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An analytical solution for the elastodynamic displacement field of non-uniformly moving Volterra dislocations
is derived using the Green’s function approach. The elastodynamics strain and stress fields can then be
evaluated by numerically differentiating the displacement field. Qualitative comparisons are made with
molecular dynamic simulations, and the analytical solution is shown to capture the same features. The plane
waves that emanate from, and are parallel to, the slip plane during the instantaneous injection process of edge
or screw dislocations are captured by the analytical solution. This was not captured by previously proposed
elastodynamic solutions. A computationally efficient swept-area-tracking algorithm is then developed and
implemented into three-dimensional discrete dislocation dynamics simulations to compute the elastodynamic
field induced by dislocation movements and interactions. This approach provides a way forward for modeling
deformation of materials under shock loading or quantifying the dynamics effects that dominate during

dislocation avalanches during deformation of metals.

1. Introduction

A stationary dislocation in a material induces a static elastic stress
field due to the distortion of atoms from their ideal locations at and
near the dislocation. As dislocations glide due to the presence of an
external field (e.g., applied thermal-mechanical or electric fields) or
due to local high internal stresses induced by other defects in the mate-
rial, the local rearrangements of the atoms will induce dynamic elastic
waves (stress, strain, and displacement waves) that are emitted from
the dislocation. These waves propagate at the transverse/longitudinal
speed of sound in the material, which is on the order of ~ 1 km/s
in metals. When the dislocation velocity is considerably smaller than
this wave speed, the evolution of the elastic field waves can be as-
sumed to happen instantaneously and the atomic displacement and
stress states can be assumed to have quasi-static evolution. This is
a common assumption for most existing discrete dislocation dynam-
ics (DDD) simulations (e.g., [1-5]). However, since the quasi-static
approximation neglects the interaction between the dynamic elastic
field and dislocations moving at speeds on the same order of the
transverse/longitudinal speed of sound, this approximation can lead
to significant errors. An example is manifested in spurious dislocation
nucleation observed in front of a stress wave that is induced by shock
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loading when using the quasi-static assumption [6]. Furthermore, the
quasi-static solution is oversimplified for describing key phenomena of
dislocation avalanches, during which dislocation velocities can be on
the order of the transverse/longitudinal speed of sound [7].

The dynamic elastic field of moving dislocations was analytically
derived in 1963 by Mura [8]. This analytical elastodynamic solution
is complex due to the coupled spatial-temporal integration, so this
solution has not been feasible to be numerically evaluated within
the framework of DDD simulations. On the other hand, Markenscoff
derived the explicit elastodynamic fields for infinitely straight screw
and edge dislocations as well as for dislocation loops [9-11]. These
solutions were restricted to simple dislocation geometries. Building on
these solutions, Gurrutxaga implemented the first time-dependent two-
dimensional (2D) dislocation dynamics plasticity model [6,12]. How-
ever, due to the 2D treatment, the capability of this model is limited
to plane problems. Recently, Cui et al. [13] used the retarded poten-
tials technique to simplify the coupled spatial-temporal integral [8]
to merely a spatial integral over the retarded positions of dislocation
segments. This enabled the development of a computational procedure
for computing the elastodynamic stress fields of three-dimensional
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(3D) dislocations [13]. This procedure is based on a segment-based
algorithm, where dislocations are discretized into connected segments.
Nevertheless, this algorithm would encounter computational challenges
when modeling complex dislocation networks where multiple disloca-
tions collide and annihilate, since tremendous numerical efforts would
be needed to track the changes of the integral path due to the changes
of the connectivity between segments. Additionally, this model is only
capable of evaluating the stress field in an infinite medium. To solve a
complete boundary-value problems (BVP), both the displacement field
and stress field are required [14].

Here, the full 3D elastodynamic field for Volterra dislocations is
derived using the Green’s function approach. This field is then validated
by comparisons with molecular dynamics (MD) simulations of injected
edge and screw dislocations. The elastodynamic displacement solution
is then implemented in a 3D DDD framework. This computational pro-
cedure can be easily coupled with the boundary element method [15]
or the finite element method [16] to resolve the elastodynamic BVPs.

