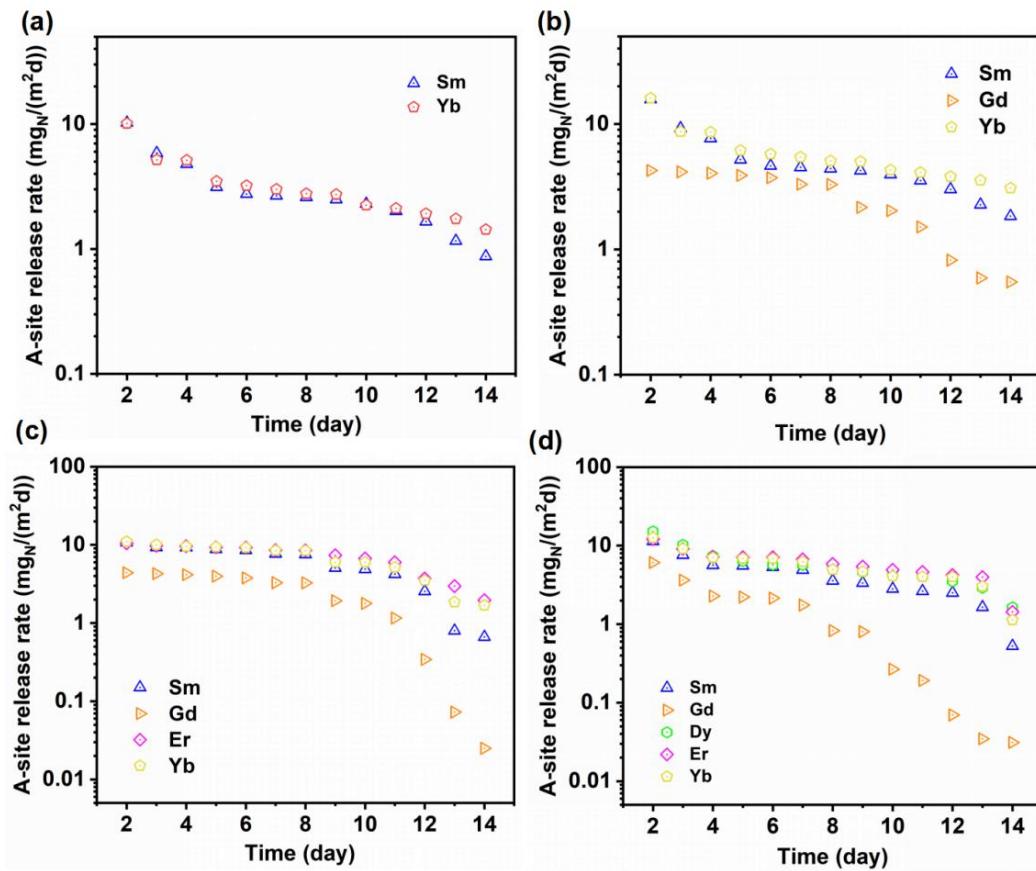
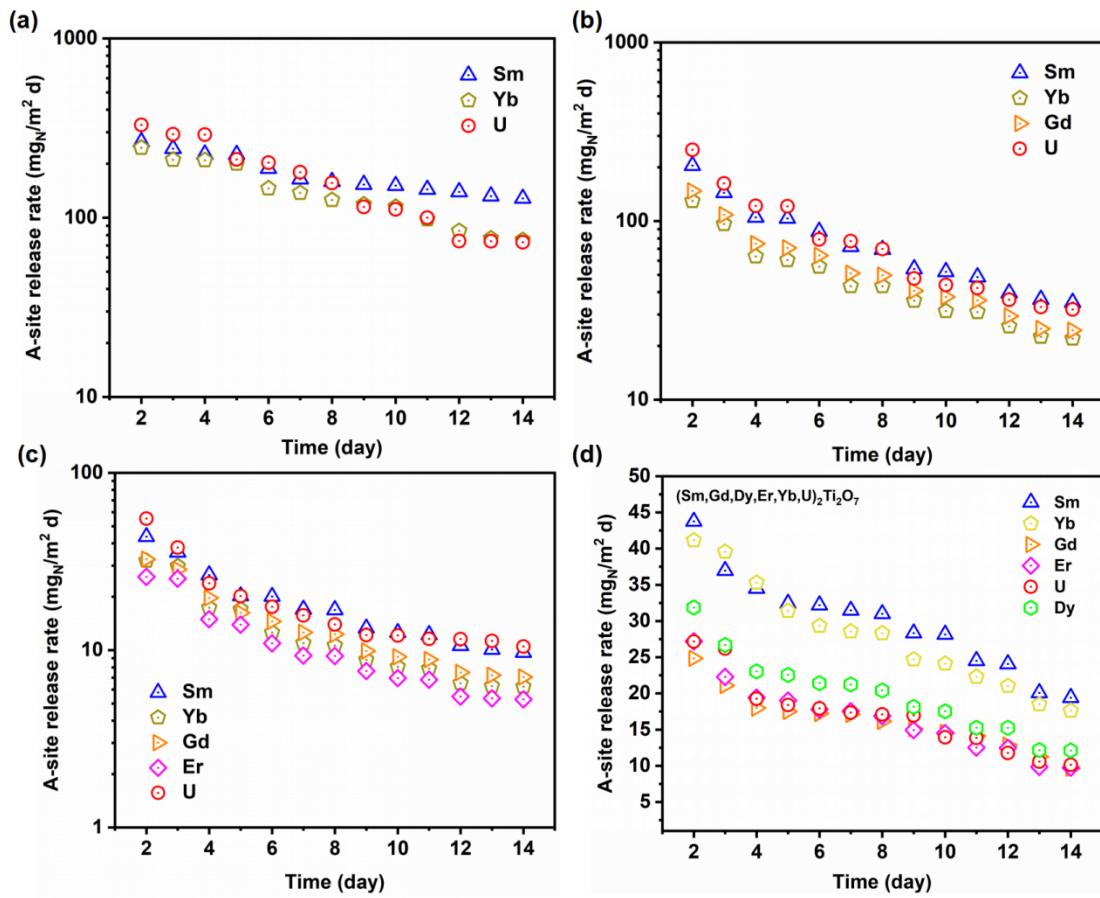

