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Abstract
We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density, 
velocity, and pressure fields from a pair of reference and distorted images. Our method uses a physics-informed neural 
network (PINN) to produce flow fields that simultaneously satisfy the measurement data and governing equations. For the 
high-speed, approximately inviscid flows of interest in this work, we specify a physics loss based on the Euler and irrota-
tionality equations. BOS is a quantitative fluid visualization technique that is commonly used to characterize compressible 
flow. Images of a background pattern, positioned behind the measurement volume, are processed with computer vision and 
tomography algorithms to determine the density field. Crucially, BOS features a series of ill-posed inverse problems that 
require supplemental information (i.e., in addition to the images) to accurately reconstruct the flow. Current methods for BOS 
rely upon interpolation of the images or a penalty term to promote a globally- or piecewise-smooth solution. However, these 
algorithms are invariably incompatible with the flow physics, leading to errors in the density field. Physics-informed BOS 
directly reconstructs all the flow fields using a PINN that includes the BOS measurement model and governing equations. 
This procedure improves the accuracy of density estimates and also yields velocity and pressure data, which were not previ-
ously available. We demonstrate our approach by reconstructing synthetic data that corresponds to analytical and numerical 
phantoms as well as a single pair of experimental measurements. Our physics-informed reconstructions are significantly 
more accurate than conventional BOS estimates. Furthermore, to the best of our knowledge, this work represents the first 
use of a PINN to reconstruct a supersonic flow from experimental data of any kind.

1  Introduction

Supersonic and hypersonic flows feature complex phenom-
ena such as shock waves, shock wave–boundary layer inter-
actions, and eddy shocklets, which must be considered in 
the design of next-generation aircraft and re-entry vehicles, 
projectiles, and combustion processes (Dolvin 2008). Com-
putational fluid dynamics (CFD) simulations play a vital 
role in engineering, but many vehicles are being designed 

to operate outside the parameter space in which engineer-
ing experience or CFD provide reliable means of analysis. 
Therefore, in order to support the design process, experi-
mental measurements are needed to characterize and under-
stand high-speed flow phenomena as well as to develop and 
validate numerical models.

Background-oriented schlieren (BOS) is a non-intru-
sive, quantitative flow visualization tool that can be 
applied to high-speed systems (Raffel 2015). BOS has 
been widely used to characterize shock-laden flows (Ven-
katakrishnan and Meier 2004; Sommersel et  al. 2008; 
Yamagishi et al. 2021; Gomez et al. 2022), visualize com-
bustion processes (Grauer et al. 2018; Liu et al. 2022), 
and estimate velocity fields (Tokgoz et al. 2012), amongst 
other applications (Raffel 2015). The technique provides 
line-of-sight (LoS) integrated information about the flow 
via the apparent motion of a background pattern. Images 
of the pattern are distorted by refraction through the 
fluid, which is caused by density gradients along lines-of-
sight from a background plate to the camera. Differences 
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between a reference image, recorded before introducing 
the flow, and a distorted image from the experiment can 
thus be processed with a computer vision algorithm to 
render a “synthetic schlieren” image (Dalziel et al. 2000), 
which may reveal key fluid structures. Further, BOS data 
can be tomographically reconstructed to obtain a quantita-
tive estimate of the density field. Unfortunately, BOS fea-
tures a series of ill-posed inverse problems that admit an 
infinite set of solutions. Supplemental (or “prior”) infor-
mation is therefore needed to generate a unique, physi-
cal solution. Adding prior information to solve an inverse 
problem is termed “regularization,” and the aim of this 
work is to establish a physics-based approach to regulari-
zation in BOS.

There are three inverse problems in BOS, depicted sche-
matically in Fig. 1, which are typically arranged in the fol-
lowing sequence. First, the image pair is converted to a set 
of deflection vectors through a procedure called deflection 
sensing. Here, a “deflection” is the 2D displacement of a 
point from the reference image to the same point in the dis-
torted image. Deflections are usually resolved at the centroid 
of each pixel or interrogation window, although the deflec-
tion field is continuous, in principle. Second, individual 
components of the deflections are tomographically recon-
structed, which yields gradients of the refractive index field. 
BOS is inherently sensitive to the refractive index field, but 
the density field is directly accessible for a fluid of constant 
composition via the Gladstone–Dale relation. Third, these 
reconstructions are incorporated into a Poisson equation that 
must be solved to recover the refractive index or density 
field, per se. Steps two and three can be reversed (Rajendran 
et al. 2020) or combined (Nicolas et al. 2016), and it is pos-
sible to conduct all three steps at once via “unified BOS” 
(Grauer and Steinberg 2020). Each step that is performed 
in isolation requires regularization, and it is advisable to 
combine steps, where possible, to reduce the reliance on 
prior information.

Deflection sensing is typically conducted using a cross-
correlation (Venkatakrishnan and Meier 2004; Castner 2012; 
Geerts and Yu 2017), dot tracking (Rajendran et al. 2019), or 
optical flow (OF) (Atcheson et al. 2009; Heineck et al. 2021; 
Schmidt and Woike 2021) algorithm. Cross-correlation 
methods identify the displacement of a multi-pixel window 
from the reference image to the distorted image. The use of 
multi-pixel windows, typically 8 × 8 px or larger, reduces 
the resolution of the deflection field (Raffel et al. 1998; 
Atcheson et al. 2009; Schmidt and Woike 2021), which 
effectively amounts to a smoothing operation. Dot tracking 
algorithms attempt to determine the displacement of indi-
vidual features on a pseudo-PIV background, which may be 
enhanced with a small-window, single-dot correlation step 
(Rajendran et al. 2019), but the resolution of this approach 
is limited by the density of dots, which is necessarily lower 
than the resolution of the sensor. Meanwhile, OF algorithms 
produce displacement fields with the same resolution as the 
original images and have been shown to outperform corre-
lation and tracking algorithms in both resolution and accu-
racy (Schmidt and Woike 2021). However, the OF problem 
features one equation and two unknowns per pixel, so an 
optimization criterion is needed to close the problem. Clo-
sure may be provided by assuming a locally-uniform solu-
tion [Lucas–Kanade OF (Lucas and Kanade 1981)], global 
smoothness [Horn–Schunck OF (Horn and Schunck 1981)], 
or a sparse representation in wavelet space (Schmidt and 
Woike 2021). Lucas–Kanade OF is substantially similar to 
cross-correlation and does not yield much better estimates 
(Atcheson et al. 2009). The latter two techniques can gen-
erate accurate deflections, but it is exceedingly difficult to 
develop a physics-based constraint for OF in BOS due to 
the LoS-integrated nature of the deflection field (Schmidt 
and Woike 2021).

Similar to OF, tomographic reconstruction inherently 
requires regularization to obtain a unique, physical solution 
and to counteract errors in the deflection estimates (Daun 

Fig. 1   Graphical overview of 
quantitative BOS, in which 
image data is converted to a 
density field through deflec-
tion sensing, tomography, and 
a Poisson solver. The order of 
tomographic reconstruction 
and Poisson integration may 
be switched in indirect BOS 
or combined in direct BOS. 
In unified BOS (UBOS in the 
figure), all three procedures are 
performed by inverting a single 
operator
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et al. 2016). Many examples of BOS feature an axisym-
metric flow (Raffel 2015) such that the density field can 
be recovered from a single perspective via a modified Abel 
inversion (Kogelschatz and Schneider 1972; Agrawal et al. 
1999). However, discrete analytical Abel inversion is unsta-
ble due to noise amplification that is inherent to numeri-
cal differentiation and a singularity at the line of symmetry 
(Agrawal et al. 1999). Better performance can be realized 
by coupling the forward model with an explicit penalty term 
and solving the resulting system with an optimization tech-
nique, often referred to as classical regularization (Daun 
et al. 2006; Howard et al. 2016). Far and away the most 
common penalties for tomography are the second-order 
Tikhonov (Vauhkonen et al. 1998) and total variation (TV) 
(Kolehmainen et al. 1998) terms, which promote global and 
piecewise smoothness, respectively. However, both penal-
ties are exclusively minimized by a uniform field, which is 
incompatible with the density fields of interest in high-speed 
experimental fluid mechanics. This discrepancy introduces 
a trade-off between minimizing the measurement residuals 
and the penalty term. Consequently, both Tikhonov and TV 
regularization include a parameter that weights the penalty 
and must be carefully tuned for each experiment. While the 
use of a penalty term can stabilize tomographic reconstruc-
tions and improve their accuracy, errors associated with 
these penalty-based schemes are pervasive.1 Regularized 
solutions tend to be overly-smooth, missing the fine detail 
present in a flow.

We propose a direct, physics-informed BOS workflow 
to avoid the regularization errors associated with deflection 
sensing and tomographic reconstruction and to recover the 
latent velocity and pressure fields. We utilize a physics-
informed neural network (PINN) (Raissi et al. 2019) to rep-
resent the flow, which requires data and physics loss terms. 
Our data loss is based on a unified BOS operator (Grauer and 

Steinberg 2020), which directly relates a density field to raw 
image distortion data, and our physics loss comprises the 
compressible Euler and irrotationality equations. Previous 
work by the group of Karniadakis used a PINN to post-pro-
cess 3D BOS tomography reconstructions of natural convec-
tion above an espresso cup (Cai et al. 2021). However, we 
found that directly embedding the measurement model into a 
PINN’s data loss produces superior reconstructions (Molnar 
and Grauer 2022), leading to the present formulation.

This paper describes BOS, OF, tomography, and our 
physics-informed workflow. We apply the technique to 
reconstruct synthetic data from analytical and numerical 
phantoms as well as experimental images. Not only does 
physics-informed BOS yield better estimates of the density 
field than conventional techniques, it also generates esti-
mates of the velocity and pressure fields. Furthermore, by 
processing noise-laden experimental LoS measurements 
with a realistic forward model instead of simulated point-
wise data (Mao et al. 2020; Jagtap et al. 2022), this work 
represents an advance in the application of PINNs to high-
speed flows.

