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Abstract—To understand the skew in twinax cables of separately
extrusion and co-extrusion design, the impact of inhomogeneous
dielectric in copper twinax cables is analyzed, with an emphasis
on signal integrity performance. The inhomogeneity is treated as a
perturbation to the RLGC parameters, and analytical equations for
the calculation of scattering parameters from RLGC parameters
are derived to analyze the effects of this perturbation on signal
integrity. The inhomogeneity leads to a modulation behavior in
the scattering parameters, which decreases asymmetry-induced
skew at high frequencies and eliminates the resonance of skew
in the differential insertion loss. Mathematical analysis, physical
explanation, and various design cases are presented for validation.

Index Terms—Ethernet, inhomogeneous dielectric, PCI-express,
RLGC parameters, SATA, scattering parameters, signal integrity,
skew, twinax cable.

I. INTRODUCTION

COPPER twinax cables are widely used for high-speed
channels such as PCI-Express and Ethernet [1]. The time-

domain intra-pair skew is often used as a specification to test
the signal integrity performance of cables [2]. However, the
skew may not correctly reflect the product’s performance in real
applications, because the skew is decreased at high frequencies
[3].

Cables are extruded through two typical methods in indus-
try: separately extrusion [4] and co-extrusion [5]. For sepa-
rately extruded cables, two individually insulated conductors are
wrapped together with shielding [6], as illustrated in Fig. 1(a).
This type of cable is inhomogeneous because air pockets
exist between the shielding and the dielectric insulator. The
co-extruded cable shown in Fig. 1(b) has a single insulator
extruded together with the two inner conductors. No air pockets
exist in the co-extruded cable, and the dielectric is homogeneous.
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Fig. 1. Cross-section of copper twinax cables. (a) Separately extruded cable.
(b) Co-extruded cable.

Separately extruded cables were often misconceived to have
greater skew-induced differential insertion loss resonance due
to minor asymmetries in the diameters of the coextruded con-
ductors and the differences in permittivity of the insulators [7].
In addition, the lower manufacturing cost of the separately
extruded cables compared to coextruded cables was another
factor to be misconceived to have higher skew-induced res-
onance in differential loss. Skew leads to a resonance in the
differential insertion loss at a frequency equal to 1/(2 skew)
[8], and therefore lower skew is desired to minimize unwanted
resonances in differential insertion loss at operating frequency.
Contrary to the misconception, in separately extruded cables,
the inhomogeneity can help decrease asymmetry-induced skew
at high frequencies and eliminates the resonance due to skew in
the differential insertion loss.

The inhomogeneity in a dielectric material can lead to modu-
lation behavior in the scattering parameters (S-parameters) [9].
Similar to the case of a microstrip [10], the phase velocities of
odd and even modes differ due to the dielectric inhomogeneity
[11]. Inhomogeneity introduces a relatively small change in the
capacitance matrix [12], which leads to modulation between
propagation constants and significantly changes the behavior of
S-parameters [13]. Because the magnitude of the change in the
capacitance matrix is relatively small, this change is referred to
as perturbation in capacitance.

To analyze the effect of inhomogeneity of the dielectric on the
signal integrity performance of a cable, an analytical equation
to calculate S-parameters from RLGC parameters is derived.
Calculation of S-parameters from RLGC parameters for mul-
ticonductor transmission lines commonly requires the calcula-
tion of the hyperbolic function of the matrix [14]. The matrix
hyperbolic function is calculated by the summation of an infinite
series, thus increasing the complexity of perturbation analysis
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Fig. 2. Coupled two-dimensional transmission line.

[15]. Therefore, the perturbation analysis is proposed based on
solving eigenvalues and eigenvectors [16]. S-parameters can be
calculated from elements of the RLGC parameters without a
need for calculating matrix hyperbolic functions or any other
infinite series. This work assumes that the cable is an ideal
transmission line, which is invariant along the transmission
direction.

In this study, we propose the physical explanation for reduced
high-frequency skew in an inhomogeneous dielectric material,
and root cause for better performance in differential insertion
loss of separately extruded cables when compared to co-extruded
cables, despite the higher skew in separately extruded twinax
cables. Mathematical analysis, a physical explanation, and var-
ious design cases are presented for explanation. For illustration
purposes, symmetric cables with and without inhomogeneity are
compared. Then asymmetric cables with and without inhomo-
geneity are compared.

