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ABSTRACT

The spatiotemporal nature of neuronal behavior in spiking neural networks (SNNs) makes SNNs promising for edge applications that
require high energy efficiency. To realize SNNs in hardware, spintronic neuron implementations can bring advantages of scalability and
energy efficiency. Domain wall (DW)-based magnetic tunnel junction (MTJ) devices are well suited for probabilistic neural networks given
their intrinsic integrate-and-fire behavior with tunable stochasticity. Here, we present a scaled DW-MTJ neuron with voltage-dependent
firing probability. The measured behavior was used to simulate a SNN that attains accuracy during learning compared to an equivalent, but
more complicated, multi-weight DW-MTJ device. The validation accuracy during training was also shown to be comparable to an ideal leaky
integrate and fire device. However, during inference, the binary DW-MTJ neuron outperformed the other devices after Gaussian noise was
introduced to the Fashion-MNIST classification task. This work shows that DW-MTJ devices can be used to construct noise-resilient net-
works suitable for neuromorphic computing on the edge.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0152211

Neuromorphic computing allows for real time analysis of
unstructured information that is too complex for conventional com-
puting. Current digital implementations of neuromorphic computing
rely on large numbers of CMOS transistors to simulate artificial neural
networks (ANNs), which are inefficient in terms of both area and
energy.1 For edge computing, which can benefit greatly from energy
efficient implementations, analog approaches to mapping synaptic
weights and neuronal activations, e.g., crossbar arrays of emerging
memory devices, are promising solutions. Emerging devices can repre-
sent biological neurons and synapses on a one-to-one basis to exploit
the computational dynamics found in the human brain.2–7 Among
them, spintronic devices offer a compact and energy efficient
hardware-based building block for alternatives to digitally simulated
neural networks on conventional CMOS devices.8

Several types of magnetic devices have been proposed to emulate
spiking neurons. These approaches are often focused on emulating the
leaky integrate and fire (LIF) model of neuron behavior via gradual
switching using Hall bars fabricated on the scale of tens of micro-
meters.9–12 One such approach has incorporated the use of a domain
wall (DW) spin texture, however, with unfeasible area and latency.12

Additionally, magnetic tunnel junctions (MTJs) are necessary for

sufficiently large electrical readout signals. Area-scalable approaches
for spintronic neurons have been proposed using alternative methods
such as perpendicular magnetic tunnel junctions (MTJs)13 and sky-
rmions,14–16 where the devices operation energy reduces as size
reduces and device function can be maintained down to CMOS-
compatible sizes, but have not been experimentally demonstrated. A
promising approach is to integrate MTJ readout with DW spin tex-
tures to represent the neuron state. These DW-MTJ devices offer a
highly tunable way to emulate many neuromorphic functionalities on
a monolithic platform. We have shown multi-weight (MW) artificial
synapses with a single MTJ as well as directional synapses with tunable
metaplasticity by varying the geometry of the DW track.2,17 In addi-
tion, DW-MTJ devices are suited to emulate biological neurons given
their intrinsic integrate-and-fire behavior, with the membrane poten-
tial represented by DW position. As current pulses are applied to the
DW track, the DW can be moved using spin transfer torque (STT) or
spin–orbit torque (SOT). After a certain number of pulses, the DW
will pass under the MTJ, causing a resistance change, which is able to
represent a neuronal spike.18 The ability of the DW-MTJ artificial
neurons to incorporate other behaviors, such as leaking,19,20 lateral
inhibition,21,22 and edgy-relaxed neuronal behavior,23 has also been
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simulated, as well as simulations of full neural network area.24,25 The
potential of having MW synapses and LIF neurons on a monolithic
platform can lead to hardware neural networks that incorporate
advantages of magnetic materials for edge computing, namely, radia-
tion hardness, speed, and energy efficiency.

