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Photon-varied quantum states: Unified characterization
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This paper introduces photon-varied quantum states (PVQSs), which generalize the nonclassical states ob-
tained via photon addition or subtraction operations. We provide a unified characterization of PVQSs in terms
of characteristic function, quasiprobability distribution, Fock representation, and Mandel Q parameter. In the
special case of photon-varied Gaussian states (PVGSs), the characteristic functions and the quasiprobability
distributions are found to be in a simple canonical product structure. Necessary and sufficient conditions for the
negativity of the quasiprobability distributions are also obtained for PVGSs. The unified characterization enables
the design and analysis of quantum systems that exploit the non-Gaussian properties of PVQSs.
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I. INTRODUCTION

Nonclassical states are a key enabler for quantum com-
munications [1-4], quantum sensing and metrology [5-11],
quantum computation [12-14], and quantum cryptography
[15-18] in both the optical [19-22] and microwave [23-26]
domains. In particular, Gaussian states (e.g., squeezed states)
have been considered extensively in quantum information
theory for providing nonclassicality in continuous variables
systems [27-33]. However, Gaussian states lack some de-
sirable properties (e.g., Wigner function negativity) [30] for
quantum supremacy in various applications, including quan-
tum sensing and quantum computing [10,34]. Therefore, it
is important to identify and characterize new classes of non-
Gaussian states that offer performance gain, yet are easy to
prepare, in quantum systems and networks.

Photon-added quantum states (PAQSs) [35-38] and
photon-subtracted quantum states (PSQSs) [39—43] are two
important classes of non-Gaussian states that exhibit nonclas-
sical behaviors [44—49]. The non-Gaussian quantum states ob-
tained by performing photon-addition or photon-subtraction
operations on a Gaussian state are called photon-added Gaus-
sian states (PAGSs) and photon-subtracted Gaussian states
(PSGSs), respectively. The benefits of PAGSs and PSGSs
have been shown for several applications, including quantum
communications [50-52], quantum key distribution [53-55],
and quantum sensing [56-58]. While significant progress
has been made over the last three decades [4,35-43], a
complete and unified characterization of photon-added and
photon-subtracted states (in terms of characteristic functions,
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quasiprobability distributions, Fock representation, and Man-
del Q parameter) is missing.

The goal of this paper is to characterize the classes of
PAQSs and PSQSs in a unified framework. Hereafter, we refer
to these classes of quantum states as photon-varied quan-
tum states (PVQSs). We show that photon-varied Gaussian
states (PVGSs) have a simple canonical structure and exhibit
a nonclassical behavior, including negative quasiprobability
distributions and a sub-Poissonian photon number distribution
(i.e., negative Mandel Q parameter [59]). This paper develops
a framework for a unified characterization of PVQSs (see

Photon-varied quantum states (PVQSs)
Theorems 1-3
1
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Theorem 4
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Corollary 3
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FIG. 1. Schematic representation of the different classes of

photon-varied states examined in this paper.
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Fig. 1). The key contributions of this paper can be summarized
as follows:

(i) we characterize PVQSs in terms of characteristic func-
tion, quasiprobability distribution, Fock representation, and
Mandel Q parameter; and

(i) we provide the unified characterization for PVGSs in
a simple canonical product structure and quantify their non-
classicality.

The characterization of PVQSs enables the design of quan-
tum states with desirable nonclassical properties.

The remaining sections are organized as follows. Section 11
establishes a framework for the characterization of PVQSs.
Section III characterizes PVGSs in a canonical product struc-
ture. Final remarks are given in Sec. I'V.

Notations. Operators are denoted by bold uppercase let-
ters. The sets of complex numbers and of positive integers
are denoted by C and N, respectively. For n € Z: m =+
for n > 0, and 7= — for n < 0. For z € C: |z| and arg(z)
denote the absolute value and the argument, respectively;
z+ and z; denote the real part and the imaginary part, re-
spectively; z* is the complex conjugate; 7 = [z z*]7 is the
augmented vector associated with z, and 1 = ~/—1.Forz € C,

the Wirtinger derivatives are defined as ai = %(ai —1 i) and
z o 0z
3% = %(%+z %) The trace and the adjoint of an operator

are denoted by tr{-} and (-)', respectively. The annihilation,
the creation, and the identity operators are denoted by A, A",
and I, respectively. The displacement operator with parameter
p € CisD, =exp {uA" — *A}. The rotation operator with
parameter ¢ € R is R, = exp {—1pATA}. The squeezing op-
erator with parameter r € R is S, = exp {%r(AT)2 - %rAz}.
For two operators X and Y, the anticommutator and the com-
mutator are denoted by [X,Y ], = XY £ YX with + and —,

respectively. For a quantum state Z, the expectation value of
an observable A is (A) = tr{EA}. Notation M indicates the