The method for calculating S-parameters from RLGC param-
eters is introduced in Section II. Analysis of the inhomogeneous
dielectric-induced modulation is shown in Section III, with nu-
merical examples in Section IV. Analysis of asymmetry-induced
skew is discussed in Section V and is followed by the conclusion
section.

II. CALCULATING THE S-PARAMETER FROM RLGC MATRIX

The governing partial differential equation (PDE) of a two-
dimensional coupled transmission line, as shown in Fig. 2, can
be written as[

d2V1

dx2

d2V2

dx2

]
=

([
R11 R12

R21 R22

]
+

[
sL11 sL12

sL21 sL22

])

×
([

G11 G12

G21 G22

]
+

[
sC11 sC12

sC21 sC22

])[
V1

V2

]
(1)

[
dV1

dx
dV2

dx

]
+

([
R11 R12

R21 R22

]
+

[
sL11 sL12

sL21 sL22

])[
I1
I2

]
=0 (2)

where the voltages V1 and V2, and the currents I1 and I2 are
in the frequency domain; s is the Laplace operator; and the R,
L, G, and C matrix are frequency dependent. Full definitions of
P = (R+ sL)(G+ sC), (1) is as follows:

d2V1

dx2
= P11V1 + P12V2

d2V2

dx2
= P21V1 + P22V2. (3)

The following set of equations is assessed for the solution:

V1 (x) = m1 sinh(γx)

V2 (x) = m2 sinh(γx) (4)

where m1, m2, and γ are constants to be determined later.
By substituting (4) into (3), and a set of linear equations for

unknowns m1 and m2, the following are obtained:(
P11 − γ2

)
m1 + P12m2 = 0

P21m1 +
(
P22 − γ2

)
m2 = 0. (5)

For (5) to have a nontrivial solution, the determinant of the
coefficient matrix must be 0, thus leading to the following:

det

∣∣∣∣P11 − γ2 P12

P21 P22 − γ2

∣∣∣∣
=

(
P11 − γ2

) (
P22 − γ2

)− P12P21 = 0. (6)

The two roots γ2
1 and γ2

2 of (6) are the eigenvalues of P, and
the expressions for γ2

1 and γ2
2 are:

γ2
1 =

P11 + P22 −
√

(P11 + P22)
2 − 4 (P11P22 − P12P21)

2

γ2
2 =

P11 + P22 +
√

(P11 + P22)
2 − 4 (P11P22 − P12P21)

2
.

(7)

The corresponding eigenvectors are:[
1

m21

] [
m12

1

]
(8)

where the expressions for m12 and m21 are as follows:

m21 =

{
γ2
1−P11

P12
, if P12 �= 0

0, ifP12 = 0

m12 =

{
γ2
2−P22

P21
, if P21 �= 0

0, if P21 = 0
. (9)

Because the PDE (1) is second order, two sets of solutions
exist. The solution set (10) is chosen as the second trial solution,
and the resulting eigenvalues and eigenvectors are the same as
in (7)–(9).

V1 (x) = m1 cosh(γx)

V2 (x) = m2 cosh(γx). (10)

The solution of the PDE (1) is a combination of the two sets
of trial solutions and can be written as (11), where k1, k2, and
n1 are constants to be determined by the boundary conditions[

V1

V2

]
=

[
1 m12

m21 1

] [
sinh(γ1x) 0

0 sinh(γ2x)

] [
k1
k2

]

+

[
1 m12

m21 1

] [
cosh(γ1x) 0

0 cosh(γ2x)

] [
n1

n2

]
.

(11)
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By substituting (11) into (2), the solutions for the current can
be obtained:[

I1
I2

]
= −

[
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]−1 [
1 m12

m21 1

]

×
[
γ1 cosh(γ1x) 0

0 γ2 cosh(γ2x)

] [
k1
k2

]

−
[
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]−1 [
1 m12

m21 1

]

×
[
γ1 sinh(γ1x) 0

0 γ2 sinh(γ2x)

] [
n1

n2

]
. (12)

Next, after application of the boundary conditions at x = 0,
(13) can be obtained[
V1 (0)
V2 (0)

]
=

[
1 m12

m21 1

] [
n1

n2

]
[
I1 (0)
I2 (0)

]
= −

[
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]−1 [
1 m12

m21 1

]

×
[
γ1 0
0 γ2

] [
k1
k2

]
. (13)

