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24 Abstract 
 

25 Disentangling  the  assembly  mechanisms  controlling  community  composition,  structure, 
 

26 distribution, functions, and dynamics is a central issue in ecology. Although various approaches 
 

27 have been proposed to examine community assembly mechanisms, quantitative characterization 
 

28 is challenging, particularly in microbial ecology. Here, we present a novel approach for 
 

29 quantitatively delineating community assembly mechanisms by combining the consumer-resource 
 

30 model with a neutral model in stochastic differential equations (SDEs). Using time-series data 
 

31 from anaerobic bioreactors that target microbial 16S rRNA genes, we tested the applicability of 
 

32 three ecological models, the consumer-resources model, the neutral model, and the combined 
 

33 model. Our results revealed that model performances varied substantially as a function of 
 

34 population abundance and/or process conditions. The combined model performed best for 
 

35 abundant taxa in the treatment bioreactors where process conditions were manipulated. In contrast, 
 

36 the neutral model exhibited the best performance for rare taxa. Our analysis further indicated that 
 

37 immigration rates decreased with taxa abundance and competitions between taxa were strongly 
 

38 correlated with phylogeny but within a certain phylogenetic distance only. The determinism 
 

39 underlying taxa and community dynamics were quantitatively assessed, showing greater 
 

40 determinism in the treatment bioreactors which aligned with the subsequent abnormal system 
 

41 functioning. Given its mechanistic basis, the framework developed here is expected to be 
 

42 potentially applicable beyond microbial ecology. 

 

43 
 

44 Impact Statement 
 

45 One fundamental goal in microbial ecology is to predict how microbial diversity is changed 
 

46 across space and time. Although spatial patterns of microbial communities have been recently 
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47 intensively examined, our understanding of microbial temporal dynamics is rudimentary, 
 

48 primarily due to the lack of appropriate experimental data and theoretical framework. By 
 

49 reconciling niche and neutral perspectives, this study developed a novel process models-based 
 

50 framework to effectively encapsulate microbial species temporal dynamics, which is powerful 
 

51 for quantitatively assessing the assembly mechanisms underlying microbial community 
 

52 dynamics. This study represents a significant advance in explaining microbial temporal dynamics 
 

53 toward predictive microbial community ecology. 

 

54 
 

55 Keywords: neutral model; consumer-resource model; species dynamics; community assembly 
 

56 mechanisms. 

 

57 

58 

59 Introduction 
 

60 Microorganisms are the most diverse group of life on Earth, and play critical roles in global 
 

61 biogeochemical cycling of carbon, nitrogen, phosphorus, sulfur and various other elements. It is 
 

62 well known that microbial diversity is extremely high across various habitats (1-3). One of the 
 

63 fundamental goals in microbial ecology is to determine how such extremely high microbial 
 

64 biodiversity is generated and maintained across space and time (4). Two types of ecological 
 

65 processes (deterministic vs. stochastic) are influential for explaining the processes of assembling 
 

66 individual taxa into a local community. Niche-based theory assumes that deterministic processes, 
 

67 such as differences in taxonomic and functional traits, interspecies interactions (e.g., competition, 
 

68 predation, and mutualisms), and abiotic filtering (e.g. temperature, pH), are responsible for local 
 

69 community compositions (5, 6). In contrast, neutral theory proposes that all species are 
 

70 ecologically equivalent, thus immigration and ecological drift of stochastic birth and death shape 
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71 the diversity and composition of local communities regardless of species traits (7). Although both 
 

72 deterministic and stochastic processes are believed to play key roles in shaping community 
 

73 diversity, their relative importance is still hotly debated (6-11), particularly in microbial ecology 
 

74 (4, 12-14). It is thus critical to quantify the extent to which deterministic or stochastic processes 
 

75 influence community assembly in order to influence or even manipulate microbial communities 
 

76 for designed functions (4, 14). 
 

77 Several major approaches have been used to infer community assembly mechanisms, such 
 

78 as multivariate analysis, null modeling analysis, and ecological theory-based process models (i.e. 
 

79 niche and neutral models) (4, 15). Comparing to the multivariate and null model-based statistical 
 

80 approaches, the ecological theory (niche vs neutral)-based process model approach is more 
 

81 attractive because it allows mechanistic predictions of community dynamic behavior. One of the 
 

82 most widely used niche models is Lotka-Volterra competition (16, 17), which describes the 
 

83 dynamics of individual taxa as a function of growth rate and inter-species interaction. However, 
 

84 such direct effect is rarely analyzed in nature, and the competition coefficients are challenging to 
 

85 measure experimentally (17, 18). Such parameter-rich models are particularly intractable for 
 

86 studying microbial communities that typically exhibit high diversity (19-22). An alternative to the 
 

87 generalized Lotka-Volterra model is the consumer-resource model, which describes the dynamics 
 

88 of individual taxa as a function of the availability of resources. This model assumes that species 
 

89 interact only through competition for a few limiting resources (23, 24), which greatly reduces the 
 

90 number of required parameter from the square of the taxon number (pairwise species interactions) 
 

91 to the number of resources, and hence it is parsimonious for complex systems such as microbial 
 

92 communities (25). Recently, resource-related models have been successfully used for modeling 
 

93 microbial community diversity dynamics (26, 27). 
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94 Neutral models have also been successful in explaining some of the most widely studied 
 

95 patterns in community ecology, such as abundance distribution (28), rank-abundance distribution 
 

96 (13) and frequency-abundance distribution of individual taxa (12). However, most studies have 
 

97 focused on community-level predictions at one time point (29-33), but rarely examined the 
 

98 dynamic behavior of individual populations from neutral perspectives (13). This is an important 
 

99 knowledge gap to fill because temporal dynamic behavior is critical for understanding multispecies 
 

100 coexistence (6) and functional stability (34). Also, because both niche and neutral mechanisms 
 

101 play key roles in community assembly (35), several studies attempted to develop unified models 
 

102 to reconcile both mechanisms (6, 8-10). But such theoretical models are rarely applied to actual 
 

103 ecological data owing to mathematical challenges (36, 37). Recently, a stochastic differential 
 

104 equation (SDE)-based model that consolidates niche and neutral processes has been developed to 
 

105 simulate the dynamics of individual microbial taxa (13, 36). Rooted on the framework of neutral 
 

106 model, this SDE model considers the niche effect by incorporating an advantage term as a linear 
 

107 function of various environmental variables (13). However, this SDE model does not account for 
 

108 biotic interactions such as competition. 
 

109 In this study, we developed a novel process models-based framework to quantitatively infer 
 

110 assembly mechanisms by integrating niche and neutral theory-based models for community 
 

111 dynamics. Specifically, we first developed an SDE-based combined model by incorporating 
 

112 consumer-resource interactions, immigration, and drift. We then compared this new model with 
 

113 the consumer-resource model and neutral model, for the ability to capture the temporal dynamics 
 

114 of individual taxa in anaerobic bioreactors. We estimated ecologically relevant model parameters 
 

115 such as the immigration rate and competition strength, and inferred the relative importance of 
 

116 stochastic vs deterministic processes in driving community dynamics. We applied this framework 
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117 to analyze time-series data from anaerobic bioreactors under stable or disturbed process conditions. 
 