2 � BOS

Figure 2 depicts a common setup for axisymmetric BOS. A 
single camera is focused through the fluid to be measured 
onto a background plate that contains a pattern. Density gra-
dients in the flow give rise to refractive index (speed of light) 
gradients, which cause wavefronts of light to bend (refract), 
thereby distorting images of the pattern. These distortions 
are characterized in terms of 2D displacement vectors, i.e., 
deflections, which are resolved at each pixel in the image. 
Deflections are estimated using a computer vision algorithm, 
and the deflection data may be reconstructed by inverting a 
BOS measurement model and/or solving a Poisson equation 
to estimate the unknown refractive index and density fields.

Throughout this work, we consider axisymmetric and pla-
nar flows that are aligned with a single background plate, 

Fig. 2   Schematic of a single-
camera BOS setup for axisym-
metric flows. Rays are refracted 
by density gradients in the 
flow, distorting images of the 
background pattern. Apparent 
deflections, � = [�x, �y]

T , are 
determined with a computer 
vision algorithm and recon-
structed to estimate �
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1  As an example, Tikhonov regularization is characterized by 
“streaky” artifacts, such as those in Fig. 5 of Wei et al. (2021).
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as shown in Fig. 2. We assign the x-axis to the streamwise 
direction; the x- and y-axes mark the horizontal and verti-
cal directions in the plane of the background plate; and the 
z-axis is normal to this plane. The camera is pointed directly 
towards the background and rotated such that the horizon-
tal and vertical image coordinates coincide with the x- and 
y-axes, respectively, and the background pattern is assumed 
to be in focus. Continuous and discrete deflection models 
for BOS are introduced below, followed by an overview of 
deflection sensing with OF, the unified model used in this 
work, and axisymmetric reconstruction methods.

2.1 � Light propagation through variable index 
media

Wavefronts of light bend when the speed of light changes 
throughout a medium, which manifests as visible distortions 
of the background pattern in BOS. The speed of light in 
a medium is characterized by its refractive index, n. For 
gases, this property exhibits a linear dependence upon the 
material density, � , and composition, as described by the 
Gladstone–Dale equation,

Here, G is the Gladstone–Dale coefficient (Gardiner et al. 
1981), which varies with chemical composition and exhibits 
a slight wavelength dependence. For measurements of air at 
visible wavelengths, G ≈ 2.26 × 10−4 m3/kg.

Light propagation is fundamentally governed by Max-
well’s equations (Born and Wolf 2013). For a locally homo-
geneous region free of current and charge, these equations 
simplify to a wave equation. Assuming that variations in the 
refractive index field occur over much longer length scales 
than the wavelength of light, this wave equation simplifies 
to an eikonal equation, which describes the phase of light 
waves as a function of n, alone.2 In this limit, known as geo-
metric optics, the propagation of light can be approximated 
by “rays” that travel normal to phase fronts of the wave. This 
phenomena is described by the so-called ray equation (Stam 
and Languénou 1996),

where x is the position of a massless particle traversing a ray 
of light and s is a scalar progress variable, which indicates a 
distance along the ray as illustrated in Fig. 2.

The ray equation can be separated into two ordinary dif-
ferential equations and integrated along a ray to calculate the 
deflection of that ray in the background plane, � = [�x, �y]

T 

(1)n = 1 + G� ⇒ �n = G��.

(2)
d

ds

(
n
dx

ds

)
= �n,

(Atcheson et al. 2008). This integration follows a curved 
path, in principle, but the curve is slight within a BOS meas-
urement volume (Goldhahn and Seume 2007). Therefore, the 
paraxial assumption is invoked and the integral is carried out 
along the (straight) reference trajectory. For the camera setup 
shown in Fig. 2, the �-direction deflection, for � ∈ {x, y} , in 
pixel units is given by a path integral along the reference ray,

In this expression, n0 is the ambient refractive index, d is the 
distance from the center of the probe volume to the back-
ground, � is the pixel pitch, and Csys is an overall system 
constant. The indicator function, r ∶ ℝ

1
→ ℝ

3 , maps the 
distance along a ray, s, to the corresponding 3D location, 
as illustrated above in Fig. 2. Equation (3) presumes that 
deflections are small and the path length through the domain 
is short compared to d. Equivalent expressions are derived 
in Atcheson et al. (2008), Nicolas et al. (2016), Grauer and 
Steinberg (2020).

2.2 � Discrete deflection model

Algebraic tomography requires a discrete approximation to 
the forward measurement model, which is inverted by a 
reconstruction algorithm. To start, the field of interest is 
discretized using the basis Φ = {�j}

N
j=1

 , in which �j is the jth 
basis function out of N such functions. Taking this approach, 
the density field is approximated as follows:

where �j is a coefficient that scales �j and the field is repre-
sented by the N × 1 vector � = {�j}

N
j=1

 . Next, the discrete 
density field is substituted into Eq. (3). Consider the ith ray, 

where ri indicates a path along the ith ray. Since the integrals 
over �j do not depend on �j , they can be precomputed to 
form a deflectometry matrix, D� , with elements, D�,i,j , given 
by the integration in Eq. (5b). This matrix relates the discrete 

(3)
�� =

d�

n0 ∫ray

∇� n[r(s)]ds =
d� G

n0
⏟⏟⏟

Csys

∫ray

∇� �[r(s)]ds.

(4)�(x) ≈

N∑
j

�j �j(x),

(5a)��,i ≈ Csys ∫ray

∇�

{
N∑
j=1

�j �j

[
ri(s)

]}
ds

(5b)
= Csys

N∑
j=1

�j ∫ray

∇� �j

[
ri(s)

]
ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
D�,i,j

,

2  See Born and Wolf (2013) for the derivation of an eikonal equation 
from Maxwell’s equations.
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density field, � , to an M × 1 vector of �-direction deflections, 
�� = {��,i}

M
i=1

 , such that D� ∈ ℝ
M×N and

For axisymmetric flows, we employ a Sipkens deflectometry 
operator (Sipkens et al. 2021), which is specified in 1. For 
planar fields, we invoke the paraxial assumption and directly 
approximate Eq. (3) by linear ray tracing.

2.3 � OF

In BOS, refraction results in the apparent 2D motion of 
a background pattern between a reference image, Iref , and 
a distorted (or “deflected”) image, Idef . This corresponds 
to a classic problem in computer vision known as opti-
cal flow, in which the image pair is used to infer a set of 
deflection vectors (Szeliski 2010). Figure 3 shows syn-
thetic and experimental examples of Iref and Idef for a cone 
cylinder shock scenario as well as the image differences, 
ΔI = Idef − Iref  . Note that these differences are nearly 
imperceptible when the images are placed side by side. 
Nevertheless, the cone shock structure is clearly visible 
in the plot of ΔI . The image pair is used to infer �x and �y 
at each pixel, which collectively form the measurement 
vectors for Eq. (6), i.e., �x and �y.

The transformation of Iref into Idef is modeled in terms 
of a 2D field of deflection vectors, which warp the original 
intensity distribution (Davies 2004). There are three key 
assumptions that underlie OF for BOS (Atcheson et al. 
2009): 

(6)�� = Csys D��.

1.	 Changes in the scene are strictly due to refraction, as 
opposed to motion or dynamic lighting (shadows, reflec-
tions, etc.).

2.	 The intensity of features is conserved, meaning there is 
neither emission from the flow nor extinction of light 
from the background. Stated mathematically, 

 where �t is the time interval between frames.
3.	 The magnitude of deflections is small.

Given these assumptions, the OF equation can be approxi-
mated by a first-order Taylor series expansion of Eq. (7),

Methods based on this expression, called gradient-based OF, 
are invalid for large deflections, e.g., in particle-based OF 
velocimetry, in which case Eq. (7) must be solved with a 
variation algorithm (Schmidt and Sutton 2019, 2020). How-
ever, BOS deflections are generally small enough to satisfy 
the Taylor series expansion (Goldhahn and Seume 2007). 
Time plays an arbitrary role in the OF equations in BOS. 
Therefore, �t may be set to unity such that Eq. (8) reduces to

where Ix and Iy are finite difference approximations to the 
partial derivatives in Eq. (8), evaluated via the reference 
image, and It is set to ΔI . Equation (9) applies to each pixel 
and contains two unknowns, �x and �y , for each equation 
(with one equation per pixel).

(7)I(x, y, t) = I
(
x + �x, y + �y, t + �t

)
,

(8)I(x, y, t) ≈ I(x, y, t) +
�I

�x
�x +

�I

�y
�y +

�I

�t
�t +…

(9)Ix �x + Iy �y = −It,
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Fig. 3   Synthetic and experimental images of a Mach 2 cone cylin-
der scenario; image differences are processed with an OF algorithm 
to estimate the deflection field (left). Exact deflections from the syn-

thetic scenario, determined via nonlinear ray tracing, are compared to 
estimates from an OF algorithm (right)
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The Horn–Schunck OF closure is ubiquitous since it is 
both easy to implement and produces acceptable solutions 
for a wide array of applications (Horn and Schunck 1981). 
However, the method amounts to first-order Tikhonov 
regularization, which is known to produce overly-smooth 
results in the context of flow field measurement (Corpetti 
et al. 2006; Yuan et al. 2005; Kadri-Harouna et al. 2013). 
Recently, a variational method called wavelet-based OF 
analysis (wOFA) was shown to yield more accurate deflec-
tion fields for BOS than Horn–Schunck OF (Schmidt and 
Woike 2021). In wOFA, the deflection field is represented 
using a wavelet basis and the (hypothetical) distorted 
image, I(x + �x, y + �y, t + �t) , is directly evaluated via bi-
cubic spline interpolation; see (Schmidt and Sutton 2020) 
for a complete description of the method. This approach 
allows for the evaluation of residuals from Eq. (7) without 
computing the finite differences of I, Ix and Iy , as must be 
done in gradient-based OF. Further, the wavelet transform 
exploits regularities in the deflection field to facilitate a com-
pressed representation of �x and �y , reducing the number of 
unknowns.

