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Abstract— An important component for the effective collab-
oration of humans with robots is the compatibility of their
movements, especially when humans physically collaborate with
a robot partner. Following previous findings that humans
interact more seamlessly with a robot that moves with human-
like or biological velocity profiles, this study examined whether
humans can adapt to a robot that violates human signatures.
The specific focus was on the role of extensive practice and real-
time augmented feedback. Six groups of participants physically
tracked a robot tracing an ellipse with profiles where velocity
scaled with the curvature of the path in biological and non-
biological ways, while instructed to minimize the interaction
force with the robot. Three of the 6 groups received real-time
visual feedback about their force error. Results showed that
with 3 daily practice sessions, when given feedback about their
force errors, humans could decrease their interaction forces
when the robot’s trajectory violated human-like velocity pat-
terns. Conversely, when augmented feedback was not provided,
there were no improvements despite this extensive practice. The
biological profile showed no improvements, even with feedback,
indicating that the (non-zero) force had already reached a
floor level. These findings highlight the importance of biological
robot trajectories and augmented feedback to guide humans to
adapt to non-biological movements in physical human-robot
interaction. These results have implications on various fields of
robotics, such as surgical applications and collaborative robots
for industry.

Keywords: Physical Human-Robot Interaction; Human Fac-
tors and Human-in-the-Loop; Human-Centered Robotics

I. INTRODUCTION
Robots are transitioning from operating in isolated rooms

to working in close collaboration with humans [1][2]. Human-
robot interaction (HRI) introduces unique challenges for plan-
ning and control of robots to ensure the safety and comfort of
the human partner while enhancing the overall task efficiency
[3][4]. Optimal action planning [5][6], human intent recogni-
tion [7][8][9], and collision avoidance [10][11][12] are among
the important challenges that need to be addressed. Physical
human-robot interaction (pHRI), where the human and the
robot work in direct contact with one another, adds even more
complexity because it tightly couples the heterogeneous motor
abilities of the two partners.

In pHRI, the interaction can be limited to a few seconds as in
object handover [13] or it can be present throughout the entire
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task, e.g., collaboratively carrying an object [14]. In either case,
the movements of the human and the robot directly impact
the task execution. The interaction can be enhanced either by
relying on the learning capabilities of humans to adjust their
behavior to the robot, or by adapting the robot to move in ways
that are intuitive for the human [15].

In the robotics literature, intuitiveness of a movement is
often tied to its human-like aspects. To characterize trajectories
as human-like, one must turn to human motor control studies
that have tried to identify the core signatures present in human
movement. Examining hand or end-effector trajectories, some
robust features have been revealed: most notably the speed-
accuracy trade-off in pointing tasks [16], [17] and the velocity-
curvature relationship (two-thirds power law) in continuous
trajectories [18], [19], [20]. These kinematic features have been
replicated using optimal control with a variety of cost func-
tions, such as minimum jerk [21], minimum endpoint variance
[22], and minimum torque change [23].

Robot movements that are intuitive to humans have been
explored in HRI tasks that do not involve physical contact.
Bisio et al. [24] demonstrated that humans modulate their
movements based on the robot movements as long as the
kinematics is consistent with movements recorded from real
humans. Conversely, when the robot violates the human-like
features, the human does not adjust their own movement to
those of the robot. A study by Kupferberg et al. [25] reinforced
this finding in a contact-free interaction with a humanoid robot,
showing that humans tended to perceive the robot as interaction
partners as long as it exhibited minimum-jerk profiles, i.e.,
maximally smooth profiles. These results suggest that humans
dissociate from their robot partner and do not execute the task
collaboratively, if the robot displays non-human-like behavior.

However in physical interactions humans no longer have the
option to dissociate themselves from their robot partner. This
raises the question, how do humans react to non-human-like
movements of a robot? Previous work showed that untrained
subjects prefer interacting with robots that move in more
biological patterns during collaborative tasks, such as point-
to-point reaching [26], object handover [27], and exoskeleton
applications [28]. A previous study of our group on a human-
robot tracking task also showed that humans tended to follow
the robot’s movements if its kinematics obeyed the two-thirds
power law. Specifically, humans exerted less force on the robot
if its tangential velocity varied with the path’s curvature with a
specific power relation identified in humans [29].