2. Methodologies
2.1. Theoretical derivation of the 3D elastodynamic displacement field

In continuum mechanics, the elastodynamic equilibrium equations
in the absence of body forces are:

0;;,; (X, 1) = pii;(X, 1) @

where the stress tensor, ¢ = o; o and the displacement vector, u = u;,
are both a function of time, 7, and space, x = x;, while the material
density, p, is assumed isotropic and independent of time. Additionally,
the displacement gradient, u; ;, can be assumed to be the superposition
of the elastic distortion, ﬂi’j , and the plastic distortion, ﬂi‘; , such that [8,
13]:

E | pP
ui’j=ﬂij +ﬂ,-j (2)
Thus, the linear elastic constitutive law becomes:

E
0jj = ijk/ﬂk,, 3
where C;, is the elastic modulus tensor, which for isotropic material

properties is given by: Cjj; = 46;;8y; + (5 8; + 6;,6;,), with 4 and u
being the Lamé’s first parameter and shear modulus, respectively.

From Egs. (1) through (3), the elastic displacement wave equation
can be expressed as [17,18]:

(Cijki9:9; — 800Uy = Cijk/ﬂlz,j (C)]

where §;, is the Kronecker delta. By defining the differential operator
in Eq. (4) as Ly, = Cyj4,9,9; — p8,.0%, the impulse response of an in-
homogeneous linear differential equation, should satisfy the following
relationship [13,18]:

Ly Grpx, ;X' 1) = 6,,6(x —x")6(t — 1) 5)

where §() is the Dirac delta function, x’ is the point impulse position
vector, and ¢ is the time of the impulse. Thus, the elastodynamic dis-
placement field can be expressed using a spatial-temporal convolution
as:

(1) = Copg G, 15X 1) 5 B (x,1) 6
or alternatively:
(X, 1) = Cop G (% 15X 1) 5 B (X, 1) %)

where * denotes the spatial-temporal convolution.
By expressing the plastic distortion resulting from the slip of a single
dislocation loop with Burgers vector b = b; as [13,19]:

ﬁg(x,z) = —// 8(x —s)b;n;dS (8)
S()
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where S(¢) is the surface swept by the dislocation at time ¢, and n = n;

is the unit normal vector to the swept surface, the solution of Eq. (7)
becomes (see full derivation in supplementary materials Section S1):

u(x,t)——// 1 [12r(b 12')(11 r)
Sl r r

- 2r(b4n)] ds’

r(r-b)(r -n) ,
47[81 dt//s‘ L. = [b(r-n)+n(r-b)—2r—2 ds'

(1-2v) 1
+47r(1—v)«//5‘ vt r [
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it =nr T

Here, ¢; and ¢; are the transverse and longitudinal wave speeds
in the isotropic material, v is the Poisson’s ratio, r = x — x’ is the
vector pointing from the integration point x’ to the field point x at
which the displacement vector u is to be calculated, r is the magnitude
of r, and ¢ is the time when the integration point x’ is swept by a
dislocation. The surface integral in Eq. (9) represents the integration
over all the swept areas for which their associated elastic waves have
reached the observer, as shown schematically in Fig. 1(a) . Additionally,
the first and second terms on the right hand side of Eq. (9) represent
the contribution from the transverse wave, while the third and fourth
terms represent the contribution from the longitudinal wave. Finally,
the last term is a cross-contribution term from both the transverse
and the longitudinal waves. The long-time limit of Eq. (9) is shown
to converge to the classic static solution, as discussed in Section S1 of
the supplementary materials.

Finally, in the framework of the infinitesimal strain theory, the
components of the strain tensor at any point in space and time are
computed from &;; = 1/2 (u;; +u;;) and those for the stress tensor are
computed from o;; = Auy . 6;; + plu; ; +u; ;).