118 Our results indicated that it provides a robust, reliable process models-based tool for assessing 
 

119 

 

120 

assembly mechanisms controlling taxa and community dynamics. 

 

121 Materials and Methods 
 

122 Mathematical framework 
 

123 Consumer-resource model 
 

124 Because of its mathematically tractable form, MacArthur’s consumer–resource model (38) has a 
 

125 strong impact on the theory of exploitative competition (39). In this study, we use the following 
 

126 equation (27, 40) for its simplicity to describe the consumer-resource interaction of Taxon 𝑖: 
 

127 
𝑑𝑁𝑖 = (∑ 𝑏 𝐶 𝑅 − 𝑚 )𝑁 [1] 
𝑑𝑡 𝑗 𝑖𝑗 𝑖𝑗  𝑗 𝑖 𝑖 

 

128 Where 𝑁𝑖 is the absolute abundance (i.e. population density, population per unit area) of 

129 Taxon 𝑖 and 𝑅𝑗 is the availability of Resource 𝑗. 𝐶𝑖𝑗 is the rate at which Taxon 𝑖 consumes 

 

130 Resource 𝑗, while the quality factor, 𝑏𝑖𝑗, represents Taxon 𝑖’s ability to convert the consumed 

 

131 resource to its biomass. Thus, their product, 𝑏𝑖𝑗 𝐶𝑖𝑗, can represent the competition strength of 
 

132 Taxon 𝑖 over Resource 𝑗.𝑚𝑖 represent the minimum maintenance cost. 
 

133 The community size, 𝑁𝑇 = ∑𝑛 𝑁𝑖 , is implicitly a function of time. For typical microbial 
 

134 community data, 𝑁𝑇 is not available. Rather, the relative abundances and the ratios between taxa 

135 abundances can be inferred from the compositional datasets (41). We can choose a reference 
 

136 taxon 𝑟, and take the ratio of focal taxon and the reference taxon. Let 𝑍𝑖 = log 
𝑁𝑖 be the log-ratio 
𝑁𝑟 

 

137 of Taxon 𝑖 to the reference taxon 𝑟. Based on eq [1], we have: 
 

138 𝑑log (𝑁𝑖) 
= 

 𝑑𝑁𝑖  = ∑ 𝑏
 𝐶 𝑅 − 𝑚 [2] 

𝑑𝑡 𝑁𝑖𝑑𝑡 
𝑗 𝑖𝑗 𝑖𝑗  𝑗 𝑖 

𝑖=1 
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139 Thus: 
 

 
140 

𝑑log 
𝑁𝑖 

𝑑𝑍𝑖 =  𝑁𝑟 = 
𝑑log (𝑁𝑖) 

− 
𝑑log (𝑁𝑟) 

= ∑ (𝑏 𝐶
 
 
− 𝑏 

 
𝐶  )𝑅 

 
− (𝑚 

 
− 𝑚 

 
) [3] 

𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑗 𝑖𝑗 𝑖𝑗 𝑟𝑗 𝑟𝑗 𝑗 𝑖 𝑟 

 

141 In this study of bioreactor dataset, the availability of resource 𝑅𝑗 is represented by a single 

 

142 variable, the volatile solids (VS), in the bioreactors. 𝑅𝑗 could be represented by other resources 
 

143 when applying this model in other systems. These variables are known at discrete time points. 
 

144 Further, Eq [3] can be expressed as a simple linear model, 
 

145 𝑑𝑍𝑖 = 𝑘
 + ∑ 𝑘 𝑌 [4] 

𝑑𝑡 0 𝑗 1,𝑗 1,𝑗 

 

146 Where 𝑘0 = −(𝑚𝑖 − 𝑚𝑟) representing the relative maintenance cost of taxon 𝑖 as compared 

147 to the reference taxon, 𝑘1,𝑗 = 𝑏𝑖𝑗𝐶𝑖𝑗 − 𝑏𝑟𝑗 𝐶𝑟𝑗 representing the relative competition strength of 

 

148 taxon 𝑖 over resource 𝑅𝑗 , and 𝑌1,𝑗 = 𝑅𝑗 . We can then estimate the parameters through a least- 
 

149 

 

150 

squares regression analysis based on the measured variables at discrete time points. 

 

151 The neutral model 
 

152 In a neutral local community, when an individual dies, it is replaced by an immigrant of Taxon i 

 

153 from a source community (i.e., regional species pool) with the probability 𝑚𝑖, or by regeneration 

154 from the local community with probability 1- 𝑚𝑖. Under the neutral assumption, 𝑚1 = 𝑚2 = 

155 ⋯ = 𝑚. We set the mean time for replacement of an individual to be a and define a scaled time 
 

156 τ=t/a. In a short time period ∆𝜏 → 0, we can expect only one replacement in the community. The 
 

157 species relative abundances 𝑿 in a neutral model follows a Wright-Fisher Process (WFP) (42- 
 

158 44), which is defined by the Ito stochastic differential equation (SDE): 
 

159 𝑑𝑿 = 𝜆(𝒑 − 𝑿) 𝑑𝜏 + 𝜎(𝑿)𝑑𝑾 [5] 
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√ 

160 Where 𝒑 is the relative abundance of taxa in the metacommunity, 𝜆 = 𝑁𝑇𝑚 is the product 

161 of local community size and taxon immigration probability, representing the relative rate of 
 

162 migration from the metacommunity into the local community. 𝜎(𝑿) is the instantaneous standard 
 

163 

 
164 

deviation of changes in 𝑋 per unit time. 𝑑𝑊 is a standard Wiener process term. The quadratic 

 
covariation between taxa is given by Σ =1 𝜎𝜎𝑇 where (42-44) 

2 
 

 

165 
 

Σ𝑖𝑗 = { 
𝑋𝑖(1 − 𝑋𝑖) 𝑖 = 𝑗 

−𝑋𝑖𝑋𝑗 𝑖 ≠ 𝑗 
 

166 The SDE for the focal taxon 𝑖 is then defined as: 

 
 

167 𝑑𝑋𝑖 = 𝜆(𝑝𝑖 − 𝑋𝑖) 𝑑𝜏 + 𝜎(𝑋𝑖)𝑑𝑊𝑖 = 𝜆⏟( 𝑝 𝑖 − 𝑋 𝑖 ) 𝑑 𝜏 + √⏟ 2𝑋 𝑖 ( 1 − 𝑋 𝑖 ) 𝑑 𝑊 𝑖 [6] 

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 
 

168 Where 𝑋 is the relative abundance of taxon 𝑖, i.e., 𝑋 = 
 𝑁𝑖 . 𝑑𝑊 is a standard Wiener 

𝑖 𝑖 𝑁𝑇 
𝑖 

 

169 process term following the standard normal distribution N (0,1). The first term on the right of 

 

170 Eq[6] represents the expect change of 𝑋𝑖, which is a deterministic term; the second term 

171 represents the variation of change, which is a stochastic term. 
 