645

Fig. 2 (a) Surface microstructure of the multicomponent titanate pyrochlore solid solutions post 646 14-days' leaching test in nitric acid aqueous solution (pH = 1, 90 °C); (b) Corresponding Raman 647 spectra of the Ti-pyrochlore solid solutions; (c) Raman shift of the high-entropy Ti-pyrochlore 648 before and post 14-days' leaching test.

649



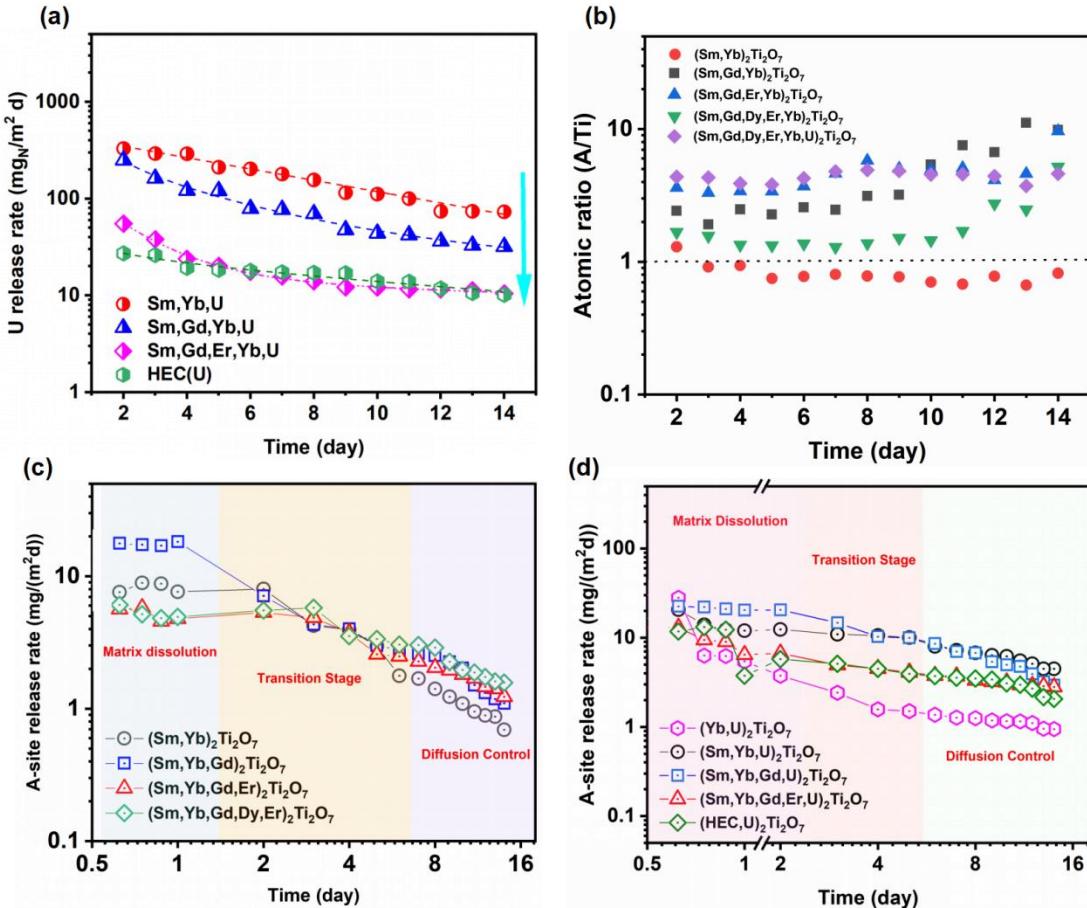
650
651 **Fig. 3** STEM analysis of the surface alteration layer of the high-entropy Ti-pyrochlore post
652 14-days' leaching test: (a) a bright-field image across the top alteration layer; (b) a
