

1 Transgenerational plasticity alters parasite fitness in changing environments

2

3 Syuan-Jyun Sun ^{1,2,*}, Marcin K. Dziuba ¹, Kristina M. McIntire ¹, Riley N. Jaye ¹, and Meghan

4 A. Duffy ¹

5

6

7 ¹Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI

8 48109, USA; ²International Degree Program in Climate Change and Sustainable Development,

9 National Taiwan University, Taipei 10617, Taiwan

10

11

12 *** Author for correspondence:** Syuan-Jyun Sun, E-mail: sjs243@ntu.edu.tw

13

14

15 **Abstract**

16 Transgenerational plasticity can help organisms respond rapidly to changing environments.
17 Most prior studies of transgenerational plasticity in host-parasite interactions have focused on
18 the host, leaving us with a limited understanding of transgenerational plasticity of parasites.
19 We tested whether exposure to elevated temperatures while spores are developing can modify
20 the ability of those spores to infect new hosts, as well as the growth and virulence of the next
21 generation of parasites in the new host. We exposed *Daphnia dentifera* to its naturally co-
22 occurring fungal parasite *Metschnikowia bicuspidata*, rearing the parasite at cooler (20°C) or
23 warmer (24°C) temperatures and then, factorially, using those spores to infect at 20°C and
24 24°C. Infections by parasites reared at warmer past temperatures produced more mature spores,
25 but only when the current infections were at cooler temperatures. Moreover, the percentage of
26 mature spores was impacted by both rearing and current temperatures, and was highest for
27 infections with spores reared in a warmer environment that infected hosts in a cooler
28 environment. In contrast, virulence was influenced only by current temperatures. These results
29 demonstrate transgenerational plasticity of parasites in response to temperature changes, with
30 fitness impacts that are dependent on both past and current environments.

31

32 **Key words:** transgenerational plasticity, host-parasite interactions, climate change, *Daphnia*
33 *dentifera*, *Metschnikowia bicuspidata*, priming

34

35

36 **Key Findings**

37 • Parasite fitness was affected by both rearing and current temperatures in a *Daphnia*-
38 parasite system.

39 • Warm rearing and current temperatures induced higher total spore production.

40 • Rearing and current temperatures interacted to determine mature spore yield per host;
41 infections by spores reared at warmer temperatures produced more viable spores at
42 cooler current temperatures.

43 • In contrast, parasite virulence was influenced by current temperature but not rearing
44 temperature.

45 • These findings demonstrate that transgenerational plasticity can influence parasite
46 fitness.

47

48 **Introduction**

49 In the face of rapid environmental changes, avoiding extinction requires organisms to respond
50 with behavioral changes, moving to a new geographic region, rapid evolution, and/or
51 phenotypic plasticity (Hoffmann and Sgrò, 2011; Munday *et al.*, 2013; Wong and Candolin,
52 2015; Radchuk *et al.*, 2019). For organisms with limited behaviors and mobility, phenotypic
53 plasticity has the potential to be particularly important, as it allows for a rapid response without
54 genetic changes. Thus, for many organisms, phenotypic plasticity is expected to play a key role
55 in allowing organisms to cope with rapidly changing environments (Charmantier *et al.*, 2008;
56 Wong and Candolin, 2015).

57 Moreover, phenotypic plasticity can facilitate rapid evolutionary processes, including by
58 buying time for genetic adaptations to occur (Mousseau and Fox, 1998; Sun *et al.*, 2020). This
59 can be particularly true when a plastic response to environmental changes can be passed from
60 one generation to the next, something known as transgenerational plasticity or maternal effects

61 (Harmon and Pfennig, 2021). Transgenerational plasticity has been demonstrated in many taxa;
62 often, previous generations ‘prime’ their offspring for environmental conditions that match
63 those of maternal generations (Mousseau and Fox, 1998; Burgess and Marshall, 2014). If the
64 parental environments are accurate predictors for the environments of offspring,
65 transgenerational plasticity can be adaptive, increasing the fitness of offspring experiencing
66 those environmental conditions (Galloway and Etterson, 2007).

67 Although transgenerational plasticity is increasingly considered as a potentially important
68 mechanism to counteract the negative impacts of environmental changes, most studies have
69 focused on responses of a single species to changing abiotic environments, such as temperature
70 elevation (Shama *et al.*, 2014) or environmental pollution (Tran *et al.*, 2019; Meng *et al.*, 2021).
71 However, changing environments also have the potential to influence the way organisms
72 interact. Focusing on just one type of interaction, host-parasite interactions, increasing
73 temperatures can alter parasite reproduction, infectivity and prevalence, host resistance, and
74 ultimately epidemic dynamics (Harvell *et al.*, 2002; Altizer *et al.*, 2013; Gehman *et al.*, 2018).
75 While this likely leads to selection on parasites in many cases, transgenerational plasticity may
76 also play a role in allowing parasites to persist in a rapidly changing environment. There have
77 been some studies of transgenerational plasticity in host-parasite interactions, but most of the
78 attention has focused on hosts (Pigeault *et al.*, 2015; Gervasi *et al.*, 2015; Nystrand *et al.*, 2016;
79 Michel *et al.*, 2016; Roth and Landis, 2017; Paraskevopoulou *et al.*, 2022) rather than the
80 parasite or the overall outcome of host-parasite interactions (Tseng, 2006; Little *et al.*, 2007;
81 Shocket *et al.*, 2018). This means that, at present, there is a major gap in our understanding of
82 how host-parasite interactions and parasite fitness change as environments change, hindering
83 our ability to understand and predict epidemic dynamics in a rapidly changing world.