Moore—Penrose pseudoinverse of a matrix M [60].

II. PHOTON-VARIED QUANTUM STATES

Consider a single bosonic mode described by the quadra-
ture operators Q and P satisfying the canonical commutation
relation [Q, P]_ = I, and let A = (Q + 1P)/+/2 and AT =
(Q — 1P)/~/2[61]. Let E be the density operator representing
a state of the single bosonic mode. The PAQS associated with
E is defined as

gt AV EAT (1)
+ Nj_k) ’
where k € N is the number of addition operations, and Nj_k) =
tr{(A")* A} is the normalization constant. Analogously, the
PSQS associated with E is defined as

=—5 2)

where k € N is the number of subtraction operations, and
N® = tr{A" Z(A")*} is the normalization constant.

. . . . —(k
For notational convenience, we introduce the notation E Q)

=1
and Nﬂ(k) for unifying the characterization of PAQSs (t = +1)

and PSQSs (t = —1), obtained from the initial state . Note
that the PVQS E%k) has the same rotation symmetry as the
initial state E, i.e., a rotation of the initial state E produces a

corresponding rotation to & %k).

A. Characteristic function

For a quantum state E, the s-ordered characteristic func-
tion x (&, s) is defined by [62]

x(&.9) =exp{ 316 Ju{2D, ). 3)

Note that the characteristic function can be used to determine
the normalization constant Nﬂ(k) as [62, Eq. (6.26)]

2k

Nﬂ(k) =t{E{AAY ]} =

’

£=0

85"8(—5*)" X(E7 _t)

where {(A7)*A*}, denotes the s-ordered product of (A")* and
AF, with s € C, as defined in [63]. Recall that the normal,
antinormal, and symmetrically ordered products are obtained
withs = 1,5 = —1, and s = 0, respectively. Note also that the
use of definition (3) for determining the characteristic function
of a PVQS does not reveal the functional relationship between
the PVQS and the corresponding initial state.

The following theorem relates the characteristic function
of aPVQS E %k) to that of the initial state E.

Theorem 1 (Characteristic function of a PVQS). Let
x(&,s)and X%k)(é , §) be the s-ordered characteristic function

—

associated with E and E%k), respectively. The relation
between the two characteristic functions is given by

®) _ D e 9 —HER g
Xy 6.9)= N agkag*kX(é’s)e NG
Proof. See Appendix A. X

B. Quasiprobability distribution

For a quantum state E, the s-ordered quasiprobability dis-
tribution W («, s) is defined by [62]

1 -
W(e, s) = ;/sz@,s)e“f e g, S

where d*£ = d&,dg;. Recall that the Wigner W function, the
Glauber-Sudarshan P function, and the Husimi Q function are
obtained withs = 0, s = 1, and s = —1, respectively [27-31].

The following theorem relates the s-ordered quasiprobabil-
ity distribution of a PVQS s%’” to that of the initial state =.

Theorem 2 (Quasiprobability distribution of a PVQS). Let
W (o, s) and Wﬂ(k)(a, s) be the s-ordered quasiprobability
distribution associated with E and E%k), respectively.
For s # —t, the relation between the two s-ordered
quasiprobability distributions is given by

2% 2%
k) _ (s+1) % 0
W (a, 5) = 4kNﬂ(k> O

20al?
W(oz,s)e_%. (6)
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For s = —t, the relation is found to be
|Ol|2k
(k) —
Wﬂ (a, —t) = — W(a, —t). @)
N.
1
Proof. See Appendix B. X

Remark. Theorems 1 and 2 establish simple and parallel
differential relations between PVQS E '“(k) and initial state =

in terms of characteristic function and quas1probab111ty distri-
bution, respectively.