Here, we propose a binary DW-MTJ artificial neuron that has
stochastic behavior and is fabricated from the same material as previ-
ously demonstrated metaplastic MW synapses,2 opening the possibil-
ity for spiking neural networks (SNNs) with fully spintronic matrix
operations, where both neuronal and synaptic functionalities are cap-
tured using DW-MTJ devices. The device, shown in Fig. 1, consists of
a rectangular DW track with a free magnetic switching layer and a tan-
talum heavy metal layer beneath. The heavy metal layer allows for effi-
cient SOT switching. At one end of the track lies an MTJ consisting of
a thin MgO tunnel barrier and a synthetic antiferromagnet (SAF)
pinned magnetic layer. The MTJ is positioned sufficiently far down
the track to allow integration before firing. A bias field is used to assist
the SOT switching to overcome the SAF pinning, but this could be
removed via stack engineering. Furthermore, the device is reset using
an external magnetic field after each fire event, but this could be
removed by tuning the DW track geometry to facilitate intrinsic leak-
ing. To facilitate faster resetting in practical device implementation
without modifying the track dimensions, a resetting external magnetic
field or a direct resetting electrical pulse can be delivered to the device
after a firing event is detected, which can switch the device on the
order of nanoseconds. The material stack was grown using physical
vapor deposition and patterned using electron beam lithography and
ion beam etching, identically to Ref. 2. We show stable resistance states
and repeatable cycle-to-cycle switching. Stochastic switching is dem-
onstrated, and switching probability is shown to be dependent on the
voltage pulse amplitude. The switching probability as a function of
voltage amplitude is then used to form a lookup table to simulate the
dynamics of the stochastic neurons on the network level using the
Norse spiking neural network framework.26 Our online learning
results show that the binary neurons perform slightly worse than the
LIF baseline and the MW neuron network. However, the difference
between the MW device and the proposed binary neuron becomes
negligible if the hidden layer size or the number of timesteps are
reduced. This suggests that the binary stochastic neuron has

application in edge computing, where space and energy consumption
are highly constrained. This becomes clear when the same networks
are used to perform inference. Using Fashion-MNIST with Gaussian
noise, we show that the binary neuron is more noise-resilient than
both the MW device and the LIF baseline.

Figure 1(a) shows a schematic of the studied binary DW-MTJ
artificial neuron. In comparison with the logic devices in Ref. 18, the
difference is the relative location of the MTJ along the DW track. This
is shown in the scanning electron microscope (SEM) image [Fig. 1(b)].
The final device is 6lm long and 0.35lmwide, with a 0.35lm diame-
ter MTJ. For a feature size F, the minimal area requirement of the
device is roughly 18F2.27 The material stack, detailed in supplementary
material Fig. S1, and the fabrication process were the same as Refs. 2
and 18. The device operates using spin–orbit-torque (SOT) DW
motion using the tantalum underlayer, and the resistance of the MTJ
depends on the location of the DW within the track since the top layer
of the MTJ is pinned by a synthetic antiferromagnetic layer. Two litho-
graphically patterned notches on either side of the MTJ stabilize the
DW position in one of two places along the track. To operate the
device, a voltage pulse is applied from CLK to IN to nucleate, depin,
and drive the DW down the track. The resistance of the MTJ is then
read from IN to OUT. The Oersted (Oe) line was not used during the
testing since DW nucleation occurs probabilistically during writing,
and the Oe line reduces stochasticity. Sending a voltage pulse along
the Oersted line generates a highly localized magnetic field due to
Ampère’s law, which can nucleate a DW in the notch directly below.
This has been shown previously in Ref. 18 to reduce cycle-to-cycle var-
iation by roughly an order of magnitude and achieve more determinis-
tic behavior. Since the Oe Line is not used in this work, it is likely that
the DW is nucleated in a random location either before, in, or past the
notch. This greatly contributes to the stochasticity in writing.

