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Abstract

Disentangling the assembly mechanisms controlling community composition, structure,
distribution, functions, and dynamics is a central issue in ecology. Although various approaches
have been proposed to examine community assembly mechanisms, quantitative characterization
is challenging, particularly in microbial ecology. Here, we present a novel approach for
quantitatively delineating community assembly mechanisms by combining the consumer-resource
model with a neutral model in stochastic differential equations (SDEs). Using time-series data
from anaerobic bioreactors that target microbial 16S rRNA genes, we tested the applicability of
three ecological models, the consumer-resources model, the neutral model, and the combined
model. Our results revealed that model performances varied substantially as a function of
population abundance and/or process conditions. The combined model performed best for
abundant taxa in the treatment bioreactors where process conditions were manipulated. In contrast,
the neutral model exhibited the best performance for rare taxa. Our analysis further indicated that
immigration rates decreased with taxa abundance and competitions between taxa were strongly
correlated with phylogeny but within a certain phylogenetic distance only. The determinism
underlying taxa and community dynamics were quantitatively assessed, showing greater
determinism in the treatment bioreactors which aligned with the subsequent abnormal system
functioning. Given its mechanistic basis, the framework developed here is expected to be

potentially applicable beyond microbial ecology.

Impact Statement
One fundamental goal in microbial ecology is to predict how microbial diversity is changed

across space and time. Although spatial patterns of microbial communities have been recently
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intensively examined, our understanding of microbial temporal dynamics is rudimentary,
primarily due to the lack of appropriate experimental data and theoretical framework. By
reconciling niche and neutral perspectives, this study developed a novel process models-based
framework to effectively encapsulate microbial species temporal dynamics, which is powerful
for quantitatively assessing the assembly mechanisms underlying microbial community
dynamics. This study represents a significant advance in explaining microbial temporal dynamics

toward predictive microbial community ecology.

Keywords: neutral model; consumer-resource model; species dynamics; community assembly

mechanisms.

Introduction

Microorganisms are the most diverse group of life on Earth, and play critical roles in global
biogeochemical cycling of carbon, nitrogen, phosphorus, sulfur and various other elements. It is
well known that microbial diversity is extremely high across various habitats (1-3). One of the
fundamental goals in microbial ecology is to determine how such extremely high microbial
biodiversity is generated and maintained across space and time (4). Two types of ecological
processes (deterministic vs. stochastic) are influential for explaining the processes of assembling
individual taxa into a local community. Niche-based theory assumes that deterministic processes,
such as differences in taxonomic and functional traits, interspecies interactions (e.g., competition,
predation, and mutualisms), and abiotic filtering (e.g. temperature, pH), are responsible for local
community compositions (5, 6). In contrast, neutral theory proposes that all species are

ecologically equivalent, thus immigration and ecological drift of stochastic birth and death shape
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the diversity and composition of local communities regardless of species traits (7). Although both
deterministic and stochastic processes are believed to play key roles in shaping community
diversity, their relative importance is still hotly debated (6-11), particularly in microbial ecology
(4, 12-14). 1t is thus critical to quantify the extent to which deterministic or stochastic processes
influence community assembly in order to influence or even manipulate microbial communities
for designed functions (4, 14).

Several major approaches have been used to infer community assembly mechanisms, such
as multivariate analysis, null modeling analysis, and ecological theory-based process models (i.e.
niche and neutral models) (4, 15). Comparing to the multivariate and null model-based statistical
approaches, the ecological theory (niche vs neutral)-based process model approach is more
attractive because it allows mechanistic predictions of community dynamic behavior. One of the
most widely used niche models is Lotka-Volterra competition (16, 17), which describes the
dynamics of individual taxa as a function of growth rate and inter-species interaction. However,
such direct effect is rarely analyzed in nature, and the competition coefficients are challenging to
measure experimentally (17, 18). Such parameter-rich models are particularly intractable for
studying microbial communities that typically exhibit high diversity (19-22). An alternative to the
generalized Lotka-Volterra model is the consumer-resource model, which describes the dynamics
of individual taxa as a function of the availability of resources. This model assumes that species
interact only through competition for a few limiting resources (23, 24), which greatly reduces the
number of required parameter from the square of the taxon number (pairwise species interactions)
to the number of resources, and hence it is parsimonious for complex systems such as microbial
communities (25). Recently, resource-related models have been successfully used for modeling

microbial community diversity dynamics (26, 27).
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Neutral models have also been successful in explaining some of the most widely studied
patterns in community ecology, such as abundance distribution (28), rank-abundance distribution
(13) and frequency-abundance distribution of individual taxa (12). However, most studies have
focused on community-level predictions at one time point (29-33), but rarely examined the
dynamic behavior of individual populations from neutral perspectives (13). This is an important
knowledge gap to fill because temporal dynamic behavior is critical for understanding multispecies
coexistence (6) and functional stability (34). Also, because both niche and neutral mechanisms
play key roles in community assembly (35), several studies attempted to develop unified models
to reconcile both mechanisms (6, 8-10). But such theoretical models are rarely applied to actual
ecological data owing to mathematical challenges (36, 37). Recently, a stochastic differential
equation (SDE)-based model that consolidates niche and neutral processes has been developed to
simulate the dynamics of individual microbial taxa (13, 36). Rooted on the framework of neutral
model, this SDE model considers the niche effect by incorporating an advantage term as a linear
function of various environmental variables (13). However, this SDE model does not account for
biotic interactions such as competition.