C. Fock representation

For a quantum state Z, the representation in the Fock basis
{In)}nen is given by

= ZZ(n|E|m}|n)(m|. ®)

n=0 m=0

The following theorem relates the Fock representation of a
PVQS E%k) and that of the initial state E.
Theorem 3 (Fock representation of a PVQS). The relation

between the Fock representation of E %k) and that of E is found
to be
(PIEP m) = 1 [e& 4+ klIEIm+k) fort=—1 o)
N(k) Cnm( ) fOI'[=+1,
where
® _ (n+k)!(m+k)!
Sum n!m!
e i —KIElm — k)
Cnm(E) = for both n, m > k
0 otherwise.
Proof. See Appendix C. X

D. Nonclassical properties

For a quantum state E, the Mandel Q parameter is an
indicator of its nonclassicality, which quantifies the sub-
Poissonian behavior of the photon number statistic, defined
as [59]

(ATYA?%) —
(ATA)

(a'a)?

Mo = (10)

In particular, by using the antinormal order form [63] of
(AT)"A", we obtain

N£k+71)
—0 fort=-—1

((AT)'A")g —1ynl v —1)J ket
S

i fort=+1.

Y

Note that (11) is general in n. The Mandel Mg parameter for
a PAQS E% and a PSQS E® is obtained by applying (11)

with n = 2 in (10) as given by

N(k+2) N(k+l)

—5T — o fort=—1
NZ NZ
ME —
Q1 (k+2) (k) (k+1)
N 2N N 3 forr=-+1
N(+k+1)_Nik) N(f) - .

III. PHOTON-VARIED GAUSSIAN STATES

This section shows how to utilize the results of Sec. II
to characterize the quantum states obtained by applying a
photon-variation operation on a Gaussian state.

A. Preliminaries
1. Single-mode Gaussian states

A single-mode Gaussian state is a quantum state with a
Gaussian Wigner function in the R? phase space spanned by
the eigenvalues of Q and P [27-31], i.e.,

Wor) = — exp {—l(x -0V x - fc)} (12)
n+/detV 2 ’
where x = [g p]T € R? is the vector of eigenvalues of Q and
P.x =[G p]" € R? is the mean value, and V is the covariance
matrix with entries [V]; ; = 27X, — (X, X; — (X )14),
and X =[QP]"

Note that the results of Sec. II are applied by mapping the
quadrature operators @ and P to the mode operators A and
A" via the linear transformation described in Sec. II. In this
way, the real Gaussian distribution (12) can be rewritten as a
complex Gaussian distribution [64—67] by introducing, for the
complex numbers o = 27'/2(q 4 1p) and u = 27V2(G + 1 p),
the augmented vectors & = Jx and jt = J&%, and the aug-
mented covariance matrix C‘o = JVJ, where J is

I {1
sl ]
VaLb =
Therefore, the s-ordered characteristic function in the com-
plex variable £ of a Gaussian state with augmented mean jt
and augmented covariance matrix Cj is given by

X, s) =exp (—LEZCZE+ Zp)'E),  (13)

where
Y S

C,=Co - > (14)

and Z is the Pauli matrix defined as
1 0
Z = |:0 _1]. (15)

The matrix C, represents the augmented covariance matrix of
the symmetrically ordered characteristic function. Recall that
every Gaussian state can be expressed as a displaced noisy
squeezed state with noise parameter # and squeezing factor r
[29], i.e

E =D,R,S,EuS/R,D,,

where

—Il

=) G

n=0

[x}
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is a thermal state with mean number of photons 7 given by
tr{ZuAA}. The matrix C can be rewritten as

. _ 1\ [cosh(2r)

Co= (” + 5) |:sinh(2r)e’2¢
The s-ordered quasiprobability distribution is thus given by
the complex Fourier transform of (13), yielding

sinh(2r)e~ "%

cosh(2r) j| (16)

1 .
Wo(a,s) = —Em—ﬂfcs‘(&—ﬂ)},

a7

v 1 {
—F— &Xp
w+/detCy
in which, by applying (16) in (14),
y I 2 _ )
detCy = n—}—T — 5(2n 4+ 1) sinh“(r). (18)