172 The covariation between taxon 𝑖 and taxon 𝑗 (𝑖 ≠ 𝑗) is 𝐸 [(𝑑𝑋𝑖 − 𝐸(𝑑𝑋𝑖)) (𝑑𝑋𝑗 − 
 
 
 

173 𝐸(𝑑𝑋𝑗))] = 𝐸 (√2𝑋𝑖(1 − 𝑋𝑖)𝑑𝑊𝑖 × √2𝑋𝑗(1 − 𝑋𝑗)𝑑𝑊𝑗), which equals to −2𝑋𝑖𝑋𝑗. This gives 

 

174 us the covariance between the two Wiener processes 𝑑𝑊𝑖 and 𝑑𝑊𝑗: 

 
175 𝜌 = 𝐸(𝑑𝑊 𝑑𝑊 ) = − 

 𝑋𝑖𝑋𝑗 
. [7] 

𝑖 𝑗 (1−𝑋𝑖)(1−𝑋𝑗) 

 

176 We can take the log-ratio transformation as 𝑍 = log 
𝑁𝑖 = log 

𝑁𝑖/𝑁𝑇 = log 
𝑋𝑖. Since both 𝑋 

𝑖 𝑁𝑟
 𝑁𝑟/𝑁𝑇 𝑋𝑟 

𝑖 

 

177 and 𝑋𝑟 follow the SDE (Eq[6]), the SDE of 𝑍𝑖 is derived based on Ito’s lemma: 
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𝑟 

√ 

178 
 
𝑑𝑍 = [

𝜕𝑍𝑖 
𝜆 (𝑝 − 𝑋 ) + 

𝜕𝑍𝑖 
𝜆 (𝑝 − 𝑋 ) + 

𝜕𝑍𝑖
] 𝑑𝜏 

𝑖 𝜕𝑋𝑖  
𝑖 𝑖 𝑖 

 

 
1 𝜕2𝑍𝑖 

𝜕𝑋𝑟  
𝑟
 

𝑟 𝑟 
 

 
𝜕2𝑍𝑖 

𝜕𝑡  

1 𝜕2𝑍𝑖 

 
 

𝜕𝑍𝑖 
179 + [  2 𝜎

2(𝑋𝑖) + 
2 𝜕𝑋𝑖 

 
 

𝜕𝑋𝑖𝜕𝑋𝑟 
𝜎(𝑋𝑖)𝜎(𝑋𝑟)𝜌 + 

2 𝜕𝑋2 
𝜎2(𝑋𝑟)] 𝑑𝜏 + 

𝜕𝑋𝑖 
𝜎(𝑋𝑖)𝑑𝑊𝑖 

 

𝜕𝑍𝑖 180 + 𝜎(𝑋 )𝑑𝑊 
 
 

181 

 
 

That is, 

𝜕𝑋𝑟 
𝑟 𝑟 

 
  

182 𝑑𝑍 = [
𝜆𝑖𝑝𝑖−1 

− 
𝜆𝑟𝑝𝑟−1 

+ 𝜆
 − 𝜆 ] 𝑑𝜏 + 2(1−𝑋𝑖) 

𝑑𝑊 − √
2(1−𝑋𝑟) 

𝑑𝑊
 [8] 

𝑖 𝑋𝑖
 𝑋𝑟 

𝑟 𝑖 √ 
𝑋𝑖 𝑋𝑟 

𝑟 

 

183 Given that τ=t/a, and the covariance between 𝑑𝑊𝑖 and 𝑑𝑊𝑟 (Eq[7]), the above equation (eq 

184 [8]) can be written as a SDE: 

 
 

185 𝑑𝑍𝑖 = 1 
[
𝜆𝑖𝑝𝑖−1 

−
 𝜆𝑟𝑝𝑟−1 

 

2 + 𝜆𝑟 − 𝜆𝑖] 𝑑𝑡 + √ + 2 𝑑𝑊𝑡 [9] 
𝑎⏟  𝑋 𝑖     𝑋𝑟  
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 

⏟ 𝑎𝑋 𝑖  𝑎 𝑋 𝑟  
𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 

 

186 Where 𝑑𝑊𝑡 is a Wiener process term, which follows a normal distribution N (0, dt). Further, 

187 Eq [9] can be expressed as a simple linear model, 
 

188 𝑑𝑍𝑖 = 𝑘
 + 𝑘 𝑌 + 𝑘 𝑌 + 𝜀 [10] 

𝑑𝑡 0 2 2 3 3 

 

189 where 𝑘 = 
𝜆𝑟−𝜆𝑖, 𝑘

 
= 

𝜆𝑖𝑝𝑖−1
, 𝑌

 = 
1 

, 𝑘 = − 
𝜆𝑟𝑝𝑟−1

, 𝑌
 = 

1 
and 𝜀 is an error term given 

0 𝑎 2 𝑎 2 𝑋𝑖 
3 𝑎 3 

 

𝑋𝑟 

 
 

190 by 𝜀 = 
 2  

+ 
 2 𝑑𝑊𝑡. The parameters can be estimated through a weighted least-squares 

𝑎𝑋𝑖 𝑎𝑋𝑟 𝑑𝑡 
 

191 regression analysis, in which the weights are 𝑑𝑡 . The weighted errors should be normally 
 

 2 
+

 2  

𝑋𝑖  𝑋𝑟 

 
 

192 distributed and the standard residual error of the linear regression model should be √
1
. We then 
𝑎 

 

193 estimate the parameter product, 𝜆𝑖𝑝𝑖, based on the coefficient of variable 𝑌2. Further, 𝑝𝑖 can be 

194 estimated as the mean relative abundance of taxon 𝑖, and 𝜆𝑖 can be derived by dividing the 

195 estimated 𝜆𝑖𝑝𝑖 to 𝑝𝑖. 