In this study, we developed a novel process models-based framework to quantitatively infer
assembly mechanisms by integrating niche and neutral theory-based models for community
dynamics. Specifically, we first developed an SDE-based combined model by incorporating
consumer-resource interactions, immigration, and drift. We then compared this new model with
the consumer-resource model and neutral model, for the ability to capture the temporal dynamics
of individual taxa in anaerobic bioreactors. We estimated ecologically relevant model parameters
such as the immigration rate and competition strength, and inferred the relative importance of

stochastic vs deterministic processes in driving community dynamics. We applied this framework
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to analyze time-series data from anaerobic bioreactors under stable or disturbed process conditions.
Our results indicated that it provides a robust, reliable process models-based tool for assessing

assembly mechanisms controlling taxa and community dynamics.

Materials and Methods

Mathematical framework

Consumer-resource model

Because of its mathematically tractable form, MacArthur’s consumer—resource model (38) has a
strong impact on the theory of exploitative competition (39). In this study, we use the following

equation (27, 40) for its simplicity to describe the consumer-resource interaction of Taxon i:

=X b CR-m)N 1]
dt ] J y J 2 2

Where N; is the absolute abundance (i.e. population density, population per unit area) of
Taxon i and R; is the availability of Resource j. Cy; is the rate at which Taxon i consumes

Resource j, while the quality factor, b;;, represents Taxon i’s ability to convert the consumed

ij>
resource to its biomass. Thus, their product, b;;C;;, can represent the competition strength of
Taxon i over Resource j. m; represent the minimum maintenance cost.

The community size, Ny = Y';—1 N;, is implicitly a function of time. For typical microbial
community data, N7 is not available. Rather, the relative abundances and the ratios between taxa

abundances can be inferred from the compositional datasets (41). We can choose a reference

N; .
taxon r, and take the ratio of focal taxon and the reference taxon. Let Z; = log ; be the log-ratio

r

of Taxon i to the reference taxon r. Based on eq [1], we have:

dlog (W) _ N _ 5 p C R —m 2]
a Nar 20U
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Thus:

N;
d_ZizdlogN_r_dlog(Ni) dlog(er Z(b c. —b C B -t —m) [3]
]

dt dt dt rj 7j r

In this study of bioreactor dataset, the availability of resource R; is represented by a single
variable, the volatile solids (VS), in the bioreactors. R; could be represented by other resources
when applying this model in other systems. These variables are known at discrete time points.

Further, Eq [3] can be expressed as a simple linear model,

+Y k Y [4]
dt k J 11
Where kg = —(m; — m,) representing the relative maintenance cost of taxon i as compared

to the reference taxon, kq1; = b;;C;j — by;C;; representing the relative competition strength of
taxon i over resource R;, and Y1; = R;. We can then estimate the parameters through a least-

squares regression analysis based on the measured variables at discrete time points.

The neutral model
In a neutral local community, when an individual dies, it is replaced by an immigrant of Taxon i
from a source community (i.e., regional species pool) with the probability m;, or by regeneration
from the local community with probability /- m;. Under the neutral assumption, m1 = mz =

- = m. We set the mean time for replacement of an individual to be a and define a scaled time
7=t/a. In a short time period At = 0, we can expect only one replacement in the community. The
species relative abundances X in a neutral model follows a Wright-Fisher Process (WFP) (42-
44), which is defined by the Ito stochastic differential equation (SDE):

dX = A(p — X) dt + o(X)dW [5]



160 Where p is the relative abundance of taxa in the metacommunity, A = Nym is the product
161  of local community size and taxon immigration probability, representing the relative rate of

162  migration from the metacommunity into the local community. ¢(X) is the instantaneous standard
163  deviation of changes in X per unit time. dW is a standard Wiener process term. The quadratic

164  covariation between taxa is given by X =1 oaT where (42-44)
2

X(1-X) i=j

—XiX; i+
166 The SDE for the focal taxon i is then defined as:
167 dX; =AMp;— X)) dt+ o(X)dW,; = Ap; — X;) dt +V2X; (1 — X;)dw,;  [6]
udeterministic et stochastic
168 Where X is the relative abundance of taxon i, i.e., X = ﬂ. dV 1is a standard Wiener
L L NT i

169  process term following the standard normal distribution N (0,1). The first term on the right of
170  Eq[6] represents the expect change of X;, which is a deterministic term; the second term

171  represents the variation of change, which is a stochastic term.