The binary DW-MTJ stochastic neuron data are shown in Fig. 2.
The high resistance antiparallel state and the low resistance parallel
state are shown in the minor field loop of Fig. 2(a). The device was set
to the parallel state using an external magnetic field of !200Oe ("!ẑ
direction). After saturation, a bias field of 350Oe ("ẑ direction) was
used. These field strengths were constant for all experiments. The bias
field was not strong enough to switch the device by itself as shown in
the field loop [Fig. 2(a)], but it reduced the voltage requirement to

FIG. 1. Device schematic. (a) 3D rendering of the binary DW-MTJ stochastic neuron. Blue/red represent up/down magnetic domains with white DW. Gray represents Tantalum
underlayer. The three critical terminals are IN, CLK, and OUT. (b) SEM image of the binary DW-MTJ stochastic neuron. The post-MTJ notch is visible; the pre-MTJ notch is
under the Oe line.
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move the DW using SOT. This bias field could be removed through
film stack optimization.28 After the bias field was set, constant voltage
pulses were applied from CLK to IN to nucleate, depin, and move the
DW down the track. The pulse lengths were fixed at 30 ns in length
with 10ns rise/fall time. Figure 2(b) shows switching data for 15 cycles
at a single voltage amplitude of 1.75V. The switching behavior is
highly stochastic since the Oersted line is not used to nucleate the DW
within the pre-MTJ notch each cycle, allowing the DW to be nucleated
in a random position using current pulses along the DW track. This
cycling experiment was repeated for 11 different voltage amplitudes
between 1.0 and 2.2V (supplementary material Fig. S2). After cycling
the device, the data were tabulated as the number of times each pulse
number switched the device for that voltage amplitude, shown in Fig.
2(c) for 1.75V. The switching probability per pulse for each voltage
amplitude is plotted in Fig. 2(d), showing a sigmoid fit.

The energy dissipation required for a write pulse can be estimated
from this distribution. For a switching probability of around 50%,
1.8V is applied across the heavy metal wire, which has a two-point
resistance of 1029 X. The four-point resistance of the device is 365 X,
indicating that 0.64V is dissipated across the DW track. As a result,
performing the energy calculation E ¼

Ð t
0ðV

2=RÞ dt with a 30ns pulse
and a 10ns rise/fall time, the estimated energy per sample is calculated
to be around 44.9 pJ. This energy is competitive with digital static
random-access memory (SRAM) implementations of spiking neurons
at greatly reduced area and without standby energy dissipation from
leakage current.29,30 To further decrease the energy dissipation, shorter
pulse length voltage pulses can be used. Additionally, the DW-MTJ
neurons benefit from scaling, where the threshold voltage would
decrease proportionally to a decrease in width of the DW track.31,32

Figure 2(e) is data from our previous measurements of a multi-
weight (MW) DW-MTJ device shown in Ref. 2 that is used as a com-
parison to the binary DW-MTJ measured in Figs. 2(a)–2(d). Because
the binary device presented here only has two states, integration is not
emulated in device operation by the artificial neuron. The MW device
was operated as a synapse in Ref. 2 [schematic and SEM image in sup-
plementary material Figs. S3(b) and S3(c)], but the device can also be
used as a neuron by reducing the size of the MTJ to cover only a small
region just before the last notch, shown in supplementary material Fig.
S3(d). The measured synapse device data are used to characterize the
behavior of the hidden state of the simulated neuron, thereby emulat-
ing integration behavior. The MWDW-MTJ was tested using ramping
voltages from 0 to 5.5V for ten cycles, and the voltage-dependent
probability that the device is in any of the five states is tabulated. The
results show that the MW DW-MTJ device combines quantized inte-
gration behavior with stochastic switching, showing the flexibility of
the device platform.