2.2. Implementation of the elastodynamic field in 3D discrete dislocation
dynamics simulations

The main challenge in calculating the elastodynamic displacements
using Eq. (9) in the framework of 3D DDD simulations is determining
the integral surface S|,_,_r. For this purpose, we have developed a
scalable algorithm to numerically implement Eq. (9) into 3D DDD sim-
ulations. The details and a schematic representation of the numerical
algorithm are provided in Section S3 of the supplementary materials.
This implementation and all simulations here are conducted using a
significantly modified in-house version of the 3D DDD open-source code
ParaDiS [4]. These modifications include avoiding all artificial non-
planar dislocation glide or collision events for dislocation slip in FCC
crystals, incorporating atomistically-informed cross-slip mechanisms,
and accounting for free-surfaces, as described in [20,21]. In this code,
dislocations are discretized into linear segments connected at disloca-
tion nodes, which provides a direct way to discretize the swept area
as the dislocation glides on its primary slip plane (or cross-slip to
another plane). As a dislocation segment glides in one time step to a
new position, the initial and final positions of the end nodes of the
dislocation segment represent the corners of a quadrilateral element
that defines the discretized swept area. This is shown schematically in
Fig. 1(b). For each quadrilateral element, four parameters are stored for
use when numerically solving Eq. (9): the elementary area vector, dS';
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Fig. 1. (a) Schematic showing two dislocation loops colored according to their slip plane at time ¢. The two loops are assumed to nucleate at time #/ = 0. The translucent 3D
sphere is the view field of the observer O(x,r) at its center, who is located at x at time ¢ with respect to the time when the loops nucleated. The areas shown in red represent the
swept areas for which their associated elastic waves have reached the observer at time ¢, while the waves of the swept areas shown in yellow have not reached the observer yet
(i.e., they are not included in the surface integral at time 7). (b) Schematic of the automatic discretization of an area swept by dislocation segments in the 3D DDD framework. The
section of the dislocation loop initially at time 7 = ¢, is discretized into linear segments connected at dislocation nodes E, F, G, and H. After one time step (z = t,), the dislocation
glides on plane ABCD and the new positions of the dislocation nodes become F’, F’, G’, and H’. The new and old positions of the dislocation nodes represent the corners of
quadrilateral elements, for example FGG’F’, that define the discretized swept area. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

the position of the swept area, x’, which is represented by the centroid
of the area; the time when the area is swept, which is approximated
by the average between 1, and ¢;; and the burgers vector, b, of the
dislocation segment that swept that area.

The elastodynamic displacements as defined by Eq. (9) can then
be computed numerically for any “observer” as follows. At every time
step the distances between the observer and the centroid of each
quadrilateral is computed. The contribution, according to Eq. (9), of
all elements that satisfy the condition ¢ — ¢’ < r/c are then summed to
evaluate u(x, t). For each swept quadrilateral element, their parameters
will be removed from the computer memory once the furthest point
in the simulation box receives the slowest elastic wave. The time
derivatives in the second and fourth terms in Eq. (9) are approximated
using forward difference. The distortion tensor ;; is also calculated
by the forward difference of the elastodynamic displacement field u(r),
from which the strain and stress tensors can be computed as previously
discussed.

3. Molecular dynamics simulations setup

To validate the elastodynamics field given by Eq. (9) and its imple-
mentation into 3D DDD simulations the displacement and stress fields
emitted from an infinitely long and straight screw or edge disloca-
tion can be compared to those calculated using molecular dynamics
(MD) simulations of an infinitely long dislocation injected into an
all-atom simulation cell. All MD simulations are conducted using the
open source Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [22], with the embedded atom method (EAM) interatomic
potential developed by Mishin et al. for Al [23]. Al is chosen here
for its isotropic elastic response (i.e., 2Cy/ (Cy; — Cj5) = 1.2), which
makes it suitable for comparison with the derived isotropic elastody-
namic solution developed earlier. This EAM potential was also shown
to accurately reproduce the basic equilibrium properties of pure FCC
Al, including, the elastic constants, the phonon-dispersion curves, the
vacancy formation and migration energies, the stacking fault energies,
and the surface energies [23]. The material parameters predicted by
this potential and also used in the 3D DDD simulations are summarized
in Table 1.

The injection of an infinitely long straight screw dislocation is
simulated in MD by first constructing a rectangular simulation cell
having dimensions 60\/&10 % 86 \/§a0 X 20\/§a0, where q is the lattice
parameter. Thus, the simulation cell has a total of 2,489,880 atoms. The
edges of the simulation cell are parallel to the x = [112], y = [111], and

Table 1
Material properties as predicted by the EAM potential and used in the 3D DDD
simulations.

v u" b Density Lattice parameter g,

0.35 26.2 GPa 0.2864 nm 2700 kg/m? 4.05 A

z = [110] directions, respectively, and the origin is defined at the center
of the simulation box. Periodic boundary conditions are then imposed
along the z direction, while free surfaces boundary conditions were
imposed along the x, and y directions, respectively. The simulation
cell was then relaxed at 0.5 K using a Langevin thermostat in the
microcanonical ensemble (i.e., NVE ensemble) for 5 ps to ensure that
all the components of the pressure tensor on both free surfaces are zero.
The time step used in all subsequent simulations is 47 = 1 fs. A 1/2[110]
screw dislocation was then injected at the center of the simulation cell
over a time-span of 7 = 1 ps as follows. First, a cut plane is identified
midway between two (111) planes as shown in Fig. 2(a) and all atoms
having x < 0 in the (111) plane just above (y > 0) and below (y < 0) this
cut plane were selected. The atoms above the cut were then displaced
byu, = —f—i, and the atoms below by u, = f—: from ¢t = 0 to 1 ps, where ¢
is the simulation time. Finally, the positions of the displaced atoms are
fixed and all other atoms are allowed to dynamically relax the stacking
fault induced by the imposed displacement field.

