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Abstract

We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density,
velocity, and pressure fields from a pair of reference and distorted images. Our method uses a physics-informed neural
network (PINN) to produce flow fields that simultaneously satisfy the measurement data and governing equations. For the
high-speed, approximately inviscid flows of interest in this work, we specify a physics loss based on the Euler and irrota-
tionality equations. BOS is a quantitative fluid visualization technique that is commonly used to characterize compressible
flow. Images of a background pattern, positioned behind the measurement volume, are processed with computer vision and
tomography algorithms to determine the density field. Crucially, BOS features a series of ill-posed inverse problems that
require supplemental information (i.e., in addition to the images) to accurately reconstruct the flow. Current methods for BOS
rely upon interpolation of the images or a penalty term to promote a globally- or piecewise-smooth solution. However, these
algorithms are invariably incompatible with the flow physics, leading to errors in the density field. Physics-informed BOS
directly reconstructs all the flow fields using a PINN that includes the BOS measurement model and governing equations.
This procedure improves the accuracy of density estimates and also yields velocity and pressure data, which were not previ-
ously available. We demonstrate our approach by reconstructing synthetic data that corresponds to analytical and numerical
phantoms as well as a single pair of experimental measurements. Our physics-informed reconstructions are significantly
more accurate than conventional BOS estimates. Furthermore, to the best of our knowledge, this work represents the first
use of a PINN to reconstruct a supersonic flow from experimental data of any kind.

1 Introduction

Supersonic and hypersonic flows feature complex phenom-
ena such as shock waves, shock wave—boundary layer inter-
actions, and eddy shocklets, which must be considered in
the design of next-generation aircraft and re-entry vehicles,
projectiles, and combustion processes (Dolvin 2008). Com-
putational fluid dynamics (CFD) simulations play a vital
role in engineering, but many vehicles are being designed
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to operate outside the parameter space in which engineer-
ing experience or CFD provide reliable means of analysis.
Therefore, in order to support the design process, experi-
mental measurements are needed to characterize and under-
stand high-speed flow phenomena as well as to develop and
validate numerical models.

Background-oriented schlieren (BOS) is a non-intru-
sive, quantitative flow visualization tool that can be
applied to high-speed systems (Raffel 2015). BOS has
been widely used to characterize shock-laden flows (Ven-
katakrishnan and Meier 2004; Sommersel et al. 2008;
Yamagishi et al. 2021; Gomez et al. 2022), visualize com-
bustion processes (Grauer et al. 2018; Liu et al. 2022),
and estimate velocity fields (Tokgoz et al. 2012), amongst
other applications (Raffel 2015). The technique provides
line-of-sight (LoS) integrated information about the flow
via the apparent motion of a background pattern. Images
of the pattern are distorted by refraction through the
fluid, which is caused by density gradients along lines-of-
sight from a background plate to the camera. Differences
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Fig. 1 Graphical overview of
quantitative BOS, in which
image data is converted to a
density field through deflec-
tion sensing, tomography, and
a Poisson solver. The order of
tomographic reconstruction
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between a reference image, recorded before introducing
the flow, and a distorted image from the experiment can
thus be processed with a computer vision algorithm to
render a “synthetic schlieren” image (Dalziel et al. 2000),
which may reveal key fluid structures. Further, BOS data
can be tomographically reconstructed to obtain a quantita-
tive estimate of the density field. Unfortunately, BOS fea-
tures a series of ill-posed inverse problems that admit an
infinite set of solutions. Supplemental (or “prior”) infor-
mation is therefore needed to generate a unique, physi-
cal solution. Adding prior information to solve an inverse
problem is termed “regularization,” and the aim of this
work is to establish a physics-based approach to regulari-
zation in BOS.

There are three inverse problems in BOS, depicted sche-
matically in Fig. 1, which are typically arranged in the fol-
lowing sequence. First, the image pair is converted to a set
of deflection vectors through a procedure called deflection
sensing. Here, a “deflection” is the 2D displacement of a
point from the reference image to the same point in the dis-
torted image. Deflections are usually resolved at the centroid
of each pixel or interrogation window, although the deflec-
tion field is continuous, in principle. Second, individual
components of the deflections are tomographically recon-
structed, which yields gradients of the refractive index field.
BOS is inherently sensitive to the refractive index field, but
the density field is directly accessible for a fluid of constant
composition via the Gladstone—Dale relation. Third, these
reconstructions are incorporated into a Poisson equation that
must be solved to recover the refractive index or density
field, per se. Steps two and three can be reversed (Rajendran
et al. 2020) or combined (Nicolas et al. 2016), and it is pos-
sible to conduct all three steps at once via “unified BOS”
(Grauer and Steinberg 2020). Each step that is performed
in isolation requires regularization, and it is advisable to
combine steps, where possible, to reduce the reliance on
prior information.
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Inverse procedure

Deflection sensing is typically conducted using a cross-
correlation (Venkatakrishnan and Meier 2004; Castner 2012;
Geerts and Yu 2017), dot tracking (Rajendran et al. 2019), or
optical flow (OF) (Atcheson et al. 2009; Heineck et al. 2021;
Schmidt and Woike 2021) algorithm. Cross-correlation
methods identify the displacement of a multi-pixel window
from the reference image to the distorted image. The use of
multi-pixel windows, typically 8 X 8 px or larger, reduces
the resolution of the deflection field (Raffel et al. 1998;
Atcheson et al. 2009; Schmidt and Woike 2021), which
effectively amounts to a smoothing operation. Dot tracking
algorithms attempt to determine the displacement of indi-
vidual features on a pseudo-PIV background, which may be
enhanced with a small-window, single-dot correlation step
(Rajendran et al. 2019), but the resolution of this approach
is limited by the density of dots, which is necessarily lower
than the resolution of the sensor. Meanwhile, OF algorithms
produce displacement fields with the same resolution as the
original images and have been shown to outperform corre-
lation and tracking algorithms in both resolution and accu-
racy (Schmidt and Woike 2021). However, the OF problem
features one equation and two unknowns per pixel, so an
optimization criterion is needed to close the problem. Clo-
sure may be provided by assuming a locally-uniform solu-
tion [Lucas—Kanade OF (Lucas and Kanade 1981)], global
smoothness [Horn—Schunck OF (Horn and Schunck 1981)],
or a sparse representation in wavelet space (Schmidt and
Woike 2021). Lucas—Kanade OF is substantially similar to
cross-correlation and does not yield much better estimates
(Atcheson et al. 2009). The latter two techniques can gen-
erate accurate deflections, but it is exceedingly difficult to
develop a physics-based constraint for OF in BOS due to
the LoS-integrated nature of the deflection field (Schmidt
and Woike 2021).

Similar to OF, tomographic reconstruction inherently
requires regularization to obtain a unique, physical solution
and to counteract errors in the deflection estimates (Daun
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Fig.2 Schematic of a single-
camera BOS setup for axisym-
metric flows. Rays are refracted
by density gradients in the
flow, distorting images of the
background pattern. Apparent
deflections, & = [5,, 6,]", are
determined with a computer
vision algorithm and recon-
structed to estimate p
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et al. 2016). Many examples of BOS feature an axisym-
metric flow (Raffel 2015) such that the density field can
be recovered from a single perspective via a modified Abel
inversion (Kogelschatz and Schneider 1972; Agrawal et al.
1999). However, discrete analytical Abel inversion is unsta-
ble due to noise amplification that is inherent to numeri-
cal differentiation and a singularity at the line of symmetry
(Agrawal et al. 1999). Better performance can be realized
by coupling the forward model with an explicit penalty term
and solving the resulting system with an optimization tech-
nique, often referred to as classical regularization (Daun
et al. 2006; Howard et al. 2016). Far and away the most
common penalties for tomography are the second-order
Tikhonov (Vauhkonen et al. 1998) and total variation (TV)
(Kolehmainen et al. 1998) terms, which promote global and
piecewise smoothness, respectively. However, both penal-
ties are exclusively minimized by a uniform field, which is
incompatible with the density fields of interest in high-speed
experimental fluid mechanics. This discrepancy introduces
a trade-off between minimizing the measurement residuals
and the penalty term. Consequently, both Tikhonov and TV
regularization include a parameter that weights the penalty
and must be carefully tuned for each experiment. While the
use of a penalty term can stabilize tomographic reconstruc-
tions and improve their accuracy, errors associated with
these penalty-based schemes are pervasive.' Regularized
solutions tend to be overly-smooth, missing the fine detail
present in a flow.

We propose a direct, physics-informed BOS workflow
to avoid the regularization errors associated with deflection
sensing and tomographic reconstruction and to recover the
latent velocity and pressure fields. We utilize a physics-
informed neural network (PINN) (Raissi et al. 2019) to rep-
resent the flow, which requires data and physics loss terms.
Our data loss is based on a unified BOS operator (Grauer and

' As an example, Tikhonov regularization is characterized by
“streaky” artifacts, such as those in Fig. 5 of Wei et al. (2021).