84 In addition to its importance in light of anthropogenic climate change, understanding
85 transgenerational plasticity of parasites is important because seasonal changes in environments

86 are common and can influence the outcomes of host-parasite interactions within a generation
87 (Altizer *et al.*, 2006; Martinez, 2018). Changing temperatures can have complex impacts on
88 hosts and parasites (Altizer *et al.*, 2013), making it difficult to predict *a priori* how parasitism
89 should change seasonally (Altizer *et al.*, 2006). One factor that increases the complexity even
90 further is that hosts might encounter parasites that were produced in previous seasons (or even
91 years) under different environmental conditions (Decaestecker *et al.*, 2004; Shocket *et al.*,
92 2018). Overall, it is clear that: changes in temperature can strongly impact host-parasite
93 interactions; in some systems, hosts encounter parasites that were produced at different
94 temperatures; and the conditions under which a parasite develops can impact its infectivity.
95 However, at present, it is not clear whether parasite transgenerational plasticity influences key
96 parasite traits such as virulence.

97 In this study, we tested whether the temperature at which parasite spores develop
98 influences performance of their offspring using a two-generational laboratory experiment in a
99 zooplankton-fungal system. *Metschnikowia bicuspidata* is a fungal parasite commonly found
100 infecting the zooplankton host *Daphnia dentifera* in freshwater lakes in Northern America
101 (Cáceres *et al.*, 2014). In this system, *D. dentifera* is exposed to *M. bicuspidata* spores during
102 filter-feeding. The ingested needle-shaped spores then penetrate through the gut barrier into the
103 body cavity (Stewart Merrill *et al.*, 2019), where the spores develop and reproduce, eventually
104 killing the host (Ebert, 2005). Upon host death, the spores of the next generation are released
105 into the environment, where they can be ingested by new hosts to complete the infection cycle
106 (Ebert, 2005). Previous work shows that *D. dentifera* and *M. bicuspidata* are likely to encounter
107 each other during autumnal epidemics: infection prevalence tends to increase when
108 temperatures cool from 25°C in the late summer, with infection prevalence peaking at 20°C,
109 and decreasing as temperatures drop during winter (Shocket *et al.*, 2018). Moreover, it is likely
110 that spores overwinter in the sediment, with some of these becoming resuspended and infecting

111 new hosts in future years (Ebert, 1995; Decaestecker *et al.*, 2002); this means that spores
112 produced at the end of one season (in colder conditions) might infect a host at warmer
113 temperatures in a subsequent year. Thus, we would expect that *D. dentifera* can be exposed to
114 *M. bicuspidata* spores derived from warmer or cooler thermal conditions. If transgenerational
115 plasticity exists, we predict that parasites reared at different temperatures should perform
116 differently; if such transgenerational effects are adaptive, we predict that offspring will perform
117 better when their temperature matches that of their parent. In contrast, if transgenerational
118 plasticity is not important, only the current temperatures, rather than rearing temperatures,
119 should influence parasite performance. Prior studies have shown that rearing environments
120 (namely: host genotype and temperature) can influence the infectivity of *M. bicuspidata* spores
121 (Searle *et al.*, 2015; Shocket *et al.*, 2018); this shows plasticity of parasites but not
122 transgenerational plasticity, given that the spores from the rearing conditions are the same ones
123 that infect the new hosts. Here, we tested for transgenerational plasticity impacting parasite
124 growth and virulence.

125

126 **Materials and methods**

127 *Experimental design*

128 We conducted a fully factorial experiment by exposing *D. dentifera* hosts to *M. bicuspidata*
129 spores: the spores were reared either at cooler (20°C) or warmer temperatures (24°C) and then
130 used factorially for exposures at 20°C or 24°C. The 4°C elevation of temperatures that we
131 studied is in line with the predicted climate change scenario by the end of this century (Beits
132 *et al.*, 2011). It also is well within the range of changes in temperature in the upper mixed layer
133 of lakes that occur during epidemics (Shocket *et al.*, 2018). In total, this resulted in four
134 treatment combinations of rearing and current temperatures, with 40 replicates per treatment.