653 high-resolution STEM image of the crystalline grains underneath the top alteration layer;
654 (c) a high-resolution STEM image of the top alteration layer; (d) a selected area electron diffraction
655 pattern (SAED) of the crystalline grain underneath the top alteration layer; and (e-f)
656 corresponding FFT patterns of the altered matrix and the alteration layer.
657



658
659 **Fig. 4** STEM-EDS analysis of the top alteration layer of high-entropy Ti-pyrochlore: (a) STEM

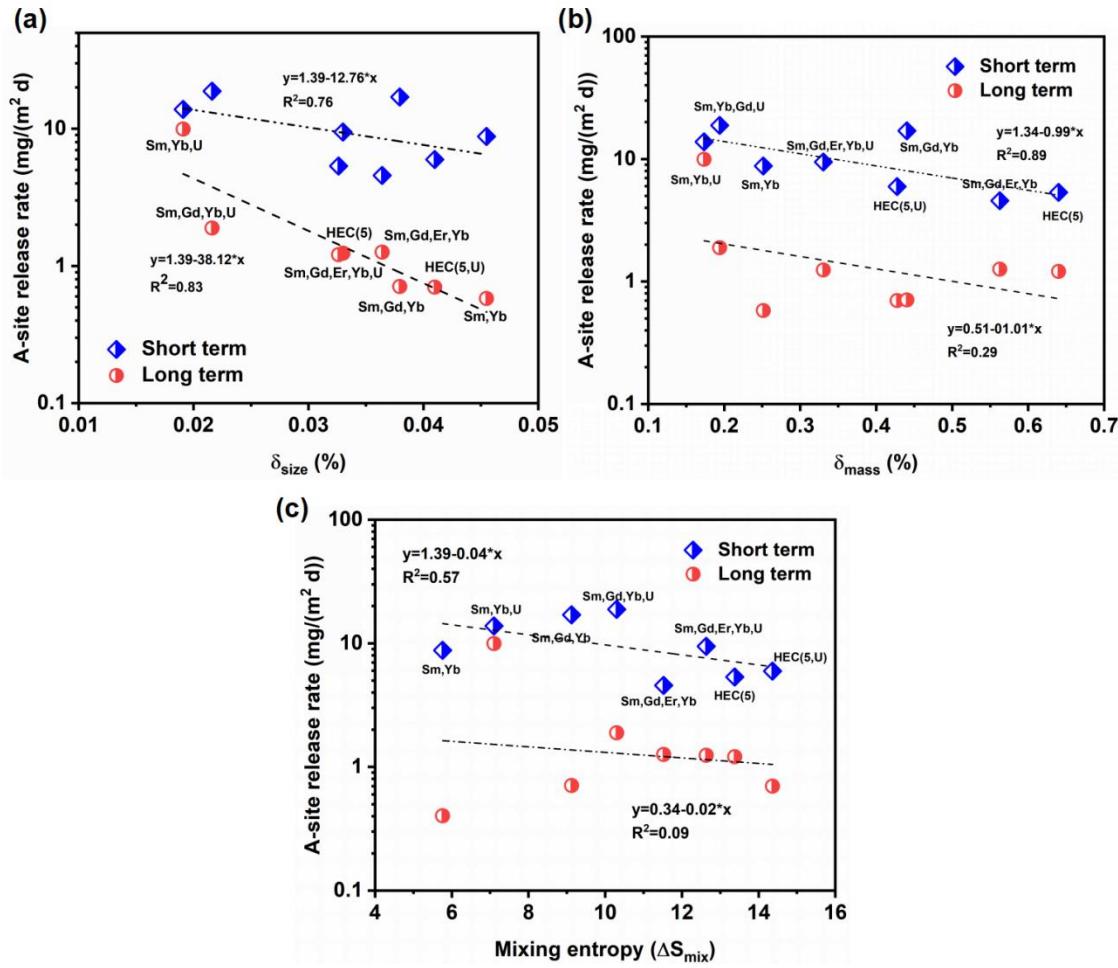
660 analysis of the top alteration layer; and (b) corresponding elemental line scanning across the
661 alteration layer.
662