00 Refracted ray

Steinberg 2020), which directly relates a density field to raw
image distortion data, and our physics loss comprises the
compressible Euler and irrotationality equations. Previous
work by the group of Karniadakis used a PINN to post-pro-
cess 3D BOS tomography reconstructions of natural convec-
tion above an espresso cup (Cai et al. 2021). However, we
found that directly embedding the measurement model into a
PINN’s data loss produces superior reconstructions (Molnar
and Grauer 2022), leading to the present formulation.

This paper describes BOS, OF, tomography, and our
physics-informed workflow. We apply the technique to
reconstruct synthetic data from analytical and numerical
phantoms as well as experimental images. Not only does
physics-informed BOS yield better estimates of the density
field than conventional techniques, it also generates esti-
mates of the velocity and pressure fields. Furthermore, by
processing noise-laden experimental LoS measurements
with a realistic forward model instead of simulated point-
wise data (Mao et al. 2020; Jagtap et al. 2022), this work
represents an advance in the application of PINNs to high-
speed flows.

2 BOS

Figure 2 depicts a common setup for axisymmetric BOS. A
single camera is focused through the fluid to be measured
onto a background plate that contains a pattern. Density gra-
dients in the flow give rise to refractive index (speed of light)
gradients, which cause wavefronts of light to bend (refract),
thereby distorting images of the pattern. These distortions
are characterized in terms of 2D displacement vectors, i.e.,
deflections, which are resolved at each pixel in the image.
Deflections are estimated using a computer vision algorithm,
and the deflection data may be reconstructed by inverting a
BOS measurement model and/or solving a Poisson equation
to estimate the unknown refractive index and density fields.

Throughout this work, we consider axisymmetric and pla-
nar flows that are aligned with a single background plate,
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as shown in Fig. 2. We assign the x-axis to the streamwise
direction; the x- and y-axes mark the horizontal and verti-
cal directions in the plane of the background plate; and the
z-axis is normal to this plane. The camera is pointed directly
towards the background and rotated such that the horizon-
tal and vertical image coordinates coincide with the x- and
y-axes, respectively, and the background pattern is assumed
to be in focus. Continuous and discrete deflection models
for BOS are introduced below, followed by an overview of
deflection sensing with OF, the unified model used in this
work, and axisymmetric reconstruction methods.

2.1 Light propagation through variable index
media

Wavefronts of light bend when the speed of light changes
throughout a medium, which manifests as visible distortions
of the background pattern in BOS. The speed of light in
a medium is characterized by its refractive index, n. For
gases, this property exhibits a linear dependence upon the
material density, p, and composition, as described by the
Gladstone—Dale equation,

n=1+Gp=Vn=G_GVp. €))]

Here, G is the Gladstone—Dale coefficient (Gardiner et al.
1981), which varies with chemical composition and exhibits
a slight wavelength dependence. For measurements of air at
visible wavelengths, G = 2.26 X 10~* m¥/kg.

Light propagation is fundamentally governed by Max-
well’s equations (Born and Wolf 2013). For a locally homo-
geneous region free of current and charge, these equations
simplify to a wave equation. Assuming that variations in the
refractive index field occur over much longer length scales
than the wavelength of light, this wave equation simplifies
to an eikonal equation, which describes the phase of light
waves as a function of n, alone.? In this limit, known as geo-
metric optics, the propagation of light can be approximated
by “rays” that travel normal to phase fronts of the wave. This
phenomena is described by the so-called ray equation (Stam
and Languénou 1996),

d/ dx
- (na) = Vn, 2)
where x is the position of a massless particle traversing a ray
of light and s is a scalar progress variable, which indicates a
distance along the ray as illustrated in Fig. 2.

The ray equation can be separated into two ordinary dif-
ferential equations and integrated along a ray to calculate the
deflection of that ray in the background plane, 8 = [4,, 5y]T

2 See Born and Wolf (2013) for the derivation of an eikonal equation
from Maxwell’s equations.
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(Atcheson et al. 2008). This integration follows a curved
path, in principle, but the curve is slight within a BOS meas-
urement volume (Goldhahn and Seume 2007). Therefore, the
paraxial assumption is invoked and the integral is carried out
along the (straight) reference trajectory. For the camera setup
shown in Fig. 2, the a-direction deflection, for a € {x,y}, in
pixel units is given by a path integral along the reference ray,

501 = d_l[/ Va n[r(s)]ds = dy G / Va plr(s)]ds.
Ny Jray o ray 3
——
C,

sys

In this expression, n, is the ambient refractive index, d is the
distance from the center of the probe volume to the back-
ground, y is the pixel pitch, and C is an overall system
constant. The indicator function, r : R! = R3, maps the
distance along a ray, s, to the corresponding 3D location,
as illustrated above in Fig. 2. Equation (3) presumes that
deflections are small and the path length through the domain
is short compared to d. Equivalent expressions are derived
in Atcheson et al. (2008), Nicolas et al. (2016), Grauer and

Steinberg (2020).
2.2 Discrete deflection model

Algebraic tomography requires a discrete approximation to
the forward measurement model, which is inverted by a
reconstruction algorithm. To start, the field of interest is
discretized using the basis @ = {g; }jl\;l, in which @; is the jth
basis function out of N such functions. Taking this approach,
the density field is approximated as follows:

N
pX) % Y p; p(x), “)
j

where p; is a coefficient that scales ¢; and the field is repre-
sented by the N X 1 vector p = {pj}szl. Next, the discrete

density field is substituted into Eq. (3). Consider the ith ray,

N
8, R Csys/ V(x{ P; ®; [ri(s)] }ds (5a)
ray =1

J

N
= Cyys p-/ V, @:|r;(s)|ds,

yszlj [ Vaoilrio] o
—_—

aif

where r; indicates a path along the ith ray. Since the integrals
over ¢; do not depend on p;, they can be precomputed to
form a deflectometry matrix, D, with elements, D,; 7o given
by the integration in Eq. (5b). This matrix relates the discrete
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Fig.3 Synthetic and experimental images of a Mach 2 cone cylin-
der scenario; image differences are processed with an OF algorithm
to estimate the deflection field (left). Exact deflections from the syn-

density field, p, to an M X 1 vector of a-direction deflections,
8, = {6,,}" . such that D, € R and

8, = Cys Dop- (©6)
For axisymmetric flows, we employ a Sipkens deflectometry
operator (Sipkens et al. 2021), which is specified in 1. For
planar fields, we invoke the paraxial assumption and directly
approximate Eq. (3) by linear ray tracing.

2.3 OF

In BOS, refraction results in the apparent 2D motion of
a background pattern between a reference image, /¢, and
a distorted (or “deflected”) image, I,.;. This corresponds
to a classic problem in computer vision known as opti-
cal flow, in which the image pair is used to infer a set of
deflection vectors (Szeliski 2010). Figure 3 shows syn-
thetic and experimental examples of /. and I, for a cone
cylinder shock scenario as well as the image differences,
Al = I+ — I.;. Note that these differences are nearly
imperceptible when the images are placed side by side.
Nevertheless, the cone shock structure is clearly visible
in the plot of Al. The image pair is used to infer 6, and 6,
at each pixel, which collectively form the measurement
vectors for Eq. (6), i.e., 8, and Sy.

The transformation of I . into /. is modeled in terms
of a 2D field of deflection vectors, which warp the original
intensity distribution (Davies 2004). There are three key
assumptions that underlie OF for BOS (Atcheson et al.
2009):

Inferred

Nonlinear WOFA Errors

thetic scenario, determined via nonlinear ray tracing, are compared to
estimates from an OF algorithm (right)

1. Changes in the scene are strictly due to refraction, as
opposed to motion or dynamic lighting (shadows, reflec-
tions, etc.).

2. The intensity of features is conserved, meaning there is
neither emission from the flow nor extinction of light
from the background. Stated mathematically,

I(x,y,t)=I(x+5x,y+5y,t+5t), @)

where 6, is the time interval between frames.
3. The magnitude of deflections is small.

Given these assumptions, the OF equation can be approxi-
mated by a first-order Taylor series expansion of Eq. (7),
ol ol ol

I(x,y,t) = I(x,y,t) + aéx + a—yéy + Eét + ... 8)
Methods based on this expression, called gradient-based OF,
are invalid for large deflections, e.g., in particle-based OF
velocimetry, in which case Eq. (7) must be solved with a
variation algorithm (Schmidt and Sutton 2019, 2020). How-
ever, BOS deflections are generally small enough to satisfy
the Taylor series expansion (Goldhahn and Seume 2007).
Time plays an arbitrary role in the OF equations in BOS.
Therefore, 5, may be set to unity such that Eq. (8) reduces to

I.é,+1,6,=-1, 9)

where /, and /; are finite difference approximations to the
partial derivatives in Eq. (8), evaluated via the reference
image, and /, is set to Al. Equation (9) applies to each pixel
and contains two unknowns, 6, and 6y, for each equation
(with one equation per pixel).
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x-direction
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y—dirgction

Fig.4 Visualization of unified BOS: x- and y-direction image gradients are multiplied by deflections to estimate the image difference, i.e.,

Eq. (9) is calculated at each pixel. Color scales are the same as in Fig. 3

The Horn—Schunck OF closure is ubiquitous since it is
both easy to implement and produces acceptable solutions
for a wide array of applications (Horn and Schunck 1981).
However, the method amounts to first-order Tikhonov
regularization, which is known to produce overly-smooth
results in the context of flow field measurement (Corpetti
et al. 2006; Yuan et al. 2005; Kadri-Harouna et al. 2013).
Recently, a variational method called wavelet-based OF
analysis (WOFA) was shown to yield more accurate deflec-
tion fields for BOS than Horn—Schunck OF (Schmidt and
Woike 2021). In wOFA, the deflection field is represented
using a wavelet basis and the (hypothetical) distorted
image, I(x + 6,,y + 5y, t+ 6,), is directly evaluated via bi-
cubic spline interpolation; see (Schmidt and Sutton 2020)
for a complete description of the method. This approach
allows for the evaluation of residuals from Eq. (7) without
computing the finite differences of /, I, and I, as must be
done in gradient-based OF. Further, the wavelet transform
exploits regularities in the deflection field to facilitate a com-
pressed representation of 8, and §,, reducing the number of
unknowns.