In this section, we show how the binary stochastic DW-MTJ neu-
ron can be used to build noise-resilient SNNs for training and infer-
ence on the edge. The architecture of the network is a multilayer
perceptron (MLP) with two hidden layers with the stochastic neuron
activations, shown in Fig. 3(a). The output layer is a leaky integration
layer to convert spike trains to scalar values, allowing for supervised
learning through backpropagation to occur. The role of the two hidden
layers is to increase the learning capacity and complexity of the neural
network by adding neurons and synapses in the form of the two layers
labeled “Dense” in Fig. 3(a). To regulate the spiking frequency through
each layer, a batch normalization layer is added after each hidden
layer. The SNN is implemented in the Norse framework26 with custom

FIG. 2. Experimental results. (a) Binary
neuron MTJ resistance (two-point resis-
tance from IN to OUT) as function of
out-of-plane magnetic field. (b) MTJ resis-
tance vs pulse number for constant pulse
amplitude of 1.75 V repeatably applied
from CLK to IN for 15 cycles. (c) Count of
number of times each pulse number
switches the binary DW-MTJ neuron, for
1.75 V constant amplitude. (d) Switching
probability vs applied voltage for respec-
tive (b) and (c) data obtained for 11 volt-
age amplitudes. (e) Analogous measured
data for a MW DW-MTJ neuron from Ref.
2 which has five lithographic notches and
hence a probability in being in one of five
states, S1–S5, for a given applied volage
pulse amplitude.
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neuron modules using lookup tables consisting of the experimental
data collected from the binary DW-MTJ [Fig. 2(d)] and MW DW-
MTJ [Fig. 2(e)] stochastic neurons. To isolate the performance impact
of the neuron types, synaptic connections were modeled as ideal
double-precision weights. To demonstrate supervised training perfor-
mance, the spiking MLP was applied on the Fashion-MNIST clothing
article classification task.33 The Fashion-MNIST dataset was encoded
in the frequency domain using a Poisson spiking encoding scheme,
limiting the maximum spiking frequency of the brightest pixels to the
sampling speed of the network, chosen to be 10MHz. The error func-
tion of the network was calculated by taking the maximum value
across the timesteps of each output channel; then, a softmax was
applied to normalize. The Adam optimizer34 was used to calculate the
weight updates, using a learning rate of 0.001. The training was done
with a batch size of 100 images.

Several networks with different activations were evaluated to
compare the training performance of the binary DW-MTJ and MW
DW-MTJ stochastic neurons, compared to a baseline of an ideal LIF
neuron. The validation accuracy figure of merit is the classification
accuracy of the 10 000 images in the validation set, distinct from the
60 000 images in the training set. Figure 3(b) shows SNNs consisting
of the three types of neurons with 200 (solid lines) and 500 units (dot-
ted lines) per hidden layer. The network was sampled for 80 timesteps
per image. The training performance results for the baseline LIF net-
work are of a network with 500 units per hidden layer, though reduc-
ing the number of units per hidden layer to 200 did not significantly
affect the validation accuracy. Because the MW DW-MTJ had

multiple levels, a form of quantized integrate-and-fire behavior was
emulated. The extra levels added complexity to the activation function,
allowing the MWDW-MTJ neuron to slightly outperform the simpler
binary DW-MTJ neuron when the network had 500 units per hidden
layer. However, in the network with 200 units per hidden layer, there
was no significant difference in training performance between the two
networks, suggesting that the expressivity of the extra levels in the
MW DW-MTJ device does not significantly improve training perfor-
mance for smaller networks. This indicates that the simpler fabrication
of the binary DW-MTJ neuron can still be desirable for resource-
limited edge computing.

This is further corroborated by the validation accuracy results
where networks with 500 hidden units per layer were sampled for 120
[Fig. 3(c)] and 40 [Fig. 3(d)] timesteps. In the network sampled for
120 timesteps, the MW DW-MTJ device network slightly outper-
formed the binary DW-MTJ in terms of validation accuracy.
However, when the network was sampled for 40 timesteps, both types
of DW-MTJ devices had similar validation accuracy. As a result, for
smaller networks sampled with less timesteps, it can be beneficial to
reduce fabrication complexity by choosing the binary DW-MTJ
instead of the MW device. Due to the small feature size of the notches,
choosing the binary DW-MTJ neurons can also result in favorable
scalability.