172 The covariation between taxon i and taxon j (i # j) is E [(dX; — E(dX})) (dX; —

173 E(dX)))]=E (V2X:(1 = X)dW,; x \/ZXj(l — X;)dW ), which equals to —2X;X;. This gives

174 us the covariance between the two Wiener processes dW; and dW:

175 p=E@dWdW) = — \/1"’*’:. [7]
Lo (A-X)(1-X)

Ny/Nt

176 We can take the log-ratio transformation as Z = log N = log = log % Since both X
L N, Ny/Nyp X, i

177  and X, follow the SDE (Eq[6]), the SDE of Z; is derived based on Ito’s lemma:
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0Z; 0Z; 0Z;
dzZ =[—/’l'ﬁ)'—X')+—A (p — X))+ ldr
l aXL L 1 l BXT T r T at
16221 azzi aZZ aZl
+ [=—02(X) + ———
[2 axfa XD IXIX. = 0X)oX)p +5 2 X2 0%(X,)] dt + O'(Xl)dW

9z, o(X )dw
aX—r r T

That is,

dZ — [/_1;2;—_1 _ Apr=1 + 1 - A] dr + \/’Mﬁ. dW _ \/Mr). dw [8]
L Xi Xr r L Xi t Xr r
Given that 7=t/a, and the covariance between dW; and dW, (Eq[7]), the above equation (eq

[8]) can be written as a SDE:

le- = l [llipi Arpr 1 +/1 —l] dt + \/ th [9]

a Xi Xr aX aX,
haad . .
deterministic stochastlc

Where dW, is a Wiener process term, which follows a normal distribution N (0, df). Further,

Eq [9] can be expressed as a simple linear model,

az; _ . +kY +kY + ¢ [10]
dt 0 2 2 33
where k _ =4 | _ dpi=l y, = i, k _ _Ap-l oy = i and ¢ 1s an error term given
0 a ’ 2 a > 2 X; 3 a >3 Xr
bye= "+ " The parameters can be estimated through a weighted least-squares

aX; aX, dt

regression analysis, in which the weights are _4t . The weighted errors should be normally
2

7.2
X+X-r

distributed and the standard residual error of the linear regression model should be v I. We then
a

estimate the parameter product, 1;p;, based on the coefficient of variable Y2. Further, p; can be
estimated as the mean relative abundance of taxon i, and A; can be derived by dividing the

estimated A;p; to p;.
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The combined model

A combined model of taxon dynamics was further developed to include both exploitative
competition and neutral factors. The term of ‘relative growth’ (can be positive or negative)
caused by the resource consuming (eq [3]) is added to the deterministic part of the SDE (eq [9])
without change, since it is purely deterministic which wouldn’t bring in any uncertainty. The
combined model is thus given by:

dz; = 2% — ap=1 4 4 _ 4+ ¥(byCy; — byyC)R; — (m; —m)] dt + V_;-_)C(WZ [11]
. a a X axy

aX;i aXy a

deterministic H;tochastic
Further, Eq [11] can be expressed as a simple linear model,

i _ . +X kY +kY +kY +e¢ [12]
de 0 j o1j 1) 2 2 33

X . . . .
Where Z = log ;‘ is the log ratio of the relative abundance of taxon i to the reference taxon

r

A A . : ..
rk ="—-" "4 —-m,k =b C —b C representing the relative competition strength of
0 a a r i1 ij j rj 1j
. 1 1 :
taxon i onresource R ,andY =R.k _de=l y = .,k _ _4p~-1 = _andeisan
J 1) jo2 a 2 x 3 a 3 X
dw,

error term given by € = /7 + . The parameters can be estimated through a weighted

aXi aXr dt

least-squares regression analysis, in which the weights are _4¢ . The weighted errors should be

7T 7z
x; T xr

normally distributed and the standard residual error of the linear regression model should be 1
a

p; can be estimated as the mean relative abundance of taxon i. We can estimate the parameters
ko, k1, k7 and k3 in the linear model, by which the model parameters b;;C;; — b,;C;;, A; and p;

can be further derived.

10
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Determinism
The SDE of the combined model (eq [11]) can be written as

dZ = ML + ngW

deterministic stochastic

Where u is the expected change of Z per unit time and o is the instantaneous standard
deviation of changes in Z per unit time. dW is a standard Wiener process term. We define taxa
determinism as the inverse of the variation coefficient, that is,

determinism = £ [13]
g

After parameter estimation using weighted least-squares regression analysis, the taxa
determinism can be calculated for each taxon at each time point based on eq [13]. For the
combined model, the determinism of taxon i can be calculated based on parameters of the linear
model eq [12]:

kp k3
(k0+2j kl‘jR]'-l-)?-f-XT)Xa

determinism = [14]
Vit

Note that the stochasticity is calculated on the scaled time unit 7. Then, the community-
level determinism is calculated as the mean determinism among taxa, either weighted by the

relative abundance of each taxon (weighted determinism) or not (unweighted determinism).