663
664 **Fig. 5** Normalized elemental release rates of A-site cations of the Ti-pyrochlore solid solutions
665 without uranium incorporation for binary, ternary, quaternary and high entropy solid solution
666 (a-d).
667



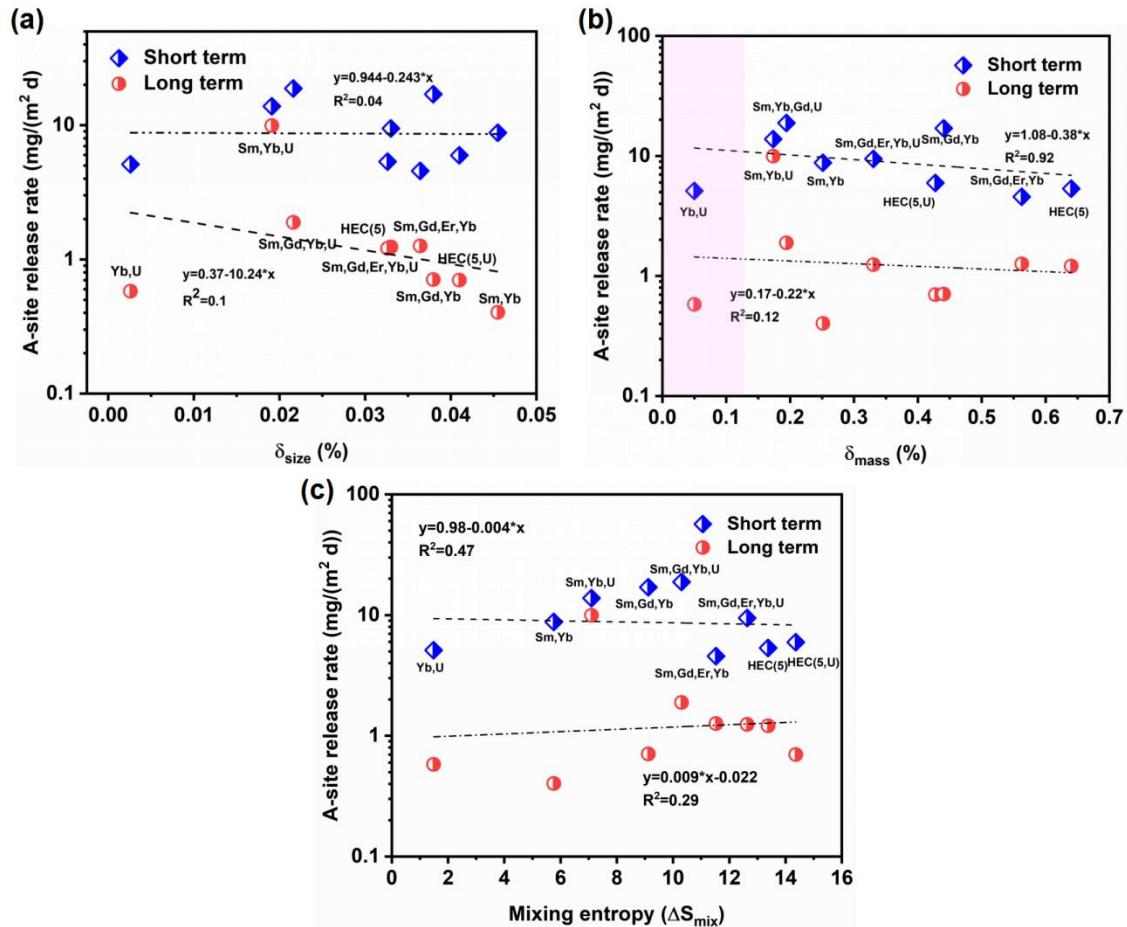
668

669 **Fig. 6** Normalized elemental release rates of A-site cations in the uranium-incorporated
 670 Ti-pyrochlore solid solutions (a-d).

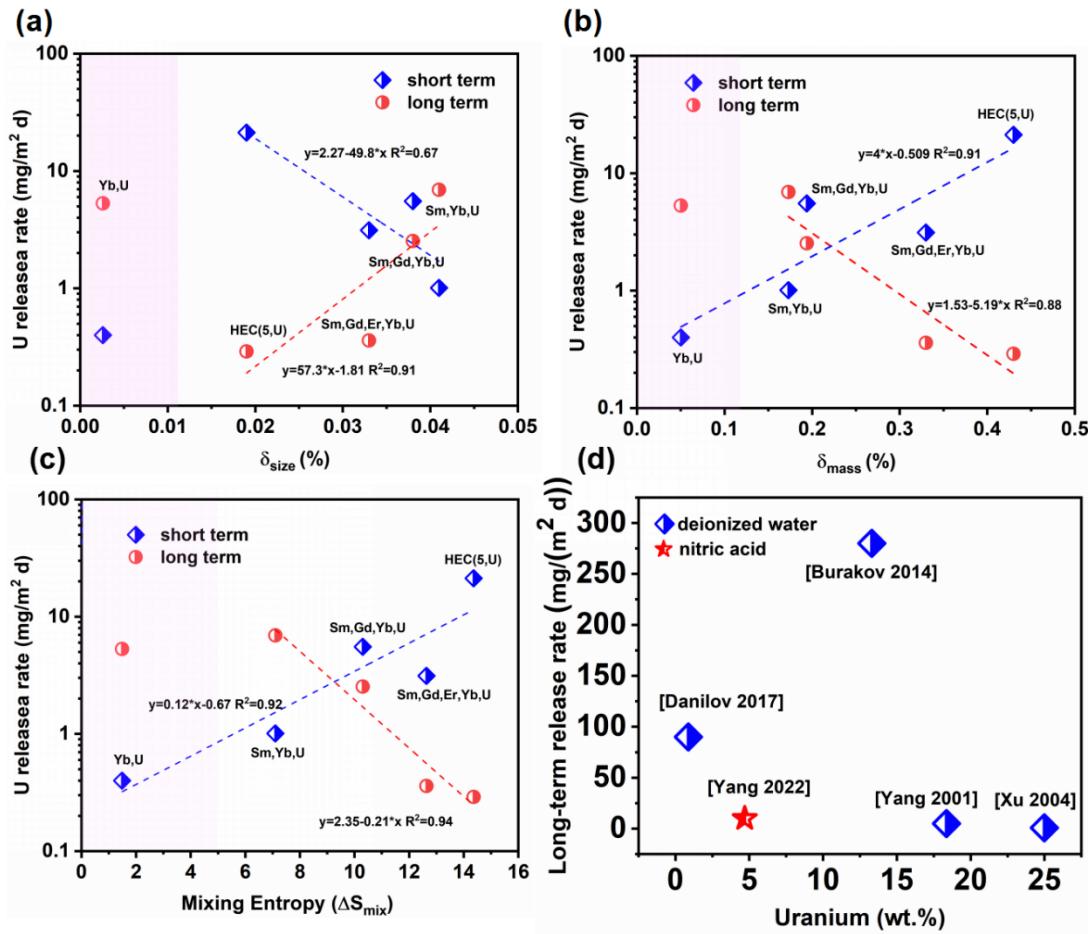

671

672

673


674 **Fig. 7.** Sum of the dissolution rates of the A-site cations for Ti-pyrochlore solid solution
 675 (A₂Ti₂O₇) for both short-term (1-day) and long-term (up to 14-days): (a) Normalized release rates
 676 of uranium from multicomponent titanate pyrochlore solid solutions; (b) Atomic ratios (A/Ti) of
 677 the A-site cation vs. Ti; and (c) multicomponent solid solutions without uranium; (d)
 678 multicomponent solid solutions with uranium;
 679