We use the wOFA procedure described in Schmidt and 
Woike (2021) for deflection sensing in our conventional 
BOS workflow. Sample deflections from wOFA applied to 
the noise-free synthetic cone shock image pair are shown in 
Fig. 3. This figure also shows the exact deflections that were 
determined by nonlinear ray tracing. Despite the high-accu-
racy of the wOFA approach, “wavelet fingerprints” can be 
seen throughout the shocked region. These high-frequency 
discrepancies between the ideal (true) deflections and wOFA 
estimates act as measurement errors in the reconstruction 
algorithm.

2.4 � Unified BOS

Until recently, deflection sensing and reconstruction were 
performed sequentially in BOS. As a result, non-physical 
regularization was needed in the deflection sensing step 
because �x and �y are not directly related to the density field 

(rather, they are LoS-integrated quantities). However, Grauer 
and Steinberg (2020) observed that coupled gradient OF 
equations, i.e., one instance of Eq. (9) for each pixel, can for-
mulated as a matrix system. The discrete BOS model from 
Sect. 2.2 can then be substituted into the matrix OF equation 
to relate the density field to raw image difference measure-
ments. In other words, the density field can be reconstructed 
from a vector of image difference data in a single step. All 
regularization in this “unified” procedure is applied to the 
density field per se, and the errors associated with deflection 
sensing are avoided.

Figure 4 is a visualization of unified BOS in matrix form. 
Equation (9) is applied to each pixel, independently. This 
amounts to a diagonal matrix operation applied to �x and �y , 
which may be expressed as a function of � . To start, diagonal 
matrices are formed from the horizontal and vertical inten-
sity gradients, Xi,i = Ix,i and Yi,i = Iy,i for i = 1, 2,… ,M for 
a system of M pixels. In this work, we employ second-order 
central differences to compute Ix and Iy . Next, we construct 
a data vector from the image pair, b = {−It,i}

M
i=1

 . Lastly, the 
x- and y-direction instances of Eq. (6) are substituted in for 
�x and �y , respectively, to relate b to �,

Here, A is the M × N unified BOS operator. Equation (10) 
can be solved with the same reconstruction techniques devel-
oped to solve Eq. (6).

2.5 � Axisymmetric reconstruction

There are many methods for reconstructing a 2D or 3D 
flow field from path-integrated measurements, as recently 
reviewed in Grauer et al. (2023). This paper considers the 
application of BOS to axisymmetric and planar flows. The 
geometric simplicity of these configurations facilitates an 
efficient representation of the fields and a simplified meas-
urement model. A brief overview of Abel inversion for 

(10)
X�x + Y�y = Csys

(
XDx + YDy

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

� = b.

Fig. 4   Visualization of unified BOS: x- and y-direction image gradients are multiplied by deflections to estimate the image difference, i.e., 
Eq. (9) is calculated at each pixel. Color scales are the same as in Fig. 3
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axisymmetric BOS and a regularization technique for uni-
fied BOS are presented below.

2.5.1 � Abel inversion for BOS

Path integrals through a radially symmetric object are 
described by the Abel transform, which has an explicit, 
analytical inverse. The forward transform loosely corre-
sponds to the measurement model for many tomography 
modalities, such as absorption or emission tomography. 
Consequently, the inverse Abel transform can be adapted 
to reconstruct absorbance or emission data when the 
target object is axisymmetric. However, the BOS meas-
urement model features a path integral over gradients of 
the density field, as opposed to integrals over � per se. 
This complication necessitates a tailored reconstruction 
strategy.

Recall the forward model for radial (y-axis) deflections 
in Eq. (3),

where 𝜌̄ is the so-called projected density field, which cor-
responds to the forward Abel transform of � when the flow 
is axisymmetric (Raffel 2015). The gradient and integral 
operations in Eq. (11) are reversible,3 leading to two distinct 
methods for reconstruction, which are outlined in Fig. 1. 

1.	 Indirect reconstruction: Eq. (11) is used to construct 
a Poisson equation that may be solved for 𝜌̄ , which is 
recovered via the standard inverse Abel transform.4

2.	 Direct reconstruction: the Abel transform is modified to 
incorporate ∇y and � is directly determined from �y . This 
resultant transform is often referred to as the “deflectom-
etry” version (Kolhe and Agrawal 2009).

The Poisson equation in indirect Abel inversion contains 
gradients of �x and �y . Differentiating these variables ampli-
fies errors from the deflection sensing procedure. Direct 
methods are comparatively stable, so we adopt the latter 
approach in this work.

The deflectometry Abel transform and its inverse are 

(11)

𝛿y = Csys ∫ray

∇y 𝜌(s)ds = Csys∇y ∫ray

𝜌(s)ds

�������
𝜌̄

= Csys∇y 𝜌̄,

where the radial direction is aligned with the y-axis and R is 
the outer radius of the flow, beyond which �y is zero (Kolhe 
and Agrawal 2009). Notice that Eq. (12) requires continu-
ous deflection data, which is not available in practice, so the 
expression must be discretized. The resultant direct deflec-
tometry Abel inversion for a discrete field is

where K is an inverse Abel operator that is obtained by dis-
cretizing Eq. (12b). Since �y is resolved at discrete intervals 
(viz., elements of �y ), K effectively interpolates this data. 
The two most common techniques for building K follow 
Simpson’s 1/3 rule and the two-point method. Expressions 
for the elements of K derived using Simpson’s 1/3 rule and 
two-point interpolation are provided in 1.

Unfortunately, the simplifications required to obtain K , 
such as the assumption of parallel rays, are often violated by 
practical imaging systems. Further, Eq. (13) is a 1D trans-
form that must be independently applied to each axial seg-
ment of a 2D flow. Neither axial gradients in the flow nor 
axial deflections are considered in the inversion. Therefore, 
inverting a high-fidelity 2D forward model like the unified 
BOS matrix is more robust (Daun et al. 2006; Sipkens et al. 
2021).

2.5.2 � Tikhonov regularization

The unified BOS model relates the (as yet unknown) density 
field to a measured image difference vector, b . Therefore, 
this model must be inverted to estimate � from b . This is 
a discrete ill-posed inverse problem and additional infor-
mation is required for stability (Daun et al. 2016). We uti-
lize a second-order Tikhonov penalty to promote smooth 
solutions:

In this expression, L is a discrete Laplacian operator (or 
“Tikhonov matrix”), defined in 1, �Tik is a regularization 
parameter that controls the influence of the penalty, and 
solutions may be obtained with a linear least squares algo-
rithm. As �Tik goes to zero, �� approaches the least squares 
solution, which is highly sensitive to noise in b . Conversely, 
for very large values of �Tik , Eq. (14) is minimized by the 
uniform vector that minimizes the measurement residuals. 

(12a)�y(y) = 2Csys ∫
R

y

∇y �(r)
y√

r2 − y2
dr and

(12b)�(r) = −
1

� Csys
∫

R

r

�y(y)
1√

y2 − r2
dy,

(13)� = C−1
sys

K�y,

(14)�� = argmin
�

�‖A� − b‖2
2
+ �2

Tik
‖L�‖2

2

�
.

3  This result is a consequence of the Leibniz integral rule, assuming 
constant bounds of integration.
4  These steps are commonly switched in 3D BOS tomography 
(Atcheson et al. 2008); this is also possible in axisymmetric BOS (see 
the work of Ota et al. (2015), Hirose et al. (2019), for instance), but 
doing so is rare.
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At moderate values of �Tik , however, �� corresponds to a 
smooth field that approximately satisfies the measurement 
equations. Therefore, we optimize the regularization param-
eter through a phantom study, wherein �� is computed from 
a synthetic image pair and compared to the exact density 
distribution. This process is repeated for a large range of 
regularization parameters, and we set �Tik to the value which 
maximizes the accuracy of ��.

3 � Physics‑informed BOS

Current BOS algorithms can produce a quantitative estimate 
of the density field in a target flow, but regularization is 
required at each stage of the workflow. Although most regu-
larization schemes for BOS are inspired by physics, exist-
ing methods are ultimately incompatible with the underlying 
flow fields and thus give rise to errors or “reconstruction 
artifacts.”

Data assimilation (DA) is a promising alternative to the 
standard suite of BOS techniques. DA algorithms seek to 
solve the equations governing fluid motion subject to data-
based constraints (Hayase 2015). This approach avoids 
the pitfalls of the BOS methods described above and also 
provides access to the latent velocity, pressure, and energy 
fields. There are numerous methods that can be used to 
solve (or approximately solve) the governing equations 
while conforming to experimental measurements. Kalman 
filter (Cornick et al. 2009; Ali et al. 2022), state observer 
(Saredi et al. 2021), adjoint–variational (Mons et al. 2021; 
Wang et al. 2022), and hybrid simulation (Vinnichenko et al. 
2022) algorithms have all been used to reconstruct flow 
fields with input from an experiment. For instance, local 
ensemble Kalman filter DA was employed to forecast tem-
perature and velocity fields in a Rayleigh–Bénard convection 
cell from a set of experimental shadowgraphs (Cornick et al. 
2009). A similar framework was developed at ONERA by 
Ali et al. (2022), who repeatedly solved the RANS equa-
tions and sequentially updated turbulence model parameters 
with a Kalman filter to match synthetic BOS measurements. 
State observer methods incorporate proportional or propor-
tional–integral feedback, based on measurements of one 
or more fields, into the governing equations (Saredi et al. 
2021). Variational techniques optimize a control vector, such 
as the initial flow state, to minimize an arbitrary data loss 
(Mons et al. 2021; Wang et al. 2022), and hybrid CFD simu-
lations are conducted with one or more fields or parameters 
that are fixed by data. As an example of the latter technique, 
Vinnichenko et al. (2022) conducted a hybrid simulation of 
natural convection using a BOS-based estimate of the tem-
perature field to determine the buoyancy term.