Anaerobic bioreactor operation and 16S rRNA gene sequencing

The operation of anaerobic bioreactors, biomass sampling and chemical analyses were processed
as previously described (45). In brief, two sets of triplicated, continuous anaerobic bioreactors (i.e.,
the control bioreactors C1, C2 and C3, and the treatment bioreactors D1, D2 and D3) were operated
at 35 °C and fed at 4-hr intervals, each with a working volume of 3.6 L. The control bioreactors

were fed with dairy manure at a constant rate and continuously operated for 501 days, which

11
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showed a stable organic matter level (Fig. S1a). The treatment bioreactors were operated for 100
days before they collapsed by supplementing incremental poultry waste, resulting in higher
ammonia toxicity (Fig. S1b). Sludge samples were generally taken every 3 to 10 days from each
bioreactor, resulting in 53 time points for control and 11 time points for treatment bioreactors.
DNA extraction and 16S rRNA gene sequencing were processed as previously described
(45). In brief, biomass samples were subjected to suspension in 630 uL. of DNA-extraction buffer,
subsequently undergoing treatment with a lysozyme mixture (60 puL, 37 °C, 60 min), a protease
mixture (60 pL, 37 °C, 30 min), and 20% sodium dodecyl sulfate (80 puL, 37 °C, 90 min). The
treated sample suspension was then extracted using phenol-chloroform-isoamyl alcohol (25:24:1)
at 65 °C for 20 min, followed by extraction with chloroform-isoamyl alcohol (24:1) to obtain a
supernatant. Further, DNA extract was combined with 0.6 volume of isopropanol and stored
overnight at 4 °C; DNA was obtained through centrifugation followed by washing with 70% cold
ethanol, drying, and resuspension in nuclease-free water. The purity and concentration of DNA
were subsequently assessed utilizing a NanoDrop spectrophotometer (NanoDrop Technologies
Inc., Wilmington, DE, USA). The V4 region of microbial 16S rRNA gene was amplified by primer
pairs of 515F and 806R (46). PCR amplicon sequencing was conducted on the MiSeq Illumina
platform at the Institute for Environmental Genomics (IEG), University of Oklahoma. Sequences
were processed to generate exact sequence variants (ESVs) by UNOISE3 (47) at the 100%
sequence similarity threshold. ESVs with fewer than eight reads were removed using the default
‘-minsize’ values. Taxonomy was assigned with a confidence cutoff of 50% using the RDP
classifier (48). The reference taxon was then chosen as the one with the top frequency and relative

abundance, which was ESV1 that were detected at all time points.
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Since there were only 11 time points for each treatment bioreactor, we combined the time
series of the triplicate bioreactors together to improve the liability of model fitting. For example,

if the dependent variable (as for eq [4], eq [10] & eq [12]) of one taxon in treatment bioreactor

. dZ; R g . . .
Dlis(—) = [(Bue—Eiey ..., (AATAA0 ]; the dependent variable of this taxon in
dt p1 t2—t1 ~ p11 t11-t10"  p1,10
. dZL s . —. . . dZL
D2is(—) = [(Bue—Eiety ..., (AATAA0 ]Jand thatin D3 is (/) =
dt p2 t2—t1 ~ p21 t11-t10"  p2,10 dt p3
Zit2—Zit1 Zit11—Zit10 . . . .
[(Free—et I G | ], then the dependent variable for the combined time-series
t2—tl D3,1 t11—-t10 D3,10

(Zi t2—Zj tl) (Zi t11—Zit10 Zit2=2Zit1
. dz; Z; 7 Z: JACLLD] ) )
is (71) — [(L) , (L) , (L) ] — [ t2—tl “p11 t11-t10 “ p110 t2—tl “p21 ]
dt p dt p1 dt py dt p3 . (Zi t11~Zi th) (ZL' t2—Zi tl) . (Zi tll_Zitlo)
! t11—t10 D2,10 ! t2—tl D3,1 ’ ’ t11—-t10 D3,10

Similarly, the independent variables can be combined in the same way. The combined dependent
and independent variables for the treatment bioreactors were then used for the linear regression
analyses based on the least-squares method. We note that this is not a standard way to apply the
model fitting for common time-series data. Yet, this combination method may provide an option
for replicated time-series. In fact, fluctuations in microbial community compositions were highly
consistent for the three replicated treatment bioreactors (Fig. S1c), which enabled us to test the

dynamical pattern of microbial taxa based on the combined time-series.

Results

Overview of modeling framework

To assess the mechanisms controlling community dynamics, raw time-series sequence data are
first processed to generate relative abundances of individual taxa represented as exact sequence

variants (ESVs) (Fig. 1, 1). The reference taxon is chosen as the one with the top frequency and

13
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relative abundance, and the ratio of taxa abundance to the abundance of the reference taxon is then
calculated for each taxon. The observed time-series data of each taxon are then fitted with the
neutral, consumer-resource, and combined models, respectively (Fig. 1, ii). The performances of
the three models are compared according to the Akaike information criteria (AIC) values, aiming
to reveal potential mechanisms driving the dynamics of individual taxa. Ecologically important
parameters, such as A; (the rate of migration from the metacommunity into the local community)
and b;C; — b,C, (relative competition strength to the resource), are estimated using the least-
square method for model fitting (Fig. 1, iii). Finally, the determinism for taxa and community
dynamics are assessed based on the SDEs of the combined model (Fig. 1, iv), as the SDEs comprise
the deterministic and stochastic part. It is noted that, while the immigration is generally considered
as a stochastic process (15), it is included in the deterministic part of the SDEs (eq [6], eq [9] &
eq [11]). In fact, the immigration process acts as a restoring force which makes the relative
abundance return to its mean value when there is a deviation between the current relative

abundance and the mean relative abundance.