From (13), the unknown constants k1, k2, n1, and n2 can be
determined. Thus, the solutions can be written as[
V1 (x)
V2 (x)

]
= −

[
1 m12

m21 1

] [ sinh(γ1x)
γ1

0

0 sinh(γ2x)
γ2

]

×
[

1 m12

m21 1

]−1 [
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]
[
I1 (0)
I2 (0)

] [
1 m12

m21 1

] [
cosh(γ1x) 0

0 cosh(γ2x)

]
[

1 m12

m21 1

]−1 [
V1 (0)
V2 (0)

]
(14)

[
I1 (x)
I2 (x)

]
=

[
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]−1

[
1 m12

m21 1

]
×
[
cosh(γ1x) 0

0 cosh(γ2x)

]
[

1 m12

m21 1

]−1

×
[
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]
[
I1 (0)
I2 (0)

]
−
[
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]−1

×
[

1 m12

m21 1

] [
γ1 sinh(γ1x) 0

0 γ2 sinh(γ2x)

]

×
[

1 m12

m21 1

]−1 [
V1 (0)
V2 (0)

]
. (15)

Finally, from (14) and (15), the ABCD matrix can be derived:

A =

[
1 m12

m21 1

] [
cosh(γ1x) 0

0 cosh(γ2x)

]
[

1 m12

m21 1

]−1

(16)

B =

[
1 m12

m21 1

] [ sinh(γ1x)
γ1

0

0 sinh(γ2x)
γ2

]

×
[

1 m12

m21 1

]−1 [
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]
(17)

C =

[
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]−1 [
1 m12

m21 1

]

×
[
γ1 sinh(γ1x) 0

0 γ2 sinh(γ2x)

] [
1 m12

m21 1

]−1

(18)

D =

[
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]−1 [
1 m12

m21 1

]

×
[
cosh(γ1x) 0

0 cosh(γ2x)

] [
1 m12

m21 1

]−1

[
R11 + sL11 R12 + sL12

R21 + sL21 R22 + sL22

]
. (19)

The scattering parameters can be obtained from the ABCD
matrix [18][

S13 S14

S23 S24

]
= 2

(
A+

B

Z0
+ Z0C +D

)−1

[
S11 S12

S21 S22

]
=

(
A+

B

Z0
+ Z0C +D

)−1

×
(
A+

B

Z0
− Z0C −D

)
. (20)

Equation (20) is a rigorous analytical expression for cal-
culating the S-parameter from RLGC parameters of a two-
dimensional coupled transmission line. Then the S-parameters
can be calculated without solving the hyperbolic function of a
matrix or other infinite series. Each element in (16)–(19) can
be calculated from the RLGC matrix explicitly, thus allowing
us to investigate how a perturbation in the C matrix affects the
S-parameters, as shown in the following section.

III. PERTURBATION ANALYSIS OF INHOMOGENEITY

The co-extruded cable with a homogeneous and symmetric
dielectric is discussed first. For the separately extruded cable
with air pockets, the inhomogeneity is treated as a perturbation
to the C matrix and then illustrates how a relatively small
inhomogeneity can significantly change the S-parameter. For
simplicity, all cases discussed here are lossless. For lossless
transmission lines, R and G are zero, and L and C are constant
over the frequency.

A. Special Case: Homogeneous and Symmetric

For homogeneous, lossless, and symmetric co-extruded ca-
bles, L11C12 + L12 C22 = 0, and the P matrix becomes a
diagonal matrix with two equal diagonal elements. The two
propagation constants are equal

γ1 = γ2 = γ = s
√

L11C11 + L12C21. (21)
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For simplicity, identity matrix I is chosen as the eigenmatrix
of the diagonal matrix P. Therefore, the ABCD matrix can be
written as

A =

[
cosh(γx) 0

0 cosh(γx)

]
(22)

B =
sinh(γx)

γ

[
sL11 sL12

sL21 sL22

]
(23)

C = − γ1 sinh(γx)

[
sL11 sL12

sL21 sL22

]−1

(24)

D =

[
cosh(γx) 0

0 cosh(γx)

]
. (25)

Of note, γ is an imaginary number. Thus, cosh(γx) =
cos(|γx|), and sinh(γx) = isin(|γx|). Consequently, each ele-
ment of the ABCD matrix is periodic, and the period frequency
is as follows:

fperiod =
1

Length
√
L11C11 + L12C21

(26)

where Length is the total length of the transmission line. Each
element of the ABCD parameters has the same period and thus
the same for the S-parameters.