Unfortunately, these DA methods come at a high compu-
tational cost. Furthermore, all examples of BOS DA reported 

to-date have employed either (a) idealized synthetic BOS 
data (Ali et al. 2022) or (b) temperature field estimates from 
a conventional BOS algorithm (Cai et al. 2021; Vinnichenko 
et al. 2022). When the data loss, constraint, or forcing term 
in a DA algorithm includes reconstructions, as opposed to 
the measurement model and raw signal, the resultant fields 
are adversely affected by non-physical reconstruction arti-
facts introduced by the BOS algorithm. These artifacts can 
bias the DA algorithm or even prevent convergence, so it is 
essential to accurately mimic the image formation process 
in the data loss term (Molnar and Grauer 2022).

We conduct physics-informed BOS using a low-cost, flex-
ible, easy-to-implement DA scheme in which the flow is rep-
resented with a PINN. The goal is to optimize an aggregate 
loss, consisting of data and physics residuals, using mature 
deep learning tools. The result is accurate, spatially-resolved 
estimates of all the flow fields.

3.1 � PINN framework

Physics-informed neural networks utilize a deep, feed-
forward network to map spatio-temporal inputs to flow 
fields (Raissi et al. 2019). Figure 5 shows the architecture 
of a PINN set up for physics-informed BOS. We utilize 
(x, r) and (x, y) as inputs for axisymmetric and planar 
flows, respectively. Density ( � ), velocity (u and v), and 
total energy (E), are the outputs. Automatic differentiation 
(AD) is employed to calculate exact partial derivatives of 
the network, and these partials are used to evaluate the 
governing equations throughout the measurement domain. 
The PINN does not generally satisfy these equations and 
the residuals are added up in a physics loss. Separately, a 
data (or measurement) loss is obtained by evaluating the 
unified BOS measurement model and comparing synthetic 
image differences, computed using the density field out-
putted by the PINN, to experimental image differences. 
The total objective loss (data + physics) is minimized via 
backpropagation to estimate the flow field in functional 
form.

In this work, we specify a physics loss using the com-
pressible, steady, 2D Euler equations. This is an appropriate 
choice for the present demonstration, which features invisid 
flow, but viscous effects, transience, and 3D fields can be 
included as necessary. For now, each of the non-dimensional 
Euler equations is re-arranged to isolate a residual, � : 

(15a)�1 = (� u)x + (� v)r + �

(
1

r
� v

)

(15b)�2 =
(
� u2 + p

)
x
+ (� v u)r + �

(
1

r
� u v

)
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 Here, (⋅)x and (⋅)r denote partial derivatives with respect to 
x and r (naturally, r is replaced with y for planar cases) and 
� is the radial source coefficient which equals 1 for axisym-
metric flow and 0 for planar flow. In order to compute residu-
als along the axis of symmetry, we multiply the right side 
of Eq. (15) by r. The field variables in Eq. (15) must be 
scaled by an appropriate reference to obtain dimensional 
values. We adopt the inflow conditions as our reference set, 
with a single reference for both components of velocity. A 
polytropic equation of state is employed to close the Euler 
equations,

where � is the ratio of specific heats. Lastly, since this paper 
is concerned with approximately inviscid flow and approxi-
mately uniform inlet conditions, we consider an additional 
equation that is satisfied by irrotational velocity fields,

Residuals from Eqs. (15) and (17) are integrated over the 
domain, culminating in an overall physics loss,

where L and R are the length and radius of the measure-
ment domain. (Once again, the appropriate modifications are 
made for planar cases.) This expression is approximated by 
Monte Carlo sampling, and residuals from the irrotational 
equation are omitted in certain cases, as explicitly noted in 
the results sections.

(15c)�3 = (� u v)x +
(
� v2 + p

)
r
+ �

(
1

r
� v2

)

(15d)
�4 =

[
(�E + p)u

]
x
+
[
(�E + p) v

]
r
+ �

[
1

r
(�E + p)v

]
.

(16)p = (� − 1)�
[
E −

1

2

(
u2 + v2

)]
,

(17)�5 = ur − vx.

(18)Lphys =
1

�R2L ∫
L

0 ∫
R

0

‖‖‖
[
�1,… , �5

]‖‖‖
2

2
2�r dr dx,

There is an infinite set of flow fields that minimizes 
Eq. (18). Therefore, we connect the PINN to our experi-
mental target with a data loss. This loss features the unified 
BOS model, such that the density field from the PINN is 
employed to compute image differences, which may then be 
compared to the unprocessed experimental images. In other 
words, our data loss is

where b is contains experimental image differences, A is the 
unified BOS operator, and � is a vector of density data that 
is obtained from the PINN. We query the PINN at the sup-
port nodes of our basis, Φ , to construct � . It should also be 
emphasized that the PINN outputs normalized values; hence, 
the outputted density data must be multiplied by a reference 
density (the inlet density in our case) to populate �.

The final loss term is an inlet boundary condition, which 
is generally known to first-order for experiments such as the 
wind tunnel tests described in Sect. 4. Our inlet loss is

where � , u, v, and E are evaluated at x = 0 and (⋅)in denotes 
an inlet value and the radial integral is replaced with a linear 
one for planar flow. The objective loss to be minimized is

This equation is uniquely minimized by the true flow fields 
so long as the PINN is big enough to express the flow, but 
the relative weight of the loss terms can help or hamper 
training. We optimize the weighting parameters, �phys , �meas , 
and �in , by conducting a simple parameter sweep with a syn-
thetic case; optimal weights from this test, �meas∕�phys = 10 
and �in∕�phys = 100 , are used throughout the paper. Several 
groups have developed heuristics to programmatically assign 
weights to individual components of a PINN’s objective 

(19)Lmeas = ‖A� − b‖2
2
,

(20)

Lin =
1

�R2 ∫
R

0

‖‖‖
[
� − �in, u − uin, v − vin,E − Ein

]‖‖‖
2

2
2�r dr,

(21)Ltotal = �meas Lmeas + �phys Lphys + �in Lin.

Fig. 5   Our PINNs map axial and radial (or vertical) coordinates to the fields of interest. The unified BOS measurement model is embedded in 
the data loss term; the Euler and irrotationality equations are employed for physics; experimental wind tunnel conditions are enforced at the inlet



	 Experiments in Fluids (2023) 64:14

1 3

14  Page 10 of 24

loss, e.g., Wang et al. (2022), Wang et al. (2021), Jin et al. 
(2021). However, the benefits of these adaptive techniques 
are generally marginal in the presence of realistic meas-
urement noise, as discussed in Molnar and Grauer (2022). 
Another promising approach is to use a traditional algorithm 
for constrained optimization, like the alternating direction 
method of multipliers, which was applied to PINNs by Basir 
and Senocak (2022). We plan to assess this scheme in future 
research.

3.2 � Network architecture and training

The PINNs used for this work are implemented in Tensor-
Flow (Abadi et al. 2016). Networks that represent planar 
flows comprise five hidden layers, with 50 neurons per out-
put variable, while the networks representing axisymmetric 
flows have ten hidden layers to ensure adequate expressiv-
ity. We employ swish activation functions unless otherwise 
noted. Weights are randomly initialized with a standard nor-
mal distribution and biases are initially set to zero.

Training is performed by minimizing Eq. (21) with the 
Adam optimizer (Kingma and Ba 2014) at a learning rate of 
10−3 for the first three passes through the full image dataset 
and 10−4 thereafter. The PINNs are trained until the total 
loss plateaus; we define a plateau as a 5000-iteration stretch 
over which the 500-iteration running average of Ltotal varies 
by less than 0.5%. Here, an iteration is defined as a single 
update of the parameters by the Adam optimizer. Recon-
structions are computed on an NVIDIA Tesla P100 graph-
ics processing unit. Planar reconstructions initially took 
five hours, on average, and axisymmetric reconstructions 
took around nine hours; optimization of the code in Tensor-
Flow 2.9.2 has reduced these times to approximately two and 
three hours, respectively.

3.3 � PINNs for high‑speed flow

Supersonic flow is compressible and subject to shock for-
mations in most practical scenarios. The Euler equations 
are hyperbolic and shocks manifest as discontinuities in the 
corresponding solution. It is challenging to account for these 
effects with a numerical solver, which has led to a rich lit-
erature on bespoke CFD methods for supersonic conditions. 
Flow with shocks is similarly problematic for PINNs and 
several groups are actively adapting traditional CFD tech-
niques to improve the ability of PINNs to represent high-
speed flow. We discuss techniques for applying PINNs to 
hyperbolic equations in 2.

The use of PINNs to learn real compressible flow fields 
from experimental data is of particular interest, and sev-
eral researchers have attempted to simulate this process 
with a pseudo-schlieren scenario. These tests use a loss 
consisting of point-wise �� “measurements” as opposed to 

LoS-integrated signals. Mao et al. (2020) pioneered the use 
of a pseudo-schlieren loss to estimate 1D shock-laden air-
flow (Mao also developed a forward solver for a 2D oblique 
shock with no schlieren-type data). Cai et al. (2022) recon-
structed a synthetic 2D bow shock in the same way, quickly 
followed by the paper of Jagtap et al. (2022), who utilized 
domain decomposition (via an extended PINN) to facilitate 
the representation of oblique and bow shocks as well as 
an expansion fan. All three studies utilized a dense array 
of noise-free, synthetic, multi-modal measurements. For 
instance, Jagtap and coworkers specified 700 local density 
gradient pairs and 50 pressure taps in their data loss term. 
By way of context, well-instrumented cones support up to 16 
taps (Casper et al. 2016), and a typical field-ready design has 
no taps at all. Since real schlieren data is LoS-integrated and 
camera rays may diverge in the measurement volume (Walsh 
et al. 2000; Sipkens et al. 2021), particularly when access 
windows are required for imaging, we restrict our tests to 
plausible synthetic data and real experimental images.