The displacement of the atoms above and below the cut plane
will generate a stacking fault ribbon surrounded by two partials. The
leading partial will first nucleate at the center of the simulation cell
and then the trailing partial will form from the free surface when the
displacement difference between the atoms above and below the cut
plan is equal to b. An extended screw dislocation will then form at
the center of the simulation cell. This process leads to a sudden rise in
the temperature of the system by ~ 1 K, which is then relaxed by the
Langevin thermostat. For time ¢ > 1 ps the simulation cell is relaxed
at 0.5 K, during which, the displacement wave will propagate through
the simulation volume.

For the MD simulations of the injection of a 1/2[110] edge disloca-
tion on the (111) plane in pure FCC Al, a rectangular simulation cell is
first constructed with edge length 140\/5110 X 116\/5110 X 10\/6110 (i.e, a
total of 3,915,780 atoms). The edges of the simulation cell are parallel
to the x = [110], y = [111], and z = [112] direction, respectively.
Periodic boundary conditions are imposed along the z = [112] direction,
while free surfaces boundary conditions are imposed along the x =
[110], and y = [111] directions. The origin is chosen at the center of



J. Yang et al.

(a)

Acta Materialia 253 (2023) 118945

Fig. 2. Schematic representation of the initial conditions to inject a straight (a) screw dislocation; and (b) edge dislocation in a perfect crystal in both the elastodynamic model

and MD simulations.
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Fig. 3. The nonzero elastodynamic displacement components computed from Eq. (9) for an instantaneously injected infinitely long straight: (a) screw; and (b)—(c) edge dislocation.
The nonzero elastodynamics displacement field predicted from MD simulations for an instantaneously injected infinitely long straight: (d) screw; and (e)—(f) edge dislocation. All

results are shown after 3 ps from the moment the dislocation was injected.

the simulation cell. The simulation cell is then first relaxed at 0.5K
in NVE ensemble for 5 ps. A cut plane is identified midway between
two (111) planes as shown in Fig. 2(b). Two (110) planes above the
cut (y > 0) were then deleted, followed by the same injection process
applied for the screw dislocation simulations, except that the imposed
atom displacements in this case are in the x direction with u, b

T2
for the atoms above the cut (y > 0) and u, é’—; for the atoms below
the cut (y < 0).

4. Results and discussion

Fig. 3 shows a comparison between the elastodynamics displace-
ments as computed from Eq. (9) and those from the MD simulations

for the cases of instantaneously injected screw and edge dislocations.
The stress fields, obtained by differentiating the displacement fields, are
also shown in Fig. 4.

For the elastodynamic solution using Eq. (9), an infinitely long
screw or edge dislocation was introduced parallel to the simulation cell
z-axis with a cut plane in the negative xz-plane, as shown schematically
in Fig. 2. The initial conditions for the injection of the screw dislocation
are:

{

where u, is the z component of the displacement vector. On the other
hand, the initial conditions for the injection of the edge dislocation are:

u,(t=0,x<0,y=0%2)=0b/2

(10)
u,t=0,x<0,y=07,z)=-b/2
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Fig. 4. The nonzero elastodynamic stress components computed from Eq. (9) for an instantaneously injected infinitely long straight: (a)—-(b) screw; and (c)-(e) edge dislocation.

All results are shown after 3 ps from the moment the dislocation was injected.

t=0,x<0,y=0%2z2)=5/2
{ux( x y z)=b/ an

u(t=0,x<0,y=0",2)=-b/2

where u, is the x component of the displacement vector. In both the
screw and edge dislocation cases, the entire cut plane is assumed to be
disturbed instantaneously at + = 0. Thus, every point on the cut plane
would be a source emanating an elastic waves starting at time ¢ = 0.