Model performances on taxon dynamics

To illustrate how the process model-based framework (Fig. 1) is applied to microbial time-series
data, we collected longitudinal data from two contrasting sets of anaerobic bioreactors, each with
three replicates: There were a total of 53 time points from the control bioreactors in which stable
process conditions were maintained over 500 days, and 11 time points from the treatment
bioreactors over 100 days during which the resource levels were incrementally raised until process
conditions deteriorated to an ultimate collapse. A total of 6,799 microbial taxa, represented by

ESVs, were detected, which were present in at least one sample in control or treatment bioreactors.
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Further, models were fitted using the least-squares method for each taxon under control or
treatment conditions, requiring the taxon to present in at least six time points (for example, a taxon
present in at least 6 out of 53 time points in bioreactor C1). Specifically, we combined the time
series of the triplicate treatment bioreactors together to improve the liability of model fitting (see
Methods for details), and fitted the models on taxa which were present in at least 6 out of 33 time
points in treatment bioreactors. In addition, the mean relative abundance of each taxon in control
or treatment bioreactors was calculated, based on which taxa were classified into three groups: the
abundant taxa (mean relative abundance > 0.1%), the moderate taxa (mean relative abundance
between 0.01% and 0.1%), and the rare taxa (mean relative abundance < 0.01%) (Table S1).

To identify the mechanisms driving the dynamics of individual taxon, the relative
performances of the three models were compared based on AIC values. In the treatment bioreactors,
the combined model had the best fit for 58% of the abundant taxa (Fig. 2a), suggesting that most
abundant taxa were driven by both stochastic drift and deterministic immigration and competition.
In contrast, the neutral model had best fit for 38% of the abundant taxa, and the consumer-resource
model had best fit for only 4% of the abundant taxa. For rare taxa, 58% of them in the treatment
bioreactors found best fit with the neutral model, suggesting that rare taxa were mainly shaped by
immigration and drift. The importance of neutral processes was even more conspicuous in the
control bioreactors, since the neutral model had the best fit for 79% of all abundant taxa and 74%
of rare taxa. Therefore, neutral processes of immigration and drift were identified to drive the
dynamics of the majority of rare taxa, particularly in the control bioreactors. When examining the
model performance for the entire community, the neutral model had the best fit for most taxa in
both the control (75% of all taxa) and treatment bioreactors (57% of all taxa) (Fig. S2a), which

was expected as the rare taxa contributed to the majority of the taxa number (Table S1).
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Model performance was further examined across the major phyla. The neutral model was the
best for most rare taxa in both treatment and control bioreactors regardless of phylogenetic
relationships (Fig. S3), while the combined model performed better than the other two models for
the abundant taxa in treatment bioreactors for 5 out of the top 7 phyla such as Firmicutes and
Bacteroidetes (Fig. S3). These results suggested that model performance was largely unrelated to
microbial phylogeny.

Because the combined model includes both the neutral and consumer-resource interaction
terms, the R? values from the least square-squares fitting are almost always the largest for the
combined model (Fig. 2b). On average, the combined model can explain 36% +20% (mean + s.d.)
of the variations in taxon dynamics based on the R? values, while the neutral model can explain
31% £ 19% and the consumer-resource model can only explain 4% + 8% of the variations (Fig.
S2b). Regarding the ability to represent taxon dynamics under different treatment conditions, the
neutral model could explain more variations of the abundant taxa in the control than the treatment
bioreactors (mean R? value: 22% v.s. 16%; P < 0.0001 by two-tailed t-test) (Fig. 2b). It also
performed better on the rare taxa in the control than the treatment bioreactors (mean R? value: 36%
v.s. 32%; P < 0.0001 by two-tailed #-test). In contrast, the consumer-resource model or the
combined model was able to represent taxon dynamics in the treatment bioreactors better than
those in the control bioreactors, as the mean R? values were significantly higher in the treatment
than the control bioreactors for abundant, moderate, as well as rare taxa (P < 0.02 by two-tailed
t-test). Therefore, the relative performance of these three models are dependent on taxa abundance

and process conditions in the ecosystem of interest.

Competition strengths among different taxa
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Ecologically important parameters such as b;C; — b,C, reflecting the relative competition strength
can be estimated with relative taxon abundance data at discrete time points, based on the consumer-
resource model or the combined model. Considering the better performance of the combined
model than the consumer-resource model, here the parameters were estimated based on the
combined model to enable the comparison across taxa, which were summarized in Table S2. The
top three most competitive taxa in the treatment bioreactors were identified to be associated with
the genera Ornithinicoccus, unclassified Ruminococcaceae and Gottschalkia, suggesting them as
strong competitors for the organic substrates.