Note that (18) implies that there exists a threshold sy, suvch that
detCy > 0 only for s < s, [68,69].! By assuming detC; # 0,

L I
¢l = (ZCOZT - —1>
 detC, 2

2. Generalized Hermite polynomials

For a symmetric matrix M, the two-variable generalized
Hermite polynomials are defined by the generating function
[70-72]

ZZ 1 2Hg L M) = explu™u + xTu).  (19)
n=0 m= 0

Note that this paper has implicitly introduced the compact
notation H¢ ,,(x; M) to denote HE,,(x1, M1;x2, M2;|2M15) in
Ref. [71].
Two-variable generalized Hermite polynomials obey the
following property that is a generalization of [72, Eq. (7.3.9)].
Lemma 1. Forevery M = M" andd e C?,

9 m+n

e 1xT™Mx+d"x
oxy'0x}

1
— (_1)m+nHr;g1’n <Mx —d; _EM) e_%xTMx-HITx. (20)

Proof. From the definition (19) of the two-variable gener-
alized Hermite polynomials, it follows that
Z Z ujuy e—%xTMx-HlTxH;ng Mx — d: —lM
— nlm! ’ 2
=)' M(x—u)+d" (x—u) 1)

Equation (20) follows from comparing each term in the Taylor
expansion of the right side of (21). X

For an augmented Hermitian matrix C, we define new
polynomials Hop n(x;C) as

Hpn(x;C) = HE (Xx;XC), (22)

m,n

'In the following, the existence of Wg (e, s) and thus the invertibil-
ity of C, is assumed.

where X is the Pauli matrix defined as
0 1
X = [1 0}.
These polynomials are related to Laguerre polynomials via

t
%ﬂ,,,,,,(tx; —§1> = nlx (=)L (txxn) . (23)

Notice that the two-variable generalized Hermite polynomials
are a generalization of the two-variable Hermite polynomials
[73-76].

B. Characterization

Consider the initial state & to be Gaussian, as described in
Sec. IIT A. The characterization of the corresponding PVGS
X %k) is given by the following theorem.

Theorem 4. The  s-ordered characteristic  function
Xﬂ(k)(é, s) and quasiprobability distribution Wﬂ(k)(oz, s) of

a PVGS are, respectively, given by

X & s) = mA%“(é)xG(s,w (24a)
Ny
1

Wy s) = 5By () W, ), (24b)

1

where xg(&,s) and Wg(«, s) are the s-ordered characteris-
tic function and quasiprobability distribution of the initial
Gaussian state, respectively. The quantity Nﬂ(k) and the non-

Gaussian functions A(k)(é ) and B(k)(a) are given by

N = (- 1>k%ik(2u, —-ZC_ ,Z*) (25a)
vy 1.
AP @) = (D A (Afs +Zjt; —EAt) (25b)
s ~—le 15

5 (51)" Hx (B it — € i~ 1B, )

(O‘) for s # —t (25¢)
o |2 for s = —t,
with
A =2C_7" (26a)
v v —1

B, ,=C. I. 26b
=€+ (26b)
Proof. See Appendix D. X

Remark. Theorem 4 reveals the phase-space structure of a
PVGS: the s-ordered characteristic function and quasiproba-
bility distribution have a simple canonical product structure.
Note that the argument of the multiplicative terms A%k)(é) and

B%’f;(a) is a linear transformation [66]. In particular, for the
s-ordered quasiprobability distribution, a displacement ft of
the initial Gaussian state produces a corresponding displace-
ment of the multiplicative term, whereas a variation of the
covariance matrix C; produces a corresponding variation of
the augmented matrix E,,s.

Figure 2 shows the Wigner W function W («) = W («, 0)
of a PVGS for different values of ¢, k, and 7. Notice that the
Wigner function of a PAGS (r = +1) gets stretched and loses
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FIG. 2. Wigner W function W («) of E;Ik) for different values of k and 7 with u = 0, ¢ = 0, and r = —0.5.

its negativity as 7 increases. Instead, the Wigner function of a
PSGS (r = —1) has a rather different behavior: as 7 increases,
the Wigner function gets stretched, changes its shape, and
loses its negativity.