We use the wOFA procedure described in Schmidt and
Woike (2021) for deflection sensing in our conventional
BOS workflow. Sample deflections from wOFA applied to
the noise-free synthetic cone shock image pair are shown in
Fig. 3. This figure also shows the exact deflections that were
determined by nonlinear ray tracing. Despite the high-accu-
racy of the wOFA approach, “wavelet fingerprints” can be
seen throughout the shocked region. These high-frequency
discrepancies between the ideal (true) deflections and wOFA
estimates act as measurement errors in the reconstruction
algorithm.

2.4 Unified BOS

Until recently, deflection sensing and reconstruction were
performed sequentially in BOS. As a result, non-physical
regularization was needed in the deflection sensing step
because &, and &, are not directly related to the density field

@ Springer

(rather, they are LoS-integrated quantities). However, Grauer
and Steinberg (2020) observed that coupled gradient OF
equations, i.e., one instance of Eq. (9) for each pixel, can for-
mulated as a matrix system. The discrete BOS model from
Sect. 2.2 can then be substituted into the matrix OF equation
to relate the density field to raw image difference measure-
ments. In other words, the density field can be reconstructed
from a vector of image difference data in a single step. All
regularization in this “unified” procedure is applied to the
density field per se, and the errors associated with deflection
sensing are avoided.

Figure 4 is a visualization of unified BOS in matrix form.
Equation (9) is applied to each pixel, independently. This
amounts to a diagonal matrix operation applied to §, and §,,
which may be expressed as a function of p. To start, diagonal
matrices are formed from the horizontal and vertical inten-
sity gradients, X;; =/, ;andY;; = [, fori = 1,2, ... , M for
a system of M pixels. In this work, we employ second-order
central differences to compute 7, and Iy. Next, we construct
a data vector from the image pair, b = {-1,; }?i - Lastly, the
x- and y-direction instances of Eq. (6) are substituted in for
o, and Sy, respectively, to relate b to p,

X8, + Y8, = Cy (XD, + YD) p=h.

—_—
A

10)

Here, A is the M X N unified BOS operator. Equation (10)
can be solved with the same reconstruction techniques devel-
oped to solve Eq. (6).

2.5 Axisymmetric reconstruction

There are many methods for reconstructing a 2D or 3D
flow field from path-integrated measurements, as recently
reviewed in Grauer et al. (2023). This paper considers the
application of BOS to axisymmetric and planar flows. The
geometric simplicity of these configurations facilitates an
efficient representation of the fields and a simplified meas-
urement model. A brief overview of Abel inversion for
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axisymmetric BOS and a regularization technique for uni-
fied BOS are presented below.

2.5.1 Abel inversion for BOS

Path integrals through a radially symmetric object are
described by the Abel transform, which has an explicit,
analytical inverse. The forward transform loosely corre-
sponds to the measurement model for many tomography
modalities, such as absorption or emission tomography.
Consequently, the inverse Abel transform can be adapted
to reconstruct absorbance or emission data when the
target object is axisymmetric. However, the BOS meas-
urement model features a path integral over gradients of
the density field, as opposed to integrals over p per se.
This complication necessitates a tailored reconstruction
strategy.

Recall the forward model for radial (y-axis) deflections
in Eq. (3),

8, = Cyy / y Y, p(s)ds = Cy,, V, / p(s)ds = Cyy, V, 5,

ray
——
?

11
where p is the so-called projected density field, which cor-
responds to the forward Abel transform of p when the flow
is axisymmetric (Raffel 2015). The gradient and integral
operations in Eq. (11) are reversible,’ leading to two distinct
methods for reconstruction, which are outlined in Fig. 1.

1. Indirect reconstruction: Eq. (11) is used to construct
a Poisson equation that may be solved for p, which is
recovered via the standard inverse Abel transform.*

2. Direct reconstruction: the Abel transform is modified to
incorporate V, and p is directly determined from &,. This
resultant transform is often referred to as the “deflectom-
etry” version (Kolhe and Agrawal 2009).

The Poisson equation in indirect Abel inversion contains
gradients of 6, and é,. Differentiating these variables ampli-
fies errors from the deflection sensing procedure. Direct
methods are comparatively stable, so we adopt the latter
approach in this work.

The deflectometry Abel transform and its inverse are

3 This result is a consequence of the Leibniz integral rule, assuming
constant bounds of integration.

4 These steps are commonly switched in 3D BOS tomography
(Atcheson et al. 2008); this is also possible in axisymmetric BOS (see
the work of Ota et al. (2015), Hirose et al. (2019), for instance), but
doing so is rare.

R
6,(y) =2 Cyy4 / v, p(r)—=——dr and (12a)
y r2 —y?
1 k 1
p(r)=— / 0,())——dy, 12b
”Csys r Y \/yz—l’2 ( )

where the radial direction is aligned with the y-axis and R is
the outer radius of the flow, beyond which 6y is zero (Kolhe
and Agrawal 2009). Notice that Eq. (12) requires continu-
ous deflection data, which is not available in practice, so the
expression must be discretized. The resultant direct deflec-
tometry Abel inversion for a discrete field is

p=C, Kd, (13)

where K is an inverse Abel operator that is obtained by dis-
cretizing Eq. (12b). Since é, is resolved at discrete intervals
(viz., elements of §,), K effectively interpolates this data.
The two most common techniques for building K follow
Simpson’s 1/3 rule and the two-point method. Expressions
for the elements of K derived using Simpson’s 1/3 rule and
two-point interpolation are provided in 1.

Unfortunately, the simplifications required to obtain K,
such as the assumption of parallel rays, are often violated by
practical imaging systems. Further, Eq. (13) is a 1D trans-
form that must be independently applied to each axial seg-
ment of a 2D flow. Neither axial gradients in the flow nor
axial deflections are considered in the inversion. Therefore,
inverting a high-fidelity 2D forward model like the unified
BOS matrix is more robust (Daun et al. 2006; Sipkens et al.
2021).

2.5.2 Tikhonov regularization

The unified BOS model relates the (as yet unknown) density
field to a measured image difference vector, b. Therefore,
this model must be inverted to estimate p from b. This is
a discrete ill-posed inverse problem and additional infor-
mation is required for stability (Daun et al. 2016). We uti-
lize a second-order Tikhonov penalty to promote smooth
solutions:

P, = argmgn(llAp—blli + ok ILpll3). (14)

In this expression, L is a discrete Laplacian operator (or
“Tikhonov matrix”), defined in 1, wqy, is a regularization
parameter that controls the influence of the penalty, and
solutions may be obtained with a linear least squares algo-
rithm. As oy, goes to zero, p,, approaches the least squares
solution, which is highly sensitive to noise in b. Conversely,
for very large values of wqy., Eq. (14) is minimized by the
uniform vector that minimizes the measurement residuals.

@ Springer
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At moderate values of wr,, however, p,, corresponds to a
smooth field that approximately satisfies the measurement
equations. Therefore, we optimize the regularization param-
eter through a phantom study, wherein p,, is computed from
a synthetic image pair and compared to the exact density
distribution. This process is repeated for a large range of
regularization parameters, and we set w, to the value which
maximizes the accuracy of p,,.

3 Physics-informed BOS

Current BOS algorithms can produce a quantitative estimate
of the density field in a target flow, but regularization is
required at each stage of the workflow. Although most regu-
larization schemes for BOS are inspired by physics, exist-
ing methods are ultimately incompatible with the underlying
flow fields and thus give rise to errors or “reconstruction
artifacts.”