As shown in Fig. 3, the displacement fields for both the screw
and edge dislocations as computed from Eq. (9) and from the MD
simulations are in good agreement. In particular, it is observed that
for the screw dislocation the u, component is the superposition of a
cylindrical wave that emits from the dislocation line and two transverse
plane waves that propagate from and parallel to the cut plane. The
predicted transverse wave speed from the solution of Eq. (9) is ~
3050 m/s, which is in good agreement with that predicted from the MD
simulations (~ 3120 = 100 m/s).

Similar observations are made for the case of the edge dislocation.
However, in this case, u, and o,, show two plane waves. A faster
longitudinal wave and a slower transverse wave. The longitudinal wave
is not as obvious in the MD simulation due to the gradual injection
process of the dislocation over a time span of 1 ps, whereas the
calculations from Eq. (9) using the initial conditions in Eq. (11) assume
an instantaneous injection process. The longitudinal waves are more
evident in the o,, contour shown in Section S2 of the supplementary
material.

It should be noted that in previous 2D and 3D theoretical deriva-
tions of the elastodynamics field [6,13], the planar waves induced
by the instantaneous injection process were missing, yet observed in
the current simulations. This can be attributed to the following. In
the 3D elastodynamic stress equation derived by Cui et al. [13], the
stresses are computed as a line integral along the retarded position of
dislocations. This integral is path dependent (i.e., depends on the entire
history of positions of all dislocations over time). Thus, for the case of
an instantaneous dislocation injection in the middle of the simulation
volume using the solution developed by [13], there is no defined path
for the dislocation to be placed at the center of the simulation cell.
Therefore, the solution of Cui et al. [13] predicts the elastic wave
emitted from the location of the final position of the dislocation line

that was instantaneously injected and ignores the contribution from
the half plane instantaneously swept by the injected dislocation. Thus,
the solution in [13] misses the causality between the swept area of the
injected dislocation and the generated plane waves.

Verschueren et al. observed the same plane wave emission in their
MD simulations of instantaneously injected dislocations and they have
analyzed the different ways the injection process affects these wave
fronts. They then attempted to correct their prior 2D elastodynamic
solutions, which did not predict these waves [6], by adding the con-
tribution from the pole that was previously ignored in their integral.
However, their corrections did not really match their MD results. Their
corrected elastodynamic solution results in a constant planar displace-
ment wave that had no contribution to the stress wave. Thus, unlike the
MD simulations, their stress wave predictions did not show any planar
wave. Additionally, their 2D elastodynamic solution showed an abrupt
transition from the cylindrical wave front into the constant planar
waves, which was not something observed in the MD simulations. They
suggested that these differences between their MD simulations and
proposed 2D elastodynamic solution are from artificial simplifications
of the injection process in the continuum. However, our current 3D
elastodynamic solution shows more accurate comparison with the MD
simulations in both the displacement and stress waves produced. It is
also shown in our solution that the variation of u, along the y axis
naturally produces the two transverse planar waves that they attributed
to the artifacts in the injection process.

Finally, it should be noted that the calculated wave fronts from
Eq. (9) are much sharper than those observed in the MD simulations.
Verschueren et al. [24] have shown that the gradual injection process
and the finite width of dislocation cores in MD simulations partially
explain the smoother waves and the in-plane displacement components
in MD predictions compared to continuum injection. The comparisons
between our elastodynamic solution and MD simulations are supportive
of their analysis. This is because the displacement boundary conditions
in the MD simulations are gradually increased over a time period of
1 ps, while in the solution from Eq. (9) the dislocations are injected
instantaneously. Thus, the intensity of the wave fronts are smeared out
by the gradual injection process in the MD simulations. Additionally,
the uy field of the edge dislocation in Fig. 3(f) from the MD simulation
is observed to be weaker than that of the elastodynamic solution in
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Fig. 5. The coalescence of two identical dislocation loops on the same slip plane. (a) Initial dislocation configuration. (b) Dislocation configuration at # = 0.08 ns, right after the
coalescence. In (a) and (b) the x,y and z coordinates are in the [011], [111] and [211] crystallographic directions, respectively. The Burgers vector of each loop is along the x
direction. P represents the location of the observer. (c¢) The x component of the displacement at the observer P for the elastodynamic problem of both loop combined or each

separately, as well as that for the quasi-static problem.

