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ABSTRACT

We present the Open Compass project’s pilot deep learning bench-
mark results with various Al accelerators. Those accelerators are
NVIDIA V-100 and A-100, AMD MI100, as well as emerging novel
accelerators such as Cerebras CS-2 and Graphcore. We evaluate
their performance on various deep learning training tasks. We then
discuss key insights from our experiments and share experiences
about evaluating and integrating those novel Al accelerators with
our supercomputing systems.
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1 INTRODUCTION

Open Compass[2] is an exploratory research project at the Pitts-
burgh Supercomputing Center (PSC) to conduct academic pilot
studies on an advanced engineering testbed for artificial intelli-
gence (AI). Open Compass includes the development of an ontol-
ogy to describe the complex range of existing and emerging Al
hardware technologies and identify benchmark problems that rep-
resent different challenges in training deep learning models. These
benchmarks are then used to execute experiments in alternative
advanced hardware solution architectures. One such effort for ex-
ploring alternative AI hardware solutions at PSC is the Neocortex
system [3], an NSF-funded resource that targets the acceleration of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PEARC °23, July 23-27, 2023, Portland, OR, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9985-2/23/07.

https://doi.org/10.1145/3569951.3597596

Julian A. Uran
Pittsburgh Supercomputing Center,
Carnegie Mellon University
Pittsburgh, PA, USA
julian@psc.edu

Paola A. Buitrago
Pittsburgh Supercomputing Center,
Carnegie Mellon University
Pittsburgh, PA, USA
paola@psc.edu

Al-powered scientific discovery by vastly shortening the time re-
quired for deep learning training and fostering greater integration
of deep learning with scientific workflows. Here we present some
preliminary results on analyzing the effects of different accelerator
types, including Cerebras CS-2, NVIDIA A-100, V-100, AMD MI100,
and Graphcore IPU, for popular deep learning models applicable,
such as image processing and language models. We discuss the
insights from our experiments and plans for future exploration.

2 OVERVIEW OF EVALUATED AI
ACCELERATORS

The diverse hardware type considered here covers main-stream
devices for deep learning studies and innovative Al accelerators
tailored to speed up large-scale Al workloads. In this work, we
perform pilot benchmarking tests on the following accelerators:
Cerebras CS-2, Graphcore BOW-IPU, AMD MI100, NVIDIA A-100,
and NVIDIA V-100. We use NVIDIA A-100 and V-100 results as
our baseline to evaluate other accelerators. Table 1 provides an
overview of the hardware characteristics and software stack. Below,
we also describe the setup of machines that host those accelerators.

o The Cerebras CS-2 is a second-generation wafer-scale engine
(WSE) from Cerebras Systems. It is a single-chip processor
containing 850,000 Al-optimized cores and 40 GB of on-chip
SRAM. The CS-2 is designed for large-scale Al applications.
It is powered by a server HPE Superdome Flex 280, which
is an eight-chassis server with up to 448 cores and 24TB of
memory, connected to each CS-2 machine via a path of 8 x
100 GbE individual connections, used by coordinated worker
processes to stream job data into the Cerebras appliances.

e The Graphcore IPU POD-4 is a four-chip BOW-2000 IPU
system from Graphcore. This IPU-POD system is designed
for large-scale Al applications, and our setup is a subset
of the smallest system for the Colossus Mk2 architecture.
Our configuration contains 5,888 IPU cores and 3.6 GB of
on-chip SRAM. The system is powered by an Exxact TS2-
158632687-AES twi-socket server by Intel 8280L CPUs, for
a total of 64 cores and 512GB of RAM, via a direct-attach
100GbE connection.

e The AMD MI100 is a GPU that contains 7,680 stream pro-
cessors and 32GB of HBM2 memory. Our setup is powered
by the same Exxact TS2-158632687-AES server driving the
Graphcore equipment.