B. Perturbation of Air Pockets

We now consider a lossless two-dimensional symmetric sep-
arately extruded cable with air pockets. Because of the inhomo-
geneity, matrix P is not a diagonal matrix and can be written as

P = s2
[
L11C11 + L12C21 L11C12 + L12C22

L21C11 + L22C21 L21C12 + L22C22

]

=

[
p e
e

]
(27)

where p = L11 C11 + L12 C21 = L21 C12 + L22C22, e =
L11 C12 + L12 C22 = L21 C11 + L22C21, and |p| � |e|. The
two eigenvalues are

γ′2
1 = p− e

γ′2
2 = p+ e. (28)

The two corresponding eigenvectors are:[
1

m21

] [
m12

1

]
=

[
1
−1

] [
1
1

]
. (29)

The A matrix is: (30) shown at the bottom of this page.
Each element of the A matrix has a fast-switching

component (γ′
1 + γ′

2)/2 and a slow modulation
component(−γ′

1 + γ′
2)/2. With Taylor’s expansion, the

two propagation constants can be written as

γ′
1 =

√
p− e ≈ √

p

(
1− 1

2

e

p

)

γ′
2 =

√
p+ e ≈ √

p

(
1 +

1

2

e

p

)
(31)

fmodulation =

√
L11C11 + L12C21

Length (L11C12 + L12C22)
. (32)

The period of the modulation can be obtained with (32). The
S-parameters are also periodic and modulated. At one-quarter
of the modulation frequency, A and D become

A = D =

[
0 i sinh(γ

′
1+γ ′

2

2 x)

i sinh(γ
′
1+γ ′

2

2 x) 0

]
(33)

and the diagonal elements are 0. Meanwhile, B and CABCD

become:

B ≈ sinh(γ′
1x)

2γ′
1

[
γ ′

2−γ ′
1

γ2

−γ ′
1−γ ′

2

γ2−γ ′
1−γ ′

2

γ ′
2

γ ′
2−γ ′

1

γ ′
2

] [
sL11 sL12

sL21 sL22

]

≈ − sinh(γ′
1x)

γ′
1

[
0 1
1 0

] [
sL11 sL12

sL21 sL22

]

= − sinh(γ′
1x)

γ′
1

[
sL21 sL22

sL11 sL12

]

(34)

C ≈ sinh(γ′
1x)

[
sL11 sL12

sL21 sL22

]−1
[

γ ′
1−γ ′

2

2
−γ ′

1−γ ′
2

2−γ ′
1−γ ′

2

2
γ ′

1−γ ′
2

2

]

≈ − γ′
1 sinh(γ

′
1x)

[
sL11 sL12

sL21 sL22

]−1 [
0 1
1 0

]

=
sγ′

1 sinh(γ
′
1x)

L2
11 − L2

12

[
L12 −L22

−L11 L21

]
(35)

A=

[
1 m12

m21 1

] [
cosh(γ′

1x) 0
0 cosh(γ′

2x)

] [
1 m12

m21 1

]−1

=

[
1 1
−1 1

] [
cosh(γ′

1x) 0
0 cosh(γ′

2x)

] [
1 1
−1 1

]−1

=

[
cosh(γ ′

1x)+cosh(γ ′
2x)

2
− cosh(γ ′

1x)+cosh(γ ′
2x)

2− cosh(γ ′
1x)+cosh(γ ′

2x)
2

cosh(γ ′
1x)+cosh(γ ′

2x)
2

]

=

⎡
⎢⎣ cosh(γ

′
1+γ

′
2

2 x) cosh(γ
′
1−γ ′

2

2 x)

sinh(γ
′
1+γ ′

2

2 x) sinh(−γ ′
1+γ ′

2

2 x)

sinh(γ
′
1+γ ′

2

2 x) sinh(−γ ′
1+γ ′

2

2 x) cosh(γ
′
1+γ ′

2

2 x) cosh(γ
′
1−γ ′

2

2 x)

⎤
⎥⎦ . (30)
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Fig. 3. Test geometries for a twin-axial cable with and without air pockets.

with the off-diagonal elements much greater than the diagonal
elements. We now substitute (33)–(35) into (20), and obtain the
insertion loss and far-end crosstalk[