Data assimilation (DA) is a promising alternative to the
standard suite of BOS techniques. DA algorithms seek to
solve the equations governing fluid motion subject to data-
based constraints (Hayase 2015). This approach avoids
the pitfalls of the BOS methods described above and also
provides access to the latent velocity, pressure, and energy
fields. There are numerous methods that can be used to
solve (or approximately solve) the governing equations
while conforming to experimental measurements. Kalman
filter (Cornick et al. 2009; Ali et al. 2022), state observer
(Saredi et al. 2021), adjoint—variational (Mons et al. 2021;
Wang et al. 2022), and hybrid simulation (Vinnichenko et al.
2022) algorithms have all been used to reconstruct flow
fields with input from an experiment. For instance, local
ensemble Kalman filter DA was employed to forecast tem-
perature and velocity fields in a Rayleigh—Bénard convection
cell from a set of experimental shadowgraphs (Cornick et al.
2009). A similar framework was developed at ONERA by
Ali et al. (2022), who repeatedly solved the RANS equa-
tions and sequentially updated turbulence model parameters
with a Kalman filter to match synthetic BOS measurements.
State observer methods incorporate proportional or propor-
tional-integral feedback, based on measurements of one
or more fields, into the governing equations (Saredi et al.
2021). Variational techniques optimize a control vector, such
as the initial flow state, to minimize an arbitrary data loss
(Mons et al. 2021; Wang et al. 2022), and hybrid CFD simu-
lations are conducted with one or more fields or parameters
that are fixed by data. As an example of the latter technique,
Vinnichenko et al. (2022) conducted a hybrid simulation of
natural convection using a BOS-based estimate of the tem-
perature field to determine the buoyancy term.

Unfortunately, these DA methods come at a high compu-
tational cost. Furthermore, all examples of BOS DA reported
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to-date have employed either (a) idealized synthetic BOS
data (Ali et al. 2022) or (b) temperature field estimates from
a conventional BOS algorithm (Cai et al. 2021; Vinnichenko
et al. 2022). When the data loss, constraint, or forcing term
in a DA algorithm includes reconstructions, as opposed to
the measurement model and raw signal, the resultant fields
are adversely affected by non-physical reconstruction arti-
facts introduced by the BOS algorithm. These artifacts can
bias the DA algorithm or even prevent convergence, so it is
essential to accurately mimic the image formation process
in the data loss term (Molnar and Grauer 2022).

We conduct physics-informed BOS using a low-cost, flex-
ible, easy-to-implement DA scheme in which the flow is rep-
resented with a PINN. The goal is to optimize an aggregate
loss, consisting of data and physics residuals, using mature
deep learning tools. The result is accurate, spatially-resolved
estimates of all the flow fields.

3.1 PINN framework

Physics-informed neural networks utilize a deep, feed-
forward network to map spatio-temporal inputs to flow
fields (Raissi et al. 2019). Figure 5 shows the architecture
of a PINN set up for physics-informed BOS. We utilize
(x, r) and (x, y) as inputs for axisymmetric and planar
flows, respectively. Density (p), velocity (u and v), and
total energy (E), are the outputs. Automatic differentiation
(AD) is employed to calculate exact partial derivatives of
the network, and these partials are used to evaluate the
governing equations throughout the measurement domain.
The PINN does not generally satisfy these equations and
the residuals are added up in a physics loss. Separately, a
data (or measurement) loss is obtained by evaluating the
unified BOS measurement model and comparing synthetic
image differences, computed using the density field out-
putted by the PINN, to experimental image differences.
The total objective loss (data + physics) is minimized via
backpropagation to estimate the flow field in functional
form.

In this work, we specify a physics loss using the com-
pressible, steady, 2D Euler equations. This is an appropriate
choice for the present demonstration, which features invisid
flow, but viscous effects, transience, and 3D fields can be
included as necessary. For now, each of the non-dimensional
Euler equations is re-arranged to isolate a residual, e:

&= (o), + (o0, +(10v) (152)

£2=(pu2+p)x+(pvu),+ﬂ<%puv) (15b)
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Fig.5 Our PINNs map axial and radial (or vertical) coordinates to the fields of interest. The unified BOS measurement model is embedded in
the data loss term; the Euler and irrotationality equations are employed for physics; experimental wind tunnel conditions are enforced at the inlet

63=(pMV)x+(pv2+p),+ﬂ(%pv2> (15¢)

&= [E+pul + [0E+p)], + B[ E+pn].
(15d)

Here, (+), and (-), denote partial derivatives with respect to

x and r (naturally, r is replaced with y for planar cases) and
p is the radial source coefficient which equals 1 for axisym-
metric flow and O for planar flow. In order to compute residu-
als along the axis of symmetry, we multiply the right side
of Eq. (15) by r. The field variables in Eq. (15) must be
scaled by an appropriate reference to obtain dimensional
values. We adopt the inflow conditions as our reference set,
with a single reference for both components of velocity. A
polytropic equation of state is employed to close the Euler
equations,

== DplE- (2 +7)]. (16)

where y is the ratio of specific heats. Lastly, since this paper
is concerned with approximately inviscid flow and approxi-
mately uniform inlet conditions, we consider an additional
equation that is satisfied by irrotational velocity fields,

€5 = Up = Vy. (17)

Residuals from Egs. (15) and (17) are integrated over the
domain, culminating in an overall physics loss,

| L /R )
EPhYS:;rR_zL/O ,/o ” [51,...,55]“22ﬂrdrdx, (18)

where L and R are the length and radius of the measure-
ment domain. (Once again, the appropriate modifications are
made for planar cases.) This expression is approximated by
Monte Carlo sampling, and residuals from the irrotational
equation are omitted in certain cases, as explicitly noted in
the results sections.

There is an infinite set of flow fields that minimizes
Eq. (18). Therefore, we connect the PINN to our experi-
mental target with a data loss. This loss features the unified
BOS model, such that the density field from the PINN is
employed to compute image differences, which may then be
compared to the unprocessed experimental images. In other
words, our data loss is

£meas = ”Ap_b”; (19)

where b is contains experimental image differences, A is the
unified BOS operator, and p is a vector of density data that
is obtained from the PINN. We query the PINN at the sup-
port nodes of our basis, @, to construct p. It should also be
emphasized that the PINN outputs normalized values; hence,
the outputted density data must be multiplied by a reference
density (the inlet density in our case) to populate p.

The final loss term is an inlet boundary condition, which
is generally known to first-order for experiments such as the
wind tunnel tests described in Sect. 4. Our inlet loss is

2
n_ 77-'R2/() H P — Pin> U — U, V Vm’E E ] 5
(20)

where p, u, v, and E are evaluated at x = 0 and (-),;, denotes
an inlet value and the radial integral is replaced with a linear
one for planar flow. The objective loss to be minimized is

L

Elotal = Wpeas ‘Cmeas + COphys phys + Wiy ﬁin' (21)

This equation is uniquely minimized by the true flow fields
so long as the PINN is big enough to express the flow, but
the relative weight of the loss terms can help or hamper
training. We optimize the weighting parameters, @, @peass
and w;,, by conducting a simple parameter sweep with a syn-
thetic case; optimal weights from this test, ®,q,/@ppys = 10
and w;, /@, = 100, are used throughout the paper. Several
groups have developed heuristics to programmatically assign
weights to individual components of a PINN’s objective
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loss, e.g., Wang et al. (2022), Wang et al. (2021), Jin et al.
(2021). However, the benefits of these adaptive techniques
are generally marginal in the presence of realistic meas-
urement noise, as discussed in Molnar and Grauer (2022).
Another promising approach is to use a traditional algorithm
for constrained optimization, like the alternating direction
method of multipliers, which was applied to PINNs by Basir
and Senocak (2022). We plan to assess this scheme in future
research.

3.2 Network architecture and training

The PINNSs used for this work are implemented in Tensor-
Flow (Abadi et al. 2016). Networks that represent planar
flows comprise five hidden layers, with 50 neurons per out-
put variable, while the networks representing axisymmetric
flows have ten hidden layers to ensure adequate expressiv-
ity. We employ swish activation functions unless otherwise
noted. Weights are randomly initialized with a standard nor-
mal distribution and biases are initially set to zero.

Training is performed by minimizing Eq. (21) with the
Adam optimizer (Kingma and Ba 2014) at a learning rate of
1073 for the first three passes through the full image dataset
and 10~* thereafter. The PINNs are trained until the total
loss plateaus; we define a plateau as a 5000-iteration stretch
over which the 500-iteration running average of L, varies
by less than 0.5%. Here, an iteration is defined as a single
update of the parameters by the Adam optimizer. Recon-
structions are computed on an NVIDIA Tesla P100 graph-
ics processing unit. Planar reconstructions initially took
five hours, on average, and axisymmetric reconstructions
took around nine hours; optimization of the code in Tensor-
Flow 2.9.2 has reduced these times to approximately two and
three hours, respectively.

3.3 PINNs for high-speed flow

Supersonic flow is compressible and subject to shock for-
mations in most practical scenarios. The Euler equations
are hyperbolic and shocks manifest as discontinuities in the
corresponding solution. It is challenging to account for these
effects with a numerical solver, which has led to a rich lit-
erature on bespoke CFD methods for supersonic conditions.
Flow with shocks is similarly problematic for PINNs and
several groups are actively adapting traditional CFD tech-
niques to improve the ability of PINNs to represent high-
speed flow. We discuss techniques for applying PINNs to
hyperbolic equations in 2.

