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ABSTRACT

Bridges-2 is an NSF-funded heterogeneous supercomputing clus-

ter at the Pittsburgh Supercomputing Center. The successor to

the Bridges system (2014-2021), Bridges-2 builds on the flexibil-

ity demonstrated by its predecessor to support a wide variety of

scientific workflows. This paper, building on a 2017 overview of

the infrastructure supporting the original Bridges, is intended as a

mid-cycle overview of the infrastructure developed to support the

Bridges-2 project. It covers the lessons learned from the predecessor

system, the initial design and development of the support infras-

tructure, modifications and improvements made over the last two

years of production operations, and how those improvements have

been shared with other systems and projects across the Pittsburgh

Supercomputing Center.
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1 INTRODUCTION

Much like its predecessor, Bridges[16], Bridges-2[4] is a hetero-

geneous platform designed to support computational and data-

intensive workflows across a wide variety of scientific fields. To

handle general compute, Bridges-2 contains 488 Regular and 16

Large Memory nodes, each with two 64-core AMD EPYC 7742

CPUs, and 256 or 512 GB of RAM respectively. For larger datasets,

there are four Extreme Memory nodes, with four 24-core Intel Xeon

Platinum 8260M CPUs and 4TB of RAM. For workflows requir-

ing GPUs, Bridges-2 contains 24 GPU nodes, each containing two
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20-core Intel Xeon Gold 6248 CPUs and eight NVIDIA Volta V100

GPUs[16]. Additionally, resources from the Bridges-AI[6] exten-

sion to the original Bridges system were migrated to Bridges-2,

adding nine HPE Apollo 6000 Gen10 servers with eight NVIDIA

V100 GPUs apiece, and an NVIDIA DGX-2 system with a further 16

NVIDIA V100 GPUs. Storage for Bridges-2 is provided by two Lus-

tre filesystems, a 200TB fast NVMe-based filesystem called Jet and a

15PB hard disk-based filesystem called Ocean, both provided by an

HPE Clusterstor E1000 system [16]. The infrastructure powering

Bridges-2 also supports Neocortex[5], a unique compute resource

consisting of two Cerberas CS-2 AI accelerator units and a dedi-

cated HPE Superdome Flex support cluster. During the deployment

of Bridges-2, the team wanted to address some of the shortcomings

of the infrastructure that had grown to support the original Bridges.

2 PREVIOUS BRIDGES INFRASTRUCTURE

2.1 Provisioning

Provisioning duties on Bridges were handled by OpenStack[18, 33].

This had the appealing property of being able to handle the provi-

sioning of virtual machines and hardware nodes using the same

framework. Unfortunately, as a large and complicated software

system, over the lifetime of Bridges OpenStack and its maintenance

burden proved to be more trouble than it was worth. Requests

from researchers for virtual machines ended up being below the

expectation of "potentially hundreds"[33], and the relatively mini-

mal churn of hardware nodes requiring re-provisioning meant that

much of the power and flexibility of OpenStack went underutilized.

For Bridges-2, we decided to switch to a more simple, standalone

hardware provisioning solution, letting an oVirt-based[20] cluster

handle VM responsibilities.

2.2 Configuration management

Configuration management on Bridges was built on Puppet[22, 33].

After evaluating alternative configuration management systems,

such as Ansible[2], Salt[30], and Chef[7], we did not find a com-

pelling reason to move away from a solution we had institutional

experience with. While Puppet’s performance and feature set were

satisfactory, the organic growth of the configuration codebase we

had developed over time made diagnosing problems, adding new

machines, and incorporating new features a hassle. In addition,

modern development best practices were not adhered to. Version

control was not enforced, making it nearly impossible to figure out

when and why a particular change was made and by who. There

was a mixing of logic and data throughout the codebase ś for exam-

ple, a module meant to generically configure graphics cards across

the center had hard-coded exceptions for specific nodes in Bridges
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based on their hostname. Occasionally this made changing a con-

figuration option feel more like an archaeological dig or a game of

Jenga than editing a line in a text file. Finally, the Bridges codebase

had not been updated for new revisions of Puppet and CentOS. To

continue using the existing codebase, changes would have to be

made throughout to update from the end-of-life Puppet 4 to the

supported Puppet 6 and to find substitutes for abandoned or depre-

cated options in CentOS/RHEL 8. Faced with a decision between

updating a messy codebase with a patchy history or starting from

scratch, we opted for a clean slate.