680


681 **Fig. 8** Sum of the initial rates and long term rates of the A-site cations of multicomponent titanate
 682 pyrochlore solid solutions upon leaching testing in a nitric acid aqueous solution ($\text{pH} = 1$, 90°C),
 683 and their correlations vs. size disorder (a), mass disorder (b), and mixing entropy (c).

684

685
686
687
688
689

Fig. 9 Sum of the initial rates and long term rates of the A-site cations of multicomponent titanate pyrochlore solid solutions upon leaching testing in a nitric acid aqueous solution ($\text{pH} = 1$, 90°C), and their correlations *vs.* size disorder (a), mass disorder (b), and mixing entropy (c).

690

691 **Fig. 10** Sum of the initial rates and long term rates of the uranium in multicomponent titanate
 692 pyrochlore solid solutions upon leaching testing in nitric acid aqueous solution (pH = 1, 90 °C),
 693 and their correlations vs. size disorder (a), mass disorder (b), mixing entropy (c) and comparison
 694 with literature study.

695

696 **Table 1 Short term and long term A-site elemental release rates of multicomponent**
 697 **pyrochlore solid solutions**

	Sm,Y b	Sm,Yb,G d	Sm,Yb,Gd, Er	HEC	Yb, U	Sm,Yb, U	Sm,Yb,Gd ,U	Sm,Yb,Gd,E r,U	HEC, U
short term	8.8	17.0	4.6	5.4	5.1	13.8	18.8	9.5	6.0
long term	0.4	0.7	1.3	1.2	0.6	9.9	1.9	1.2	0.7