The use of PINNs to learn real compressible flow fields
from experimental data is of particular interest, and sev-
eral researchers have attempted to simulate this process
with a pseudo-schlieren scenario. These tests use a loss
consisting of point-wise Vp “measurements” as opposed to
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LoS-integrated signals. Mao et al. (2020) pioneered the use
of a pseudo-schlieren loss to estimate 1D shock-laden air-
flow (Mao also developed a forward solver for a 2D oblique
shock with no schlieren-type data). Cai et al. (2022) recon-
structed a synthetic 2D bow shock in the same way, quickly
followed by the paper of Jagtap et al. (2022), who utilized
domain decomposition (via an extended PINN) to facilitate
the representation of oblique and bow shocks as well as
an expansion fan. All three studies utilized a dense array
of noise-free, synthetic, multi-modal measurements. For
instance, Jagtap and coworkers specified 700 local density
gradient pairs and 50 pressure taps in their data loss term.
By way of context, well-instrumented cones support up to 16
taps (Casper et al. 2016), and a typical field-ready design has
no taps at all. Since real schlieren data is LoS-integrated and
camera rays may diverge in the measurement volume (Walsh
et al. 2000; Sipkens et al. 2021), particularly when access
windows are required for imaging, we restrict our tests to
plausible synthetic data and real experimental images.

4 Measurement scenarios

We use physics-informed BOS to process experimental and
synthetic image data for the axisymmetric cone cylinder sce-
nario depicted in Fig. 6. Additionally, we demonstrate our
technique on an analytical (planar) Prandtl-Meyer expansion
fan. Both scenarios feature Mach 2 flow, leading to signifi-
cant shock formations.

4.1 BOS measurements
4.1.1 Experimental setup

The BOS setup featured in this paper is located at the
National Aerospace Laboratories (NAL), Bangalore, and is
described in detail in Venkatakrishnan and Meier (2004).
The facility houses a trisonic wind tunnel and the experiment
is conducted in a square test section having a 0.3 x 0.3 m?
profile. Square access windows, approximately 1” thick, are
installed on opposite sides of the tunnel to enable imaging
of the background pattern. The model is a 15° half-angle
cone cylinder, positioned in the middle of the tunnel with
zero inclination. This configuration was chosen because the
resultant density field about the cone can be determined
from classical cone shock tables (Sims 1964). Testing was
conducted for Mach 2 inflow, which we assumed to be uni-
form throughout the cross section.

The background was placed 0.7 m from the tunnel win-
dow. Imaging was conducted with a scientific-grade camera
(Kodak ES 1.0) having a 1 MP sensor and 9 pm pixels. The
camera was fitted with a 50 mm lens, stopped down to f/8,
and placed 1.4 m away from the tunnel, pointing towards
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the background plate. We consider a 540 X 652 px subsec-
tion of the sensor that is centered on the axis of symmetry.
Experimental images of the cone are shown in Fig. 3, and
the difference data can be seen on the right side of Fig. 7.
Note that we used a single pair of experimental images. Sig-
nificant artifacts are visible in resulting image differences,
which exhibit noticeable striations that are emblematic of
fixed pattern noise.

4.1.2 Generating synthetic data

In order to benchmark the accuracy of our reconstruction
scheme, we test the method on synthetic images that corre-
spond to ground truth (“phantom”) density fields, introduced
in the next section. To start, a pinhole camera model, based
on the parameters presented above, is used to determine the
principal ray for each point on the sensor; we supersample
the sensor at four times the native resolution, i.e., using four
rays per pixel. Linear ray tracing is employed for regions of
constant density: outside the wind tunnel, inside the tunnel
for the reference image, and through the windows (including

Snell’s Law-type refraction at each interface). Further, we
sample the aperture using the method of Cook et al. (1984)
to account for the blurring and finite depth-of-field produced
by a real aperture. Our measurement operator is thus effec-
tively a “‘cone beam” sensitivity matrix that can mimic BOS
measurements recorded with distinct f~numbers.

While reference images are generated by linear ray tracing
throughout the domain, distorted images require nonlinear
ray tracing inside the wind tunnel and linear ray tracing out-
side. Nonlinear ray tracing involves numerically solving the
ray equation for a nonuniform refractive index field. We use
the fourth-order Runge—Kutta scheme developed by Sharma
et al. (1982) to solve Eq. (2), described in 3. Lastly, we cor-
rupt some of the synthetic images with noise. Three cases
are considered: clean (noise-free) image pairs, single-shot
noisy image pairs, and ten-shot average image pairs. Indi-
vidual noisy images are generated by applying a Gaussian
blur filter with a standard deviation of 1.5 px and simulating
shot-noise. The latter effect is modeled as a Poisson random
variable, assuming a maximum signal of 5000 counts (Foi
et al. 2008). Clean, ten-shot noisy, and single-shot noisy dif-
ference data can be seen in the first three panels of Fig. 7. In
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Table 1 Parameters for a Prandtl-Meyer Expansion Fan Phantom

Region M p, kg/m3 u, m/s v, m/s p, kPa
Inflow 2 0.55 517.6 0.0 26.3
Outflow 2.83 0.22 572.5 —-208.4 7.2
M, =2.0
op, =1
—_
M, =2.83
o/p.. =0.40

Fig.8 Supersonic flow over a convex ramp leads to an expansion fan.
The fan is characterized throughout in terms of a turning angle, 0,
which is related to the Mach angle, u

separate tests, we added 1-10% centered Gaussian errors to
each noisy shot to mimic low-to-high levels of thermal noise.

Notice that the experimental images in Fig. 3 contain a
dot pattern background whereas the synthetic background
contains a superposition of axis-aligned sinusoidal waves.
Historically dot patterns, inspired by PIV, were used to facil-
itate cross-correlation deflection sensing. However, since OF
takes advantage of intensity gradients in the background,
any blank space between the dots is of no use. Therefore,
we stick to the sine wave pattern, which has been shown to
improve performance (Grauer and Steinberg 2020; Schmidt
and Woike 2021).

4.2 Phantom flow fields
4.2.1 Axisymmetric cone cylinder shock

We simulate the Mach 2 cone cylinder experiment reported
in Venkatakrishnan and Meier (2004) to estimate the density,
velocity, and energy fields corresponding to our experimen-
tal data. Simulations are performed using the compress-
ible Euler solver in SU2 7.3.0 (Economon et al. 2016). The
axisymmetric computational domain has a radius of 0.15 m
and length of 0.25 m, excluding the cone cylinder geometry.
Inlet conditions are specified to match experimental condi-
tions for a settling pressure and temperature of 2.1 kg/cm?
and 300 K, respectively, and M = 2, where M is the Mach
number. The ratio of specific heats for air is set to the stand-
ard value of 1.4. Discretization errors were confirmed to be
minimal through a grid convergence study, which is reported
in 4, along with additional details about the simulation.
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4.2.2 Planar expansion fan

A secondary, analytical phantom is considered, namely: the
canonical Prandtl-Meyer expansion fan. This phenomenon
occurs when supersonic flow encounters a convex ramp, as
illustrated in Fig. 8; the flow accelerates over the ramp and
sustains a continuous isentropic expansion across an infinite
sequence of “Mach waves” (Anderson 1990). We generate
an expansion fan for M| = 2 inflow that encounters a 20°
corner. Key parameters of the flow are provided in Table 1,
and details about the field calculations are given in 4. When
simulating BOS measurements of the fan, we assume a
slightly narrower test section of width 3.75 cm to limit the
magnitude of deflections, such that the paraxial assumption
holds true. A single pair of supersampled images are used
in the inversion. Additionally, we consider a few cases with
“pressure tap” information using the analytical value at the
ramp.

5 Results and discussion
5.1 Axisymmetric cone cylinder shock

First, we compare density fields obtained by conventional
BOS algorithms to our physics-informed estimates. Sec-
tion 2.5 introduces three methods for axisymmetric BOS:
Simpson’s 1/3 Abel inversion, two-point Abel inversion, and
unified BOS; the latter is conducted with a Sipkens kernel
and Tikhonov regularization. Both Abel inversions require
deflection data, which we obtain using a state-of-the-art
wOFA algorithm (Schmidt and Woike 2021). Conversely,
the unified BOS and physics-informed algorithms operate
directly on the unprocessed image difference data.

Figure 9 depicts our Mach 2 cone cylinder density phan-
tom as well as reconstructions computed with synthetic data
(single-shot, noisy) and experimental data. The CFD simula-
tion was designed to replicate the experimental conditions,
so the phantom is expected to very nearly approximate true
flow fields from the experiment. All BOS techniques con-
sidered in this paper produce a qualitatively accurate esti-
mate of the density field. Uniform inflow compresses as it is
deflected over the cone cylinder and expands as it flows past
the shoulder. However, there is a clear difference in quality
between these techniques. The explicit inverse Abel trans-
forms underpredict compression, overpredict expansion, and
exhibit a distinct error at the top-right corner that is associ-
ated with the Abel transform (namely, with the erroneous
assumption of parallel rays). Results from these algorithms
are substantially similar. Next, unified BOS with a Sipkens
kernel produces a superior prediction in terms of magnitude,
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Fig.9 Phantom density field and reconstructions from noisy (single-shot) synthetic and experimental data. Errors are plotted for the synthetic
case. Physics-informed BOS significantly increases the accuracy of reconstructions

although artifacts from the sine wave background are clearly
visible in the density field. These artifacts can be suppressed
by increasing @y, but doing so damps the magnitude of
the field and thereby amplifies reconstruction errors. Lastly,
the physics-informed reconstruction almost perfectly recov-
ers the density field, exhibiting crisp features, reminiscent
of the ground truth density field, including a well-defined
expansion fan.