2.3 Monitoring

Bridges relied on Naemon, an open-source fork of Nagios, for the

bulk of its monitoring[14, 33]. System metrics were collected, via a

separate system, into an InfluxDB[13] instance. Display and graph-

ing duties were handled by Grafana[12]. Alerts were sent via email.

This system was adequate, but for Bridges-2 a more unified and

streamlined solution was desired, incorporating modern notifica-

tion methods such as smartphone push alerts.

3 NEW INFRASTRUCTURE

3.1 Provisioning

Due to PSC’s involvement in the OpenHPC[17] project, we decided

to limit our evaluation of provisioning systems to the two available

as part of OpenHPC at the time: xCAT[36] and Warewulf 3[35].

Between the two, Warewulf was a better fit for the way the op-

erations team worked ś being built from common open-source

tools and familiar system administration concepts, it was easier to

wrap our head around each component and understand what was

going on behind the scenes. However, as stated above, Bridges-2 is

not a homogeneous system. Warewulf works great out-of-the-box

for a system built on mostly-identical nodes, but there are subtle

variations in initial configurations in the various components of

Bridges-2 that Warewulf’s approach did not make trivially easy to

manage. While Warewulf certainly supports different OS versions,

filesystem layouts, and networking configurations across nodes,

managing and updating the overlapping requirements for various

groups of nodes within Bridges-2 with Warewulf’s database-driven

command-line interface proved to be more complex and less robust

than desired.

To manage this complexity and add additional functionality

missing in Warewulf, we developed a wrapper around it called

Lycanthrope, so named because it’s literally just a more fancy and

pretentious way to say "werewulf". Lycanthrope stores the default

configuration for the cluster, as well as exceptions andmodifications

to the various configuration parameters, in a YAML file. This allows

us to track the basic configuration of our cluster in version control,

modify every parameter fed into Warewulf for any system in our

cluster, and easily re-provision dissimilar nodes simultaneously

with one command. Lycanthrope integrates with several different

types of baseboard management controller using the Redfish REST

API standard to manage chassis power and boot device order. Later

development added the ability to pull networking and system con-

figuration information from our Netbox datacenter infrastructure

management platform, discussed below in section 4.1.

3.2 Configuration management

We started our ground-up rewrite of our configuration manage-

ment codebase by identifying both the useful parts of the old con-

figuration, as well as the pain points. While the existing codebase

contained a great deal of valuable information about how things

were configured, there were several recurring complaints, mostly

centered around organization and discoverability, as well as the lack

of enforcement of version control. To deal with this, our rewrite set

out to adopt and enforce Puppet best practices. The organizational

issues were tackled by adopting the role-profile pattern, as sug-

gested by the Puppet documentation[23]. In this paradigm, nodes

are assigned to one and only one role. Each role is a list of profiles.

Each profile configures a set of Puppet modules and resources in

a particular way. We built our profiles and custom modules with

an eye towards their potential use with other systems and clusters

at PSC. Custom Puppet modules and generic, parameterized com-

mon profiles contain the logic of how to configure something ś the

proper way to format a configuration file, which services to set

up for an application, and so on. Cluster-specific profiles contain

specifics about what we want to configure the systems to do, such

as what servers to authenticate against or which mail server to use.

This allows us to set things up the same way across all our systems

while respecting the specific requirements of each system and each

cluster.

The other major new practice we adopted was managing our

Puppet codebase through r10k[26]. R10k works with the Git[10]

version control system to make deploying our codebase to the

Puppet catalog servers more manageable. It automates the process

of fetching Puppet modules from both our internal Git repositories

and the public Puppet Forge[24] service, as well as the creation of

self-contained configuration environments. R10k looks at a special

Git repository, called a control repo, that contains the configuration

information for the cluster. Each branch of the control repo is

turned into a Puppet environment, with a specific version of the

configuration data and modules. This allows us to test new changes

and additions to our configurations without affecting the systems

in production. It also allows us to keep Puppet code in sync across

more than one Puppet server, enabling us to have a more robust

active-active pair of Puppet servers compared to the single server

used by the original Bridges.