𝑖 
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𝑖 𝑖 

√ 

196 
 

197 The combined model 
 

198 A combined model of taxon dynamics was further developed to include both exploitative 
 

199 competition and neutral factors. The term of ‘relative growth’ (can be positive or negative) 
 

200 caused by the resource consuming (eq [3]) is added to the deterministic part of the SDE (eq [9]) 
 

201 without change, since it is purely deterministic which wouldn’t bring in any uncertainty. The 
 

202 combined model is thus given by: 

 
 

203 𝜆 𝑝 −1 
𝑑𝑍𝑖 = [ − 𝜆𝑟𝑝𝑟−1 + 

𝜆𝑟 − 
𝜆𝑖 + ∑𝑗(𝑏𝑖𝑗𝐶𝑖𝑗 − 𝑏𝑟𝑗𝐶𝑟𝑗)𝑅𝑗 − (𝑚𝑖 − 𝑚𝑟 )] 𝑑𝑡 + √ 

2
 

2 
+ 𝑑𝑊𝑡 [11] 

 

 
204 

⏟ 𝑎 𝑋𝑖    𝑎 𝑋 𝑟   𝑎   𝑎  
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 

 
Further, Eq [11] can be expressed as a simple linear model, 

⏟𝑎 𝑋 𝑖  𝑎 𝑋 𝑟  
𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 

 

205 𝑑𝑍𝑖 = 𝑘
 + ∑ 𝑘 𝑌 + 𝑘 𝑌 + 𝑘 𝑌 + 𝜀 [12] 

𝑑𝑡 0 𝑗 1,𝑗 1,𝑗 2 2 3 3 

 

206 Where 𝑍𝑖 = log 
𝑋𝑖 is the log ratio of the relative abundance of taxon 𝑖 to the reference taxon 
𝑋𝑟 

 

207 𝑟. 𝑘  = 
𝜆𝑟 − 

𝜆𝑖 +𝑚 − 𝑚 , 𝑘 = 𝑏 𝐶 − 𝑏  𝐶 representing the relative competition strength of 
0 𝑎 𝑎 𝑟 𝑖 1, 𝑖𝑗 𝑖𝑗 𝑟𝑗  𝑟𝑗 

 

208 taxon 𝑖 on resource 𝑅 , and 𝑌 = 𝑅 . 𝑘 = 
𝜆𝑖𝑝𝑖−1

, 𝑌
 = 

1 
, 𝑘 = − 

𝜆𝑟𝑝𝑟−1
, 𝑌

 = 
1 

and 𝜀 is an 
𝑗 1,𝑗 𝑗 2 𝑎 2 𝑋𝑖 

3 𝑎 3 
 

𝑋𝑟 

 
 

209 error term given by 𝜀 = 
 2  

+ 
 2 𝑑𝑊𝑡. The parameters can be estimated through a weighted 

𝑎𝑋𝑖 𝑎𝑋𝑟 𝑑𝑡 

 

210 least-squares regression analysis, in which the weights are 𝑑𝑡 . The weighted errors should be 
 

 2 
+

 2  

𝑋𝑖  𝑋𝑟 

 
 

211 normally distributed and the standard residual error of the linear regression model should be √
1
. 
𝑎 

 

212 𝑝𝑖 can be estimated as the mean relative abundance of taxon 𝑖. We can estimate the parameters 

213 𝑘0, 𝑘1, 𝑘2 and 𝑘3 in the linear model, by which the model parameters 𝑏𝑖𝑗𝐶𝑖𝑗 − 𝑏𝑟𝑗𝐶𝑟𝑗, 𝜆𝑖 and 𝑝𝑖 
 

214 

 

215 

can be further derived. 
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𝜎 

 

223 After parameter estimation using weighted least-squares regression analysis, the taxa 
 

224 determinism can be calculated for each taxon at each time point based on eq [13]. For the 
 

225 combined model, the determinism of taxon 𝑖 can be calculated based on parameters of the linear 
 

226 model eq [12]: 
 

 
227 

(𝑘0+∑𝑗 𝑘1,𝑗𝑅𝑗+
𝑘2+

𝑘3 )×𝑎 

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑚 = 
 𝑋𝑖  𝑋𝑟 

 

√
 2 

+
 2  

 
[14] 

𝑋𝑖  𝑋𝑟 

 

228 Note that the stochasticity is calculated on the scaled time unit 𝜏. Then, the community- 
 

229 level determinism is calculated as the mean determinism among taxa, either weighted by the 
 

230 

 

231 

relative abundance of each taxon (weighted determinism) or not (unweighted determinism). 

 

232 Anaerobic bioreactor operation and 16S rRNA gene sequencing 
 

233 The operation of anaerobic bioreactors, biomass sampling and chemical analyses were processed 
 

234 as previously described (45). In brief, two sets of triplicated, continuous anaerobic bioreactors (i.e., 
 

235 the control bioreactors C1, C2 and C3, and the treatment bioreactors D1, D2 and D3) were operated 
 

236 at 35 oC and fed at 4-hr intervals, each with a working volume of 3.6 L. The control bioreactors 
 

237 were fed with dairy manure at a constant rate and continuously operated for 501 days, which 

216 Determinism 

217 The SDE of the combined model (eq [11]) can be written as 

218 𝑑𝑍 = 𝜇⏟𝑑𝜏 + ⏟𝜎𝑑 𝑊  
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 

219 Where 𝜇 is the expected change of 𝑍 per unit time and 𝜎 is the instantaneous standard 

220 deviation of changes in 𝑍 per unit time. 𝑑𝑊 is a standard Wiener process term. We define taxa 

221 determinism as the inverse of the variation coefficient, that is, 

222 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑚 = 
𝜇 

[13] 
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238 showed a stable organic matter level (Fig. S1a). The treatment bioreactors were operated for 100 
 

239 days before they collapsed by supplementing incremental poultry waste, resulting in higher 
 

240 ammonia toxicity (Fig. S1b). Sludge samples were generally taken every 3 to 10 days from each 
 

241 bioreactor, resulting in 53 time points for control and 11 time points for treatment bioreactors. 
 

242 DNA extraction and 16S rRNA gene sequencing were processed as previously described 
 

243 (45). In brief, biomass samples were subjected to suspension in 630 μL of DNA-extraction buffer, 
 

244 subsequently undergoing treatment with a lysozyme mixture (60 μL, 37 °C, 60 min), a protease 
 

245 mixture (60 μL, 37 °C, 30 min), and 20% sodium dodecyl sulfate (80 μL, 37 °C, 90 min). The 
 

246 treated sample suspension was then extracted using phenol-chloroform-isoamyl alcohol (25:24:1) 
 

247 at 65 °C for 20 min, followed by extraction with chloroform-isoamyl alcohol (24:1) to obtain a 
 

248 supernatant. Further, DNA extract was combined with 0.6 volume of isopropanol and stored 
 

249 overnight at 4 °C; DNA was obtained through centrifugation followed by washing with 70% cold 
 

250 ethanol, drying, and resuspension in nuclease-free water. The purity and concentration of DNA 
 

251 were subsequently assessed utilizing a NanoDrop spectrophotometer (NanoDrop Technologies 
 

252 Inc., Wilmington, DE, USA). The V4 region of microbial 16S rRNA gene was amplified by primer 
 

253 pairs of 515F and 806R (46). PCR amplicon sequencing was conducted on the MiSeq Illumina 
 

254 platform at the Institute for Environmental Genomics (IEG), University of Oklahoma. Sequences 
 

255 were processed to generate exact sequence variants (ESVs) by UNOISE3 (47) at the 100% 
 

256 sequence similarity threshold. ESVs with fewer than eight reads were removed using the default 
 

257 ‘-minsize’ values. Taxonomy was assigned with a confidence cutoff of 50% using the RDP 
 

258 classifier (48). The reference taxon was then chosen as the one with the top frequency and relative 
 