S13 S14

S23 S24

]
= 2

(
A+

B

Z0
+ Z0CABCD +D

)−1

= 2

[
u v
v u

]−1

=
2

v2 − u2

[−u v
v −u

]
(36)

where u and v are

u = − sinh(γ′
1x)

Z0γ′
1

sL21 +
sγ′

1 sinh(γ
′
1x)Z0

L2
11 − L2

12

sL21 (37)

v = 2i sinh

(
γ′

1 + γ′
2

2
x

)
− sinh(γ′

1x)

Z0γ′
1

sL22

− sγ′
1 sinh(γ

′
1x)Z0

L2
11 − L2

12

sL22 (38)

and |u| � |v|. Therefore, at one-quarter of the modulation fre-
quency, the insertion loss terms S13 and S24 are close to 0, and
the far-end crosstalk terms S14 and S23 are close to 1.

IV. NUMERICAL EXAMPLES

The single-ended S-parameters of these two cable types sig-
nificantly differ because of the inhomogeneity in the dielectric
introduced by the air pockets. To illustrate this phenomenon, we
use two simulation model geometries (see Fig. 3) as examples.
The two simulation models are identical except for the presence
or absence of air pockets. The example twin-axial cables have
two inner conductors inside an outer shielding. The radius of the
inner conductor is 12 mil, and all other dimensions are indicated
in the figure. The permittivity of the dielectric is 2.1, and the
permeability is 1. All conductors and dielectrics are assumed
to be lossless for simplicity. The cross-section is simulated in
ANSYS 2D Extractor [19] for the RLGC parameters. The R
and G matrices are 0, because the examples are lossless. The
simulated L and C matrices for the two cases are listed in
Table I. The L matrix for the two cases is identical because
the air pocket has the same permeability as the dielectric. The
air pocket changes the C matrix slightly. As described, the air
pocket is a perturbation to the C matrix.

The simulated RLGC parameters are substituted into (20) to
calculate the S-parameters for a 1-meter cable with 50 Ω port
impedance. The results are compared with ANSYS exported
S-parameters in Fig. 4. The S-parameters calculated by (20) are

TABLE I
SIMULATED L AND C MATRIX WITHOUT AND WITH POCKTETS

Fig. 4. Simulated and calculated S-parameters for the two test geometries in
Fig. 3. (a) Without air pockets. (b) With air pockets.

identical to the results simulated by ANSYS, thus validating the
proposed method for calculating S-parameters.

The analysis presented in the previous section is supported by
the simulation results. For the case with a homogeneous dielec-
tric, the insertion loss is close to 0 dB, and the far-end crosstalk is
below −30 dB. However, in the case with inhomogeneity, both
the insertion loss and far-end crosstalk are periodic due to the
modulation effect. Despite the small difference in the C matrix,
a significant deviation is observed between the S-parameters of
the two geometries, thus verifying the accuracy of the analysis.
Notably, using (32), the frequency of the first zero in the insertion
loss can be calculated, which is one-quarter of the modulation
frequency, i.e., 10.67 GHz. The simulation result of 10.54 GHz
shows only a 1% deviation from the calculated value, further
validating the proposed analysis.

The insertion loss of the test geometry with air pockets for
0.1, 0.2, 0.5, and 1 m cables is compared in Fig. 5. Of note,
the modulation frequency is inversely proportional to the length
of the transmission line. As predicted by (32), the modulation
frequency is lower for shorter cables.

In the case of cables with low-loss dielectric, the behavior
of the S-parameters is similar to that in the lossless scenario,
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Fig. 5. Insertion loss for cables of various lengths with air pockets.

Fig. 6. S-parameter for a lossy cable with air pockets.

except for the presence of attenuation. To demonstrate this, the
same geometry with air pockets using both copper and a lossy
dielectric is simulated. The conductivity of copper is 5.8 e7S/m,
and the lossy dielectric is defined by the Djordjevic-Sarkar
model [20] with dk = 2.1 and df = 0.002 at 1 GHz. The
simulated S-parameters are plotted in Fig. 6, which shows the
same modulation pattern as that in the lossless case. The first
zero in the insertion loss is 10.75 GHz, indicating a change of
only 2% with respect to the lossless case.

Despite the difference in the single-ended S-parameters, the
differential mode S-parameter for the two test geometries is the
same. However, air pockets are beneficial if asymmetry-induced
skew exists.