It is curious whether phylogenetically closely related taxa are more likely to have similar
competition strengths. Thus, we examined the relationship between taxa phylogeny and the
estimated relative competition strength. When the sequence similarity between taxa was larger
than 70%, the difference in b;C; had a significant negative correlation with sequence similarity in
the treatment bioreactors (Spearman’s rho = -0.04, P < 0.0001) (Fig. 3a), suggesting that closely
related microbial taxa had similar competition strengths (i.e., phylogenetic signal) when resource
levels were altered. The negative correlation between competition strength difference and
sequence similarity robustly held under even higher sequence similarity (Spearman’s rho = -0.04,
P <0.0001 for sequence similarity > 80% and Spearman’s rho = -0.07, P = 0.003 for sequence
similarity > 90%). However, such negative correlation did not hold when sequence similarity of
the 16S rRNA gene was less than 70% (Spearman’s rho = 0.03 for treatment bioreactors). For
control bioreactors, the negative correlation between sequence similarity and the difference in b;C;
was observed when sequence dissimilarity was larger than 85% (Spearman’s rho = -0.06, P <
0.0001) but not below that threshold (Fig. 3a). Therefore, the phylogenetic signal of resource

competition strengths is relevant only within certain phylogenetic distances. It is also noted that,
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although significant, the correlations were weak (absolute Spearman’s rho < 0.1), suggesting that
phylogeny could only explain a minor proportion of variations in taxa resource competition
strengths.

Since the mean b;C; difference of microbial taxa was substantially larger in control
bioreactors (0.21£ 0.19, mean * s.d.) than that in treatment bioreactors (0.16+ 0.14, mean + s.d.),
microbial responses to resource levels were more predictable in the treatment bioreactors, where
changes in resource levels could lead to greater environmental selection. As a result, temporal
dynamics of closely related ESVs was more similar in the treatment bioreactors than the control
bioreactors. For example, ESV4 and ESV 221, which are 98.82% similar in sequence, belong to
the same genus T78 of family Anaerolineaceae. The temporal dynamics of their relative
abundance were not correlated (Pearson’s » = 0.17, P = 0.36) in the control bioreactors (Fig. 3b,
3d) but significantly correlated (Pearson’s » = 0.54, P = 0.001) in the treatment bioreactors (Fig.

3c, 3e).

Negative correlation between immigration rates and taxa abundances

The neutral model presented the best fit for most taxa in the control bioreactors (Fig. 2a). We
further examined how the estimated Ai, which represented the immigration rates, varied across all
taxa. The estimated relative immigration rates were similar for the same ESVs across triplicate
bioreactors but highly different among various taxa, ranging in 10* folds. The estimated values of
Ji were negatively and significantly (Spearman’s rho =-0.95 ~ -0.92, P <0.0001) correlated with
the average relative abundances of ESVs (Fig. 4a). Furthermore, the estimated A; values were

highly variable within each phylum because they were negatively dependent on taxa abundance
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(Fig. S4), suggesting that the estimated immigration rates were related to abundance but not
phylogeny.

The probability density distribution of individual taxon abundance under equilibrium can be
derived for the neutral model (12). Such abundance distribution is not possible for the consumer-
resource or the combined model because taxon dynamics is dependent on the resource variable in
these models. The probability density distributions of the relative abundances of an ESV can be
predicted by 4: and pi (the relative abundance of that ESV in the source community) in the neutral
model, which were shown to follow a beta distribution (12). Exemplified by the distributions of
relative abundances for several representative ESVs ranging from abundant to rare ones in the
control bioreactors, the beta distributions predicted the dynamics of ESVs well, with much higher
Ji values for the rarer taxa (Figure 4b & Fig. S5). These results suggested that the neutral model
could be used to predict the range of fluctuation for each microbial taxon under equilibrium, which
may be valuable for assessing the boundaries of population abundance in a stable microbial

community.

Higher determinism in the treatment bioreactors

The determinism of taxa at certain time points was calculated based on the parameters estimated
of the combined model using the above-mentioned approach (Fig. 1). Interestingly, taxa
determinism showed significant negative correlation with the mean relative abundance of taxa in
both control (Spearman’s rho = -0.53, P <0.0001) and treatment bioreactors (Spearman’s rho = -
0.55, P <0.0001), suggesting that rare taxa tended to be more predictable than abundant taxa.
Further, the mean taxa determinism was higher in treatment than control bioreactors for abundant

(mean determinism: 16 v.s. 13; P <0.0001 by two-tailed #-test), moderate (mean determinism: 57
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v.s. 54; P =0.01 by two-tailed #-test) and rare taxa (mean determinism: 196 v.s. 152; P < 0.0001
by two-tailed #-test) (Fig. 5a).