4 � Measurement scenarios

We use physics-informed BOS to process experimental and 
synthetic image data for the axisymmetric cone cylinder sce-
nario depicted in Fig. 6. Additionally, we demonstrate our 
technique on an analytical (planar) Prandtl–Meyer expansion 
fan. Both scenarios feature Mach 2 flow, leading to signifi-
cant shock formations.

4.1 � BOS measurements

4.1.1 � Experimental setup

The BOS setup featured in this paper is located at the 
National Aerospace Laboratories (NAL), Bangalore, and is 
described in detail in Venkatakrishnan and Meier (2004). 
The facility houses a trisonic wind tunnel and the experiment 
is conducted in a square test section having a 0.3 × 0.3 m2 
profile. Square access windows, approximately 1” thick, are 
installed on opposite sides of the tunnel to enable imaging 
of the background pattern. The model is a 15◦ half-angle 
cone cylinder, positioned in the middle of the tunnel with 
zero inclination. This configuration was chosen because the 
resultant density field about the cone can be determined 
from classical cone shock tables (Sims 1964). Testing was 
conducted for Mach 2 inflow, which we assumed to be uni-
form throughout the cross section.

The background was placed 0.7 m from the tunnel win-
dow. Imaging was conducted with a scientific-grade camera 
(Kodak ES 1.0) having a 1 MP sensor and 9 μ m pixels. The 
camera was fitted with a 50 mm lens, stopped down to f/8, 
and placed 1.4 m away from the tunnel, pointing towards 
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the background plate. We consider a 540 × 652 px subsec-
tion of the sensor that is centered on the axis of symmetry. 
Experimental images of the cone are shown in Fig. 3, and 
the difference data can be seen on the right side of Fig. 7. 
Note that we used a single pair of experimental images. Sig-
nificant artifacts are visible in resulting image differences, 
which exhibit noticeable striations that are emblematic of 
fixed pattern noise.

4.1.2 � Generating synthetic data

In order to benchmark the accuracy of our reconstruction 
scheme, we test the method on synthetic images that corre-
spond to ground truth (“phantom”) density fields, introduced 
in the next section. To start, a pinhole camera model, based 
on the parameters presented above, is used to determine the 
principal ray for each point on the sensor; we supersample 
the sensor at four times the native resolution, i.e., using four 
rays per pixel. Linear ray tracing is employed for regions of 
constant density: outside the wind tunnel, inside the tunnel 
for the reference image, and through the windows (including 

Snell’s Law-type refraction at each interface). Further, we 
sample the aperture using the method of Cook et al. (1984) 
to account for the blurring and finite depth-of-field produced 
by a real aperture. Our measurement operator is thus effec-
tively a “cone beam” sensitivity matrix that can mimic BOS 
measurements recorded with distinct f-numbers.

While reference images are generated by linear ray tracing 
throughout the domain, distorted images require nonlinear 
ray tracing inside the wind tunnel and linear ray tracing out-
side. Nonlinear ray tracing involves numerically solving the 
ray equation for a nonuniform refractive index field. We use 
the fourth-order Runge–Kutta scheme developed by Sharma 
et al. (1982) to solve Eq. (2), described in 3. Lastly, we cor-
rupt some of the synthetic images with noise. Three cases 
are considered: clean (noise-free) image pairs, single-shot 
noisy image pairs, and ten-shot average image pairs. Indi-
vidual noisy images are generated by applying a Gaussian 
blur filter with a standard deviation of 1.5 px and simulating 
shot-noise. The latter effect is modeled as a Poisson random 
variable, assuming a maximum signal of 5000 counts (Foi 
et al. 2008). Clean, ten-shot noisy, and single-shot noisy dif-
ference data can be seen in the first three panels of Fig. 7. In 

Fig. 6   Schmatic of the cone 
cylinder experiment at NAL, 
Bangalore. Mach 2 airflow 
passes over a 15◦ cone cylinder. 
The cylinder is located in the 
middle of a square 0.3 × 0.3 m2 
test section. Photos of a backlit 
background pattern are recorded 
through 1”-thick quartz acccess 
windows using a 1 MP camera
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separate tests, we added 1–10% centered Gaussian errors to 
each noisy shot to mimic low-to-high levels of thermal noise.

Notice that the experimental images in Fig. 3 contain a 
dot pattern background whereas the synthetic background 
contains a superposition of axis-aligned sinusoidal waves. 
Historically dot patterns, inspired by PIV, were used to facil-
itate cross-correlation deflection sensing. However, since OF 
takes advantage of intensity gradients in the background, 
any blank space between the dots is of no use. Therefore, 
we stick to the sine wave pattern, which has been shown to 
improve performance (Grauer and Steinberg 2020; Schmidt 
and Woike 2021).

4.2 � Phantom flow fields

4.2.1 � Axisymmetric cone cylinder shock

We simulate the Mach 2 cone cylinder experiment reported 
in Venkatakrishnan and Meier (2004) to estimate the density, 
velocity, and energy fields corresponding to our experimen-
tal data. Simulations are performed using the compress-
ible Euler solver in SU2 7.3.0 (Economon et al. 2016). The 
axisymmetric computational domain has a radius of 0.15 m 
and length of 0.25 m, excluding the cone cylinder geometry. 
Inlet conditions are specified to match experimental condi-
tions for a settling pressure and temperature of 2.1 kg/cm2 
and 300 K, respectively, and M = 2 , where M is the Mach 
number. The ratio of specific heats for air is set to the stand-
ard value of 1.4. Discretization errors were confirmed to be 
minimal through a grid convergence study, which is reported 
in 4, along with additional details about the simulation.

4.2.2 � Planar expansion fan

A secondary, analytical phantom is considered, namely: the 
canonical Prandtl–Meyer expansion fan. This phenomenon 
occurs when supersonic flow encounters a convex ramp, as 
illustrated in Fig. 8; the flow accelerates over the ramp and 
sustains a continuous isentropic expansion across an infinite 
sequence of “Mach waves” (Anderson 1990). We generate 
an expansion fan for M1 = 2 inflow that encounters a 20◦ 
corner. Key parameters of the flow are provided in Table 1, 
and details about the field calculations are given in 4. When 
simulating BOS measurements of the fan, we assume a 
slightly narrower test section of width 3.75 cm to limit the 
magnitude of deflections, such that the paraxial assumption 
holds true. A single pair of supersampled images are used 
in the inversion. Additionally, we consider a few cases with 
“pressure tap” information using the analytical value at the 
ramp.

5 � Results and discussion

5.1 � Axisymmetric cone cylinder shock

First, we compare density fields obtained by conventional 
BOS algorithms to our physics-informed estimates. Sec-
tion 2.5 introduces three methods for axisymmetric BOS: 
Simpson’s 1/3 Abel inversion, two-point Abel inversion, and 
unified BOS; the latter is conducted with a Sipkens kernel 
and Tikhonov regularization. Both Abel inversions require 
deflection data, which we obtain using a state-of-the-art 
wOFA algorithm (Schmidt and Woike 2021). Conversely, 
the unified BOS and physics-informed algorithms operate 
directly on the unprocessed image difference data.

Figure 9 depicts our Mach 2 cone cylinder density phan-
tom as well as reconstructions computed with synthetic data 
(single-shot, noisy) and experimental data. The CFD simula-
tion was designed to replicate the experimental conditions, 
so the phantom is expected to very nearly approximate true 
flow fields from the experiment. All BOS techniques con-
sidered in this paper produce a qualitatively accurate esti-
mate of the density field. Uniform inflow compresses as it is 
deflected over the cone cylinder and expands as it flows past 
the shoulder. However, there is a clear difference in quality 
between these techniques. The explicit inverse Abel trans-
forms underpredict compression, overpredict expansion, and 
exhibit a distinct error at the top-right corner that is associ-
ated with the Abel transform (namely, with the erroneous 
assumption of parallel rays). Results from these algorithms 
are substantially similar. Next, unified BOS with a Sipkens 
kernel produces a superior prediction in terms of magnitude, 

Table 1   Parameters for a Prandtl–Meyer Expansion Fan Phantom

Region M � , kg/m3 u, m/s v, m/s p, kPa

Inflow 2 0.55 517.6 0.0 26.3
Outflow 2.83 0.22 572.5 −208.4 7.2

µ( )
µ1

M1 = 2.0
/  = 1

M2 = 2.83
/  = 0.40

Fig. 8   Supersonic flow over a convex ramp leads to an expansion fan. 
The fan is characterized throughout in terms of a turning angle, � , 
which is related to the Mach angle, �
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although artifacts from the sine wave background are clearly 
visible in the density field. These artifacts can be suppressed 
by increasing �Tik , but doing so damps the magnitude of 
the field and thereby amplifies reconstruction errors. Lastly, 
the physics-informed reconstruction almost perfectly recov-
ers the density field, exhibiting crisp features, reminiscent 
of the ground truth density field, including a well-defined 
expansion fan.