V. ANALYSIS OF SKEW

A. Numerical Examples

The same test geometries in Fig. 3 are used as an example to
illustrate the effect of inhomogeneity on skew. A cylinder with
a dk value of 3.2 and 10 mil diameter is added 31 mil away, to
the left of conductor 1, as shown in Fig. 7. The added cylinder
makes the cross-section asymmetric and induces skew to the
cables. The geometries are simulated in ANSYS 2D Extractor,
and the simulated L and C matrices are listed in Table II. C11

increases slightly because the cylinder has a higher dk value than
the dielectric. The S-parameters are calculated from the RLGC
parameters with (20).

The frequency-domain intrapair skew is defined by the dif-
ference between the flight times of conductors 1 and 2, when
a differential signal is fed into one end of the cable [4], [19].

Fig. 7. Addition of skew to the test geometries for a twin-axial cable with and
without air pockets.

TABLE II
SIMULATED L AND C MATRIX WITH ASYMMETRY

Fig. 8. Flight times of the two conductors. (a) Without air pockets. (b) With
air pockets.

Fig. 9. Inhomogeneity decreases skew at high frequencies and removes the
resonance on the differential insertion loss. (a) Intra-pair skew. (b) Differential
insertion loss.

The flight time is defined as the time required by the signal to
travel on the length of the conductor. The flight times of the two
conductors t1 and t2 can be obtained from the S-parameters

t1 = unwrap (phase (S31 − S32)) (39)

t2 = unwrap (phase (S42 − S41)) . (40)

The intrapair skew is the difference between t1 and t2

skew = |t2 − t1| . (41)

Fig. 8 shows the calculated flight time, while Fig. 9(a) plots
the skew and Fig. 9(b) plots the differential insertion loss.
Additionally, Fig. 10 displays the time-domain transmission
(TDT) waveform with a 25 ps rise time. For the co-extruded
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Fig. 10. TDT waveform with 25 ps rise time. (a) Without air pockets. (b) With
air pockets.

cable without air pockets, the flight time varies little with fre-
quency, and the skew remains at 10 ps across all frequencies.
The skew leads to resonance on the differential insertion loss at
1/(2skew) = 50 GHz. Notably, the TDT waveforms of the two
conductors display a clear 10 ps difference.

For the case with air pockets, the flight time changes with
the frequency. The skew starts with 10 ps at low frequency,
then decreases to 0 ps at 10.7 GHz, which is one-quarter of the
modulation period. Above 10.7 GHz, the skew oscillates around
0, and the sign changes with every half modulation period.
The difference between the TDT waveforms is small around
the corner where the high-frequency component is strong, and
the difference is large at the middle of the rising edge where the
low-frequency component is strong. The air pockets reduce the
negative effect of skew on signal integrity.

B. Physical Explanation for Co-Extruded Cable With Skew

For a lossless co-extruded cable with an asymmetric dielec-
tric, as shown in Fig. 7, the C matrix can be written as

C =

[
C11 + δC C12

C21 C22

]
(42)

where δC = 0.33 pF/m is the perturbation due to the asym-
metry calculated by the simulation result. The P matrix becomes

P = s2LC =

s2
[
L11C11 + L12C21 + L11δC L12C12 + L12C22

L21C11 + L22C21 + L21δC L21C12 + L22C22

]

= s2
[
L11C11 + L12C21 + L11δC 0

L21δC L21C12 + L22C22

]
.

(43)

The new propagation constants are

γ1 = s
√
L11C11 + L12C21 + L11dC ≈ γ +

s2L11δC

2
√
γ

= γ + δγ (44)

γ2 = s
√
L21C12 + L22C22 = γ (45)

where δγ is the perturbation due to the asymmetry. The new
ABCD matrix can be written as

A =

[
cosh(γ1x) 0

0 cosh(γ2x)

]
(46)

B =

[
sinh(γ1x)

γ1
0

0 sinh(γ2x)
γ2

] [
sL11 sL12

sL21 sL22

]
(47)

C =

[
sL11 sL12

sL21 sL22

]−1 [
γ1 sinh(γ1x) 0

0 γ2 sinh(γ2x)

]
(48)

D =

[
sL11 sL12

sL21 sL22

]−1

[
cosh(γ1x) 0

0 cosh(γ2x)

] [
sL11 sL12

sL21 sL22

]
. (49)

In contrast to the air pockets, the asymmetry does not lead
to a modulation in ABCD parameters as in (33)–(35). Thus, no
modulation behavior is seen in the single-ended S-parameters.
For the same reason, the flight times of the two conductors are
not significantly dependent on the frequency. The difference
between propagation constants leads to resonances on the dif-
ferential insertion loss. The resonant frequencies are inversely
proportional to δC

fresonance =
(2n+ 1) γ

length × L11δC
, n = 0, 1, 2 . . .. (50)

In this example, the first resonance calculated by (50) is
50 GHz, in agreement with the simulated results in Fig. 9, thus
verifying the proposed explanations.