135 Laboratory stocks of *D. dentifera* and *M. bicuspidata* originated from lakes in Barry County in
136 Michigan, US.

137 Because infections will occur at the ambient temperature, and because hosts will have been
138 reared at that temperature, we reared hosts for this experiment at the two focal temperatures.
139 More specifically, we reared *D. dentifera* at 20°C or 24°C in only two separate incubators (I-
140 41VL, Percival Scientific) for two generations on a 16:8 photoperiod; this means that
141 temperature treatment is confounded with incubator (as is common in this type of experiment
142 due to logistic constraints). We then collected neonates aged 1-2 days old. Each neonate was
143 kept individually in a 50 mL beaker filled with 50 mL filtered lake water and was fed three
144 times a week with a phytoplankton food (*Ankistrodesmus falcatus*, 20,000 cells/mL).

145 To create sources of *M. bicuspidata* spores from different temperatures, we infected *D.*
146 *dentifera* individually by adding spores at a density of 145 spores/ml at 20°C and 24°C. We
147 collected the dead hosts upon natural death, stored them individually in a 1.5 mL tube filled
148 with 100 µL deionized water, and placed tubes in a refrigerator before use (*M. bicuspidata*
149 spores die when placed in a freezer (Duffy and Hunsberger, 2019)). All spores used for the
150 experiment were derived from hosts that had died 1-2 months prior to use in infections; these
151 infected hosts were the product of an earlier experiment (Sun *et al.*, 2022). Infected hosts were
152 ground individually using electric pestles for 60 seconds before we infected new hosts with a
153 well-mixed solution of spores (145 spores/ml) from each tube at 20°C and 24°C. We used a
154 degree-day approach (Vale *et al.*, 2008; Manzi *et al.*, 2020) by adding spores to *Daphnia* at an
155 age of 6 and 5 days, for 20°C and 24°C, respectively, resulting in a 120 degree-day. At
156 exposure, we fed all animals 20,000 cells/mL *A. falcatus* and kept them at a 16:8 light:dark
157 cycle. Thereafter, all animals were fed *A. falcatus* (20,000 cells/mL) three times a week. We
158 terminated the experiments when all animals had died. This experiment was conducted in
159 March 2022.

160

161 *Data collection*

162 To determine virulence, we checked all animals daily for survival and counted the offspring
163 produced, which were then removed from the beakers. We determined the lifetime fecundity
164 of hosts (the total number of offspring) and host lifespan; both lifespan and fecundity tend to
165 be reduced by *M. bicuspidata* infections (Clay *et al.*, 2019). The dead animals were stored
166 individually in a 1.5 mL tube filled with 100 μ L deionized water, and were placed in a
167 refrigerator for subsequent measurement of spore yield, a key component of parasite fitness.
168 Because hosts contain all of the parasite spores that were produced over the course of infection
169 at host death, we quantified spore yield, i.e., the number of spores per host, by grinding dead
170 infected hosts with an electric pellet pestle (Fisher Scientific catalog no.: 12-141-361) for 60
171 seconds. A sample (10 μ L) of this solution was added to a Neubauer hemocytometer, and we
172 estimated the spore yield by averaging the number of mature spores and total spores (mature +
173 immature spores) from four grids. Mature spores can be visually distinguished from immature
174 ones (Ebert, 2005; Stewart Merrill *et al.*, 2019); mature ascospores were characterized by their
175 needle shape, each containing a dark band in the center, whereas conidia and needle-shaped
176 spores lacking the central bands and sharp edge were considered immature (see Fig S1 for
177 examples).

178 *Daphnia* that died within 7 days after exposure to parasites were excluded because of early
179 mortality. Any male *Daphnia* that were misidentified as females in the beginning of the
180 experiment were also excluded. This resulted in a total of 141 individuals (current temperature
181 of 20°C: $n = 37$ and 37 for rearing temperature of 20°C and 24°C, respectively; current
182 temperature of 24°C: $n = 35$ and 32 for rearing temperature of 20°C and 24°C, respectively).

183

184 *Statistical analyses*

185 To test for the effects of rearing and current temperature on host fitness, we included rearing
186 temperature (20°C or 24°C) and current temperature (20°C or 24°C) and their interaction as
187 fixed factors. We analyzed the lifetime fecundity using a generalized linear mixed model
188 (GLMM) with a Poisson distribution, and analyzed the survival with a Cox proportional hazard
189 mixed effect model. In both analyses, the parental source of the spores (i.e., the identity of
190 infected host individual) was included as a random effect. We included this random effect
191 because spores were derived from different host individuals; spores from a single individual
192 were used to infect pairs of new hosts (one at 20°C and one at 24°C), with spores from a single
193 individual used to infect 1-3 pairs of hosts.

194 We analyzed the effects of rearing and current temperature on parasite fitness in a similar
195 fashion by including rearing and current temperature and their interaction as fixed factors. We
196 analyzed the number of mature spores and total number of spores using GLMMs with a
197 Gaussian distribution; we took the natural log of the number of spores plus one prior to analyses
198 to meet the requirements of normality for regressions. We analyzed the probability of infection
199 and the proportion of spore maturation (the number of mature spores divided by the total
200 number of spores) using GLMMs with a binomial distribution and logit link function.
201 Similarly, the parental source of the spores was included as a random effect.