e An NVIDIA V-100 GPU contains 5,120 CUDA cores and 32
GB of HBM2 memory. It is powered by a two-socket HPE
Apollo 6500 Gen10 server with two Intel 6248 CPUs for a
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[ System | Cerebras CS-2 Graphcore IPU POD-4 AMD MI100 [ NVIDIA V-100 NVIDIA A-100
Architecture WSE-2 Colossus Mk2 IPU CDNA Volta Ampere
Cores 850.000 1.472 /IPU 120 CU (7.680 SP) 5,120c CUDA, 6,912c CUDA,
640c Tensor /GPU 432¢ Tensor /GPU
Memory 40GB SRAM 0.9GB /IPU 16MB+16MB L1, 60MB L2 128KB L1, 6MB L2 192KB L1, 40MB L2
32GB HBM2 ECC /GPU 32GB HBM2 /GPU 80GB HBM2 /GPU
Memory Bandwidth 20 PB/s 261 TB/s 1,2 TB/s /GPU 900 GB/s /GPU 1.555 GB/s /GPU
Performance (FP16) 5.13 PFLOPS 1 PFLOPS 184.6 TFLOPS /GPU 15.7 TFLOPS /GPU 19.5 TFLOPS /GPU
Performance (FP32) (mix of FP32 & FP16) 250 TFLOPS 23.1 TFLOPS /GPU 7.8 TFLOPS /GPU 9.7 TFLOPS /GPU
Precision support FP16, FP32, cbfloat FP16, FP32 FP16, FP32, FP64 FP16, FP32, BF16 FP16, FP32, BF16
BF16, INT4, INT8 INT4, INT8 TF32, INT4, INT8
Process 7nm 7nm 7nm 12nm 7nm
Framework Support TF, PyTorch, TF, PyTorch, PyTorch, ONNX, TF, PyTorch, ONNX, PyTorch, ONNX,
Cerebras SDK ONNX, PopArt MxNET, ROCm MxNET, CUDA M=xNET, CUDA
HPE Superdome Flex 280 Exxact TS2-158632687-AES HPE Apollo 6500 G10 | Exxact TS4-195183185
Host System 32x Intel 8280L 2x AMD EPYC Milan 7543 2x Intel 6248 2x AMD EPYC 7543
24TB RAM 512GB RAM 512GB RAM 2TB RAM

Table 1: Features of evaluated Al accelerators

total of 80 cores and 512GB of RAM. These GPUs are hosted
by the Bridges-2! GPU nodes.

e An NVIDIA A-100 GPU contains 6,912 CUDA cores and
80 GB of HBM2 memory. It is powered by an Exxact TS4-
195183185 server with two AMD EPYC 7543 CPUs for a total
of 64 cores and 2TB of RAM.

3 EVALUATED DEEP LEARNING
BENCHMARKS

Below we discuss the details of our deep learning benchmark im-
plementation, such as model architecture, dataset, and associated
parameters used for our evaluation study. Here we divide our work
into two parts: (1) deep learning benchmark performance across
different hardware. (2) benchmarking Cerebras Model Zoo [1] per-
formance on Neocortex.

3.1 Deep learning benchmark performance
across different hardware

Here we focus on two deep learning models: UNet[10] and BERT[4],
and present results by running those models across different hard-
ware with the following setting. Those applications are run with
FP16/amp mixed precision on A-100, V-100, AMD M100, FP16 on
Graphcore, and mixed precision on CS-2 runs (equivalent to FP16 for
A-100). The implementations of BERT and UNet models on A-100,
V-100, and Graphcore use TensorFlow 2, and CS-2 uses TensorFlow
Estimator Framework. We adopt Horovod for A-100/V-100/AMD
MI100 multi-GPU data parallelism framework.

1) UNet: UNet is a convolutional neural network originally pro-
posed for biomedical image segmentation [10]. We follow the
UNet implementation of Cerebras Model Zoo Release 1.6.0 2.
The model is a variant of the original UNet [10] model for
which the order of the layers, filter size, padding, and stride
setting in the repeated blocks in the contracting path and
expansive path are different. We note that this version of the
Cerebras UNet model is experimental, so its performance
on CS-2 may not be representative. The model is trained
with cross-entropy loss and Adam optimizer on the DAGM

Ihttps://www.psc.edu/resources/bridges-2/
Zhttps://github.com/Cerebras/modelzoo/tree/R_1.6.0/modelzoo/unet/tf

2007 competition dataset 3, which is a synthetic dataset with
256%256 pixels greyscale images for defect detection on tex-
tured surfaces.

BERT: BERT[4] is an encoder-only transformer-based model
designed for natural language understanding. The adopted
implementation follows the original BERT model but is trained
with an AdamW optimizer. We perform pretraining tasks
with BERT Large model using the OpenWebText dataset
[6, 8] with a maximum sequence length of 128.