Figure 3 shows the Wigner W function W () = W («, 0)
of a PVGS for different values of ¢, k, and 7. In comparison
to Fig. 2, it can be observed that the shapes of the function
change slightly. This can be attributed to the different shifts of
the multiplicative terms in (24b).

Figure 4 shows the Mandel Q parameter of a PVGS, as
a function of u and r, for different values of ¢, k, and 7.
Note that Mg increases as the magnitude of the squeezing
parameter r increases and as 7 increases. Note also that the
Mg of a PSGS is more affected by noise with respect to a
PAGS. Moreover, the range of values of p and r for which
Mg is negative is wider in the case of PAGS compared to
PSGS.

C. Special cases

The results of Theorem 4 can be specialized in the pres-
ence of a single photon-variation operation (k = 1) or in the
absence of squeezing (r = 0) as in the following.

1. Single photon-varied Gaussian states

Consider a single PVGS, i.e., k = 1. This is an important
special case since these states are easy to prepare and have
been generated in a laboratory [44—48]. Particularizing Theo-
rem 4 to the case k = 1 leads to the following.

Corollary 1. The s-ordered characteristic  function
xl-(ll)(s, s) and quasiprobability distribution Wﬂ(l)(a, s) of

a single PVGS are, respectively, found to be

X (E, 9 = Ng“A(D(S) xG(&, ) (27a)
1
ARICAOE N(I)Bglg(a)wg(a,s), (27b)

7l

where xg(&,s) and Wg(«, s) are the s-ordered characteris-
tic function and quasiprobability distribution of the initial
Gaussian state, respectively. The quantity N.(ll) and the non-

Gaussian functions A(l)(f ), and B (a) are given by

1
N(l) |,u| + <fl + E) cosh(2r) + 5 (28)
1 A X & v v
A%l)(g) = E (A& — T(A,E +Zjt) + [A] (29)
1 3 =12 v

B(l)(a) 3|Bisa —C |, — Bl fors#—t

lol? for s = —t,
(30)

with A, and lvit, s given in (26a) and (26b), respectively.

Corollary 1 enables the derivation of a necessary and
sufficient condition for the negativity of the quasiprobabil-
ity distribution for a single PVGS. The negativity of the
quasiprobability distribution, in particular, that of the Wigner
function (s = 0) [77], is an important indicator of nonclas-
sicality for any state and of non-Gaussianity for pure states
[78,79]. Moreover, negativity of the Wigner function serves
as a resource for quantum systems [80] and can provide an
advantage in quantum computing [34].

Proposition 1. Let the initial state & be Gaussian, and let
X g-ll) be the corresponding single PVGS. Then, Wﬂ(l)(oz, s) <0

022425-5
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FIG. 3. Wigner W function W («) of E;Ik) for different values of k and 7 with u = 1, ¢ = 0, and r = —0.5.

for some « € C, if and only if

(Bl > H|BBLC B -C Ry, GD

t,ss
where B,  is defined in (26b).

Proof. Recall that, from the properties of the Moore-
Jt is the minimal least-square

' 160,811, ie., for

Penrose pseudoinverse, B, SCS

solution to the linear system B,,s& =C
every z € C?, the following bound holds:

v -1,
I )
From (27b) it follows that Wﬂ(l)(a,s) <0 if and only if
B;II;(oz) < 0. From (30), ng(a) < 0if and only if

Bz~ il > BB

t,ss

By iy > LBoa—C i)

Equation (31) follows by applying (32) in (33). X

Corollary 2. If E,,S is invertible, a necessary and sufficient
condition for the negativity of the quasiprobability distribution
Wﬂ(l)(o:, s)is

(33)

(B.s1i1 > 0. (34)

Proof. The necessary condition is obtained by noticing that
the right-hand side of (31) is non-negative. If B; ; is invertible,

then E; =B, s] and thus the right-hand side of (31) is equal
to zero. X

Remark. This corollary gives a condition for the negativity
of the quasiprobability distributions. In particular, by applying
(16) in (34) with s = 0, the condition for the negativity of the
Wigner function can be reduced to

cosh(2r)

35
2+ 1 (35)

+1>0.