259 abundance, which was ESV1 that were detected at all time points. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/science-and-technology
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260 Since there were only 11 time points for each treatment bioreactor, we combined the time 
 

261 series of the triplicate bioreactors together to improve the liability of model fitting. For example, 
 

262 if the dependent variable (as for eq [4], eq [10] & eq [12]) of one taxon in treatment bioreactor 
 

263 D1 is (
𝑑𝑍𝑖) = [(

𝑧𝑖,𝑡2−𝑧𝑖,𝑡1) , . . . , (
𝑧𝑖,𝑡11−𝑧𝑖,𝑡10)) ]; the dependent variable of this taxon in 

𝑑𝑡 𝐷1 𝑡2−𝑡1 𝐷1,1 𝑡11−𝑡10 𝐷1,10 

 

264 D2 is (
𝑑𝑍𝑖) = [(

𝑧𝑖,𝑡2−𝑧𝑖,𝑡1) , . . . , (
𝑧𝑖,𝑡11−𝑧𝑖,𝑡10)) ] and that in D3 is (

𝑑𝑍𝑖) = 
𝑑𝑡 𝐷2 𝑡2−𝑡1 𝐷2,1 𝑡11−𝑡10 𝐷2,10 𝑑𝑡 𝐷3 

 

265 [(
𝑧𝑖,𝑡2−𝑧𝑖,𝑡1) 
𝑡2−𝑡1 

 
 
𝐷3,1 

, . . . , (
𝑧𝑖,𝑡11−𝑧𝑖,𝑡10) 
𝑡11−𝑡10 

 
 
𝐷3,10 

], then the dependent variable for the combined time-series 

 

 
266 

 
is (

𝑑𝑍𝑖) 
 

= [(
𝑑𝑍𝑖) 

 
, (
𝑑𝑍𝑖) 

 
, (
𝑑𝑍𝑖) 

 

] = [ 
(
𝑧𝑖,𝑡2−𝑧𝑖,𝑡1 ) 
𝑡2−𝑡1 

 
 

𝐷1,1 
, … , (

𝑧𝑖,𝑡11−𝑧𝑖,𝑡10 ) 
𝑡11−𝑡10 

 
 

𝐷1,10 
, (

𝑧𝑖,𝑡2−𝑧𝑖,𝑡1 ) 
𝑡2−𝑡1 

, 
𝐷2,1 

].
 

𝑑𝑡  𝐷 𝑑𝑡 𝐷1 𝑑𝑡 𝐷2 𝑑𝑡 𝐷3 . . . , (
𝑧𝑖,𝑡11−𝑧𝑖,𝑡10) 
𝑡11−𝑡10 

 
𝐷2,10 

, (
𝑧𝑖,𝑡2−𝑧𝑖,𝑡1 ) 
𝑡2−𝑡1 

 
𝐷3,1 

, . . . , (
𝑧𝑖,𝑡11−𝑧𝑖,𝑡10 ) 
𝑡11−𝑡10 

 
𝐷3,10 

 

267 Similarly, the independent variables can be combined in the same way. The combined dependent 
 

268 and independent variables for the treatment bioreactors were then used for the linear regression 
 

269 analyses based on the least-squares method. We note that this is not a standard way to apply the 
 

270 model fitting for common time-series data. Yet, this combination method may provide an option 
 

271 for replicated time-series. In fact, fluctuations in microbial community compositions were highly 
 

272 consistent for the three replicated treatment bioreactors (Fig. S1c), which enabled us to test the 
 

273 

 

274 

 

275 

dynamical pattern of microbial taxa based on the combined time-series. 

 

276 Results 
 

277 Overview of modeling framework 
 

278 To assess the mechanisms controlling community dynamics, raw time-series sequence data are 
 

279 first processed to generate relative abundances of individual taxa represented as exact sequence 
 

280 variants (ESVs) (Fig. 1, i). The reference taxon is chosen as the one with the top frequency and 
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281 relative abundance, and the ratio of taxa abundance to the abundance of the reference taxon is then 
 

282 calculated for each taxon. The observed time-series data of each taxon are then fitted with the 
 

283 neutral, consumer-resource, and combined models, respectively (Fig. 1, ii). The performances of 
 

284 the three models are compared according to the Akaike information criteria (AIC) values, aiming 
 

285 to reveal potential mechanisms driving the dynamics of individual taxa. Ecologically important 

 

286 parameters, such as 𝜆𝑖 (the rate of migration from the metacommunity into the local community) 

287 and 𝑏𝑖 𝐶𝑖 − 𝑏𝑟𝐶𝑟 (relative competition strength to the resource), are estimated using the least- 

288 square method for model fitting (Fig. 1, iii). Finally, the determinism for taxa and community 
 

289 dynamics are assessed based on the SDEs of the combined model (Fig. 1, iv), as the SDEs comprise 
 

290 the deterministic and stochastic part. It is noted that, while the immigration is generally considered 
 

291 as a stochastic process (15), it is included in the deterministic part of the SDEs (eq [6], eq [9] & 
 

292 eq [11]). In fact, the immigration process acts as a restoring force which makes the relative 
 

293 abundance return to its mean value when there is a deviation between the current relative 
 

294 

 

295 

abundance and the mean relative abundance. 

 

296 Model performances on taxon dynamics 
 

297 To illustrate how the process model-based framework (Fig. 1) is applied to microbial time-series 
 

298 data, we collected longitudinal data from two contrasting sets of anaerobic bioreactors, each with 
 

299 three replicates: There were a total of 53 time points from the control bioreactors in which stable 
 

300 process conditions were maintained over 500 days, and 11 time points from the treatment 
 

301 bioreactors over 100 days during which the resource levels were incrementally raised until process 
 

302 conditions deteriorated to an ultimate collapse. A total of 6,799 microbial taxa, represented by 
 

303 ESVs, were detected, which were present in at least one sample in control or treatment bioreactors. 
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304 Further, models were fitted using the least-squares method for each taxon under control or 
 

305 treatment conditions, requiring the taxon to present in at least six time points (for example, a taxon 
 

306 present in at least 6 out of 53 time points in bioreactor C1). Specifically, we combined the time 
 

307 series of the triplicate treatment bioreactors together to improve the liability of model fitting (see 
 

308 Methods for details), and fitted the models on taxa which were present in at least 6 out of 33 time 
 

309 points in treatment bioreactors. In addition, the mean relative abundance of each taxon in control 
 

310 or treatment bioreactors was calculated, based on which taxa were classified into three groups: the 
 

311 abundant taxa (mean relative abundance > 0.1%), the moderate taxa (mean relative abundance 
 

312 between 0.01% and 0.1%), and the rare taxa (mean relative abundance < 0.01%) (Table S1). 
 

313 To identify the mechanisms driving the dynamics of individual taxon, the relative 
 

314 performances of the three models were compared based on AIC values. In the treatment bioreactors, 
 

315 the combined model had the best fit for 58% of the abundant taxa (Fig. 2a), suggesting that most 
 

316 abundant taxa were driven by both stochastic drift and deterministic immigration and competition. 
 