N
~

3.2 Cerebras Model Zoo performance on

Neocortex

We evaluate the performance of Cerebras Model Zoo models run-
ning on the CS-2 servers in the Neocortex system. The runs are done
using the default setting of Cerebras Model Zoo R1.6.0 (with various
batch sizes)[1] and software stack R1.6.0 with pipeline mode. We can
potentially further improve the performance with a newer software
stack and weight-streaming mode. However, some of those features
will require changing the current setting of the Neocortex system.
We list the properties of tested models in Table 2, which include:
UNet, MLP (fc_mnist), T5[9] base and small, Transformer[11] large
and base, BERT[4] large and base, and GPT-2[8] large, medium, and
small models. Please check the Cerebras Model Zoo Github[1] for
more details about the model implementation and description.

4 RESULTS

We present training throughput and end-to-end execution time
measurements from running deep learning models across a diverse
set of Al hardware and from a selection of Cerebras Model Zoo
examples running on Neocortex.

4.1 Deep learning benchmark performance
across different hardware

Figure 1 shows the training throughput (samples/sec) of the BERT

Large (left panel) and UNet model (right panel) for different hard-

ware. The number of devices in Figure 1 varies due to the con-
figuration of the systems. For example, currently we have not

Shttps://www.kaggle.com/datasets/mhskjelvareid/dagm-2007-competition-dataset-
optical-inspection
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Model Dataset Fal-lr.ic core Batch Si.ze
utilization per device
UNet DAGM 2007* & Severstal dataset? 62.9% 64, 128, 256
MLP (fc_mnist) MNIST 0.7% 128, 256, 512
T5 base & small® the Colossal Clean Crawled Corpus (C4) Dataset? 64.4% & 18.5% 128, 256, 512
Transformer large & base WMT-2016° 62.0% & 29.6% 2048, 4096
BERT large & base OpenWebText (maximum sequence length =128, 512) 94.7% & 77.9% 256, 512, 1024
GPT-2 large, medium, & small OpenWebText (maximum sequence length = 1024) 94.7% , 91.9%, & 78.3% 32, 64, 128

Table 2: Cerebras Model Zoo examples considered in the study.

2 https://www.kaggle.com/datasets/mhskjelvareid/dagm-2007-competition-dataset-optical-inspection

b https://www.kaggle.com/c/severstal-steel-defect-detection/overview

¢ https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511

4 https://commoncrawl.org
¢ https://www.statmt.org/wmt16/it-translation-task.html
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Figure 1: Training throughput for Deep Learning models, including BERT Large model pretraining and UNet, for various

hardware and batch size.
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Figure 2: Left Panel: End-to-end execution time (solid color histograms), including compilation, I/0, and data pre-processing,
versus training time (dotted histograms) for training BERT large model with 4,096,000 samples. Right Panel: Training throughput
of training UNet with FP32 and FP16 for V-100 and AMD MI100 GPUs.

set up training across multiple CS-2 accelerators. We currently
mainly explore settings that running with all four Graphcore IPUs
in our system. We list the performance of V-100 and A-100 up to
the number of GPUs hosted on a single node (eight). Regardless
the heterogeneous setting and nature of the systems, we list the
performance for a given number of accelerators for comparison.
For BERT pretraining task, the performance of CS-2 outperforms
other accelerators significantly, either with single or multiple de-
vices. Graphcore outperforms main-stream GPUs (same number
of devices) when training with large batch size > 1024. For the
UNet model, the performance of CS-2 is the highest among the

considered hardware with a device number less or equal to two.
However, the performance of A-100s and V-100s starts to catch up
or even outperform when training with device numbers greater
than four. For BERT with a batch size of 256/1024, throughput im-
provements observed for one CS-2 against eight A-100s and eight
V-100s are 4.1x/5.2x and 8.3x/9.1x, respectively. For Graphcore IPU
POD-4 with a batch size of 256/1024, the throughput is 0.6x/1.3x
and 1.3x/2.2x compared to four A-100s and four V-100s.