202 GLMMs were conducted with the *glmer* function in the *lme4* package (Bates *et al.*, 2015),
203 whereas the Cox proportional hazard mixed effect model was conducted in the *coxme* package
204 (Therneau, 2012). We started the analyses by including the interaction terms, with non-
205 significant interactions removed from the models. If significant interaction terms were
206 detected, pairwise post-hoc comparisons were made to assess differences between individual
207 treatments in the *emmeans* package (Lenth, 2021). All analyses were conducted in R version
208 4.1.2 (R Development Core Team, 2014).

209

210 **Results**

211 There was no effect of rearing temperature but a marginally significant effect of current
212 temperature on infection prevalence: infections carried out at warmer temperatures led to a
213 marginally lower infection prevalence than cooler temperatures ($\chi^2 = 3.29$, $p = 0.070$),
214 regardless of whether the spores were reared at cooler or warmer temperatures (Fig. 1A; $\chi^2 =$
215 0.13 , $p = 0.721$). Among 141 *D. dentifera* exposed to *M. bicuspidata* spores, 82.4% (61 out of
216 74) and 70.1% (47 out of 67) developed terminal infection at current cooler and warmer
217 temperatures, respectively.

218 For hosts that were successfully infected, both current ($\chi^2 = 9.40$, $p = 0.002$) and rearing
219 ($\chi^2 = 5.58$, $p = 0.018$) warmer temperatures increased total spore yield (Fig. 1B). Of the spores
220 produced, a smaller proportion became mature when current temperatures were warmer (59.2%
221 at 20°C vs. 36.3% at 24°C; $\chi^2 = 33.22$, $p < 0.001$) and when parasites were reared at cooler
222 temperatures (46.5% at 20°C vs. 51.9% at 24°C; $\chi^2 = 6.74$, $p = 0.009$; Fig. 1C). Moreover,
223 current and rearing temperatures interacted in affecting the mature spore yield per host — i.e.,
224 the yield of spores that had reached the developmental stage with the potential to initiate a new
225 infection (current temperatures x rearing temperatures: $\chi^2 = 4.62$, $p = 0.032$; Fig. 1D).
226 Specifically, when infecting hosts at cooler temperatures, parasites that developed at warmer
227 temperatures produced more mature spores compared to those that developed at cooler
228 temperatures ($t = -3.30$, $p = 0.002$), yet there was no such difference between spores that
229 developed at cooler versus warmer temperatures when infecting hosts at warmer temperatures
230 ($t = -0.14$, $p = 0.891$; Fig. 1D). For parasites that developed at cooler temperatures, spore yield
231 was similar at both cooler and warmer current temperatures ($t = -0.30$, $p = 0.765$, compare blue
232 bars in Fig. 1D). However, parasites reared at warmer temperatures produced fewer mature
233 spores at current warmer temperatures compared to current cooler temperatures ($t = 2.73$, $p =$
234 0.008 , compare red bars in Fig. 1D).

235 In contrast to the results for spore yield and maturation, parasite virulence was influenced
236 by current temperature but not rearing temperature (Fig. 2). There was no effect of the
237 temperature at which parasites were reared on the total number of host offspring ($\chi^2 = 1.45$, d.f.
238 = 1, $P = 0.228$). Fecundity was only affected by current temperatures, with fewer host offspring
239 produced at warmer temperatures ($\chi^2 = 10.67$, d.f. = 1, $P = 0.001$; Fig. 2A). Similar patterns
240 were found in survival probability, such that there was no effect of rearing temperatures ($\chi^2 =$
241 1.13, d.f. = 1, $P = 0.288$) but a significant effect of current temperatures – infected individuals
242 were more likely to die early at warmer temperatures ($\chi^2 = 76.36$, d.f. = 1, $P < 0.001$; Fig. 2B).

243

244 **Discussion**

245 Transgenerational plasticity has the potential to influence organisms' responses to rapidly
246 changing environments, yet whether transgenerational plasticity of parasites exists, and
247 whether it alters parasite fitness and/or virulence, have been overlooked. By investigating the
248 impacts of temperature in both rearing and current environments, we showed that infection
249 prevalence depended mainly on current temperatures, whereas reproductive success of the
250 parasite was determined by the interplay between the (rearing) temperature at which spores
251 developed and the (current) temperature at which the new infections occurred. Infections by
252 parasites that had been reared at warmer temperatures yielded more mature spores, but only at
253 cooler current temperatures. Thus, our findings demonstrate transgenerational plasticity of
254 parasites in response to changing temperatures but does not provide evidence for adaptive
255 'priming' of parasites.