317 In contrast, the neutral model had best fit for 38% of the abundant taxa, and the consumer-resource 
 

318 model had best fit for only 4% of the abundant taxa. For rare taxa, 58% of them in the treatment 
 

319 bioreactors found best fit with the neutral model, suggesting that rare taxa were mainly shaped by 
 

320 immigration and drift. The importance of neutral processes was even more conspicuous in the 
 

321 control bioreactors, since the neutral model had the best fit for 79% of all abundant taxa and 74% 
 

322 of rare taxa. Therefore, neutral processes of immigration and drift were identified to drive the 
 

323 dynamics of the majority of rare taxa, particularly in the control bioreactors. When examining the 
 

324 model performance for the entire community, the neutral model had the best fit for most taxa in 
 

325 both the control (75% of all taxa) and treatment bioreactors (57% of all taxa) (Fig. S2a), which 
 

326 was expected as the rare taxa contributed to the majority of the taxa number (Table S1). 
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327 Model performance was further examined across the major phyla. The neutral model was the 
 

328 best for most rare taxa in both treatment and control bioreactors regardless of phylogenetic 
 

329 relationships (Fig. S3), while the combined model performed better than the other two models for 
 

330 the abundant taxa in treatment bioreactors for 5 out of the top 7 phyla such as Firmicutes and 
 

331 Bacteroidetes (Fig. S3). These results suggested that model performance was largely unrelated to 
 

332 microbial phylogeny. 
 

333 Because the combined model includes both the neutral and consumer-resource interaction 
 

334 terms, the R2 values from the least square-squares fitting are almost always the largest for the 

 

335 combined model (Fig. 2b). On average, the combined model can explain 36%  20% (mean  s.d.) 
 

336 of the variations in taxon dynamics based on the R2 values, while the neutral model can explain 

 

337 31%  19% and the consumer-resource model can only explain 4%  8% of the variations (Fig. 
 

338 S2b). Regarding the ability to represent taxon dynamics under different treatment conditions, the 
 

339 neutral model could explain more variations of the abundant taxa in the control than the treatment 
 

340 bioreactors (mean R2 value: 22% v.s. 16%; P < 0.0001 by two-tailed t-test) (Fig. 2b). It also 
 

341 performed better on the rare taxa in the control than the treatment bioreactors (mean R2 value: 36% 
 

342 v.s. 32%; P < 0.0001 by two-tailed t-test). In contrast, the consumer-resource model or the 
 

343 combined model was able to represent taxon dynamics in the treatment bioreactors better than 
 

344 those in the control bioreactors, as the mean R2 values were significantly higher in the treatment 
 

345 than the control bioreactors for abundant, moderate, as well as rare taxa (P < 0.02  by two-tailed 
 

346 t-test). Therefore, the relative performance of these three models are dependent on taxa abundance 
 

347 

 

348 

and process conditions in the ecosystem of interest. 

 

349 Competition strengths among different taxa 
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350 Ecologically important parameters such as 𝑏𝑖𝐶𝑖 − 𝑏𝑟𝐶𝑟 reflecting the relative competition strength 

351 can be estimated with relative taxon abundance data at discrete time points, based on the consumer- 
 

352 resource model or the combined model. Considering the better performance of the combined 
 

353 model than the consumer-resource model, here the parameters were estimated based on the 
 

354 combined model to enable the comparison across taxa, which were summarized in Table S2. The 
 

355 top three most competitive taxa in the treatment bioreactors were identified to be associated with 
 

356 the genera Ornithinicoccus, unclassified Ruminococcaceae and Gottschalkia, suggesting them as 
 

357 strong competitors for the organic substrates. 
 

358 It is curious whether phylogenetically closely related taxa are more likely to have similar 
 

359 competition strengths. Thus, we examined the relationship between taxa phylogeny and the 
 

360 estimated relative competition strength. When the sequence similarity between taxa was larger 

 

361 than 70%, the difference in 𝑏𝑖 𝐶𝑖 had a significant negative correlation with sequence similarity in 

362 the treatment bioreactors (Spearman’s rho = -0.04, P < 0.0001) (Fig. 3a), suggesting that closely 
 

363 related microbial taxa had similar competition strengths (i.e., phylogenetic signal) when resource 
 

364 levels were altered. The negative correlation between competition strength difference and 
 

365 sequence similarity robustly held under even higher sequence similarity (Spearman’s rho = -0.04, 
 

366 P < 0.0001 for sequence similarity > 80% and Spearman’s rho = -0.07, P = 0.003 for sequence 
 

367 similarity > 90%). However, such negative correlation did not hold when sequence similarity of 
 

368 the 16S rRNA gene was less than 70% (Spearman’s rho = 0.03 for treatment bioreactors). For 

 

369 control bioreactors, the negative correlation between sequence similarity and the difference in 𝑏𝑖𝐶𝑖 

370 was observed when sequence dissimilarity was larger than 85% (Spearman’s rho = -0.06, P < 
 

371 0.0001) but not below that threshold (Fig. 3a). Therefore, the phylogenetic signal of resource 
 

372 competition strengths is relevant only within certain phylogenetic distances. It is also noted that, 
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373 although significant, the correlations were weak (absolute Spearman’s rho < 0.1), suggesting that 
 

374 phylogeny could only explain a minor proportion of variations in taxa resource competition 
 

375 strengths. 

 

376 Since the mean 𝑏𝑖 𝐶𝑖 difference of microbial taxa was substantially larger in control 

377 bioreactors (0.21 0.19, mean  s.d.) than that in treatment bioreactors (0.16 0.14, mean  s.d.), 
 

378 microbial responses to resource levels were more predictable in the treatment bioreactors, where 
 

379 changes in resource levels could lead to greater environmental selection. As a result, temporal 
 

380 dynamics of closely related ESVs was more similar in the treatment bioreactors than the control 
 

381 bioreactors. For example, ESV4 and ESV 221, which are 98.82% similar in sequence, belong to 
 

382 the same genus T78 of family Anaerolineaceae. The temporal dynamics of their relative 
 

383 abundance were not correlated (Pearson’s r = 0.17, P = 0.36) in the control bioreactors (Fig. 3b, 
 

384 3d) but significantly correlated (Pearson’s r = 0.54, P = 0.001) in the treatment bioreactors (Fig. 
 

385 

 

386 

3c, 3e). 

 

387 Negative correlation between immigration rates and taxa abundances 
 

388 The neutral model presented the best fit for most taxa in the control bioreactors (Fig. 2a). We 
 

389 further examined how the estimated λi, which represented the immigration rates, varied across all 
 

390 taxa. The estimated relative immigration rates were similar for the same ESVs across triplicate 
 

391 bioreactors but highly different among various taxa, ranging in 104 folds. The estimated values of 
 

392 λi were negatively and significantly (Spearman’s rho = -0.95 ~ -0.92, P < 0.0001) correlated with 
 

393 the average relative abundances of ESVs (Fig. 4a). Furthermore, the estimated λi values were 
 

394 highly variable within each phylum because they were negatively dependent on taxa abundance 
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395 (Fig. S4), suggesting that the estimated immigration rates were related to abundance but not 
 

396 phylogeny. 
 

