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ABSTRACT

We present the Open Compass project’s pilot deep learning bench-

mark results with various AI accelerators. Those accelerators are

NVIDIA V-100 and A-100, AMD MI100, as well as emerging novel

accelerators such as Cerebras CS-2 and Graphcore. We evaluate

their performance on various deep learning training tasks. We then

discuss key insights from our experiments and share experiences

about evaluating and integrating those novel AI accelerators with

our supercomputing systems.

CCS CONCEPTS

· Hardware→ Hardware accelerators; · Computing method-

ologies →Machine learning.
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1 INTRODUCTION

Open Compass[2] is an exploratory research project at the Pitts-

burgh Supercomputing Center (PSC) to conduct academic pilot

studies on an advanced engineering testbed for artificial intelli-

gence (AI). Open Compass includes the development of an ontol-

ogy to describe the complex range of existing and emerging AI

hardware technologies and identify benchmark problems that rep-

resent different challenges in training deep learning models. These

benchmarks are then used to execute experiments in alternative

advanced hardware solution architectures. One such effort for ex-

ploring alternative AI hardware solutions at PSC is the Neocortex

system [3], an NSF-funded resource that targets the acceleration of
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AI-powered scientific discovery by vastly shortening the time re-

quired for deep learning training and fostering greater integration

of deep learning with scientific workflows. Here we present some

preliminary results on analyzing the effects of different accelerator

types, including Cerebras CS-2, NVIDIA A-100, V-100, AMD MI100,

and Graphcore IPU, for popular deep learning models applicable,

such as image processing and language models. We discuss the

insights from our experiments and plans for future exploration.

2 OVERVIEW OF EVALUATED AI
ACCELERATORS

The diverse hardware type considered here covers main-stream

devices for deep learning studies and innovative AI accelerators

tailored to speed up large-scale AI workloads. In this work, we

perform pilot benchmarking tests on the following accelerators:

Cerebras CS-2, Graphcore BOW-IPU, AMD MI100, NVIDIA A-100,

and NVIDIA V-100. We use NVIDIA A-100 and V-100 results as

our baseline to evaluate other accelerators. Table 1 provides an

overview of the hardware characteristics and software stack. Below,

we also describe the setup of machines that host those accelerators.

• The Cerebras CS-2 is a second-generation wafer-scale engine

(WSE) from Cerebras Systems. It is a single-chip processor

containing 850,000 AI-optimized cores and 40 GB of on-chip

SRAM. The CS-2 is designed for large-scale AI applications.

It is powered by a server HPE Superdome Flex 280, which

is an eight-chassis server with up to 448 cores and 24TB of

memory, connected to each CS-2 machine via a path of 8 x

100 GbE individual connections, used by coordinated worker

processes to stream job data into the Cerebras appliances.

• The Graphcore IPU POD-4 is a four-chip BOW-2000 IPU

system from Graphcore. This IPU-POD system is designed

for large-scale AI applications, and our setup is a subset

of the smallest system for the Colossus Mk2 architecture.

Our configuration contains 5,888 IPU cores and 3.6 GB of

on-chip SRAM. The system is powered by an Exxact TS2-

158632687-AES twi-socket server by Intel 8280L CPUs, for

a total of 64 cores and 512GB of RAM, via a direct-attach

100GbE connection.

• The AMD MI100 is a GPU that contains 7,680 stream pro-

cessors and 32GB of HBM2 memory. Our setup is powered

by the same Exxact TS2-158632687-AES server driving the

Graphcore equipment.

• An NVIDIA V-100 GPU contains 5,120 CUDA cores and 32

GB of HBM2 memory. It is powered by a two-socket HPE

Apollo 6500 Gen10 server with two Intel 6248 CPUs for a
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System Cerebras CS-2 Graphcore IPU POD-4 AMD MI100 NVIDIA V-100 NVIDIA A-100

Architecture WSE-2 Colossus Mk2 IPU CDNA Volta Ampere

Cores
850.000 1.472 /IPU 120 CU (7.680 SP) 5,120c CUDA, 6,912c CUDA,

640c Tensor /GPU 432c Tensor /GPU

Memory
40GB SRAM 0.9GB /IPU 16MB+16MB L1, 60MB L2 128KB L1, 6MB L2 192KB L1, 40MB L2

32GB HBM2 ECC /GPU 32GB HBM2 /GPU 80GB HBM2 /GPU

Memory Bandwidth 20 PB/s 261 TB/s 1,2 TB/s /GPU 900 GB/s /GPU 1.555 GB/s /GPU

Performance (FP16) 5.13 PFLOPS 1 PFLOPS 184.6 TFLOPS /GPU 15.7 TFLOPS /GPU 19.5 TFLOPS /GPU
Performance (FP32) (mix of FP32 & FP16) 250 TFLOPS 23.1 TFLOPS /GPU 7.8 TFLOPS /GPU 9.7 TFLOPS /GPU

Precision support
FP16, FP32, cbfloat FP16, FP32 FP16, FP32, FP64 FP16, FP32, BF16 FP16, FP32, BF16