The community-level determinism was further derived by aggregating the determinism of
co-occurring taxa within the community. The abundance-weighted and unweighted community
determinism were not different between the control and treatment bioreactors before Day 90 (P
=0.06 ~ 0.94 by two-tailed ¢-test on each time point) (Fig. 5b). On Day 90, the mean weighted
community determinism of treatment bioreactors was significantly higher than that of controls (P
=0.02 by two-tailed #-test). On Day 97 which was prior to the collapse of treatment bioreactors,
both the weighted and unweighted community determinism were substantially higher in the
treatment bioreactors than controls (P =0.004 for weighted community determinism and P =0.04
for unweighted community determinism by two-tailed #-test) (Fig. 5b), indicating stronger

selection in the treatment bioreactors.

Discussion

Untangling ecological processes controlling community dynamics is a major challenge in
microbial ecology, primarily due to the lack of appropriate theoretical framework and long-term
time-series datasets (13, 49). With recent advances of genomics technology, massive longitudinal
data can be rapidly obtained across different environmental conditions (50), which offer great
opportunities for testing microbial ecological theories (15, 51). Here, we described a novel process
models-based framework, to quantitatively assess the assembly mechanisms controlling
community dynamics. Different from statistical approaches such as VPA (52, 53) and null model-
based methods (15, 51, 54, 55), the process models are mechanistically developed to enable the

prediction of community dynamics and their underlying mechanisms. Our analyses demonstrate
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that this framework could discern the relative importance of deterministic processes (immigration,
resource competition) and stochastic process of drift in driving taxa and community dynamics.
The developed framework represents a significant advance in reconciling both niche and neutral
theories for predicting community dynamics and underlying mechanisms toward predictive
microbial ecology, the ultimate goal in this field.

Microbial rarity can result from both stochastic and deterministic processes (56). For instance,
low local abundance can emerge by stochastic population fluctuation. A recently immigrated taxon
might also be rare when it first enters a new community. Niche processes, including abiotic and
biotic factors, can have crucial roles in driving taxon rarity. Rare biosphere members can be
ascribed to narrow niche breadth, thus remaining generally inactive and at low density in most
conditions but becoming dominant when favorable conditions arise (57, 58), which is best
illustrated by the extreme case of microbial dormancy. An alternative is the competition-
colonization trade-off hypothesis, which is rooted in the classic niche-based ecology predicting
that taxa with low competitive ability may remain rare rather than going extinct due to the
advantage in immigration and colonization (59, 60). Since microbial dynamics are very fast,
competitive exclusion may not have sufficient time to play out (61). Our study suggested that
immigration played important roles in driving community dynamics, especially for rare taxa (Fig.
4). Rare microbial populations were shown to have the best fit to the neutral model in both control
and treatment bioreactors (Fig. 2a), indicating a dominant role of immigration and drift in shaping
rare taxa dynamics, consistent with the observation that ecological drift was pronounced for rare
planktonic eukaryotes (62). Further, the estimated relative immigration rate was higher for rare
taxa than abundant taxa (Fig. 4a). This also supports the competition-colonization trade-off

hypothesis that rare taxa are recruited mainly through immigration (58, 63). It was noted that the
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determinism of rare taxa was higher than abundant taxa (Fig. 5a), which could be explained by

their immigration rate. Higher immigration rate of a taxon would result in less variations in its
relative abundances, as the taxon tend to return to its correspondent relative abundance in the

metacommunity (12), i.e., higher determinism of taxa dynamics. In contrast, taxa with low
immigration rate are less affected by the metacommunity, which may be subject to larger effects
of local drift and result in more variations in their relative abundances.

Deterministic processes of resource competition might play an important role in shaping the
dynamics of abundant taxa in treatment bioreactors, consistent with the resource-related theory.
The resource ratio-theory successfully explained the ‘paradox of enrichment’ in sludge bioreactors,
i.e., higher resource level of nitrogen and oxygen initially increased and then decreased the
diversity of the ammonia oxidizing bacteria (26), as a result of competition among multiple taxa
with different resource-ratio requirements. A modified consumer-resource model to include
nonspecific cross-feeding interactions explained experimental results that many microbial taxa
could co-exist in a single-resource environment (27). Exploitative competition, rooted in the
consumer-resource model, significantly contributed to abundant taxa dynamics in the disturbed
environment (Fig. 2a), possibly because increases in resources stimulated the competition among
abundant microbial populations. As a result, the determinism at the community level was
significantly higher in the treatment bioreactors as compared to the controls (Fig. 5b).

The estimated competition strengths showed stronger phylogenetic signal in the treatment
than control bioreactors (Fig. 3a). Temporal dynamics patterns of closely related ESVs were more
similar in treatment bioreactors than controls (Fig. 3b), resonating with the physics-based theory
that views microbial community as a fully disordered background with unstructured individuals

(i.e., behaviors of individuals are not clustered by their taxonomic identity) (64), and that imposing
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disturbance will order the disordered individuals based on traits, resulting in ecological clusters
that are disturbance-dependent.