To quantify relative performance, we calculate normal-
ized root-mean-square errors (NRMSEs) for each recon-
struction in percentage form. Both Simpson’s 1/3 rule and 
two-point Abel inversion generate 8.34% error and the Sip-
kens kernel with Tikhonov smoothing produces 6.12% error 
for this phantom. By comparison, our physics-informed 
density field estimate has an error of only 3.75%. While it 
is not possible to comprehensively baseline the accuracy 
of our experimental reconstruction, we can compare the 
resultant density field to predicted values from an ana-
lytical cone shock table (Sims 1964). This comparison is 
shown in Fig. 10, alongside data from Venkatakrishnan and 
Meier (2004). Those authors used a 5.1 MP camera (Sony 
DSC F-707) to record BOS images of the same cone shock 
structure, and they reconstructed the density field via fil-
tered back projection.5 The plot corresponds to a density cut 
taken 2 mm downstream of the cone apex. Our reconstruc-
tion neatly matches the analytical result, exhibiting a closer 
correspondence than the results from (Venkatakrishnan and 
Meier 2004). Note that we omitted the 4 ◦ region immedi-
ately above the cone, which was severely affected by blur 
and calibration errors. Altogether, these results suggest that 
our physics-informed technique yields a qualitatively and 
quantitatively accurate estimate of the true field. Further-
more, to the best of our knowledge, this represents the first 
use of a PINN to reconstruct experimental measurements of 
a supersonic flow.

Not only does physics-informed BOS increase the accu-
racy of density field estimates, it also provides access to 

the latent fields. Fundamentally, the PINN outputs den-
sity, velocity, and total energy fields, which may be used to 
compute pressure or temperature, as desired. Velocity and 
pressure are directly relevant to the analysis of aerodynamic 
performance, so we present density, velocity, and pressure 
fields obtained from the cone cylinder measurements. These 
fields are estimated from synthetic and experimental data 
using physics-informed BOS. NRMSEs for all estimates 
computed with synthetic data are provided in Table 2; the 
corresponding panel of phantoms and reconstructions can 
be found in Fig. 11.

All fields are accurately reconstructed from synthetic 
measurements, with a maximum error of 3.75%, 1.13%, 
and 3.09% in the density, velocity, and pressure estimates, 
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5  Images from the 5.1 MP data set, recorded in 2003, are no longer 
available for processing.
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respectively, when the full loss is employed. This high 
degree of accuracy corresponds to a clear visual resemblance 
in all cases. Indeed, differences between the phantoms and 
reconstructions of synthetic data are nearly imperceptible, 
regardless of the level of noise. In subsequent tests with 
additional Gaussian errors, having a standard deviation up 
to 10% of the intensity range, reconstruction errors for the 
ten-shot data remained below 5%. However, the errors did 
increase with added noise (as expected), and visible arti-
facts are present in the experimental reconstruction due to 
significant noise in the image data and erratic background 
pattern gradients. Of particular note, all non-zero differences 
upstream of the compression shock in Fig. 7 are erroneous, 
indicating the intensity and spatial extent of the noise. Nev-
ertheless, our experimental results are consonant with our 

CFD results, which supports the use of physics-informed 
BOS. In addition, a Bayesian framework could be lever-
aged to counteract biased and correlated noise (Molnar and 
Grauer 2022). We also be note that the PINN contains fewer 
parameters than the CFD simulation, having 363,200 and 
1,189,492 parameters, respectively, although the CFD solver 
has a runtime of approximately 10 min (as opposed to the 
PINN’s several-hour training time).

Table 2 includes two sets of errors for each image pair: 
one based on the whole physics loss (i.e., with the Euler and 
irrotationality equations, �1–�4 and �5 ) and one without �5 . 
The resultant reconstructions are shown in Fig. 12. The util-
ity of adding an irrotational flow residual to Lphys is marginal 
for the synthetic cases. However, the benefit of including 
�5 increases with noise, per Table 2. Consequently, there is 
a significant qualitative improvement in the experimental 
results when �5 is used, which manifests as a clear reduction 
of artifacts, with an acute improvement in the magnitude of 
the velocity field past the expansion fan. This result suggests 
that including additional terms, where appropriate, such as 
an entropy pair residual, could further improve the stability 
and accuracy of physics-informed BOS.

5.2 � Planar expansion fan

Second, we present results for the Prandtl–Meyer expansion 
fan. A very similar set of fields was used by Jagtap et al. 
(2022), allowing for a direct comparison between our PINN 

Table 2   Percentage NRMSEs for Cone Shock Reconstructions from 
Best-Case Conventional and Physics-Informed BOS

Data Density u-velocity v-velocity Pressure

Conv. PI-BOS

Clean 4.81 1.13 0.36 0.53 1.39
Clean (no �

5
) 1.22 1.39 0.74 1.56

Averaged 4.98 3.16 0.47 0.70 1.86
Avg. (no �

5
) 3.24 2.82 1.30 2.07

Single-shot 6.12 3.75 0.61 1.13 3.09
SS (no �

5
) 4.16 2.09 1.95 3.42

Fig. 11   Reconstructions of all 
axisymmetric cone shock data 
sets. Synthetic data are recon-
structed with increasing noise 
(clean, ten-shot average, and 
single-shot), followed by experi-
mental data. All reconstructions 
(including the experimental 
case) bear a close resemblance 
to the CFD fields
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implementations. Figure 13 depicts physics-informed BOS 
estimates of the fan’s density, velocity, and pressure fields, 
all of which are recovered with high fidelity. The reconstruc-
tions exhibit minimal errors which are concentrated in the 
immediate vicinity of the singularity, located at the corner 
of the wedge. Including this region in the data loss term 
can cause the solution to blow up, resulting in nonsensical 
fields. We tested this using a BOS data loss as well as the 
local density gradient loss term employed by Jagtap et al. 
(2022). The instability is present for both loss formulations. 
To avoid this issue, we omit a minute region surrounding 
the corner from our data loss. Excluding these gradients is 
justified for BOS, in any case, because they are too strong to 
satisfy the paraxial assumption, even for the narrow test sec-
tion of interest, i.e., 3.75 cm. By contrast, physics residuals 
are computed throughout the whole domain.

We also explored the stability of expansion fan recon-
structions to varying measurement sources and physics loss 
components. Figure 14 depicts “flow generation” at the tip 
of the wedge and velocity error maps for different loss com-
ponent scenarios. Positive flow generation indicates regions 
where the slip wall condition is not satisfied due to an erro-
neous inflow of momentum. We do not include a slip wall 
boundary condition in Ltotal , so this behavior is inferred from 
the BOS data, Euler equations, and inlet conditions, alone. 
However, there is a short region at the leading edge of the 
ramp over which we observe flow generation errors. These 
errors quickly diminish with distance normal to the ramp 
and down the ramp. Including an additional measurement 
towards the leading edge of the ramp, such as a pressure tap, 
significantly diminishes flow generation (note the x-axis is 
plotted in log scale).
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Fig. 13   Reconstructions of a 
planar expansion fan from clean 
synthetic data. Errors are con-
centrated about the singularity
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While reconstructions of synthetic cone shock data are 
robust to the inclusion of �5 in Lphys , fan reconstructions are 
more sensitive, possibly due to a greater multiplicity of weak 
solutions to the Euler equations at the zero-viscosity limit. 
Streamwise velocity errors decrease from 1.15% for a simple 
Euler loss to 0.61% when the pressure tap is included and to 
0.48% for the Euler equations plus �5 (all other fields exhibit 
similar errors across these scenarios). In the first case, con-
sidering only the Euler equations, the PINN yields a sig-
nificant over-prediction of streamwise velocity and under-
prediction of the vertical component along the wedge. This 
is largely remedied by adding a single pressure tap 5 mm 
past the lip of the wedge, underlining the general principle 
that multi-modal measurements should be utilized whenever 
possible. Similar to Mao et al. (2020), we find that the loca-
tion of the pressure tap is an important consideration. Mov-
ing the tap much further down the wedge, e.g., to 75 mm, 
fully eradicates the gains to accuracy that we observe in the 
5 mm case. This fade-out occurs because the flow generation 
problem is local and the tap is most useful in a region where 
image data is lacking (recall that we exclude BOS data near 
the singularity in this case). Unfortunately, while a single tap 
can reduce flow generation, it is insufficient to fully mitigate 
velocity field errors. Full-field constraints, such as the irrota-
tionality equation, provide much more utility, as can be seen 
in the error maps in Fig. 14.

In addition to these BOS-related tests, the expansion fan 
scenario serves as a convenient testbed for analyzing the 
performance of PINNs used for hyperbolic problems. For 
instance, we tested the dimensional and non-dimensional 
Euler equations in training and found that the former physics 

loss is far less stable.6 This finding confirms the numeri-
cal tests of Haghighat et al. (2022), who attributed the per-
formance differential to the disparate magnitudes of the 
dimensional Euler loss components, spanning roughly five 
orders of magnitude in our scenarios. An adaptive weight-
ing scheme could potentially help to overcome this issue, 
but we previously observed that such schemes are unsta-
ble for noisy data (Molnar and Grauer 2022). Therefore, 
we recommend using the non-dimensional Euler equations, 
instead. Separately, we tested a suite of activation functions, 
including the swish, GELU, hyperbolic tangent, leaky ReLU, 
and sigmoid functions. To lacklustre effect, the performance 
of these functions was quite similar, although each choice 
exhibited a unique optimum of �meas , �phys , and �in , likely 
because some activation functions saturate (e.g., tanh and 
sigmoid) while others do not (e.g., swish and GELU).

6 � Conclusions and outlook

We present a data assimilation technique for background-ori-
ented schlieren called physics-informed BOS. This approach 
combines a comprehensive measurement model, based on 
unified BOS, with the governing physical equations, in this 
case the Euler and irrotational equations, to infer steady den-
sity, velocity, and energy fields from a single pair of images. 
The method utilizes a physics-informed neural network to 
represent the flow; PINNs are flexible, easy-to-use tools 
for DA, but they had not previously been used to recon-
struct supersonic flow from experimental data. Indeed, this 
work reports the first such use of a PINN to the best of our 
knowledge. We report accurate, multi-parameter reconstruc-
tions without the use of pressure data, artificial viscosity 

Fig. 14   Flow generation along 
the first ten millimeters of the 
80 mm ramp, plotted for distinct 
loss combinations (left). Axial 
and transverse velocity errors 
for each loss combination 
(right). Dashed lines in the error 
maps indicate the region over 
which flow generation is plotted
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have the same form.
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regularization, or an entropy condition. Several important 
conclusions can be drawn from this work. 