Programming robots to elicit human-like movement patterns
therefore seems the best approach to achieve seamless inter-
action and increase the usability and acceptance of the robot.
But this is not always an option, as external constraints may
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be imposed by the task or the environment. In such cases, one
could expect that humans are able to adapt if they are given
enough practice. Indeed, humans have been shown to adjust
to the robot behavior to increase the task efficiency [30] and
they could learn to predict non-biological robot movements
during visual interaction [31]. And, after all, humans seem
to demonstrate a sheer boundless ability to learn new and
complex skills in everyday and leisure time activities. But is
this adaptability really without limits?

Maurice et al. started to examine human abilities in physi-
cally tracking a robot, and has reported first evidence that hu-
mans can adapt to robot movements that violated the velocity-
curvature relation of the two-thirds power law [29]. Specifi-
cally, participants were instructed to hold a robot as it traced
out an elliptical path with a constant (non-biological) velocity
profile, while minimizing the force exerted against the robot.
After 1.5-hour practice, participants who received visual feed-
back about their exerted force revealed some reductions in
force, while those without feedback did not improve. But in-
terestingly, despite this improvement, the performance reached
was still less optimal compared to when the robot followed the
power law. Performance in the biological condition remained
superior even when subjects had no practice and no visual
feedback. This suggested that the untrained performance of
the biological profile is the best humans can do. However, the
practice comprised only a single session and performance did
not reach a clear plateau, hence real performance limits could
not be assessed.

For the development of physical human-robot interaction, it
is crucial to understand to what extent humans can learn and
overcome the challenges posed by non-biological movement
patterns. A related question is what is needed to facilitate learn-
ing. Therefore, the present study investigated to what extent
humans can adapt to and learn the robot motion when violating
human movement signatures. Using a paradigm similar to our
previous study [29], we extended the practice over 3 days to
assess whether performance with a biological profile without
training remains a hard limit. Participants underwent practice
with the same constant velocity profiles as in [29], but also with
another non-biological profile to assess the generalizability
of the findings. Extended practice with the biological profile
aimed to scrutinize whether further improvement was possible
even in this familiar condition.

Since our previous study suggested that visual feedback
facilitated learning, half of the participants in the present
study were provided with augmented feedback. In addition, to
provide the best opportunity to learn, we modified the visual
feedback to better match the elliptical hand-robot movements
than the previously used display.

II. METHODS
A. Participants

A total of 41 healthy college students (22 females and 19
males, aged 18-35 yrs) participated in the study. All partic-
ipants were right-handed, did not report any biomechanical
problems in their upper extremity, and were naive to the pur-
pose of the study. All participants signed an informed consent
form approved by Northeastern University Institutional Review
Board prior to the start of the experiment (#10-06-19).

B. Two-Thirds Power Law in Velocity Profiles
Previous research in human motor control showed that

human endpoint trajectories exhibit the so-called two-thirds
power law, a systematic relation between the kinematic char-
acteristics of the hand movement and the curvature of the
associated path [18][19][20]. For trajectories with no inflection
points, the power law can be written as,

v(t) = Kr(t)β (1)

with β = 1/3, where v is the tangential hand velocity, r
is the radius of curvature of the path, and K is a gain factor
that determines the tempo of the overall trajectory1. Hence, the
kinematics scales with the geometric features of the endpoint
movement. Essentially, this means that the movement slows
down in more curved portions of the path and speeds up in
straighter portions. Thus, this power relation can be used to
characterize biological ’power law’ profiles and non-biological
profiles that violate this relation in robot movements.