To quantify relative performance, we calculate normal-
ized root-mean-square errors (NRMSEs) for each recon-
struction in percentage form. Both Simpson’s 1/3 rule and
two-point Abel inversion generate 8.34% error and the Sip-
kens kernel with Tikhonov smoothing produces 6.12% error
for this phantom. By comparison, our physics-informed
density field estimate has an error of only 3.75%. While it
is not possible to comprehensively baseline the accuracy
of our experimental reconstruction, we can compare the
resultant density field to predicted values from an ana-
lytical cone shock table (Sims 1964). This comparison is
shown in Fig. 10, alongside data from Venkatakrishnan and
Meier (2004). Those authors used a 5.1 MP camera (Sony
DSC F-707) to record BOS images of the same cone shock
structure, and they reconstructed the density field via fil-
tered back projection.’ The plot corresponds to a density cut
taken 2 mm downstream of the cone apex. Our reconstruc-
tion neatly matches the analytical result, exhibiting a closer
correspondence than the results from (Venkatakrishnan and
Meier 2004). Note that we omitted the 4° region immedi-
ately above the cone, which was severely affected by blur
and calibration errors. Altogether, these results suggest that
our physics-informed technique yields a qualitatively and
quantitatively accurate estimate of the true field. Further-
more, to the best of our knowledge, this represents the first
use of a PINN to reconstruct experimental measurements of
a supersonic flow.

Not only does physics-informed BOS increase the accu-
racy of density field estimates, it also provides access to

35
Analytical
/ (Sims 1964)
§ 301
o) Physics-Informed /
8 BOS
ol 25+
Conventional BOS
(Venkatakrishnan and Meier 2004)
20}
1.15 1.20 1.25 1.30 1.35 1.40

/P,

Fig. 10 Density ratio behind the forward shock, 2 mm downstream
of the cone apex, as a function of angular elevation with respect to
the axis of symmetry. Results are compared to previous experimen-
tal (Venkatakrishnan and Meier 2004) and analytical cone table (Sims
1964) data

the latent fields. Fundamentally, the PINN outputs den-
sity, velocity, and total energy fields, which may be used to
compute pressure or temperature, as desired. Velocity and
pressure are directly relevant to the analysis of aerodynamic
performance, so we present density, velocity, and pressure
fields obtained from the cone cylinder measurements. These
fields are estimated from synthetic and experimental data
using physics-informed BOS. NRMSE:s for all estimates
computed with synthetic data are provided in Table 2; the
corresponding panel of phantoms and reconstructions can
be found in Fig. 11.

All fields are accurately reconstructed from synthetic
measurements, with a maximum error of 3.75%, 1.13%,
and 3.09% in the density, velocity, and pressure estimates,

5 Images from the 5.1 MP data set, recorded in 2003, are no longer
available for processing.
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Table 2 Percentage NRMSEs for Cone Shock Reconstructions from
Best-Case Conventional and Physics-Informed BOS

Data Density u-velocity  v-velocity  Pressure
Conv. PI-BOS
Clean 4.81 1.13 0.36 0.53 1.39
Clean (no €5) 1.22 1.39 0.74 1.56
Averaged 4.98 3.16 0.47 0.70 1.86
Avg. (no €5) 3.24 2.82 1.30 2.07
Single-shot 6.12 375 0.61 1.13 3.09
SS (no &5) 4.16 2.09 1.95 3.42

respectively, when the full loss is employed. This high
degree of accuracy corresponds to a clear visual resemblance
in all cases. Indeed, differences between the phantoms and
reconstructions of synthetic data are nearly imperceptible,
regardless of the level of noise. In subsequent tests with
additional Gaussian errors, having a standard deviation up
to 10% of the intensity range, reconstruction errors for the
ten-shot data remained below 5%. However, the errors did
increase with added noise (as expected), and visible arti-
facts are present in the experimental reconstruction due to
significant noise in the image data and erratic background
pattern gradients. Of particular note, all non-zero differences
upstream of the compression shock in Fig. 7 are erroneous,
indicating the intensity and spatial extent of the noise. Nev-
ertheless, our experimental results are consonant with our

Fig. 11 Reconstructions of all
axisymmetric cone shock data
sets. Synthetic data are recon-
structed with increasing noise
(clean, ten-shot average, and
single-shot), followed by experi-

Density

CFD
Phantom

Streamwise

CFD results, which supports the use of physics-informed
BOS. In addition, a Bayesian framework could be lever-
aged to counteract biased and correlated noise (Molnar and
Grauer 2022). We also be note that the PINN contains fewer
parameters than the CFD simulation, having 363,200 and
1,189,492 parameters, respectively, although the CFD solver
has a runtime of approximately 10 min (as opposed to the
PINN’s several-hour training time).

Table 2 includes two sets of errors for each image pair:
one based on the whole physics loss (i.e., with the Euler and
irrotationality equations, £,—¢, and €5) and one without €.
The resultant reconstructions are shown in Fig. 12. The util-
ity of adding an irrotational flow residual to £, is marginal
for the synthetic cases. However, the benefit of including
€5 increases with noise, per Table 2. Consequently, there is
a significant qualitative improvement in the experimental
results when &5 is used, which manifests as a clear reduction
of artifacts, with an acute improvement in the magnitude of
the velocity field past the expansion fan. This result suggests
that including additional terms, where appropriate, such as
an entropy pair residual, could further improve the stability
and accuracy of physics-informed BOS.

5.2 Planar expansion fan
Second, we present results for the Prandtl-Meyer expansion

fan. A very similar set of fields was used by Jagtap et al.
(2022), allowing for a direct comparison between our PINN
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Fig. 12 Streamwise velocity (left) and single-shot synthetic and experimental reconstructions (right). Incorporating an irrotationality equation
provides an improvement that is enhanced in the presence of noise, as for the experimental images

Fig. 13 Reconstructions of a
planar expansion fan from clean
synthetic data. Errors are con-
centrated about the singularity
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implementations. Figure 13 depicts physics-informed BOS
estimates of the fan’s density, velocity, and pressure fields,
all of which are recovered with high fidelity. The reconstruc-
tions exhibit minimal errors which are concentrated in the
immediate vicinity of the singularity, located at the corner
of the wedge. Including this region in the data loss term
can cause the solution to blow up, resulting in nonsensical
fields. We tested this using a BOS data loss as well as the
local density gradient loss term employed by Jagtap et al.
(2022). The instability is present for both loss formulations.
To avoid this issue, we omit a minute region surrounding
the corner from our data loss. Excluding these gradients is
justified for BOS, in any case, because they are too strong to
satisfy the paraxial assumption, even for the narrow test sec-
tion of interest, i.e., 3.75 cm. By contrast, physics residuals
are computed throughout the whole domain.

We also explored the stability of expansion fan recon-
structions to varying measurement sources and physics loss
components. Figure 14 depicts “flow generation” at the tip
of the wedge and velocity error maps for different loss com-
ponent scenarios. Positive flow generation indicates regions
where the slip wall condition is not satisfied due to an erro-
neous inflow of momentum. We do not include a slip wall

boundary condition in £, so this behavior is inferred from
the BOS data, Euler equations, and inlet conditions, alone.
However, there is a short region at the leading edge of the
ramp over which we observe flow generation errors. These
errors quickly diminish with distance normal to the ramp
and down the ramp. Including an additional measurement
towards the leading edge of the ramp, such as a pressure tap,
significantly diminishes flow generation (note the x-axis is
plotted in log scale).

@ Springer
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Fig. 14 Flow generation along
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While reconstructions of synthetic cone shock data are
robust to the inclusion of €5 in £, fan reconstructions are
more sensitive, possibly due to a greater multiplicity of weak
solutions to the Euler equations at the zero-viscosity limit.
Streamwise velocity errors decrease from 1.15% for a simple
Euler loss to 0.61% when the pressure tap is included and to
0.48% for the Euler equations plus &5 (all other fields exhibit
similar errors across these scenarios). In the first case, con-
sidering only the Euler equations, the PINN yields a sig-
nificant over-prediction of streamwise velocity and under-
prediction of the vertical component along the wedge. This
is largely remedied by adding a single pressure tap 5 mm
past the lip of the wedge, underlining the general principle
that multi-modal measurements should be utilized whenever
possible. Similar to Mao et al. (2020), we find that the loca-
tion of the pressure tap is an important consideration. Mov-
ing the tap much further down the wedge, e.g., to 75 mm,
fully eradicates the gains to accuracy that we observe in the
5 mm case. This fade-out occurs because the flow generation
problem is local and the tap is most useful in a region where
image data is lacking (recall that we exclude BOS data near
the singularity in this case). Unfortunately, while a single tap
can reduce flow generation, it is insufficient to fully mitigate
velocity field errors. Full-field constraints, such as the irrota-
tionality equation, provide much more utility, as can be seen
in the error maps in Fig. 14.