256 We found that the prevalence of infection was explained by offspring infection
257 temperatures but not by rearing temperatures; this suggests that *M. bicuspisdata* spores were
258 equally viable, irrespective of previous temperatures. This finding is consistent with previous
259 findings (Little *et al.*, 2007) on *D. magna* and their interactions with the bacterial parasite

260 *Pasteuria ramosa*, one of the best-studied parasites of *Daphnia*. A prior study found that
261 current temperatures, rather than parasite rearing temperatures, influenced parasite infectivity,
262 with highest infections at 20°C (Vale *et al.*, 2008). Moreover, spore production per host was
263 also highest at this temperature (Vale *et al.*, 2008). In another study, optimal performance of
264 the microsporidium parasite *Ordospora colligata* showed similar patterns (Kunze *et al.*, 2022),
265 peaking at ~20°C and decreasing at both higher and lower range of temperature gradient. Our
266 results are also in line with previous work on the *Daphnia-Metschnikowia* system in that higher
267 current temperatures reduced parasite infectivity (Shocket *et al.*, 2018). However, we did not
268 find the same pattern in the effect of rearing temperatures. The earlier study found that higher
269 rearing temperatures increased infectivity (Shocket *et al.*, 2018), whereas we did not find a
270 significant effect of rearing temperature on infectivity; one possible explanation for this
271 difference is that the earlier study explored rearing temperatures of 15-22°C whereas in our
272 experiment temperature spanned from 20-24°C to simulate a shift towards a higher temperature
273 range. Future work considering a wider range of temperatures would help to uncover whether
274 spores reared at intermediate temperatures are most infectious.

275 Contrary to a previous study which showed that temperature warming can reduce spore
276 production (Vale *et al.*, 2008), we found that parasites actually had greater total spore yield
277 (inclusive of both mature and immature spores) in response to warmer current temperatures.
278 Parasites also produced more spores when the spores that began the infection had been reared
279 under warmer temperatures. That is, warming induced parasites to be more productive.
280 However, higher current and rearing temperatures had opposite effects on spore maturation
281 (Fig. 1C): warmer current temperatures substantially reduced spore maturation, but warmer
282 rearing temperatures increased spore maturation. The additive temperature effects of rearing
283 and current temperatures on total spore yield per host, and their contrasting effects on the
284 proportion of spores that matured, mean that warmer rearing temperatures enabled parasites to

285 produce more mature spores than those reared at cooler temperatures, but only in cooler current
286 environments. Yet we found no evidence to suggest that this transgenerational plasticity was
287 adaptive, since the offspring of parasites reared at high temperatures did not have a fitness
288 advantage at current high temperatures (Fig. 1D). These results corroborate previous studies
289 showing the vulnerability of parasites to sustained exposure over generations to high
290 temperatures (Carlson *et al.*, 2017; Schampera *et al.*, 2022). These findings might explain why
291 seasonal epidemics of *M. bicuspidata* tend to erupt when lake temperatures gradually cool
292 down in late summer (Shocket *et al.*, 2018); in these cooling conditions, the transgenerational
293 plasticity we observed would increase parasite fitness.

294 A potential caveat arises from the fact that the environment a parasite experiences very
295 early in infection can influence parasite fitness (Röder *et al.*, 2008), and this developmental
296 plasticity could be hard to distinguish from transgenerational plasticity, particularly if the
297 parental conditions influence the likelihood of infection. For example, if more spores
298 successfully infected a host, that might have an impact on the final spore yield, though whether
299 it would lead to more spores (because of a larger initial population size within the host) or
300 fewer (because of resource competition or apparent competition via the immune system) is
301 hard to predict; moreover, given that we know that the parasite shows strongly logistic growth
302 within hosts, differences in initial population size might primarily influence when the parasite
303 reaches its maximal abundance within the host, rather than the final density. While it is difficult
304 to predict how developmental plasticity might impact spore yield, our results related to the
305 proportion of spores that matured do not suggest developmental plasticity. Focusing on the
306 warmer current temperature treatment (where there was a larger, but still non-significant,
307 difference between infection levels for the two rearing treatments), spores from the cooler
308 rearing treatment tended towards lower infection levels than those from the warmer rearing
309 treatment (Fig. 1A). However, this lower infection level was associated with a lower proportion

310 of spore maturation (Fig. 1C). We cannot come up with a plausible explanation for why an
311 early infection environment with fewer individuals would reduce spore maturation, so we
312 suspect this result was not driven by developmental plasticity. However, future investigations
313 of transgenerational plasticity in parasites should be designed in a way that allows for
314 disentangling transgenerational effects from developmental plasticity.

315 While parasite fitness was explained both by the effects of rearing and current
316 temperatures, parasite virulence was exclusively determined by current temperatures.
317 Specifically, parasites were more virulent (i.e., greater reduction in host fecundity and lifespan;
318 Fig. 2) at higher temperatures, when the total number of spores was also higher (i.e., suggesting
319 stronger within-host competition; Fig. 1B). This is in line with previous theoretical work
320 suggesting that parasite virulence should be higher when intraspecific competition is intense
321 (Lively, 2006). The absence of an effect of rearing temperatures suggests that parasite
322 transgenerational plasticity had negligible influences on parasite virulence in this system.
323 Instead, parasite virulence was mainly determined by the thermal ecology of host-parasite
324 interactions in current environments, consistent with another recent study (Schampera *et al.*,
325 2022).

326 Together, our results highlight the importance of incorporating parasite infection history
327 and the potential for context-dependent transgenerational plasticity. Future research should
328 consider how transgenerational plasticity contributes to parasite adaptation and its consequence
329 on disease transmission, in order to better understand host-parasite interactions in changing
330 environments.