C. Experimental Conditions and Procedure
A robotic manipulandum was programmed to trace out an

elliptic path in a horizontal plane (major axis = 30 cm, minor
axis = 10 cm) with its end-effector, moving in counterclockwise
direction (Fig. 1A). The tangential velocity of the traversal
was modulated according to the two-thirds power law. By
varying the exponent β of the power law in (1), we created
3 different velocity profiles: biological (β = 1/3), constant
(β = 0, profile used in the learning experiment of [29]),
and exaggerated (β = 2/3). For the biological profile, the
robot followed the power law, where the movement velocity
decreased as the path curvature increased, and vice versa. The
constant condition enforced a constant tangential velocity on
the robot, similar to a control strategy commonly used for robot
movements. The exaggerated velocity profile was an amplified
version of the power law profile, where the robot significantly
slowed down around curves and moved faster in the straighter
sections of the ellipse. The K parameter in (1) was adjusted for
each velocity profile to hold the ellipse period at 3 s across all
conditions.

In each trial, the robot traced the ellipse 6 times without
pause, with each ellipse lasting 3 s (18 s per trial). A 5 s break
between successive trials allowed for rest to avoid fatigue. After
5 s, the robot automatically began the next trial. Each trial
began and ended with a short sound. After a block of 10 trials,
participants could rest for 2 to 3 minutes.

Participants were instructed to firmly hold the robot handle
and move with the robot as it traced the ellipses, while exerting
as little force as possible on the robot handle (Fig. 1B). Partici-
pants used their right-dominant hand to interact with the robot.
The robot handle was free to rotate about its vertical axis which
decoupled its orientation from the participants’ wrist orienta-
tion (Fig. 1C). The elliptic robot and hand movements were
confined to the 2-dimensional horizontal plane. The height
of the robot was adjusted for each participant to ensure their
forearm was approximately horizontal when holding the robot

1The name two-thirds power law comes from the original formulation
with the angular velocity and curvature (instead of tangential velocity and
radius of curvature), for which the value of the exponent is 2/3.
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end-effector. Before starting the experiment, participants could
find their most comfortable orientation and distance relative to
the robot, but were instructed to maintain this position during
the trials. A video of the experiment is available here:
https://youtu.be/t6VRMFxMxfs.

D. Experimental Apparatus

1) Robot: Participants interacted with the HapticMaster, a
3-DOF robotic manipulandum (Motek Medical, The Nether-
lands) [32] (Fig. 1B). The robot was programmed through a
custom C++ API and controlled using an impedance controller
with high stiffness. Given the high stiffness, the robot con-
tinued to trace the predefined path even if the human applied
resistive or assistive forces to its end-effector. The robot’s
desired position was updated at 120Hz. A 3-axis force sensor
embedded at the robot end-effector measured the force exerted
by participants on the robot handle. The force data and the
position of the robot’s end-effector were recorded at 120Hz.

An additional force sensitive resistor (FSR) afixed to the
handle measured grip force (Fig. 1C) to test whether subjects
firmly held the robot handle and were actively engaged in the
task. The grip force sensor would trigger a buzzing sound,
if participants loosened their grip on the handle beyond a
threshold value. Without this check, participants may apply
less force on the robot simply by loosening their grip on the
handle during the experiments. This could be misinterpreted as
compliance with the task. Note that the FSR was only used to
ensure active participation, and not for analysis purpose.

2) Augmented Feedback: Since our previous study [29]
suggested that additional feedback may facilitate learning, vi-
sual feedback about online performance was provided to half of
the participants to give them the best opportunity to learn. This
online feedback was shown on a projector screen in front of the
participant with a cursor tracing the ellipse as the robot moved
along its predefined elliptical path (Fig. 1B). The color of the
cursor changed on-line to indicate the error in the force applied.
Its shade changed between green (good) to red (bad) depending
on the real-time error. Real-time error was quantified as the
root mean square (RMS) of the magnitude of force in the
horizontal plane that the participant exerted on the robot over
a sliding window of 80 ms. The range of color was adjusted
for each participant, based on their average force exerted in
their baseline trials (see section II-E). The cursor was green
if the force error was less than half of their baseline, and it
was red if it was more than double of their force at baseline.
In order to ensure subjects were continuously challenged to
reduce their force on the robot handle, the reference force was
updated after every 4 blocks of 10 trials. The reference force
was updated to be the average of the most recent 10 trials.
Participants who received visual feedback were instructed to
ensure that the cursor color remained green.