In addition to these BOS-related tests, the expansion fan
scenario serves as a convenient testbed for analyzing the
performance of PINNs used for hyperbolic problems. For
instance, we tested the dimensional and non-dimensional
Euler equations in training and found that the former physics

6 Note that the dimensional and non-dimensional Euler equations
have the same form.
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loss is far less stable.® This finding confirms the numeri-
cal tests of Haghighat et al. (2022), who attributed the per-
formance differential to the disparate magnitudes of the
dimensional Euler loss components, spanning roughly five
orders of magnitude in our scenarios. An adaptive weight-
ing scheme could potentially help to overcome this issue,
but we previously observed that such schemes are unsta-
ble for noisy data (Molnar and Grauer 2022). Therefore,
we recommend using the non-dimensional Euler equations,
instead. Separately, we tested a suite of activation functions,
including the swish, GELU, hyperbolic tangent, leaky ReL.U,
and sigmoid functions. To lacklustre effect, the performance
of these functions was quite similar, although each choice
exhibited a unique optimum of @y,q,,, Wphys and wy,, likely
because some activation functions saturate (e.g., tanh and
sigmoid) while others do not (e.g., swish and GELU).

6 Conclusions and outlook

We present a data assimilation technique for background-ori-
ented schlieren called physics-informed BOS. This approach
combines a comprehensive measurement model, based on
unified BOS, with the governing physical equations, in this
case the Euler and irrotational equations, to infer steady den-
sity, velocity, and energy fields from a single pair of images.
The method utilizes a physics-informed neural network to
represent the flow; PINNs are flexible, easy-to-use tools
for DA, but they had not previously been used to recon-
struct supersonic flow from experimental data. Indeed, this
work reports the first such use of a PINN to the best of our
knowledge. We report accurate, multi-parameter reconstruc-
tions without the use of pressure data, artificial viscosity
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regularization, or an entropy condition. Several important
conclusions can be drawn from this work.

1. Physics-informed BOS with a PINN yields more accu-
rate estimates of the density fields than conventional
BOS algorithms. In all synthetic cases, differences
between the phantoms and reconstructions are nearly
imperceptible. Additionally, in the experimental case,
there is good agreement with the CFD solution.

2. Additional physics-based residuals, such as an irrota-
tionality equation, can be included in the physics loss
to improve the stability of training, accuracy of recon-
structions, and resilience to noise. In much the same
way, multi-modal measurement information can guide
the PINN towards the correct, physical solution during
training.

3. Akin to conventional CFD techniques, singularities
pose a significant challenge for PINNs and need to be
addressed. In scenarios where a singularity may arise,
physics constraints should be strengthened to stabilize
the DA scheme.

4. Tuning the relative weight of loss components is essen-
tial to the procedure, and the optimal weighting depends
upon one’s choice of activation functions.

Appendix A: Bases and kernels
for axisymmetric BOS tomography

Appendix A.1: Bases

Recalling Eq. (4), the radially-symmetric density field is
approximated as a sum over the basis, @,

N
PP~ Y p @7, 22)
J

where ¢; is the jth basis function. Typically, these functions
are uniform, linear, or quadratic in BOS tomography. Fol-
lowing Sipkens et al. (2021), we utilize a uniform discretiza-
tion scheme in the axial direction and a linear scheme in the
radial direction.

The uniform axial functions are given by

m(0) = H(x = x;) = H(x = x;,), 23)
for a set of axial locations, X, where H(-) is the Heaviside
function. Differentiating # with respect to x yields

(3r/j

a—)‘(:fs(x—xj) —fS(x—xjH), 24)

where f; is the Dirac delta function. Our radial basis com-
prises piecewise linear functions that span circular annuli,

r—r

Sl <7
T riog <r<r;
)
d)j(r) = _rv_rj_ ! rj <r< rj+1 . (25)
VAR
0 otherwise

Note that this expression must be modified at the first and
final functions to exclude the j — 1and j + 1terms, as appro-
priate, assuming a uniform inner circle for the first basis
function and a field that decays to zero at the outer radius.
The radial gradient of ¢; is

) <r
0, P iy <r< r;
J _ 1
or = Pa— rj < FS rj+1 . (26)
0 otherwise

Lastly, we combine these bases to obtain an axisymmetric
linear—uniform basis,

N
p(x,r) ~ ; p; NX)P(r), 27)
()

where ®; is the resultant 2D basis function. The second-order
Tikhonov matrix for this basis has elements

—4, i=j

1, i axially adjacent to j
i (2r; £ h)/(2r;), i radially adjacent to j ’

0, otherwise

(28)

where + corresponds to + and — for outer and inner radial
neighbors, respectively, and each element is scaled by the
grid spacing, 4™, assuming equal spacing in x and r, i.e.,
h = Ax = Ar. This definition is modified to enforce the
free stream refractive index at the outer radius. Effectively,
this penalty utilizes the discrete cylindrical Laplacian of
p to promote reconstructions that are both axially- and
radially-smooth.

Appendix A.2: Kernels

Three direct, conventional kernels are utilized to baseline
the PINN approach. In this context, “direct” means that the
kernel relates the deflection data to a density field (Simp-
son’s 1/3 rule and the two-point method) or vice versa (the
Sipkens kernal).” “Indirect” refers to methods that require
an explicit Poisson solver.

Simpson’s rule arises from a traditional approach to numeri-
cal integration in which the area under a curve is approximated

7 We incorporate the Sipkens kernel into a unified BOS operator,
which relates the density field directly to unprocessed image differ-
ences, although unified BOS is not inherent to that scheme.
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using the area under parabolic curves. Similarly, the two-point
method utilizes piecewise linear interpolation with a quadratic
expansion about the singularity. For a smooth target function
with sufficient resolution, these approximations are highly
similar. Both techniques yield a kernel, K, that relates ﬁy toa
radial density field, p. Separately, the Sipkens kernel, derived
in Sipkens et al. (2021), is a discrete forward operator that
relaxes the assumption of parallel rays. Sipkens et al. (2021)
developed the transform for a variety of bases; we utilize the
linear—uniform basis introduced above. The result is deflection
operators, D, and Dy, that are used to construct a unified BOS
measurement model.

Appendix A.2.1: Simpson’s 1/3 rule

Simpson’s 1/3 rule involves piecewise curve fits to the diverg-
ing integral. The kernel has elements

0, i>]j
K= Ji‘j/2, j=N+1 s (29a)
Jijp i<jandj#N+1
where
_L 34+ (_1)j—i+l
(29b)

Jl..:
' i1y

and N is the number of equally spaced intervals. It should
be noted that the integrand diverges at the lower limit of
integration. Therefore, the singularity is extrapolated from
the remaining coefficients. This is expressed in the kernel as

_ ) K1 iSN
Ki,i_{o’ l.=N+1‘ (30)

One key difference between Simpson’s rule and the two-
point method is that the former requires an even number
of intervals due to the curve fitting technique, which uses
three points. Nevertheless, Simpson’s rule exhibits greater
accuracy and faster convergence than integration by many
other such rules (e.g., trapezoidal).

Appendix A.2.2: Two-point method
When using the two-point method, the integral is discretized
between neighboring radii and the deflection is presumed con-

stant between those two rings (hence the name). The kernel is
formed using pairs of projections, resulting in elements

@ Springer

0, i>j
Jij=Jijo1s 1<
where
0, i>]j
2/, i=j=0.

J.. = (32)

I ; 2—i2 ;

llog V G+1)°—2+j+1 i<j
i VG-17=2+j

This formulation has no smoothing. The lack of smoothing
can be an advantage over other reconstruction kernels given
noise-free data, but it comes the a cost of noise amplifica-
tion. The resulting deconvolution kernel is an upper triangu-
lar matrix, and the divergence of the integral is handled via
a quadratic expansion of the projections at the singularity
(Cormack 1982).

Appendix A.2.3: Sipkens deflectometry

The Sipkens kernel is a forward operator that can model deflec-
tions along arbitrary, non-parallel rays. This formulation can
simultaneously operate on deflection data above and below the
axis of symmetry, unlike the explicit inverse kernels described
above, which improves the stability and resolution of recon-
structions. Moreover, the forward kernel can be incorporated
into any inverse solver, such as our physics-informed BOS
technique. Here, we recall the final form of the linear—uniform
Sipkens deflectometry operator using the present notation; a
full derivation can be found in the supplementary material of
Sipkens et al. (2021).

To start, the kernel requires a 3D description of each ray.
Consider the ith ray as it passes by the z-axis at the point
(x;,¥;, 0) with a slope of m, ; in the x-z plane and m,; in the
y-z plane. For ease of notation, we introduce a function that
corresponds to the radius of the ith ray at this crossing point,

i = == (v =)+ g (e —x) +3 e 3)

Each ray is divided into two, with one on either side of z = 0,
i.e., a ray approaching the central axis and a ray departing
from it. Consequently, the vertical deflectometry operator is
split into two parts,

— D+ -
Dy;j=Dy, + Dy, (34)
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The “approaching” and “departing” elements have a very
similar expression, which we present in a consolidated form,

T ”3(f)]
(35)

D;‘] Z yo’{a‘"‘[ -7 r2(j)] ~ in [rj—l’rj’rl(/')] + Qe [rj+1,
,i J
) =G =1 () =rG+1D
0] my | 20D WO RO D)
il J+1

where + becomes + for D;id. and — for D;id.,

mt(rl’rZ’r?J) —

Fuks and Tchelepi (2020) were the first to do this for two-
phase transport in porous media, i.e., adding viscous damp-

2 1/2
logd abs| r; + <r2 Yo >
3 3 P ’
1+ me;

(36)

and r,, modifies the jth radius to incorporate the bounds of
the Heaviside function. See (Sipkens et al. 2021) for a dis-
cussion of the r, r,, and r; functions of j in Eq. (35).