Understanding the mechanisms underlying community assembly is important not only to
ecologists but also to practitioners. The relative importance of deterministic vs stochastic processes
in controlling microbial community assembly has attracted increasingly interests in the last several
years (4). Since the treatment reactors were operated under fluctuated resource levels (45), the
microbial communities in treatment reactors appear more filtered compared to the control reactors
under stable operating conditions, resulting in higher determinism. Our findings that deterministic
processes are more important for controlling the taxa and community dynamics in the treatment
reactors (Fig. 5) are highly consistent with this expectation. In addition, the knowledge learned in
this study could help environmental engineers maintain microbial systems for desired functions.
For example, the neutral model could predict how taxa fluctuate in the control bioreactors
(exemplified in Fig. 4b). Given its simplicity, the neutral model could be useful in long-term
monitoring of stable systems such as wastewater treatment plants and human guts. The deviation
of certain taxa from the predicated range may signify abnormal conditions of the system. Also, the
increase of community determinism could provide early warnings for the system functional
instability, as exemplified by the treatment bioreactors prior to system collapse (Fig. 5b). The
relative competition strengths inferred from the consumer-resource model or the combined model
can be used to identify functionally important taxa. Since abundant microbial populations play
significant roles in biogeochemical cycling in ecosystems (65), it is interesting to examine how
changes in such functionally important taxa would affect resources such as the carbon pool by
considering the coupled dynamics of resource and consumer under the framework of ecological

stoichiometry (66).
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In this study, we demonstrated the applicability of the novel modeling framework in
representing the bacterial community dynamics of anaerobic bioreactors. Given its mechanistic
basis, the framework developed in this study is expected to be potentially applicable in other
ecosystems such as soils, oceans and guts, and also to other organisms such as eukaryotic
microorganisms and plants. We expect the neutral model to be an appropriate tool for modeling
taxa dynamics in relatively stable environments such as human guts, while the combined model
might be better for the abundant taxa in ecosystems with fluctuate resource levels such as soils.
However, the performance of different models, as well as the driving forces governing taxa
dynamics in different ecosystems remain to be tested. It is also noted that these models possess
certain limitations. For example, the resource level is assumed to linearly affect the taxa growth in
the consumer-resource model and the combined model, which may not capture the complicated
interaction between consumer and resource in nature. In addition, to achieve reliable parameter
estimation for the SDE-based models, extensive time-series data of high frequency and duration

must be collected, which often entails significant time and effort.
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Figure legends

Figure 1. Overview of the framework. (i), The raw sequence data is processed to generate the
time-series of taxa relative abundances and the abundance ratio of focal taxon to the reference
taxon. (i1), The neutral, consumer-resource and combined model are fitted using the least-square
methods for each taxon. (iii), Key parameters can be estimated from modelling. (iv) The taxa and
community determinism are assessed based on the estimated parameters of the combined model.

Figure 2. Model fitting on microbial taxa in control bioreactors with stable substrate feeding
and treatment bioreactors with incremental substrate feeding. a, Percentages of the neutral
model (N), the consumer-resource model (CR) and the combined model (C) being the best model
describing taxon dynamics. For each taxon, we fitted the three models, and the best model for that
taxon was determined as the one with lowest Akaike information criteria (AIC) value. Three
groups of taxa were classified by mean relative abundance, with mean relative abundance <0.01%
for rare taxa, from 0.01% to 0.1% for moderate taxa, and > 0.1% for abundant taxa. b, The
distribution of R? values of the three models.

Figure 3. The relationship between ESVs’ sequence dissimilarity and the difference of
estimated b;C; representing the competition strength for resource. a, Smoothed lines showing
the mean difference in b;C; at different sequence dissimilarity levels between ESVs. The shaded
area represents the 95% confidence interval. b, The time series of two taxa in the control reactors.
The two taxa, ESV4 and ESV221, were both from genus T78 of the family Anaerolineaceae, and
they were 98.8% similar in 16S sequences. ¢, The time series of ESV4 and ESV221 in the treatment
reactors showing consistent fluctuations of their relative abundances. d-e, The correlation between
ESV4 and ESV221 in control (d) and treatment (e) reactors.

Figure 4. Testing the neutral model on species time series in control bioreactors. a, The
estimated 4; from the neutral model versus the mean relative abundance of all taxa in each reactor.
b, Prediction of the neutral model on the distribution of relative abundances of several exemplified
ESVs. When the local community size was large, the relative abundance of a specific taxon
followed a beta distribution under neutral scenarios, of which the shape was determined by
parameters A; and p; (the relative abundance of this taxon in the source community) (12). The grey
histograms represent the observed value, and the blue shadow represent the model predictions
using the parameters A and p; calibrated from the time series.

Figure 5. The species-level and community-level determinism. a, The predicted determinism
across taxa under control and treatment bioreactors. b-¢, Comparisons of the predicted unweighted
(b) and weighted (c) community-level determinism between the control and treatment reactors.
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742 The lines represent the mean determinism of the three replicated control or treatment bioreactors,
743 and the error bars represent the standard deviations.
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