For comparison, the other half of the participants were
blindfolded and saw neither visual feedback, nor their hands or
the robot. Hence, they had to rely on their proprioceptive and
haptic feedback to smoothly follow the robot’s motion without
exerting additional forces against the robot.

Fig. 1. A. Experimental setup. B. Participant performing the task with
visual feedback of their performance. The cursor on the screen traced
the ellipse simultaneously as the robot (HapticMaster) moved around its
elliptical path. C. Grip sensor attached to the robot end-effector to ensure
participants’ engagement in the task. D. Tangential velocity across the ellipse
for the three velocity profiles used in the experiment.

E. Experimental Design
Participants were randomly assigned to 1 of 6 groups, with 6

to 8 participants per group (Fig. 2). Three groups received vi-
sual feedback (with-FB) of their real-time force error through-
out the training, as shown in Fig. 1B; 3 groups were blindfolded
(no-FB). All participants received haptic and proprioceptive
feedback through grip contact with the robot handle.

Prior to the training, all participants performed 2 blocks of
4 trials each, in which all groups were blindfolded: 4 trials
of the biological profile determined reference performance;
the second block of 4 trials presented the assigned velocity
profile to determine baseline performance before introducing
feedback. In the experiment proper, participants practiced their
assigned velocity profile in 3 one-hour-long training sessions
on 3 consecutive days. Every training session involved 8
blocks, with each block containing 10 successive trials. Hence
participants practiced 24 blocks with 240 trials, for a grand total
of 1440 elliptical movements.

F. Data Analysis
1) Data Filtering: The recorded data consisted of contin-

uous forces in X and Y horizontal directions that a participant
exerted on the robot end-effector during the interaction. The
magnitude of the force at every point of the ellipse was cal-
culated. In order to eliminate transient data, the first and last
ellipse of every trial were excluded from the data analysis.

The human-robot interaction force data were filtered forward
and backward (to avoid phase-shifts) through a 4th-order 6 Hz
low-pass Butterworth filter. Over 90% of the original signal’s
power was maintained post filtering. Code and data are avail-
able here:
https://gitfront.io/r/mahdiaredraki/
YqQmHMJPnq1t/ICRA2023/.

2) Performance Metrics: The explicitly instructed goal in
all conditions was to minimize the magnitude of the force
exerted against the robot, which therefore served as first per-
formance metric. The force magnitude metrics F-RMS was
calculated as the root mean square of force applied across the
40 ellipses of one block (10 trials per block and 4 ellipses per
trial, since the first and last ellipse of each trial were excluded).
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Fig. 2. Layout of the experimental design. Six groups of participants
performed the 3 velocity conditions, either with or without visual feedback
(n is the number of participants per group). The experiment began with
recording reference and baseline performance (4 trials each, blind-folded).
This was followed by 3 days of training, each day consisting of 8 blocks
of 80 trials total.

As human performance is always variable and reduction
of this variability has been shown a reliable characteristic of
learning [33], the standard deviation of force F-SD was added
as a second metric. This metric was calculated as follows:
for each ellipse in a block (4 x 10 trials), force magnitude
was computed at each spatial location across the ellipse (360
bins). At each spatial location, the standard deviation of the
force magnitude was computed over the 40 ellipses. Finally, all
location-dependent values were averaged.

3) Statistical Analysis: Performance across the training
sessions was evaluated by fitting linear regressions to both the
F-RMS and the F-SD values over the 24 blocks of the 3 days
of training. Blocks rather than trials were used as regressors,
because the calculation of standard deviations required aggre-
gating trials of one block. The confidence intervals of the re-
gression slopes served to determine whether each participant’s
performance significantly changed across 3 practice days. If the
zero slope was not within the confidence intervals, the change
was considered statistically significant (Fig. 3).

In the groups where improvements were detected, additional
analyses were conducted to assess whether the performance
reached after training was better than the reference perfor-
mance (biological profile without visual feedback before any
practice). This was done by comparing the 4 last trials of the
training phase with the 4 reference trials, using a paired t-test.