C. Explanation for Separately Extruded Cable With Skew

For a lossless separately extruded cable with an asymmetric
dielectric and air pockets, as shown in Fig. 7, the C matrix can
be written as

C =

[
C11 + δC C12

C21 C22

]
(51)

where δC = 0.33 pF/m is the perturbation due to the asym-
metry and is a small number. The P matrix becomes

P = s2LC =

[
p+ s2L11δC e
e+ s2L22δC p

]
. (52)

Considering the perturbation due to the asymmetry is minor,
on the basis of the assumption that e >> s2L22δC, the new
propagation constants γ′′

1 and γ′′
2 can be derived as

γ′′
1 ≈

√
p− e− s2L22δC

2
≈ √

p− e− s2L22δC

4
√
p− e

≈ γ′
1 − s2L22δC

4
√
p

(53)

γ′′
2 ≈

√
p+ e+

s2L22δC

2
≈ √

p+ e+
s2L22δC

4
√
p+ e

≈ γ′
2 +

s2L22δC
′

4
√
p

(54)

where γ′
1 and γ′

2 are the same as those in (31) for a separately
extruded cable without skew. Compared with the homogeneous
and symmetrical geometry in Fig. 3, two factors affect the two
propagation constants: air pockets and skew. The effect of the
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Fig. 11. Differential insertion loss Sdd12 with resonance for the symmetric
separately extruded cable.

air pockets on the propagation constants is significantly greater
than the effect of skew

|γ′′
1 − γ′

1| ≈
∣∣∣∣s2L22δC

4
√
p

∣∣∣∣ <<

∣∣∣∣ e

2
√
p

∣∣∣∣ ≈ |γ′
1 − γ| (55)

|γ′′
2 − γ′

2| ≈
∣∣∣∣s2L22δC

4
√
p

∣∣∣∣ <<

∣∣∣∣ e

2
√
p

∣∣∣∣ ≈ |γ′
2 − γ| . (56)

Consequently, adding skew does not change the modulation
behavior caused by the air pockets. The magnitude of the
single-end S-parameter remains unchanged after the addition of
skew. The skew exists and causes a difference between the flight
times at low frequencies. The sign of the difference changes
with the frequency because of the modulation. Therefore, the
skew calculated from the unwrapped phase is decreased at a
high frequency after several modulation cycles.

D. Skew Due to Physical Length Difference

Of note, if the skew is caused by a difference in the physical
lengths of the two conductors, the resonance will still be present
at a frequency equal to 1/(2 skew) even with the air pockets as
additional inhomogeneities. For verification, the S-parameter of
the symmetric separately extruded cable in Fig. 4(b) is connected
to an additional ideal delayed transmission line with a 21 ps delay
at port 3, as shown in Fig. 11. Consequently, the differential
insertion loss Sdd12 has a resonance at 23.8 GHz caused by the
delay. Therefore, in the manufacturing copper twinax cables, the
physical lengths of the two inner conductors must be precisely
controlled.

VI. CONCLUSION

Separately extruded twinax cables often have lower manu-
facturing costs than co-extruded twinax cables. However, low
cost does not always mean inferior performance. The skew-
induced resonance in differential insertion loss is observable
in the separately extruded twinax cables. Therefore, the higher
skew does not undermine signal integrity if the skew is caused
by inhomogeneity of the dielectric along the propagation di-
rection. This inhomogeneity, which can arise from air pockets

separately extruded cables within the cable, can cause modula-
tion between propagation constants, reducing skew at high fre-
quencies and eliminating the resonance in differential insertion
loss.

The analysis presented in this article has implications beyond
twinax cables and could be applied to other two-dimensional
transmission lines. For example, intentional inhomogeneity in
the dielectric material could be used to reduce crosstalk between
two single-ended microstrips or striplines in printed circuit board
design.
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