When training with FP16/mixed-precision, the AMD GPUs have
lower training throughput than V-100s. However, as shown in the
right panel of Figure 2, the training throughput of AMD MI100
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Figure 3: Training throughput for Cerebras Model Zoo Deep Learning models trained with CS-2.

with FP32 precision is comparable or slightly higher (1.1x/1.2x for
one/two GPUs) compared to V-100 GPUs for the UNet test we
performed. Herefore, the current AMD MI100 mixed precision con-
figuration may need to be optimized for some of the deep learning
tasks.

The training throughput for A-100s, V-100s, and AMD MI100s, in
general, is not sensitive to varying batch sizes in the range we are
testing, and in some cases, the performance may drop slightly with
alarger batch size. For CS-2 and Graphcore, the performance gain is
more prominent with increasing batch size. The CS-2 performance
gain is 1.1x from batch size 256 to 1024 for BERT and 1.2x from
batch size 64 to 256 for UNet, and for Graphcore, it is 1.7x for BERT
and 1.2x for UNet.

We also measure the end-to-end execution time of performing
BERT large model pretraining with 4,096,000 samples. The results
are shown in the left panel of Fig 2. Please note that the number
of devices used here differs for different hardware: one for CS-2,
four IPUs for Graphcore, and 8 GPUs for A-100 and V-100. Note the
number of devices for each hardware is different, which reflect the
available devices for a given node/server in our system. For most of
the hardware, the compilation and data pre-processing time is much
less significant compared to the actual training time. However, for
CS-2, the compilation time is generally much longer than for other
accelerators. Nevertheless, the high training throughput for CS-
2 compensates for the high compilation time, so CS-2 measures
the shortest total execution time among the considered hardware
and demonstrates its capable of performing efficient large model
training tasks.

4.2 Cerebras Model Zoo perfomance on
Neocortex

Figure 3 shows the training throughput (samples/sec) of various
Cerebras Model Zoo examples. In those examples, the CS-2 server
displays its capability of performing training with large batch sizes
with high efficiency. As discussed in Section 4.1, CS-2 demonstrates
superb performance on large deep learning tasks such as training
BERT and GPT-2. The training throughput benefits from increasing

batch size and shows a scaling relation between performance and
batch size. For example, the training throughput for T5 increases
by 1.4x and 1.5x when increasing the batch size from 125 to 256
and 512, and for BERT large model, it increases by 1.1x and 1.2x
when increasing the batch size from 256 to 512 and 1024. In this
work, we report the result of measuring training throughput only,
but we will present results from other ongoing tests and different
performance metrics in future work.

5 DISCUSSION

In this work, we present the pilot deep learning benchmark results
of the Open Compass project. We evaluate the performance of
several main-stream GPU devices and novel Al accelerators. Their
performances vary for different deep learning tasks and training
settings. For example, the CS-2 shows promising results in providing
efficient training solutions for large language models like BERT
and GPT-2. The performance of Graphcore is most optimized with
a large model size and batch size, which outperforms the results
of training the BERT Large model with the same number of A-
100 devices. For AMD MI100, the training performance with FP32
precision is higher than V-100s, but for FP16, it is not. Given that
the theoretical performance of AMD MI100 in FP16 (see Table 1) is
actually higher than V-100s, there might be room for improvement
for the FP16 training configurations.

We also note that there are several limitations in our current
hardware settings. For example, due to the system architecture, we
are unable to upgrade our CS-2 servers to the latest software stack
yet (R1.8.0 as of April 2023) or perform the weight-streaming mode
training robustly. Therefore the results we present here may not
reflect the best performance of what CS-2 can achieve. We also
note that the Graphcore IPU POD-4 we tested is a subset of the
system, which usually consists of 16 or 64 IPUs (POD-16 or POD-
64) for the complete system. Nevertheless, these novel accelerators
still perform well in some experiments. We also find that AMD
MI100 is a good alternative to NVIDIA GPUs, given its competitive
computing power compared to V-100s. However, the mix-precision
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training configuration can be further optimized to achieve better
performance.

Several ongoing efforts are working on evaluating novel Al accel-
erators for open science deep learning workloads (e.g., [5, 7]). Some
tasks and experiment settings are similar to ours, but there has yet
to be a consensus on benchmarking diverse Al accelerator types.
We plan to continue conducting experiments on our Al testbed to
test more diverse deep learning model types and provide insights to
optimize deep learning workloads for the open science community.
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