Fig. 3. Linear regressions for two representative participants. Black dots
show block means across the 24 blocks. The shaded areas show the 95%
confidence interval of the regression slopes. A: Linear fit for a participant
that improved through practice as the confidence intervals did not include
zero slope. B: Linear fit for a participant that did not improve as the
confidence intervals did embrace zero slope.

III. RESULTS

Based on the measured forces, this experiment aimed to
evaluate whether extensive practice over multiple days with
compatible and updating feedback could elicit performance
improvements both in biological and non-biological condi-
tions. We also assessed whether practice could take participants
beyond baseline performance with the biological robot profile.

A. Elimination of Trials
Prior to data analysis, trials were scrutinized to assure that

participants maintained a solid grip of the robot to prevent that
low interaction forces only resulted from a loose grip of the
robot. Trials where the buzzer was triggered for more than
10% of the trial duration (>1.8 s out of 18 s) were excluded
from subsequent analysis. With this criterion, the data for 2
participants had to be excluded as they failed to follow the task
instructions (reducing number of participants to 6 in 2 groups
as shown in Fig. 2). In the remaining 39 participants, ∼4% of
the trials across all participants were excluded.

B. Force Patterns Across the Ellipse
Fig. 4 illustrates the spatial and temporal pattern of the

interaction force exerted by representative participants in the
3 velocity profiles. Different force patterns were elicited de-
pending on the profile, highlighting how different segments
of the ellipse posed difficulties to minimize the interaction
force. Most notably, the forces were high at the highly curved
segments in the constant condition, while the forces in the
biological conditions were lowest and more distributed along
the ellipse. In the exaggerated condition two peaks occurred
at the linear portions where the speed was faster than the
biological pattern. Except for short moments, the magnitude
of force did not reach zero Newtons.

C. Force Magnitude and Variability Across Blocks
This analysis focused on how the force magnitude and

variability changed across the 3-day-long practice in all 6
conditions. To this end, the values of F-RMS and F-SD of all
participants over the 24 blocks were plotted for each condition
in Fig. 5A and C. The linear regressions are also shown as lines.
The R2 values for all participants ranged from 0.19 to 0.77 with
a median of 0.38 (see Fig. 3).2

Starting with the feedback conditions, the individual partic-
ipants’ regression slopes of F-RMS in the biological condition
tended to be variable and without any visible trend to decline
across blocks. This differed from the constant and exaggerated
condition where the majority of participants exhibited negative
slopes. This pattern was reinforced in the F-SD results, al-
though less clear. In the no-feedback conditions, the individual
regression slopes did not signal any consistent change with
practice, neither for F-RMS, nor for F-SD. The slopes and their
95% confidence intervals for each group and participant are
summarized in Fig. 5B and D, where the error bars indicate the
boundaries of the confidence intervals. Table I summarizes the

2The R2 metric evaluates the amount of variance explained by the linear
fit in determining change in performance compared to mean performance
for each participant. This makes it meaningless to report the R2 values for
regressions where the 95% confidence interval includes zero slope. Thus,
only the R2 of regressions with non-zero slopes are reported.
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Fig. 4. Top row: Vectors representing the interaction force (direction and
magnitude) exerted on the robot across one ellipse in the three velocity
profiles, taken from 3 representative participants of the respective groups.
The red dot marks the starting point of the ellipse. The color code indicates
the progression of time matching the time series below. Bottom row: Time
series of the magnitude of the interaction force around the ellipse of the
same trial as shown above.

number of participants in each condition that show regression
slopes different from zero, i.e., significant change across 3 days
of practice. Overall, the data showed that participants learnt
the non-biological patterns, but only when visual feedback was
provided. Performance in the biological profile did not change,
even when feedback was given. Hence, performance in the
biological profile seemed to be at a ’hard limit’.