Note that this condition is always satisfied by PAGSs
(t =+1). Conversely, for PSGSs (t = —1), the condition is
satisfied only if cosh(2r) > 271+ 1. This means that, for
PSGSs, thermal noise has to be compensated by squeez-
ing to guarantee the negativity of the Wigner function.
This condition generalizes the condition for the case of
no displacement, i.e., u = 0, provided in [43]. Therefore,
(35) can be used to design PSGSs with a negative Wigner
function.

2. Photon-varied coherent states

Consider a PVCS, i.e., the initial state E is a coherent
state (r = 0 in (16)). This is another important special case
since coherent states can be easily prepared. For a PVCS the
representation of the state —EI ) reduces to the following simple
structure.

Corollary 3. The s-ordered characteristic ~ function
X;(|k)(§, s) and quasiprobability distribution Wﬂ(k)(ot, s) of

a PVCS are, respectively, found to be

169 = (k)A(k’@)xG(s 5) (362)
Ny
WiO(a, s) = ]%Bg"g(a) Wa(a,s), (36b)

1

where xg(&,s) and Wg(w,s) are the s-ordered charac-
teristic function and quasiprobability distribution of the
initial Gaussian state, respectively. The quantity N-(lk)

and the non-Gaussian functions A(k)(é ), and B(k)(oz) are

022425-6
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FIG. 4. Mandel Q parameter of E%k), as a function of u and r, for different values of k and 71, with ¢ = 0.

given by
k 2
_ I+t el
N® k'( +—> Lk<— ) (37)
1
1 2 i+ 3
k
_ _ 1+t w w*
(k)
T e (S ST
and By _;(a) = |ae|?* for s = —t, while for s # —t
i+ ) s +0\ 4+ N
BY (@) = (—1)tk! ( 2 J6+0) L ( ! ) o- R (39)
s 2n+1—s +)2n+1—y) 2n+ 1+t
[
Proof. See Appendix E. X ACKNOWLEDGMENT
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APPENDIX A: PROOF OF THEOREM 1

By using the anti-normally ordered form for the displace-
ment operator, the s-ordered characteristic function associated
with the state E f) can be written as

1 s+ g2 — e t +
1069 = —met Fufzate Tl @l @
+
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By applying the identity

aZk

agkag*k

wrf{Ee e} = (—Dfr[EARe E 45 (AT,

(A1) can be rewritten in terms of Wirtinger derivatives as

(—DF wip 3%
X&) = N et Fl QEkQEHK

w{Ee 1) (A2)

Equation (4), for r = +1, is obtained from (A2) by express-
ing the displacement operator in the symmetrically ordered
form.

By using the normally ordered form for the displacement
operator, the s-ordered characteristic function associated with
the state 2% can be written as

x O (&, 5) = N—ez I A e e AR (A3)

By applying the identity

32k

ag:kaé:*k

wf{Eef ) = (D {E@T e e E 14K,

Ksi(a, &5 k) =

(A3) can be rewritten in terms of Wirtinger derivatives as

k 2k
®) G DA T
1= =TT e

wf{E e 1) (A4
Equation (4), fort = —1, is obtained from (A4) by expressing
the displacement operator in the symmetrically ordered form.

APPENDIX B: PROOF OF THEOREM 2

The s-ordered quasiprobability distribution W («, s) asso-

ciated with the state Z % ) is given by the Fourier transform of

@), 1i.e.,
W, s) = D' [ ttepras—ae
22NK e
7
0% —sep 2
WX(E,SV 2 EdoE. (BI)
Integration by parts in (B1) then leads to
k
) =D s
Wy (e, 5) = nNﬂ(k)/ x(&,s)e
0% tiepratr—at p
X 85"8&*"6 2 ; d-t. (B2)
s (at, §3k)

By assuming s # —t, the term «;, (¢, £; k) can be written as
follows:

9% s+t 2 . 2, 2]e|?

| 5 ) (- ) oo {35

s+1\* s+t 2 .2, s+t 2 .2, 2lal?
() (= (e () or (e o) (e oo {5
s+t 2 s+t . ST, 2 s+t . s+t 2]a|?
() e () e 2]

s+t 2|a)? 9% 2 s+t
— 1 k _ 2 * ok 2 , B3
— (- )( ) eXp{_s+t Tt P T el T eEt -t e el (B3)
[

where the first equality follows from simple algebra, the sec- and
ond equality from the definition of Laguerre polynomials,
the third equality from simple algebra, and the last equal- 0 fork > n
ity by applying the definition of Laguerre polynomials with (A |n) = F n— k) therwi (C2)
respect to «. Equation (6) then follows by applying (B3) in " otherwise.