The axial deflection operator is simply

Dy ;= abs{¢;[rray.i ()] = {1y (1)1 - (37

Since the axial basis is piecewise uniform, D, only has non-
zero elements for rays that cross an axial boundary. While
this representation is sub-optimal, it is sufficient for the
present demonstration. A bi-linear basis will be derived for
future use. Equations (35) and (37) are employed to populate
D, and D,, which are themselves required to construct the
unified BOS measurement model in Eq. (10).

Appendix B: PINNs applied to hyperbolic
equations

Here, we briefly review two key developments in the area
of physics-informed neural networks applied to hyperbolic
equations. This topic directly pertains to PINNs discussed in
this work because the Euler equations are hyperbolic.

Appendix B.1: Artificial viscosity

“Artificial viscosity” was initially introduced into Euler solv-
ers to accommodate discontinuous flow fields by spreading
shocks across a finite region that could be resolved by the
grid (von Neumann and Richtmyer 1950; Lax 1959). Arti-
ficial viscosity entails the deliberate addition of dissipation
into the governing equations, often based on the size of the
grid, such that the equations can be solved across the shock
without introducing excessive errors.

Several researchers have applied this concept to PINNs to
provide stability in the context of a hyperbolic physics loss.

ing to a Buckley—Leverett transport model. Coutinho and
coworkers (Coutinho et al. 2022) adopted a similar approach
and considered the inviscid Burgers’ equation in addition
to a Buckley—Leverett scenario; Coutinho also introduced
a variety of adaptive methods to automatically tune the dis-
sipation term. More recently, Patel et al. (2022) proposed
the use of a control volume physics loss with artificial vis-
cosity to solve a 1D shock governed by Burgers’ equation,
a 1D Sod shock problem, and generic 1D Buckley-Lever-
ett, Euler, and Leblanc problems. Collectively, these papers
demonstrate that including artificial viscosity can reduce
oscillations about a discontinuity and stabilize optimization
of the network.

Most hyperbolic solvers with artificial viscosity require
careful selection of the viscous term, which may vary across
space and time. Excessive damping is known to yield stable
yet invalid solutions (Anderson 1990). This was noted by Liu
et al. (2022), leading to their usage of a gradient-dependent
@,hys Parameter, which diminished in highly compressible
regions, instead of an artificial viscosity scheme. Further,
Wang et al.’s (2021) analysis of PINNs demonstrates that
higher-order gradients dominate the cumulative gradient
vector used to update the network parameters. This result
suggests that a non-physical diffusion term can obfuscate
progress towards the correct, physical solution. Since BOS
measurements provide relatively direct access to the real
density field, we do not employ artificial viscosity for shock
capturing.

Appendix B.2: Entropy pair regularization
Many hyperbolic systems of equations, including the com-

pressible Euler equations, admit multiple “weak” solu-
tions. The physical solution is often selected by applying

@ Springer



14 Page 20of 24

Experiments in Fluids (2023) 64:14

a constraint like an entropy condition, which is valid for
inviscid flows that exhibit one or more discontinuities. This
condition leads to an inequality that relates mathematical
entropy to the divergence of an entropy-flux pair (De Lellis
and Székelyhidi 2010); the inequality is satisfied by desir-
able “viscosity solutions” to the governing equations.

Two groups have added an entropy loss to a PINN to learn
shock-laden flow. Patel et al. (2022) first implemented this
technique, using a complete equation of state that bounds the
Euler equations by a specific entropy relation. Separately,
Jagtap et al. (2022) used a flux pair coupled with a poly-
tropic equation of state. Patel’s formulation resulted in three
loss components whereas Jagtap’s method culminated in a
scalar loss. Both groups reported that entropy pair regulari-
zation improved learning for hyperbolic problems compared
to a vanilla PINN. However, it should be noted that a unique
entropy pair is not guaranteed for a given set of hyperbolic
conservation laws (Godlewski and Raviart 2013). Therefore,
we chose to forego an entropy pair loss, which proved to be
unnecessary for our test cases.

Appendix C: Nonlinear ray tracing

Synthetic data are generated using nonlinear ray tracing
within the variable index field. This is accomplished to
high accuracy via the fourth-order Runge—Kutta ray tracing
algorithm of Sharma et al. (1982). First, Eq. (2) is split into
coupled ordinary differential equations. Next, each ray is
defined by a starting position, x, = [x, y, z]T, and a refractive
index-scaled direction,

vo =9 (38)

where dx/ds is the initial trajectory of the ray. Next, consider
the vector valued function

f(x) = Asn(x)Va(x) = % As Vr2(x). (39)
We evaluate f at three points along the ray,

£y =f(x;)

fy :f[xi+As<%vi+éfA>], (40)
fo = f[x,+ As(v, + 3ty )]

where the subscript i denotes the current index along the
path of the ray. The ray’s position and direction are updated,

X0 = X; + As[vi + é(fA + 2fB)]
) “41)
Vi =V; + é(fA + 4fB +fC>
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and the procedure is repeated until all rays exit the compu-
tational domain.

Appendix D: Generation of flow phantoms

This appendix provides additional details about our
phantoms.

Appendix D.1: Axisymmetric cone cylinder

We simulated the cone cylinder flow using SU2 7.3.0, which
is a finite volume solver; convective fluxes are handled with
a second-order upwind scheme in space that is TV dimin-
ishing when paired with a limiter (Roe 1981). The Venka-
takrishnan slope limiter is utilized to combat the oscillatory
behavior of higher-order upwind schemes by enforcing a
monotonicity condition (Venkatakrishnan 1995). Addition-
ally, gradients are computed using a weighted least squares
algorithm. We use a 2D axisymmetric unstructured grid that
comprises 297,373 triangular cells, with moderate refine-
ment towards the anticipated shock locations and tripping
points. Slip-wall conditions, based on the inviscid flow
assumption, are implemented along the cone cylinder and
top of the domain, which represents the physical boundary
of the wind tunnel.

A grid convergence study was performed to ensure that
the solution was independent of the grid. Computations were
performed with cells of size 1.25 X 10™* m, 6.25 x 107> m,
and 3.125 x 107> m. Results from this study are shown in
Fig. 15. Radial slices of the non-dimensionalized density
field are plotted, with a zoomed view provided to illustrate
the close agreement between simulations. Notably, the den-
sity, velocity, and energy errors all asymptote, indicating that
the shocks are well captured by all three schemes. Errors
resulting from the computational grid are thus expected to
be marginal. Throughout the paper, we use results computed
with the intermediate grid, with 6.25 X 107> m cells, to gen-
erate synthetic data.

Appendix D.2: Planar expansion fan

The planar expansion fan serves as a useful phantom to
evaluate the BOS reconstruction method developed here,
given the analytical nature. Specifically, this solution
arises through a geometric analysis of a sequence of Mach
waves, resulting in the governing differential equation for
Prandtl-Meyer flow,
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Fig. 15 Axial cuts of the
simulated cone shock density
field for three computational
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do = \/MZ—IdVV, (42)

where 6 is the turning angle towards the ramp and V is
the local flow speed. Equation (42) is expressed in terms
of dM /M and integrated to the ramp to obtain the outflow
Mach number,

M2 1
vy = —Y
m(1+5e) (46)

is the analytical derivative of the Prandtl-Meyer function.
Once the Mach field has been determined, the other field
variables are calculated using the isentropic relations,

/92d9= " VM -1 dm 43) L+ M,
6, w1+ r_;le M TO)=T, HTM(H)Z ) (47a)
2
The indefinite solution to the right side of Eq. (43), called
the Prandtl-Meyer function, is
1 -1
v(M)=1/%tan_ll }}:?(Mz—l)] —tan_l< M2—1>, (44a)
which can be used to solve Eq. (43) across a differential () -
wedge, p@) =p, [T] , and (47b)
1
6~ 0, = vIM©O)]~v(M,). (44b)
0
For a horizontal wall leading up to the ramp, 0, is zero and ~ p(0) = RLT)(H)’ (47¢)
gas

the Mach number is computed as a function of the turning

angle. This may be done by solving Eq. (44b) via Newton’s

method,

0+v(M;) —v[M©@©)
V' [M® )]

M*D9) = +MD0), (45)

where

where R, = 287 J/kg K is the gas constant for air.
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Although Mach numbers in the fan are calculated as a
function of @, each Mach line is oriented at the correspond-
ing Mach angle,

u(0) = sin™' [M(6)™'], (48)

as drawn in Fig. 8. The local flow speed is simply

V=Ma, 49)
where
a= Y Rgas T (50)

is the speed of sound. Finally, the flow accelerates tangent
to Mach lines throughout the fan such that the streamlines
are parallel to the wall up to the forward Mach line, normal
to the turning angle throughout the fan, and parallel to the
wedge thereafter,

u=YVcos(f#) and (51a)

v = -V sin (). (51b)
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