Given these results, the next question was whether perfor-
mance in the non-biological conditions had also reached that
limit. Using paired t-tests, the mean F-RMS in the last 4 trials
was compared with the mean performance in the reference
trials. These comparisons were only conducted for participants
that received feedback in the constant and exaggerated condi-
tions. Neither of the two comparisons was significant (p=0.068
for constant, p=0.265 for exaggerated condition). Therefore,
even with practice, participants were not able to reduce their in-
teraction forces beyond their untrained biological performance.
When F-SD values were compared, the exaggerated condition
showed no difference (p-value = 0.107), only the constant
conditions showed a small difference (p=0.029).

Given the high initial force values in some of the feedback
conditions, additional control tests were conducted to rule out
that the introduction of visual feedback presented an initial
difficulty. To this end, the first 4 trials of the training phase of
all participants who received visual feedback were compared
with the 4 trials at baseline with the same velocity profile, but
blindfolded. For these 3 comparisons, both F-RMS and F-SD of
all participants were compared by paired t-tests. None of these
comparisons revealed a significant difference.

IV. DISCUSSION

This study investigated to what extent humans can adapt to a
robot motion in a pHRI task that violates human movement
signatures, specifically the two-thirds power law, a human-
preferred speed-curvature relation. Results showed that humans
could improve their interaction with a robot moving in two non-
biological velocity profiles, but only if augmented feedback
was provided. This finding generalizes our previous findings
[29]. However, even when given extensive 3-day-long practice
with dedicated visual feedback of their performance, partic-
ipants did not show any improvement in the biological pro-

TABLE I
NUMBER OF PARTICIPANTS IN EACH CONDITION THAT IMPROVED

VERSUS DID NOT IMPROVE THROUGH PRACTICE.

Performance Metric F-RMS F-SD
Condition (improved / did not improve)

Biological 1/7 1/7
with-FB Constant 5/2 5/2

Exaggerated 4/3 4/3

Biological 1/5 1/5
no-FB Constant 1/5 1/5

Exaggerated 0/7 2/5

file. Additionally, improved performance with a non-biological
profile never exceeded their untrained biological performance.
This suggests that the untrained biological performance is a
limit that humans cannot surpass.

A. Role of Augmented Feedback
It is noteworthy that participants who received continuous

force feedback but were deprived of augmented visual feed-
back about their task error did not show any improvements in
practiced velocity profiles, even after 3 daily practice sessions.
This suggests that haptic feedback about the forces alone was
insufficient to fine-tune their interaction with the robot. This
inferior performance with haptic information alone suggests
that humans may not have enough sensitivity to perceive the
modulations of the relatively small forces. Visualization of
force error, i.e., providing augmented real-time feedback, was
evidently necessary.

These results were based on two main performance metrics
that were regarded as two main indicators of performance and
learning: While F-RMS expresses the error from the instructed
zero force, variability F-SD is an independent metric of per-
formance [34]. With one exception where variability in the
constant profile was better than the biological condition, the
current results showed parallel declines in the two metrics,
therefore reinforcing the observations.

Note that both Maurice et al. [29] and a recent study by
West et al. [35] also provided online visual feedback, but
with mixed results. Not only was the practice duration in both
studies much shorter, they also presented a different design of
visual feedback. Their visualization of error was a horizontal
bar deviating from a baseline representing the target force.
Anecdotally, this vertical graphic arrangement proved difficult
to map onto the horizontal elliptical pattern, i.e., showed little
compatibility. Therefore, the present study presented the cursor
moving online on an elliptical path and used cursor color to
indicate force error. Note that augmented feedback can be of
different degrees of ’compatibility’ and therefore careful design
of how feedback is provided is necessary [36].