It is well known in the literature that when noise is introduced
during the training phase, the resulting network is less affected by
noisy input data.35 This is because the optimization algorithm will find
a network state that will minimize the error while random noise is

FIG. 3. Spiking neural network architecture
and training performance on Fashion-MNIST.
(a) Schematic of multilayer perceptron with
two hidden layers. (b) Validation accuracy of
networks consisting of binary DW-MTJ (blue)
and MW DW-MTJ (orange) stochastic neurons
for hidden layer sizes of 200 units (solid line)
and 500 units (dotted line). LIF neuron SNN
validation accuracy is also shown (dashed
black line). Clouds depict the standard devia-
tion of accuracy across five seeds. Validation
accuracy of three network types with 500 hid-
den units trained for (c) 120 timesteps and (d)
40 timesteps per image shown.
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included during training. Due to the probabilistic nature of switching,
both types of DW-MTJ neurons are hypothesized to be able to fulfill the
same functionality of increasing the noise-resilience of a network. To
characterize this, varying degrees of Gaussian noise were added to the
10000 images in the Fashion-MNIST test set, shown in Fig. 4(a).
Inference is then performed on the noisy dataset using the highest accu-
racy models of each type trained on the non-noisy dataset in the previ-
ous paragraph. The results in Fig. 4(b) show that while the LIF-based
network maintained a higher starting accuracy than the other two net-
works, there was a sharp drop off at a Gaussian noise magnitude of 0.7
to below that of the stochastic DW-MTJ neurons. This point is also
where the inference accuracy of the network composed of MW DW-
MTJ devices dropped below that of the simpler binary DW-MTJ devi-
ces. At a Gaussian noise magnitude of 3.0, the LIF network accuracy
became insignificant compared to a random guess ("10%) while both
DW-MTJ device-based networks are still able to accomplish inference
at a better accuracy than a random guess. The advantage of the DW-
MTJ stochastic neurons becomes clearer when viewing the data nor-
malized to the accuracy of the networks on pristine data [Fig. 4(c)]. In
practical implementation, this noise resilience may not be an acceptable
trade-off for accuracy. However, in deep neural networks for edge appli-
cations, a promising implementation is to integrate stochastic neurons
in one layer to introduce noise-resilience while maintaining high classifi-
cation accuracy through LIF neurons in other layers.

In summary, scaled DW-MTJ artificial neurons were fabricated,
and stochastic switching behavior was characterized. The resulting dis-
tribution of spiking probability as a function of input voltage for the
binary DW-MTJ device was approximately sigmoidal, with a low energy
dissipation of 44.9 pJ per sample for an individual device. An alternative
binarized device architecture was also proposed, with multiple notches
to implement quantized integration states. The experimental data for
both devices was then mapped into lookup tables to simulate supervised
learning of a MLP for SNNs. Online learning results show that while
there was a slight ("1%) advantage in validation accuracy to training
with the MW DW-MTJ due to the additional expressivity enabled by

the extra notches. However, at smaller network sizes and fewer time-
steps, the binary DW-MTJ device can match the performance of the
MW DW-MTJ device. When performing inference on noisy datasets,
the DW-MTJ devices were able to outperform the ideal LIF neurons
due to the introduced noise resilience in networks that were trained
using the stochastic devices. Where the LIF neuron network inference
accuracy rapidly decayed with increasing noise in the dataset, the net-
works composed of the DW-MTJ neurons of both types were able to
maintain reasonable performance above that of the LIF network. These
results indicate that the proposed devices are well suited for energy effi-
cient, resource-limited hardware for neuromorphic computing at the
edge, making a further case for analog deep neural network (DNN)
accelerators with spintronic weights and activations.

See the supplementary material for thin film stack information,
additional experimental cycling data, and a detailed description of the
MW-DW-MTJ device used in the neural network simulation.
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