331

332 **Data (heading only required if data is available elsewhere)**

333 The data and code used for this study are available on GitHub
334 (<https://github.com/syuanjyunsun/parasite-transgen-exp>).

335

336 **Acknowledgements**

337 We would like to thank members of the Duffy Lab, particularly Kira Monell and Siobhan
338 Calhoun, for logistic support and maintenance of the *Daphnia* and *Metschnikowia* cultures. We
339 also thank an anonymous reviewer for very helpful comments on an earlier draft of this
340 manuscript.

341

342 **Author Contributions**

343 SJS, MKD, and MAD conceived the study. SJS, MKD, KMM, and MAD designed the
344 experiments. SJS, MKD, KMM, and RNJ conducted the experiments. SJS performed data
345 analysis. SJS wrote the initial draft of the manuscript and all authors contributed to editing.

346

347 **Financial Support**

348 This work was supported by the Gordon and Betty Moore Foundation (GBMF9202; DOI:
349 <https://doi.org/10.37807/GBMF9202>) and by the US National Science Foundation (DEB-
350 1748729).

351

352 **Conflicts of Interest**

353 The authors declare there are no conflicts of interest.

354

355 **Ethical Standards**

356 Not applicable.

357

358

359 **References**

360 **Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M. and Rohani, P.** (2006).
361 Seasonality and the dynamics of infectious diseases. *Ecology Letters* **9**, 467–484. doi:
362 10.1111/J.1461-0248.2005.00879.X.

363 **Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. and Harvell, C. D.** (2013). Climate
364 change and infectious diseases: from evidence to a predictive framework. *Science* **341**,
365 514–519. doi: 10.1126/SCIENCE.1239401.

366 **Bates, D., Maechler, M., Bolker, B. and Walker, S.** (2015). Fitting linear mixed-effects
367 models using lme4. *R package version 1.0-6*.

368 **Beits, R. A., Collins, M., Hemming, D. L., Jones, C. D., Lowe, J. A. and Sanderson, M. G.**
369 (2011). When could global warming reach 4C? *Philosophical Transactions of the Royal
370 Society A: Mathematical, Physical and Engineering Sciences* **369**, 67–84. doi:
371 10.1098/RSTA.2010.0292.

372 **Burgess, S. C. and Marshall, D. J.** (2014). Adaptive parental effects: the importance of
373 estimating environmental predictability and offspring fitness appropriately. *Oikos* **123**,
374 769–776. doi: 10.1111/OIK.01235.

375 **Cáceres, C. E., Tessier, A. J., Duffy, M. A. and Hall, S. R.** (2014). Disease in freshwater
376 zooplankton: what have we learned and where are we going? *Journal of Plankton
377 Research* **36**, 326–333. doi: 10.1093/PLANKT/FBT136.

378 **Carlson, C. J., Burgio, K. R., Dougherty, E. R., Phillips, A. J., Bueno, V. M., Clements,
379 C. F., Castaldo, G., Dallas, T. A., Cizauskas, C. A., Cumming, G. S., Doña, J., Harris,
380 N. C., Jovani, R., Mironov, S., Muellerklein, O. C., Proctor, H. C. and Getz, W. M.**
381 (2017). Parasite biodiversity faces extinction and redistribution in a changing climate.
382 *Science Advances* **3**, e1602422. doi: 10.1126/sciadv.1602422.

383 **Charmantier, A., McCleery, R. H., Cole, L. R., Perrins, C., Kruuk, L. E. B. and Sheldon,**
384 **B. C.** (2008). Adaptive phenotypic plasticity in response to climate change in a wild bird
385 population. *Science (New York, N.Y.)* **320**, 800–3. doi: 10.1126/science.1157174.

386 **Clay, P. A., Dhir, K., Rudolf, V. H. W. and Duffy, M. A.** (2019). Within-host priority effects
387 systematically alter pathogen coexistence. <https://doi.org/10.1086/701126> **193**, 187–199.
388 doi: 10.1086/701126.

389 **Decaestecker, E., de Meester, L. and Ebert, D.** (2002). In deep trouble: Habitat selection
390 constrained by multiple enemies in zooplankton. *Proceedings of the National Academy of*
391 *Sciences of the United States of America* **99**, 5481–5485. doi:
392 10.1073/PNAS.082543099/ASSET/6694548D-6863-4377-8CD4-
393 3A5BD2EC9F70/ASSETS/GRAPHIC/PQ0825430001.jpeg.

394 **Decaestecker, E., Lefever, C., de Meester, L. and Ebert, D.** (2004). Haunted by the past:
395 Evidence for dormant stage banks of microparasites and epibionts of Daphnia. *Limnology*
396 and *Oceanography* **49**, 1355–1364. doi: 10.4319/LO.2004.49.4_PART_2.1355.

397 **Duffy, M. A. and Hunsberger, K. K.** (2019). Infectivity is influenced by parasite spore age
398 and exposure to freezing: do shallow waters provide Daphnia a refuge from some
399 parasites? *Journal of Plankton Research* **41**, 12–16. doi: 10.1093/PLANKT/FBY046.