In fact, feedback can also be detrimental if it is ’too com-
plicated’ because it can create an additional cognitive load. An
increase in cognitive load due to feedback has been reported
in surgical robotics applications, where novice surgeons could
not benefit from additional haptic information and actually
deteriorated in their performance accuracy [37]. Similarly, a
study on object manipulation with a phantom robot showed that
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Fig. 5. Overview of participants’ performance across the 3 practice days. A. Force magnitude F-RMS across blocks. Each point is the average value
per block for each participant. The 6 panels correspond to the 6 conditions (3 velocity profiles and 2 feedback conditions). Within each condition, color
shading within each condition denote different participants (consistently with panel B). The solid lines represent the regression slopes for each participant.
B. Slopes (point) and their corresponding 95% confidence intervals (bars) of the linear regressions of F-RMS for each participant in the biological (Bio),
constant (Con), and exaggerated (Exa) velocity profiles, with and without visual feedback. C. Same as panel A for variability of force F-SD. D. Same as
panel B for variability of force F-SD.

the effect of haptic feedback on performance was dependent
on the context [38]. To probe whether the introduction of
feedback in our study did not require undesired attentional
resources, we compared the blindfolded baseline trials with
the first feedback trials. Results confirmed that this feedback
did not introduce any noticeable extra load and, hence, the
subsequent improvements were not a side-effect of the initial
integration of feedback.

B. Limits of Human Performance in Biological Condition
The biological profiles did not show any improvements, even

after 3 days of practice with enhanced feedback and regardless
of whether augmented visual feedback was given. Note that
the experiment also adjusted the visual force feedback to the
current level of force error in order to maintain the challenge
for participants. These efforts reinforced that participants have
reached their maximum performance in the biological condi-
tion, even though the force errors were not reduced to zero.

This is in apparent contrast with a recent paper by West
et al. [35] on a similar ellipse-tracking task that reported
improvements in a biological profile. However, an important
difference is that participants were instructed to apply a con-
stant tangential force of 5 N against the robot. Further, the
research focus was on force-motion or hybrid control. Hence,
trial blocks with visual feedback alternated with blocks of no
feedback, precluding direct inferences about learning.

C. Implications for Robotic Applications
The straightforward conclusion of our results is to program

robots to move with human-like features to facilitate the in-
teraction without requiring extensive practice. However, this
may not be feasible in all pHRI applications. Some pHRI
tasks have pre-set constraints on the types of motion that the

robot can display. For example, Glogowski et al. developed
a trajectory planning algorithm that allowed for the online
adaptation of the robot velocity to satisfy constraints such as
collision avoidance [39]. This may have traded off velocity
with collision avoidance. In the same vein, robot control needs
to avoid actuator torque saturation and prioritize stability and
inertia compensation, all issues that may compromise the inde-
pendent control of trajectory velocity [40]. For such situations
where task constraints may prevent the robot to adopt human-
like trajectories, the current study showed that humans do have
the ability to adapt, at least in a limited way and if appropriate
feedback about the interaction is provided.

V. CONCLUSIONS

This study examined the conditions in which humans could
optimally track robot movements and learn to minimize unde-
sired interaction forces. With extensive practice and real-time
augmented feedback about the force error, humans could adapt
to robot trajectories that violated human signatures. However,
humans were unable to improve their performance when no
additional feedback was provided. These results show that
when humans have to interact with robots that move with non-
biological profiles, they need proper guidance to master the
interaction. Thus, training modalities have to be considered
carefully when deploying such robots. Further, even in the most
human-like trajectories, humans could not perfectly follow
robot movements. Hence, future work should further probe into
human preferences and their limited ability to interact with and
adapt to robot motions. Feedback should be carefully designed
to minimize additional cognitive load and to provide the best
possible guidance to potentially push these human limits.
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[17] Réjean Plamondon and Adel M. Alimi. Speed/accuracy trade-
offs in target-directed movements. Behavioral and Brain Sciences,
20(2):279–303, 1997.

[18] Francesco Lacquaniti, Carlo Terzuolo, and Paolo Viviani. The law
relating the kinematic and figural aspects of drawing movements. Acta
Psychologica, 54(1-3):115–130, 1983.

[19] Paolo Viviani and Roland Schneider. A developmental study of the
relationship between geometry and kinematics in drawing movements.
Journal of Experimental Psychology: Human Perception and Perfor-
mance, 17(1):198–218, 1991.

[20] Stefan Schaal and Dagmar Sternad. Origins and violations of the 2/3
power law in rhythmic three-dimensional arm movements. Experi-
mental Brain Research, 136(1):60–72, 2001.