1.	 Physics-informed BOS with a PINN yields more accu-
rate estimates of the density fields than conventional 
BOS algorithms. In all synthetic cases, differences 
between the phantoms and reconstructions are nearly 
imperceptible. Additionally, in the experimental case, 
there is good agreement with the CFD solution.

2.	 Additional physics-based residuals, such as an irrota-
tionality equation, can be included in the physics loss 
to improve the stability of training, accuracy of recon-
structions, and resilience to noise. In much the same 
way, multi-modal measurement information can guide 
the PINN towards the correct, physical solution during 
training.

3.	 Akin to conventional CFD techniques, singularities 
pose a significant challenge for PINNs and need to be 
addressed. In scenarios where a singularity may arise, 
physics constraints should be strengthened to stabilize 
the DA scheme.

4.	 Tuning the relative weight of loss components is essen-
tial to the procedure, and the optimal weighting depends 
upon one’s choice of activation functions.

Appendix A: Bases and kernels 
for axisymmetric BOS tomography

Appendix A.1: Bases

Recalling Eq. (4), the radially-symmetric density field is 
approximated as a sum over the basis, Φ,

where �j is the jth basis function. Typically, these functions 
are uniform, linear, or quadratic in BOS tomography. Fol-
lowing Sipkens et al. (2021), we utilize a uniform discretiza-
tion scheme in the axial direction and a linear scheme in the 
radial direction.

The uniform axial functions are given by

for a set of axial locations, xj , where H(⋅) is the Heaviside 
function. Differentiating � with respect to x yields

where fδ is the Dirac delta function. Our radial basis com-
prises piecewise linear functions that span circular annuli,

(22)�(x, r) ≈

N∑
j

�j �j(x, r),

(23)�j(x) = H
(
x − xj

)
− H

(
x − xj+1

)
,

(24)
��j

�x
= fδ

(
x − xj

)
− fδ

(
x − xj+1

)
,

Note that this expression must be modified at the first and 
final functions to exclude the j − 1 and j + 1 terms, as appro-
priate, assuming a uniform inner circle for the first basis 
function and a field that decays to zero at the outer radius. 
The radial gradient of �j is

Lastly, we combine these bases to obtain an axisymmetric 
linear–uniform basis,

where �j is the resultant 2D basis function. The second-order 
Tikhonov matrix for this basis has elements

where ± corresponds to + and − for outer and inner radial 
neighbors, respectively, and each element is scaled by the 
grid spacing, h−2 , assuming equal spacing in x and r, i.e., 
h = Δx = Δr . This definition is modified to enforce the 
free stream refractive index at the outer radius. Effectively, 
this penalty utilizes the discrete cylindrical Laplacian of 
� to promote reconstructions that are both axially- and 
radially-smooth.

Appendix A.2: Kernels

Three direct, conventional kernels are utilized to baseline 
the PINN approach. In this context, “direct” means that the 
kernel relates the deflection data to a density field (Simp-
son’s 1/3 rule and the two-point method) or vice versa (the 
Sipkens kernal).7 “Indirect” refers to methods that require 
an explicit Poisson solver.

Simpson’s rule arises from a traditional approach to numeri-
cal integration in which the area under a curve is approximated 

(25)𝜙j(r) =

⎧
⎪⎨⎪⎩

r−rj−1

rj−rj−1
rj−1 < r ≤ rj

r−rj+1

rj−rj+1
rj < r ≤ rj+1

0 otherwise

.

(26)
𝜕𝜙j

𝜕r
=

⎧
⎪⎨⎪⎩

1

rj−rj−1
rj−1 < r ≤ rj

1

rj−rj+1
rj < r ≤ rj+1

0 otherwise

.

(27)�(x, r) ≈

N∑
j

�j �(x)�(r)
⏟⏞⏟⏞⏟

�j(x,r)

,

(28)Li,j =

⎧⎪⎨⎪⎩

−4, i = j

1, i axially adjacent to j�
2ri ± h

�
∕
�
2ri

�
, i radially adjacent to j

0, otherwise

,

7  We incorporate the Sipkens kernel into a unified BOS operator, 
which relates the density field directly to unprocessed image differ-
ences, although unified BOS is not inherent to that scheme.



	 Experiments in Fluids (2023) 64:14

1 3

14  Page 18 of 24

using the area under parabolic curves. Similarly, the two-point 
method utilizes piecewise linear interpolation with a quadratic 
expansion about the singularity. For a smooth target function 
with sufficient resolution, these approximations are highly 
similar. Both techniques yield a kernel, K , that relates �y to a 
radial density field, � . Separately, the Sipkens kernel, derived 
in Sipkens et al. (2021), is a discrete forward operator that 
relaxes the assumption of parallel rays. Sipkens et al. (2021) 
developed the transform for a variety of bases; we utilize the 
linear–uniform basis introduced above. The result is deflection 
operators, Dx and Dy , that are used to construct a unified BOS 
measurement model.

Appendix A.2.1: Simpson’s 1/3 rule

Simpson’s 1/3 rule involves piecewise curve fits to the diverg-
ing integral. The kernel has elements 

where

and N is the number of equally spaced intervals. It should 
be noted that the integrand diverges at the lower limit of 
integration. Therefore, the singularity is extrapolated from 
the remaining coefficients. This is expressed in the kernel as

One key difference between Simpson’s rule and the two-
point method is that the former requires an even number 
of intervals due to the curve fitting technique, which uses 
three points. Nevertheless, Simpson’s rule exhibits greater 
accuracy and faster convergence than integration by many 
other such rules (e.g., trapezoidal).

Appendix A.2.2: Two‑point method

When using the two-point method, the integral is discretized 
between neighboring radii and the deflection is presumed con-
stant between those two rings (hence the name). The kernel is 
formed using pairs of projections, resulting in elements

(29a)Ki,j =

⎧⎪⎨⎪⎩

0, i > j

Ji,j∕2, j = N + 1

Ji,j, i < j and j ≠ N + 1

,

(29b)Ji,j = −
1

3�

3 + (−1)j−i+1√
(j − 1)2 − (i − 1)2

(30)Ki,i =

{
Ki,i+1, i ≤ N

0, i = N + 1
.

where

This formulation has no smoothing. The lack of smoothing 
can be an advantage over other reconstruction kernels given 
noise-free data, but it comes the a cost of noise amplifica-
tion. The resulting deconvolution kernel is an upper triangu-
lar matrix, and the divergence of the integral is handled via 
a quadratic expansion of the projections at the singularity 
(Cormack 1982).

Appendix A.2.3: Sipkens deflectometry

The Sipkens kernel is a forward operator that can model deflec-
tions along arbitrary, non-parallel rays. This formulation can 
simultaneously operate on deflection data above and below the 
axis of symmetry, unlike the explicit inverse kernels described 
above, which improves the stability and resolution of recon-
structions. Moreover, the forward kernel can be incorporated 
into any inverse solver, such as our physics-informed BOS 
technique. Here, we recall the final form of the linear–uniform 
Sipkens deflectometry operator using the present notation; a 
full derivation can be found in the supplementary material of 
Sipkens et al. (2021).

To start, the kernel requires a 3D description of each ray. 
Consider the ith ray as it passes by the z-axis at the point 
(xi, yi, 0) with a slope of mx,i in the x-z plane and my,i in the 
y-z plane. For ease of notation, we introduce a function that 
corresponds to the radius of the ith ray at this crossing point,

Each ray is divided into two, with one on either side of z = 0 , 
i.e., a ray approaching the central axis and a ray departing 
from it. Consequently, the vertical deflectometry operator is 
split into two parts,

(31)Ki,j =

⎧
⎪⎨⎪⎩

0, i > j

Ji,j, i = j

Ji,j − Ji,j−1, i < j

,

(32)Ji,j =

⎧
⎪⎪⎨⎪⎪⎩

0, i > j

2∕𝜋, i = j = 0 .

1

𝜋
log

�√
(j+1)2−i2+j+1√
(j−1)2−i2+j

�
i ≤ j

(33)rray,i(x) =
1

mx,i

√(
x − xi

)2
+
[
my,i

(
x − xi

)
+ yi

]2
.

(34)Dy,i,j = D+
y,i,j

+ D−
y,i,j

.
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The “approaching” and “departing” elements have a very 
similar expression, which we present in a consolidated form,

where ± becomes + for D+
y,i,j

 and − for D−
y,i,j

,

and rb modifies the jth radius to incorporate the bounds of 
the Heaviside function. See (Sipkens et al. 2021) for a dis-
cussion of the r1 , r2 , and r3 functions of j in Eq. (35).

The axial deflection operator is simply

Since the axial basis is piecewise uniform, Dx only has non-
zero elements for rays that cross an axial boundary. While 
this representation is sub-optimal, it is sufficient for the 
present demonstration. A bi-linear basis will be derived for 
future use. Equations (35) and (37) are employed to populate 
Dy and Dx , which are themselves required to construct the 
unified BOS measurement model in Eq. (10).

Appendix B: PINNs applied to hyperbolic 
equations

Here, we briefly review two key developments in the area 
of physics-informed neural networks applied to hyperbolic 
equations. This topic directly pertains to PINNs discussed in 
this work because the Euler equations are hyperbolic.