397 The probability density distribution of individual taxon abundance under equilibrium can be 
 

398 derived for the neutral model (12). Such abundance distribution is not possible for the consumer- 
 

399 resource or the combined model because taxon dynamics is dependent on the resource variable in 
 

400 these models. The probability density distributions of the relative abundances of an ESV can be 
 

401 predicted by λi and pi (the relative abundance of that ESV in the source community) in the neutral 
 

402 model, which were shown to follow a beta distribution (12). Exemplified by the distributions of 
 

403 relative abundances for several representative ESVs ranging from abundant to rare ones in the 
 

404 control bioreactors, the beta distributions predicted the dynamics of ESVs well, with much higher 
 

405 λi values for the rarer taxa (Figure 4b & Fig. S5). These results suggested that the neutral model 
 

406 could be used to predict the range of fluctuation for each microbial taxon under equilibrium, which 
 

407 may be valuable for assessing the boundaries of population abundance in a stable microbial 
 

408 

 

409 

community. 

 

410 Higher determinism in the treatment bioreactors 
 

411 The determinism of taxa at certain time points was calculated based on the parameters estimated 
 

412 of the combined model using the above-mentioned approach (Fig. 1). Interestingly, taxa 
 

413 determinism showed significant negative correlation with the mean relative abundance of taxa in 
 

414 both control (Spearman’s rho = -0.53, P < 0.0001) and treatment bioreactors (Spearman’s rho = - 
 

415 0.55, P < 0.0001), suggesting that rare taxa tended to be more predictable than abundant taxa. 
 

416 Further, the mean taxa determinism was higher in treatment than control bioreactors for abundant 
 

417 (mean determinism: 16 v.s. 13; P < 0.0001 by two-tailed t-test), moderate (mean determinism: 57 
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418 v.s. 54; P = 0.01 by two-tailed t-test) and rare taxa (mean determinism: 196 v.s. 152; P < 0.0001 
 

419 by two-tailed t-test) (Fig. 5a). 
 

420 The community-level determinism was further derived by aggregating the determinism of 
 

421 co-occurring taxa within the community. The abundance-weighted and unweighted community 
 

422 determinism were not different between the control and treatment bioreactors before Day 90 (P 
 

423 =0.06 ~ 0.94 by two-tailed t-test on each time point) (Fig. 5b). On Day 90, the mean weighted 
 

424 community determinism of treatment bioreactors was significantly higher than that of controls (P 
 

425 =0.02 by two-tailed t-test). On Day 97 which was prior to the collapse of treatment bioreactors, 
 

426 both the weighted and unweighted community determinism were substantially higher in the 
 

427 treatment bioreactors than controls (P =0.004 for weighted community determinism and P =0.04 
 

428 for unweighted community determinism by two-tailed t-test) (Fig. 5b), indicating stronger 
 

429 

 

430 

selection in the treatment bioreactors. 

 

431 Discussion 
 

432 Untangling ecological processes controlling community dynamics is a major challenge in 
 

433 microbial ecology, primarily due to the lack of appropriate theoretical framework and long-term 
 

434 time-series datasets (13, 49). With recent advances of genomics technology, massive longitudinal 
 

435 data can be rapidly obtained across different environmental conditions (50), which offer great 
 

436 opportunities for testing microbial ecological theories (15, 51). Here, we described a novel process 
 

437 models-based  framework,  to  quantitatively  assess  the  assembly  mechanisms  controlling 
 

438 community dynamics. Different from statistical approaches such as VPA (52, 53) and null model- 
 

439 based methods (15, 51, 54, 55), the process models are mechanistically developed to enable the 
 

440 prediction of community dynamics and their underlying mechanisms. Our analyses demonstrate 
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441 that this framework could discern the relative importance of deterministic processes (immigration, 
 

442 resource competition) and stochastic process of drift in driving taxa and community dynamics. 
 

443 The developed framework represents a significant advance in reconciling both niche and neutral 
 

444 theories for predicting community dynamics and underlying mechanisms toward predictive 
 

445 microbial ecology, the ultimate goal in this field. 
 

446 Microbial rarity can result from both stochastic and deterministic processes (56). For instance, 
 

447 low local abundance can emerge by stochastic population fluctuation. A recently immigrated taxon 
 

448 might also be rare when it first enters a new community. Niche processes, including abiotic and 
 

449 biotic factors, can have crucial roles in driving taxon rarity. Rare biosphere members can be 
 

450 ascribed to narrow niche breadth, thus remaining generally inactive and at low density in most 
 

451 conditions but becoming dominant when favorable conditions arise (57, 58), which is best 
 

452 illustrated by the extreme case of microbial dormancy. An alternative is the competition- 
 

453 colonization trade-off hypothesis, which is rooted in the classic niche-based ecology predicting 
 

454 that taxa with low competitive ability may remain rare rather than going extinct due to the 
 

455 advantage in immigration and colonization (59, 60). Since microbial dynamics are very fast, 
 

456 competitive exclusion may not have sufficient time to play out (61). Our study suggested that 
 

457 immigration played important roles in driving community dynamics, especially for rare taxa (Fig. 
 

458 4). Rare microbial populations were shown to have the best fit to the neutral model in both control 
 

459 and treatment bioreactors (Fig. 2a), indicating a dominant role of immigration and drift in shaping 
 

460 rare taxa dynamics, consistent with the observation that ecological drift was pronounced for rare 
 

461 planktonic eukaryotes (62). Further, the estimated relative immigration rate was higher for rare 
 

462 taxa than abundant taxa (Fig. 4a). This also supports the competition-colonization trade-off 
 

463 hypothesis that rare taxa are recruited mainly through immigration (58, 63). It was noted that the 
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464 determinism of rare taxa was higher than abundant taxa (Fig. 5a), which could be explained by 
 

465 their immigration rate. Higher immigration rate of a taxon would result in less variations in its 
 

466 relative abundances, as the taxon tend to return to its correspondent relative abundance in the 
 

467 metacommunity (12), i.e., higher determinism of taxa dynamics. In contrast, taxa with low 
 

468 immigration rate are less affected by the metacommunity, which may be subject to larger effects 
 

469 of local drift and result in more variations in their relative abundances. 
 

470 Deterministic processes of resource competition might play an important role in shaping the 
 

471 dynamics of abundant taxa in treatment bioreactors, consistent with the resource-related theory. 
 