(B2) and applying the definition of s-ordered quasiprobability
distribution. Equation (7) follows immediately by noting that

Applying (2) or (1) for the state E* into the left side of (9 R
Koon(@, £:K) = (—DF|af explag® — "¢ ). pplying (2) or (1) 7 ®

together with (C2) or (C1), gives the desired result.
APPENDIX C: PROOF OF THEOREM 3
Recall that, for every Fock state |n) withn € N, APPENDIX D: PROOF OF THEOREM 4

- (n+k)! Consider now a given Gaussian state E with jt # 0. The s-
A" n) = n In+k) forkeN (CD) ordered characteristic function associated with the state E %k) is
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obtained by applying (13) in (4), together with (26a) to obtain

k
(k) _(—) lvT s+t \y
€= ew {5¥ (318
32k
80["80{*"
where o =ZX it = —XZ]1.
Equation (24a) is obtained by applying (22) and (25b) in
(D1). Equation (25a) is obtained by imposing the normaliza-
tion condition Xg“(o, s) = 1 in (24a), together with (25b).
The s-ordered quasiprobability distribution, for s # —f,
can be derived by applying (17) in (6), together with (26b)
to obtain

v

{ —~ %E XA é+aT£}, (D1)

Wﬂ(k)((x, 5) =

1 <s+t>
N(k)n\/ detés 2

1

Hat(—2or)a+wic: i
X ex —|a o
P12 s+t pEs B
82k

X —_—
darkdork

1 . v
exp { — EocTXB,,Sa + [LTXCS loc}.
(D2)

Equation (24b), for s # —t, is obtained by applying (22)
and (20) in (D2), together with (25¢). Equation (24b), for s =
—t, is obtained by applying (17) in (7), together with (25c¢).

APPENDIX E: PROOF OF CORROLLARY 3

This proof requires the following corollaries of Theorem 4.
Corollary 4. Under the assumption of Theorem 4 and if A,
is invertible, then (25b) becomes

AP E) = D AAE+ B —3A),  ED
where
B, =20 (E2)

_ Corollary 5. Under the assumption of Theorem 4 and if
B, ; is invertible, then (25¢) becomes

(H_t) I k(Bt s(@— P _%Bt,s)
BY)(z) = for s # —t (E3)
|ae | for s = —t,
where
. S+l L1
Yoo = Cl (E4)

Consider now a coherent state, where the augmented co-
variance matrix C; is given by applying (16) with » =0 in
(14), which gives

Y 1-—

¢, = (a + S>1, (ES)
for which the matrix A, defined in (26a) is found to be

. 141t

A = (Fz T )1. (E6)
From (E5), the matrix C s_l is easily found to be

vl 2

= —"1 (E7)
2n+1—35

Since A, is invertible, by applying (23) and (E6) into (E1) we
obtain

1+1\*
(k) __ ~
Aﬂ —k!<n+ T)

1
y Lk<<ﬁ+ %)(z—k B + [ﬁ,]z)). (ES)

The vector B, is obtained by applying (E7) with s = —¢ in
(E2) to obtain

-1
B, = (n + %) [_’;} (E9)

Equation (38) is obtained by applying (E9) in (E8). By apply-
ing (E7) in (26b), the matrix B, ; is found to be

s 4+
P s+ -5
Since B,,s is invertible, by applying (23) and (E10) in (E3) we

obtain

B(.&) — ( l)kk'[

4(n+ 4t
Lk< i+ 5

(E10)

(s+0)(A+ ) ¢
2n+1—s

) )
+0)Q2a+1-— s)|“ — sl ], (ELD)

where y; s is the complex number associated with the aug-
mented vector P, ;, obtained by applying (E7) in (E4), i.e.,

y o= STl g (E12)
Vs = onri+s

Equation (39) follows by applying (E12) in (E11).
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