[21] T Flash and N Hogan. The coordination of arm movements: an experi-
mentally confirmed mathematical model. The Journal of Neuroscience,
5(7):1688–1703, 1985.

[22] Christopher M. Harris and Daniel M. Wolpert. Signal-dependent noise
determines motor planning. Nature, 394(6695):780–784, 1998.

[23] Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal
trajectory in human multijoint arm movement. Biological Cybernetics,
61(2), 1989.

[24] Ambra Bisio, Alessandra Sciutti, Francesco Nori, Giorgio Metta,
Luciano Fadiga, Giulio Sandini, and Thierry Pozzo. Motor contagion
during human-human and human-robot interaction. PLoS ONE, 9(8),
2014.

[25] Aleksandra Kupferberg, Stefan Glasauer, Markus Huber, Markus Rick-
ert, Alois Knoll, and Thomas Brandt. Biological movement increases
acceptance of humanoid robots as human partners in motor interaction.
Ai & Society, 26(4):339–345, 2011.

[26] B. Corteville, E. Aertbelien, H. Bruyninckx, J. De Schutter, and
H. Van Brussel. Human-inspired robot assistant for fast point-to-point
movements. In Proceedings 2007 IEEE International Conference on
Robotics and Automation, pages 3639–3644, 2007.

[27] Markus Huber, Markus Rickert, Alois Knoll, Thomas Brandt, and
Stefan Glasauer. Human-robot interaction in handing-over tasks. In
RO-MAN 2008 - The 17th IEEE International Symposium on Robot
and Human Interactive Communication, pages 107–112, 2008.

[28] Guoping Zhao, Maziar Ahmad Sharbafi, Mark Vlutters, Edwin van
Asseldonk, and Andre Seyfarth. Bio-inspired balance control assis-
tance can reduce metabolic energy consumption in human walking.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
27(9):1760–1769, 2019.

[29] Pauline Maurice, Meghan E. Huber, Neville Hogan, and Dagmar
Sternad. Velocity-curvature patterns limit human–robot physical inter-
action. IEEE Robotics and Automation Letters, 3(1):249–256, 2018.

[30] Stefanos Nikolaidis, David Hsu, and Siddhartha Srinivasa. Human-
robot mutual adaptation in collaborative tasks: Models and experi-
ments. The International Journal of Robotics Research, 36(5-7):618–
634, 2017.

[31] Anca Dragan and Siddhartha Srinivasa. Familiarization to robot
motion. Proceedings of the 2014 ACM/IEEE international conference
on Human-robot interaction, 2014.

[32] R.q. Van Der Linde and P. Lammertse. Hapticmaster – a generic
force controlled robot for human interaction. Industrial Robot: An
International Journal, 30(6):515–524, 2003.

[33] Dagmar Sternad. It’s not (only) the mean that matters: Variability,
noise and exploration in skill learning. Current Opinion in Behavioral
Sciences, 20:183–195, 2018.

[34] Richard A. Schmidt, Howard N. Zelaznik, Gabriele Wulf, Carolee J.
Winstein, and Timothy Donald Lee. Motor control and learning: A
behavioral emphasis. Human Kinetics, 2019.

[35] A Michael West, James Hermus, Meghan Huber, Pauline Maurice,
Dagmar Sternad, and Neville Hogan. Dynamic primitives limit human
force regulation during motion. IEEE Robotics and Automation
Letters, 2022.

[36] Robert W. Proctor. Stimulus-response compatibility: An integrated
perspective. North-Holland, 1990.

[37] M. Zhou, D.B. Jones, S.D. Schwaitzberg, and C.G.L. Cao. Role
of haptic feedback and cognitive load in surgical skill acquisition.
Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, 51(11):631–635, 2007.

[38] Cara E. Stepp, Brian T. Dellon, and Yoky Matsuoka. Contextual effects
on robotic experiments of sensory feedback for object manipulation.
In 2010 3rd IEEE RAS EMBS International Conference on Biomedical
Robotics and Biomechatronics, pages 58–63, 2010.
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