472 The resource ratio‐theory successfully explained the ‘paradox of enrichment’ in sludge bioreactors, 
 

473 i.e., higher resource level of nitrogen and oxygen initially increased and then decreased the 
 

474 diversity of the ammonia oxidizing bacteria (26), as a result of competition among multiple taxa 
 

475 with different resource-ratio requirements. A modified consumer-resource model to include 
 

476 nonspecific cross-feeding interactions explained experimental results that many microbial taxa 
 

477 could co-exist in a single-resource environment (27). Exploitative competition, rooted in the 
 

478 consumer-resource model, significantly contributed to abundant taxa dynamics in the disturbed 
 

479 environment (Fig. 2a), possibly because increases in resources stimulated the competition among 
 

480 abundant microbial populations. As a result, the determinism at the community level was 
 

481 significantly higher in the treatment bioreactors as compared to the controls (Fig. 5b). 
 

482 The estimated competition strengths showed stronger phylogenetic signal in the treatment 
 

483 than control bioreactors (Fig. 3a). Temporal dynamics patterns of closely related ESVs were more 
 

484 similar in treatment bioreactors than controls (Fig. 3b), resonating with the physics-based theory 
 

485 that views microbial community as a fully disordered background with unstructured individuals 
 

486 (i.e., behaviors of individuals are not clustered by their taxonomic identity) (64), and that imposing 
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487 disturbance will order the disordered individuals based on traits, resulting in ecological clusters 
 

488 that are disturbance-dependent. 
 

489 Understanding the mechanisms underlying community assembly is important not only to 
 

490 ecologists but also to practitioners. The relative importance of deterministic vs stochastic processes 
 

491 in controlling microbial community assembly has attracted increasingly interests in the last several 
 

492 years (4). Since the treatment reactors were operated under fluctuated resource levels (45), the 
 

493 microbial communities in treatment reactors appear more filtered compared to the control reactors 
 

494 under stable operating conditions, resulting in higher determinism. Our findings that deterministic 
 

495 processes are more important for controlling the taxa and community dynamics in the treatment 
 

496 reactors (Fig. 5) are highly consistent with this expectation. In addition, the knowledge learned in 
 

497 this study could help environmental engineers maintain microbial systems for desired functions. 
 

498 For example, the neutral model could predict how taxa fluctuate in the control bioreactors 
 

499 (exemplified in Fig. 4b). Given its simplicity, the neutral model could be useful in long-term 
 

500 monitoring of stable systems such as wastewater treatment plants and human guts. The deviation 
 

501 of certain taxa from the predicated range may signify abnormal conditions of the system. Also, the 
 

502 increase of community determinism could provide early warnings for the system functional 
 

503 instability, as exemplified by the treatment bioreactors prior to system collapse (Fig. 5b). The 
 

504 relative competition strengths inferred from the consumer-resource model or the combined model 
 

505 can be used to identify functionally important taxa. Since abundant microbial populations play 
 

506 significant roles in biogeochemical cycling in ecosystems (65), it is interesting to examine how 
 

507 changes in such functionally important taxa would affect resources such as the carbon pool by 
 

508 considering the coupled dynamics of resource and consumer under the framework of ecological 
 

509 stoichiometry (66). 
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510 In this study, we demonstrated the applicability of the novel modeling framework in 
 

511 representing the bacterial community dynamics of anaerobic bioreactors. Given its mechanistic 
 

512 basis, the framework developed in this study is expected to be potentially applicable in other 
 

513 ecosystems such as soils, oceans and guts, and also to other organisms such as eukaryotic 
 

514 microorganisms and plants. We expect the neutral model to be an appropriate tool for modeling 
 

515 taxa dynamics in relatively stable environments such as human guts, while the combined model 
 

516 might be better for the abundant taxa in ecosystems with fluctuate resource levels such as soils. 
 

517 However, the performance of different models, as well as the driving forces governing taxa 
 

518 dynamics in different ecosystems remain to be tested. It is also noted that these models possess 
 

519 certain limitations. For example, the resource level is assumed to linearly affect the taxa growth in 
 

520 the consumer-resource model and the combined model, which may not capture the complicated 
 

521 interaction between consumer and resource in nature. In addition, to achieve reliable parameter 
 

522 estimation for the SDE-based models, extensive time-series data of high frequency and duration 
 

523 

 

524 

must be collected, which often entails significant time and effort. 
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705 Figure legends 
 

706 Figure 1. Overview of the framework. (i), The raw sequence data is processed to generate the 

707 time-series of taxa relative abundances and the abundance ratio of focal taxon to the reference 

708 taxon. (ii), The neutral, consumer-resource and combined model are fitted using the least-square 

709 methods for each taxon. (iii), Key parameters can be estimated from modelling. (iv) The taxa and 

710 community determinism are assessed based on the estimated parameters of the combined model. 

711 

712 Figure 2. Model fitting on microbial taxa in control bioreactors with stable substrate feeding 

713 and treatment bioreactors with incremental substrate feeding. a, Percentages of the neutral 

714 model (N), the consumer-resource model (CR) and the combined model (C) being the best model 

715 describing taxon dynamics. For each taxon, we fitted the three models, and the best model for that 

716 taxon was determined as the one with lowest Akaike information criteria (AIC) value. Three 

717 groups of taxa were classified by mean relative abundance, with mean relative abundance < 0.01% 

718 for rare taxa, from 0.01% to 0.1% for moderate taxa, and > 0.1% for abundant taxa. b, The 

719 distribution of R2 values of the three models. 

720 

721 Figure 3. The relationship between ESVs’ sequence dissimilarity and the difference of 

722 estimated 𝒃𝒊𝑪𝒊 representing the competition strength for resource. a, Smoothed lines showing 

723 the mean difference in 𝒃𝒊𝑪𝒊 at different sequence dissimilarity levels between ESVs. The shaded 

724 area represents the 95% confidence interval. b, The time series of two taxa in the control reactors. 

725 The two taxa, ESV4 and ESV221, were both from genus T78 of the family Anaerolineaceae, and 

726 they were 98.8% similar in 16S sequences. c, The time series of ESV4 and ESV221 in the treatment 

727 reactors showing consistent fluctuations of their relative abundances. d-e, The correlation between 

728 ESV4 and ESV221 in control (d) and treatment (e) reactors. 

729 

730 Figure 4. Testing the neutral model on species time series in control bioreactors. a, The 

731 estimated λi from the neutral model versus the mean relative abundance of all taxa in each reactor. 

732 b, Prediction of the neutral model on the distribution of relative abundances of several exemplified 

733 ESVs. When the local community size was large, the relative abundance of a specific taxon 

734 followed a beta distribution under neutral scenarios, of which the shape was determined by 

735 parameters λi and pi (the relative abundance of this taxon in the source community) (12). The grey 

736 histograms represent the observed value, and the blue shadow represent the model predictions 

737 using the parameters λi and pi calibrated from the time series. 

738 

739 Figure 5. The species-level and community-level determinism. a, The predicted determinism 

740 across taxa under control and treatment bioreactors. b-c, Comparisons of the predicted unweighted 

741 (b) and weighted (c) community-level determinism between the control and treatment reactors. 
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742 The lines represent the mean determinism of the three replicated control or treatment bioreactors, 

743 and the error bars represent the standard deviations. 

744 

745 
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