In addition to these major changes to how Puppet gets used at

PSC, we took the opportunity to adopt a few smaller changes in

our day-to-day use of Puppet.

• The eYAML[9] public-key encryption system enables us to

securely store sensitive information and secrets in version

control alongside the rest of our Puppet configuration

• Basic unit testing using the RSpec[28] framework and lint-

ing using Rubocop[29] helps us ensure changes don’t break

existing code and that a uniform code style is maintained

• Linting and unit tests are run on every commit pushed to

our internal Gitlab[11] server by Gitlab-CI

• Technical documentation for Puppet modules and classes is

automatically extracted from code using Puppet Strings[25]
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3.3 Monitoring

By migrating our monitoring system to Prometheus[21] and

Alertmanager[1], we gained the ability to collect metrics about

every aspect of Bridges-2, and have a single notification flow for a

variety of system events. Prometheus’s architecture and straight-

forward, text-based metric format makes it fairly easy to collect

data from nearly any source of data on the system, regardless of

whether or not it supports Prometheus natively. We continued to

use Grafana to graph data and generate user-facing dashboards,

as well as InfluxDB for long-term storage of metrics. With Puppet

profiles, we place every node into one or more target groups (such

as "compute", "login", "admin") and target specific tests to a specific

group.

4 EVOLUTION SINCE INITIAL DEPLOYMENT

& FUTURE PLANS

4.1 Integration of a single-source-of-truth for

hardware information

After the initial setup of Bridges-2, PSC as a whole started to adopt

the Netbox[15] datacenter inventory management and IP address

management system to track hardware and IP allocations across

the center. Netbox contains information about the past and cur-

rent hardware and networking configurations of every node in

Bridges-2, along with links to external data sources for that node

such as Puppet reports. Networking information is pulled by our

Puppet servers and provisioners to streamline re-provisioning and

redeployment of nodes taken out for repair. Future goals for Netbox

at PSC include integration with our monitoring system, so that

every alert generated by a system is associated and logged for that

system, along with automatic addition of information on virtual

machines added to our Bridges-2 oVirt[20] cluster.

4.2 Regression test suite for systems

Along with the unit tests in our configuration codebase, we’ve

started to adopt the ReFrame[27] HPC regression testing frame-

work to test the functionality of the cluster itself. Currently limited

to spot-checks for filesystem functionality, user login success, and

job submission after maintenance & emergency downtimes, we’re

working on expanding its use to the test suites of the various soft-

ware packages provided to researchers using Bridges-2.

4.3 Improvements to monitoring

One of the longer-term goals for adopting a new monitoring frame-

work was easier integration into notification systems and other

tools. Naemon was configured to only send alerts to email ad-

dresses. Alertmanager is muchmore flexible, sending alerts to email,

Slack[31], or the Opsgenie[19] alerting service depending on the

severity of the issue and the group tasked with responding. This has

enabled a much more rapid and comprehensive response to outages

and service degradation. Future avenues we’re exploring for ex-

panding our monitoring program include a public, automated status

page for quickly and easily informing users and other interested

parties of any issues affecting their use of the cluster.

4.4 Deployment outside Bridges-2

The infrastructure template created for Bridges-2 is now in use

throughout the center. Two clusters developed in cooperation with

Carnegie Mellon University, Vera[34] and TRACE[32], have been

brought up following this template. Two pre-existing clusters, the

Human BioMolecular Atlas Program[8] and Brain Image Library[3]

projects, are in the process of being migrated to a shared, center-

wide infrastructure based on the Bridges-2 template. PSC’s own

internal systems, used to support everything from our DNS systems

to staff frontends, are also moving to take advantage of the center-

wide monitoring and configuration management infrastructure.

5 CONCLUSION

The infrastructure developed for Bridges-2 evolved from the suite

of technologies used to provision and maintain the original Bridges

cluster. Bridges laid down an important foundation for future clus-

ter deployment at PSC, and Bridges-2 by and large built on that

foundation. Over the past two years, the combination of Warewulf

and Lycanthrope for provisioning, Git-driven Puppet for configura-

tion management, Prometheus and Alertmanager for monitoring,

and Netbox for information tracking has demonstrated both the sta-

bility required to keep the system running smoothly, as well as the

flexibility to adapt to new situations outside its original intended

application.
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