Appendix B.1: Artificial viscosity

“Artificial viscosity” was initially introduced into Euler solv-
ers to accommodate discontinuous flow fields by spreading 
shocks across a finite region that could be resolved by the 
grid (von Neumann and Richtmyer 1950; Lax 1959). Arti-
ficial viscosity entails the deliberate addition of dissipation 
into the governing equations, often based on the size of the 
grid, such that the equations can be solved across the shock 
without introducing excessive errors.

Several researchers have applied this concept to PINNs to 
provide stability in the context of a hyperbolic physics loss. 

(35)
D±

y,i,j =

√

1 + m2
x,i

1 + m2
y,i

N
∑

j

(

y0,i
{

aint
[

rj−1, rj, r2(j)
]

− aint
[

rj−1, rj, r1(j)
]

+ aint
[

rj+1, rj, r3(j)
]

−aint
[

rj+1, rj, r2(j)
]}

± my,i

[

rb(j) − rb(j − 1)
rj − rj−1

−
rb(j) − rb(j + 1)

rj − rj+1

])

,

(36)

aint
�
r1, r2, r3

�
=

1

r2 − r1
log

⎧
⎪⎨⎪⎩
abs

⎡⎢⎢⎣
r3 +

�
r2
3
−

y2
0,i

1 + m2
y,i

�1∕2⎤
⎥⎥⎦

⎫
⎪⎬⎪⎭
,

(37)Dx,i,j = abs
{
�j

[
rray,i

(
xj
)]

− �j

[
rray,i

(
xj+1

)]}
.

Fuks and Tchelepi (2020) were the first to do this for two-
phase transport in porous media, i.e., adding viscous damp-

ing to a Buckley–Leverett transport model. Coutinho and 
coworkers (Coutinho et al. 2022) adopted a similar approach 
and considered the inviscid Burgers’ equation in addition 
to a Buckley–Leverett scenario; Coutinho also introduced 
a variety of adaptive methods to automatically tune the dis-
sipation term. More recently, Patel et al. (2022) proposed 
the use of a control volume physics loss with artificial vis-
cosity to solve a 1D shock governed by Burgers’ equation, 
a 1D Sod shock problem, and generic 1D Buckley–Lever-
ett, Euler, and Leblanc problems. Collectively, these papers 
demonstrate that including artificial viscosity can reduce 
oscillations about a discontinuity and stabilize optimization 
of the network.

Most hyperbolic solvers with artificial viscosity require 
careful selection of the viscous term, which may vary across 
space and time. Excessive damping is known to yield stable 
yet invalid solutions (Anderson 1990). This was noted by Liu 
et al. (2022), leading to their usage of a gradient-dependent 
�phys parameter, which diminished in highly compressible 
regions, instead of an artificial viscosity scheme. Further, 
Wang et al.’s (2021) analysis of PINNs demonstrates that 
higher-order gradients dominate the cumulative gradient 
vector used to update the network parameters. This result 
suggests that a non-physical diffusion term can obfuscate 
progress towards the correct, physical solution. Since BOS 
measurements provide relatively direct access to the real 
density field, we do not employ artificial viscosity for shock 
capturing.

Appendix B.2: Entropy pair regularization

Many hyperbolic systems of equations, including the com-
pressible Euler equations, admit multiple “weak” solu-
tions. The physical solution is often selected by applying 
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a constraint like an entropy condition, which is valid for 
inviscid flows that exhibit one or more discontinuities. This 
condition leads to an inequality that relates mathematical 
entropy to the divergence of an entropy-flux pair (De Lellis 
and Székelyhidi 2010); the inequality is satisfied by desir-
able “viscosity solutions” to the governing equations.

Two groups have added an entropy loss to a PINN to learn 
shock-laden flow. Patel et al. (2022) first implemented this 
technique, using a complete equation of state that bounds the 
Euler equations by a specific entropy relation. Separately, 
Jagtap et al. (2022) used a flux pair coupled with a poly-
tropic equation of state. Patel’s formulation resulted in three 
loss components whereas Jagtap’s method culminated in a 
scalar loss. Both groups reported that entropy pair regulari-
zation improved learning for hyperbolic problems compared 
to a vanilla PINN. However, it should be noted that a unique 
entropy pair is not guaranteed for a given set of hyperbolic 
conservation laws (Godlewski and Raviart 2013). Therefore, 
we chose to forego an entropy pair loss, which proved to be 
unnecessary for our test cases.

Appendix C: Nonlinear ray tracing

Synthetic data are generated using nonlinear ray tracing 
within the variable index field. This is accomplished to 
high accuracy via the fourth-order Runge–Kutta ray tracing 
algorithm of Sharma et al. (1982). First, Eq. (2) is split into 
coupled ordinary differential equations. Next, each ray is 
defined by a starting position, x0 = [x, y, z]T , and a refractive 
index-scaled direction,

where dx∕ds is the initial trajectory of the ray. Next, consider 
the vector valued function

We evaluate f at three points along the ray,

where the subscript i denotes the current index along the 
path of the ray. The ray’s position and direction are updated,

(38)v0 = n(x)
dx

ds

(39)f(x) = Δs n(x)�n(x) =
1

2
Δs�n2(x).

(40)

fA = f
(
xi

)

fB = f

[
xi + Δs

(
1

2
vi +

1

8
fA

)]
,

fC = f

[
xi + Δs

(
vi +

1

2
fB

)]

(41)
xi+1 = xi + Δs

[
vi +

1

6

(
fA + 2fB

)]

vi+1 = vi +
1

6

(
fA + 4fB + fC

) ,

and the procedure is repeated until all rays exit the compu-
tational domain.

Appendix D: Generation of flow phantoms

This appendix provides additional details about our 
phantoms.

Appendix D.1: Axisymmetric cone cylinder

We simulated the cone cylinder flow using SU2 7.3.0, which 
is a finite volume solver; convective fluxes are handled with 
a second-order upwind scheme in space that is TV dimin-
ishing when paired with a limiter (Roe 1981). The Venka-
takrishnan slope limiter is utilized to combat the oscillatory 
behavior of higher-order upwind schemes by enforcing a 
monotonicity condition (Venkatakrishnan 1995). Addition-
ally, gradients are computed using a weighted least squares 
algorithm. We use a 2D axisymmetric unstructured grid that 
comprises 297,373 triangular cells, with moderate refine-
ment towards the anticipated shock locations and tripping 
points. Slip-wall conditions, based on the inviscid flow 
assumption, are implemented along the cone cylinder and 
top of the domain, which represents the physical boundary 
of the wind tunnel.

A grid convergence study was performed to ensure that 
the solution was independent of the grid. Computations were 
performed with cells of size 1.25 × 10−4 m, 6.25 × 10−5 m, 
and 3.125 × 10−5 m. Results from this study are shown in 
Fig. 15. Radial slices of the non-dimensionalized density 
field are plotted, with a zoomed view provided to illustrate 
the close agreement between simulations. Notably, the den-
sity, velocity, and energy errors all asymptote, indicating that 
the shocks are well captured by all three schemes. Errors 
resulting from the computational grid are thus expected to 
be marginal. Throughout the paper, we use results computed 
with the intermediate grid, with 6.25 × 10−5 m cells, to gen-
erate synthetic data.

Appendix D.2: Planar expansion fan

The planar expansion fan serves as a useful phantom to 
evaluate the BOS reconstruction method developed here, 
given the analytical nature. Specifically, this solution 
arises through a geometric analysis of a sequence of Mach 
waves, resulting in the governing differential equation for 
Prandtl–Meyer flow,
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where � is the turning angle towards the ramp and V is 
the local flow speed. Equation (42) is expressed in terms 
of dM∕M and integrated to the ramp to obtain the outflow 
Mach number,

The indefinite solution to the right side of Eq. (43), called 
the Prandtl–Meyer function, is 

which can be used to solve Eq. (43) across a differential 
wedge,

 For a horizontal wall leading up to the ramp, �1 is zero and 
the Mach number is computed as a function of the turning 
angle. This may be done by solving Eq. (44b) via Newton’s 
method,

where

(42)d� =
√
M2 − 1

dV

V
,

(43)∫
�2

�1

d� = ∫
M2

M1

√
M2 − 1

1 +
�−1

2
M2

dM

M
.

(44a)�(M) =

�
� + 1

� − 1
tan−1

��
� − 1

� + 1

�
M2 − 1

��
− tan−1

�√
M2 − 1

�
,

(44b)� − �1 = �[M(�)] − �
(
M1

)
.

(45)M(k+1)(�) =
� + �

(
M1

)
− �

[
M(k)(�)

]

��
[
M(k)(�)

] +M(k)(�),

is the analytical derivative of the Prandtl–Meyer function. 
Once the Mach field has been determined, the other field 
variables are calculated using the isentropic relations, 

(46)��(M) =

√
M2 − 1

M
�
1 +

�−1

2
M2

�

(47a)T(�) = T1

[
1 +

�−1

2
M2

1

1 +
�−1

2
M(�)2

]
,

 where Rgas = 287 J/kg K is the gas constant for air.

(47b)p(�) = p1

[
T(�)

T1

] �

�−1

, and

(47c)�(�) =
p(�)

Rgas T(�)
,

Fig. 15   Axial cuts of the 
simulated cone shock density 
field for three computational 
grids (left). Cuts are shown at 
selected radii, and a zoomed 
comparison is presented (right). 
The CFD results exhibit mini-
mal discrepancies, even across 
the shocks
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Although Mach numbers in the fan are calculated as a 
function of � , each Mach line is oriented at the correspond-
ing Mach angle,

as drawn in Fig. 8. The local flow speed is simply

where

is the speed of sound. Finally, the flow accelerates tangent 
to Mach lines throughout the fan such that the streamlines 
are parallel to the wall up to the forward Mach line, normal 
to the turning angle throughout the fan, and parallel to the 
wedge thereafter, 
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