400 **Ebert, D.** (1995). The ecological interactions between a microsporidian parasite and its host
401 *Daphnia magna*. *The Journal of Animal Ecology* **64**, 361. doi: 10.2307/5897.

402 **Ebert, D.** (2005). *Ecology, epidemiology, and evolution of parasitism in Daphnia*. National
403 Library of Medicine (USA), Center for Biotechnology Information, Bethesda, Maryland.

404 **Galloway, L. F. and Etterson, J. R.** (2007). Transgenerational plasticity is adaptive in the
405 wild. *Science* **318**, 1134–1136. doi: 10.1126/science.1148766.

406 **Gehman, A.-L. M., Hall, R. J. and Byers, J. E.** (2018). Host and parasite thermal ecology
407 jointly determine the effect of climate warming on epidemic dynamics. *Proceedings of*

432 **Manzi, F., Agha, R., Lu, Y., Ben-Ami, F. and Wolinska, J.** (2020). Temperature and host
433 diet jointly influence the outcome of infection in a Daphnia-fungal parasite system.
434 *Freshwater Biology* **65**, 757–767. doi: 10.1111/FWB.13464.

435 **Martinez, M. E.** (2018). The calendar of epidemics: Seasonal cycles of infectious diseases.
436 *PLOS Pathogens* **14**, e1007327. doi: 10.1371/JOURNAL.PPAT.1007327.

437 **Meng, S., Tran, T. T., Delnat, V. and Stoks, R.** (2021). Transgenerational exposure to
438 warming reduces the sensitivity to a pesticide under warming. *Environmental Pollution*
439 **284**, 117217. doi: 10.1016/J.ENVPOL.2021.117217.

440 **Michel, J., Ebert, D. and Hall, M. D.** (2016). The trans-generational impact of population
441 density signals on host-parasite interactions. *BMC Evolutionary Biology* **16**, 1–12. doi:
442 10.1186/S12862-016-0828-4/FIGURES/4.

443 **Mousseau, T. A. and Fox, C. W.** (1998). The adaptive significance of maternal effects. *Trends*
444 *in Ecology & Evolution* **13**, 403–407. doi: 10.1016/S0169-5347(98)01472-4.

445 **Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. and Marshall, D. J.** (2013).
446 Predicting evolutionary responses to climate change in the sea. *Ecology Letters* **16**, 1488–
447 1500. doi: 10.1111/ELE.12185.

448 **Nystrand, M., Cassidy, E. J. and Dowling, D. K.** (2016). Transgenerational plasticity
449 following a dual pathogen and stress challenge in fruit flies. *BMC Evolutionary Biology*
450 *2016 16:1* **16**, 1–11. doi: 10.1186/S12862-016-0737-6.

451 **Paraskevopoulou, S., Gattis, S. and Ben-Ami, F.** (2022). Parasite resistance and parasite
452 tolerance: insights into transgenerational immune priming in an invertebrate host. *Biology*
453 *letters* **18**,. doi: 10.1098/RSBL.2022.0018.

454 **Pigeault, R., Vézilier, J., Nicot, A., Gandon, S. and Rivero, A.** (2015). Transgenerational
455 effect of infection in Plasmodium-infected mosquitoes. *Biology letters* **11**,. doi:
456 10.1098/RSBL.2014.1025.

457 **R Development Core Team** (2014). R: A language and environment for statistical computing.

458 *R Foundation for Statistical Computing.*

459 **Radchuk, V., Reed, T., Teplitsky, C., van de Pol, M., Charmantier, A., Hassall, C.,**

460 **Adamík, P., Adriaensen, F., Ahola, M. P., Arcese, P., Miguel Avilés, J., Balbontin, J.,**

461 **Berg, K. S., Borras, A., Burthe, S., Clobert, J., Dehnhard, N., de Lope, F., Dhondt,**

462 **A. A., Dingemanse, N. J., Doi, H., Eeva, T., Fickel, J., Filella, I., Fossøy, F.,**

463 **Goodenough, A. E., Hall, S. J. G., Hansson, B., Harris, M., Hasselquist, D., Hickler,**

464 **T., Joshi, J., Kharouba, H., Martínez, J. G., Mihoub, J. B., Mills, J. A., Molina-**

465 **Morales, M., Moksnes, A., Ozgul, A., Parejo, D., Pilard, P., Poisbleau, M., Rousset,**

466 **F., Rödel, M. O., Scott, D., Senar, J. C., Stefanescu, C., Stokke, B. G., Kusano, T.,**

467 **Tarka, M., Tarwater, C. E., Thonicke, K., Thorley, J., Wilting, A., Tryjanowski, P.,**

468 **Merilä, J., Sheldon, B. C., Pape Møller, A., Matthysen, E., Janzen, F., Dobson, F. S.,**

469 **Visser, M. E., Beissinger, S. R., Courtiol, A. and Kramer-Schadt, S.** (2019). Adaptive

470 responses of animals to climate change are most likely insufficient. *Nature Communications* 2019 10:1 10, 1–14. doi: 10.1038/s41467-019-10924-4.