Fig. 3(c) because the current 3D elastodynamic model does not account
for the dissociation of the edge dislocation that is naturally generated
in Al due to energy minimization. The mathematical singularities along
the slip plane and the dislocation line, as can be seen from the dis-
placement field in Fig. 3(c) and resultant stress fields in Fig. 4(a, e),
originates from the definition of the plastic distortion tensor defined
in Eq. (8). Cutoff approximations are common in the realm of 3D
DDD simulations to avoid such singularities in the absence of non-
singular solutions (cf. [25-28] for the implementation of quasi-static
stresses and Cui et al. [13] for the implementation of elastodynamic
stress equations). In the quasi-static case, a non-singular solution [29]
was previously developed and implemented in ParaDis [4]. Developing
a non-singular solution for the elastodynamic solution is beyond the
scope of the current work and further studies are required to develop
a non-singular solution for elastodynamic field. Thus, here, the singu-
larities in the derived elastodynamic solution is removed by using a
cut-off distance a. If the point of interest is at a smaller distance to
the dislocation than this distance then the singularity in the solution is
avoided by replacing the smaller distance with a.

As a test case of the implementation of the current elastodynamic
field within the framework of 3D DDD simulations, the elastodynamic
interaction and annihilation of two co-planer dislocation loops in Al
are also studied. The simulation parameters are shown in Table 1.
Two identical dislocation loops are instantaneously introduced into
an infinite simulation volume, as shown in Fig. 5(a). The initial ra-
dius of both loops is 2000 and the initial distance between their
centers is 4500b. A constant applied shear stress equal to 980 MPa
is then applied to expand both loops. The elastodynamic stresses on
each dislocation node are calculated every time step using Eq. (9).
Fig. 5(b) shows the configuration of both loops after coalescing into
a larger loop. The elastodynamic displacements as a function of time
were also computed at a point “P” with position vector (0,200056,0),
as shown in Fig. 5. Several physical processes are involved during
this simulation, including dislocation loop injection, dislocation glide,
and dislocation segments annihilation. To investigate the contributions
from each process, both loops were also simulated independently with
the same initial conditions, positions, and the same applied stress. The
elastodynamic displacement curves for these cases are also shown in

Fig. 5(c). A conventional DDD simulation, which assumes infinitely fast
elastic wave speeds (i.e., quasi-static simulations), is also performed
with the same applied stress for comparison.

By comparing the elastodynamic displacement and the quasi-static
displacement curves in Fig. 5, it is observed that in the elastodynamics
case, there is a delay before the observer at point P is able to detect the
injection of either dislocation loop. On the other hand, in the quasi-
static solution the same observer instantaneously detects the injected
dislocation loops, as indicated by the finite displacement at time 7 = 0.
Furthermore, in the elastodynamic solution, the observer will detect
a dip in the displacement field between 0.1 and 0.2 ns due to the
arrival of the waves induced by the injection of the first loop at time
0. Then at around 0.4 ns, the elastodynamic displacement overshoots
the quasi-static displacement. This overshoot is the influence of the
waves associated with the second injected loop finally reaching the
observer. Eventually, both the elastodynamic and quasi-static curves
will converge to a value of 0.5 when the entire plane below the
observer has been swept. This example shows the capability of the al-
gorithm to handle dislocation topological changes and the significance
of considering elastodynamic effects for dislocations with high speed.

It should be noted that during dislocation avalanches, many disloca-
tion activities, like nucleation and annihilation shown in this example
happen collectively. Thus, it would be expected that the prominent
difference between the elastodynamic and static solutions will be sig-
nificantly amplified. Additionally, the dislocation speed in the current
simulation is ~ 450 m/s. It will be expected that the differences
between the elastodynamic and quasi-static solutions will be even more
obvious for dislocations moving at higher speeds, which is common in
dislocation avalanches [7].

5. Conclusions

In conclusion, the 3D elastodynamic displacement field for Volterra
dislocations was obtained using the Green’s function approach. The
elastodynamic stress field was then obtained by numerical differenti-
ation of the displacement field. Thus, providing a complete solution
for elastodynamic boundary value problems. The predictions from the
current solution are in good agreement with those from MD simulations
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in the following aspects. First, the current solution reproduces the same
number of waves fronts and the same wave front velocities. Second,
the commonly missed plane waves emitting parallel to the slip plane
when a dislocation is injected into a simulation are correctly captured.
Third, the predicted displacement and stress fields versus time are
in good agreement with those predicted from the MD simulations. A
scalable algorithm was also designed to numerically implement our
elastodynamic solution into DDD simulations. The algorithm is robust
to complex dislocation structures and interactions. This framework
can be easily coupled with FEM simulations using the principle of
superposition to solve 3D BVPs.
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