698

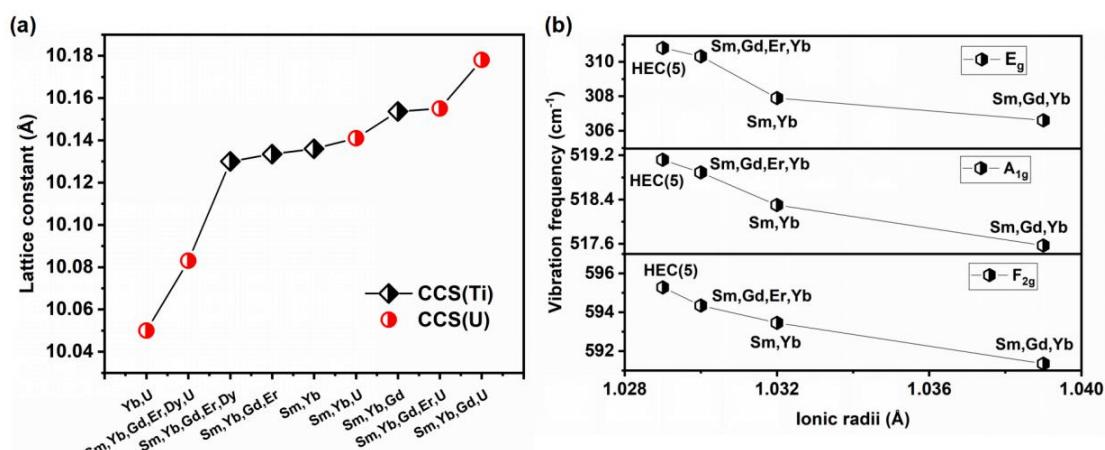
699

700

701

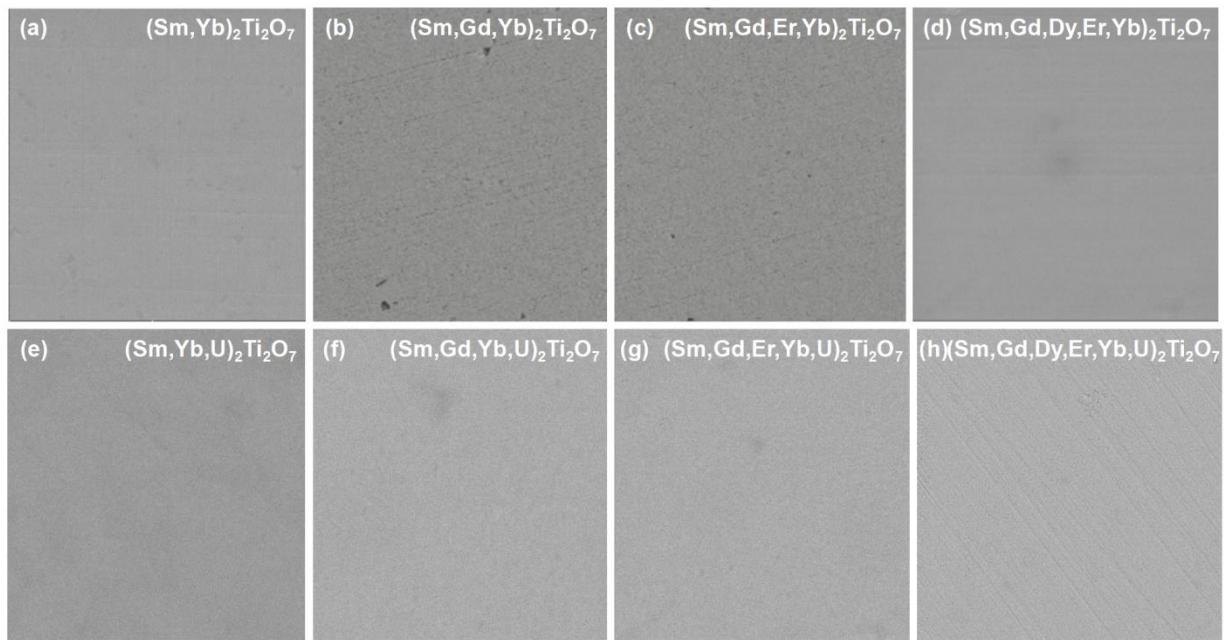
702 **Supplemental Information:**703 **Table S1 Cote's model fitting parameters of multicomponent pyrochlore solid solutions**

	Sm,Yb	Sm,Yb,Gd	Sm,Yb,Gd,Er	HEC	Yb,U	Sm,Yb,U	Sm,Yb,Gd,U	Sm,Yb,Gd,Er,U	HEC,U
k₁	0.4	0.7	1.3	1.2	0.6	9.9	1.9	1.2	0.7
k₂	5.5	0.0	0	0	6.5	2.6	1.3	5.3	0
k₃	91.8	55.7	26.2	32.8	113.2	84.5	74.5	8.7E+01	1.2E+02
k₄	9.5	0.2	0.3	0.2	14.4	8.4E+00	10.5	1.2E+01	1.0E+02
R²	1.0	1.0	1.0	1.0	1.0	8.9E-01	9.1E-01	9.5E-01	9.8E-01


704

705

706 **Table S2 Chemical disorder and mixing entropy of multicomponent pyrochlore solid
707 solutions**


No.	size disorder	mass disorder	mixing entropy
(Sm,Yb)2Ti2O7	0.046	0.252	5.763
(Sm,Gd,Yb)2Ti2O7	0.038	0.441	9.125
(Sm,Gd,Er,Yb)2Ti2O7	0.036	0.563	11.526
(Sm,Gd,Dy,Er,Yb)2Ti2O7	0.033	0.640	13.381
(Yb,U)2Ti2O7	0.003	0.050	1.491
(Sm,Yb,U)2Ti2O7	0.019	0.173	7.103
(Sm,Gd,Yb,U)2Ti2O7	0.022	0.194	10.301
(Sm,Gd,Er,Yb,U)2Ti2O7	0.033	0.331	12.636
(Sm,Gd,Dy,Er,Yb,U)2Ti2O7	0.041	0.428	14.362

708

709

710 **Fig.S1** Lattice constants derived from the corresponding XRD profiles (a); ionic radii versus
711 Raman shift vibration frequency (b).
712

713

714 **Fig.S2** Surface microstructure of the multicomponent titanate pyrochlore solid solutions before
715 leaching tests.

716

717

718

719