BF16, INT4, INT8 INT4, INT8 TF32, INT4, INT8

Process 7nm 7nm 7nm 12nm 7nm

Framework Support
TF, PyTorch, TF, PyTorch, PyTorch, ONNX, TF, PyTorch, ONNX, PyTorch, ONNX,
Cerebras SDK ONNX, PopArt MxNET, ROCm MxNET, CUDA MxNET, CUDA

Host System
HPE Superdome Flex 280 Exxact TS2-158632687-AES HPE Apollo 6500 G10 Exxact TS4-195183185

32x Intel 8280L 2x AMD EPYC Milan 7543 2x Intel 6248 2x AMD EPYC 7543
24TB RAM 512GB RAM 512GB RAM 2TB RAM

Table 1: Features of evaluated AI accelerators

total of 80 cores and 512GB of RAM. These GPUs are hosted

by the Bridges-21 GPU nodes.

• An NVIDIA A-100 GPU contains 6,912 CUDA cores and

80 GB of HBM2 memory. It is powered by an Exxact TS4-

195183185 server with two AMD EPYC 7543 CPUs for a total

of 64 cores and 2TB of RAM.

3 EVALUATED DEEP LEARNING
BENCHMARKS

Below we discuss the details of our deep learning benchmark im-

plementation, such as model architecture, dataset, and associated

parameters used for our evaluation study. Here we divide our work

into two parts: (1) deep learning benchmark performance across

different hardware. (2) benchmarking Cerebras Model Zoo [1] per-

formance on Neocortex.

3.1 Deep learning benchmark performance
across different hardware

Here we focus on two deep learning models: UNet[10] and BERT[4],

and present results by running those models across different hard-

ware with the following setting. Those applications are run with

FP16/amp mixed precision on A-100, V-100, AMD M100, FP16 on

Graphcore, andmixed precision onCS-2 runs (equivalent to FP16 for

A-100). The implementations of BERT and UNet models on A-100,

V-100, and Graphcore use TensorFlow 2, and CS-2 uses TensorFlow

Estimator Framework. We adopt Horovod for A-100/V-100/AMD

MI100 multi-GPU data parallelism framework.

1) UNet: UNet is a convolutional neural network originally pro-

posed for biomedical image segmentation [10].We follow the

UNet implementation of Cerebras Model Zoo Release 1.6.0 2.

The model is a variant of the original UNet [10] model for

which the order of the layers, filter size, padding, and stride

setting in the repeated blocks in the contracting path and

expansive path are different. We note that this version of the

Cerebras UNet model is experimental, so its performance

on CS-2 may not be representative. The model is trained

with cross-entropy loss and Adam optimizer on the DAGM

1https://www.psc.edu/resources/bridges-2/
2https://github.com/Cerebras/modelzoo/tree/R_1.6.0/modelzoo/unet/tf

2007 competition dataset 3, which is a synthetic dataset with

256×256 pixels greyscale images for defect detection on tex-

tured surfaces.

2) BERT : BERT[4] is an encoder-only transformer-based model

designed for natural language understanding. The adopted

implementation follows the original BERTmodel but is trained

with an AdamW optimizer. We perform pretraining tasks

with BERT Large model using the OpenWebText dataset

[6, 8] with a maximum sequence length of 128.

3.2 Cerebras Model Zoo performance on
Neocortex

We evaluate the performance of Cerebras Model Zoo models run-

ning on the CS-2 servers in the Neocortex system. The runs are done

using the default setting of Cerebras Model Zoo R1.6.0 (with various

batch sizes)[1] and software stack R1.6.0 with pipelinemode.We can

potentially further improve the performance with a newer software

stack and weight-streaming mode. However, some of those features

will require changing the current setting of the Neocortex system.

We list the properties of tested models in Table 2, which include:

UNet, MLP (fc_mnist), T5[9] base and small, Transformer[11] large

and base, BERT[4] large and base, and GPT-2[8] large, medium, and

small models. Please check the Cerebras Model Zoo Github[1] for

more details about the model implementation and description.

4 RESULTS

We present training throughput and end-to-end execution time

measurements from running deep learning models across a diverse

set of AI hardware and from a selection of Cerebras Model Zoo

examples running on Neocortex.

4.1 Deep learning benchmark performance
across different hardware

Figure 1 shows the training throughput (samples/sec) of the BERT

Large (left panel) and UNet model (right panel) for different hard-

ware. The number of devices in Figure 1 varies due to the con-

figuration of the systems. For example, currently we have not

3https://www.kaggle.com/datasets/mhskjelvareid/dagm-2007-competition-dataset-
optical-inspection
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training configuration can be further optimized to achieve better

performance.

Several ongoing efforts are working on evaluating novel AI accel-

erators for open science deep learning workloads (e.g., [5, 7]). Some

tasks and experiment settings are similar to ours, but there has yet

to be a consensus on benchmarking diverse AI accelerator types.

We plan to continue conducting experiments on our AI testbed to

test more diverse deep learning model types and provide insights to

optimize deep learning workloads for the open science community.
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