471

472 **Röder, G., Rahier, M. and Naisbit, R. E.** (2008). Counter-intuitive developmental plasticity

473 induced by host quality. *Proceedings of the Royal Society B: Biological Sciences* 275,

474 879–885. doi: 10.1098/RSPB.2007.1649.

475 **Roth, O. and Landis, S. H.** (2017). Trans-generational plasticity in response to immune

476 challenge is constrained by heat stress. *Evolutionary applications* 10, 514–528. doi:

477 10.1111/EVA.12473.

478 **Schampera, C., Agha, R., Manzi, F. and Wolinska, J.** (2022). Parasites do not adapt to

479 elevated temperature, as evidenced from experimental evolution of a phytoplankton-

480 fungus system. *Biology letters* 18,. doi: 10.1098/RSBL.2021.0560.

481 **Searle, C. L., Ochs, J. H., Cáceres, C. E., Chiang, S. L., Gerardo, N. M., Hall, S. R. and**
482 **Duffy, M. A.** (2015). Plasticity, not genetic variation, drives infection success of a fungal
483 parasite. *Parasitology* **142**, 839–848. doi: 10.1017/S0031182015000013.

484 **Shama, L. N. S., Strobel, A., Mark, F. C. and Wegner, K. M.** (2014). Transgenerational
485 plasticity in marine sticklebacks: maternal effects mediate impacts of a warming ocean.
486 *Functional Ecology* **28**, 1482–1493. doi: 10.1111/1365-2435.12280.

487 **Shocket, M. S., Vergara, D., Sickbert, A. J., Walsman, J. M., Strauss, A. T., Hite, J. L.,**
488 **Duffy, M. A., Cáceres, C. E. and Hall, S. R.** (2018). Parasite rearing and infection
489 temperatures jointly influence disease transmission and shape seasonality of epidemics.
490 *Ecology* **99**, 1975–1987. doi: 10.1002/ECY.2430.

491 **Stewart Merrill, T. E., Hall, S. R., Merrill, L. and Cáceres, C. E.** (2019). Variation in
492 immune defense shapes disease outcomes in laboratory and wild *Daphnia*. *Integrative and*
493 *Comparative Biology* **59**, 1203–1219. doi: 10.1093/ICB/ICZ079.

494 **Sun, S.-J., Catherall, A. M., Pascoal, S., Jarrett, B. J. M., Miller, S. E., Sheehan, M. J. and**
495 **Kilner, R. M.** (2020). Rapid local adaptation linked with phenotypic plasticity. *Evolution*
496 *Letters* **4**, 345–359. doi: 10.1002/evl3.176.

497 **Sun, S.-J., Dziuba, M. K., Jaye, R. N. and Duffy, M. A.** (2022). Temperature modifies trait-
498 mediated infection outcomes in a <I>Daphnia</I>-fungal parasite system. *bioRxiv*
499 2022.06.03.494706. doi: 10.1101/2022.06.03.494706.

500 **Therneau, T.** (2012). Coxme: mixed effects Cox models. *R package version 2.2-3*.

501 **Tran, T. T., Janssens, L., Dinh, K. v. and Stoks, R.** (2019). An adaptive transgenerational
502 effect of warming but not of pesticide exposure determines how a pesticide and warming
503 interact for antipredator behaviour. *Environmental Pollution* **245**, 307–315. doi:
504 10.1016/J.ENVPOL.2018.11.022.

505 **Tseng, M.** (2006). Interactions between the parasite's previous and current environment
506 mediate the outcome of parasite infection. *The American naturalist* **168**, 565–571. doi:
507 10.1086/507997.

508 **Vale, P. F., Stjernman, M. and Little, T. J.** (2008). Temperature-dependent costs of
509 parasitism and maintenance of polymorphism under genotype-by-environment
510 interactions. *Journal of Evolutionary Biology* **21**, 1418–1427. doi: 10.1111/J.1420-
511 9101.2008.01555.X.

512 **Wong, B. B. M. and Candolin, U.** (2015). Behavioral responses to changing environments.
513 *Behavioral Ecology* **26**, 665–673. doi: 10.1093/BEHECO/ARU183.

514

515

516 Fig. 1. Parasite fitness was affected by both rearing and current temperatures, indicating
517 transgenerational effects of temperature on parasites. Infection prevalence (A) was not as
518 strongly impacted by temperature as was parasite fitness, measured as the number of total spore
519 yield (B), proportion of spore maturation (C), and mature spore yield (D). Means and standard
520 error bars are shown. The box plots show median values, the 25th and 75th percentiles, and
521 interquartile ranges. Significant (*) and non-significant (ns) differences between treatments are
522 indicated on panel D.

523

524 Fig. 2. Virulence was affected by current temperature but not rearing temperature. This held
525 both for virulence measured as the total number of offspring (A) and as survival probability
526 (B). The colors indicate temperatures at which parasites were reared. The box plot shows
527 median values, the 25th and 75th percentiles, and interquartile ranges.

528