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Abstract
Immersive and mission-critical data-driven applica-

tions, such as virtual or augmented reality, tactile Inter-
net, industrial automation, and autonomous mobility, 
are creating unprecedented challenges for ultra-re-
liable and low-latency communication (URLLC) in 
the sixth generation (6G) networks. Machine intel-
ligence approaches deep learning, reinforcement 
learning, and federated learning (FL), to provide new 
paradigms to ensure 6G URLLC on the stream of 
big data training. However, classical limitations of 
machine learning capabilities make it challenging to 
achieve stringent 6G URLLC requirements. In this 
article, we investigate the potential of variational 
quantum computing and quantum machine learning 
(QML) for 6G URLLC by utilizing the advantage of 
quantum resources, such as superposition, entan-
glement, and quantum parallelism. The underlying 
idea is to integrate quantum machine intelligence 
with 6G networks to ensure stringent 6G URLLC 
requirements. As an example, we demonstrate the 
quantum approximate optimization algorithm for 
NP-hard URLLC task offloading optimization prob-
lems. The variational quantum computation for QML 
is also adopted in wireless networks to enhance the 
learning rate of machine intelligence and ensure the 
learning optimality for mission-critical applications. 
Considering the security and privacy issues, as well as 
computational-resource overheads in FL, distributed 
quantum computation in blind and remote fashions 
is further investigated for quantum-assisted FL. 

Introduction
Intelligent ultra-reliable and low-latency com-
munication (URLLC) is the crucial objective in 
applications enabled by the fifth/sixth generation 
(5G/6G) networks, such as telemedicine, tactile 
Internet, and virtual/augmented reality. It is envi-
sioned that 6G communication will provide a data 
rate of up to 1 Terabits per second and fully sup-
port mission-critical applications, such as high-pre-
cision robot control, which requires stringent 
end-to-end (E2E) latency and reliability. Although 
5G URLLC can ensure E2E delay up to 1 millisec-
ond, the highly dynamic nature of 6G networks 
presents unprecedented challenges in achieving 
various stringent requirements [1]. In this scenar-
io, the model-based tools are very useful in ana-
lyzing and optimizing the performance of wireless 
networks. However, due to non-convex optimiza-
tion problems and simplified assumptions in mod-
el-based methods, the required quality of service 
(QoS) in 6G cannot be assured. In recent years, 

it has been shown that the near-optimal solutions 
for complex systems can be obtained by utilizing 
deep learning (DL) technologies, such as deep 
neural networks (DNNs), deep reinforcement 
learning (DRL), and federated learning (FL) [2].

To date, considerable efforts have been devoted 
to taking the advantage of DL for intelligent wire-
less networks, such as DRL for open radio access 
network (O-RAN) slicing and resource allocation to 
ensure URLLC [3]. Although DL has the potential 
to learn complex systems, it is not straightforward 
to deploy DL technologies to ensure URLLC in 
highly dynamic communication systems. One of 
the major bottlenecks is the learning rate of DL 
models, which decreases with system dimensional-
ity and may violate stringent latency requirements 
of 6G networks. Furthermore, the learning optimal-
ity and computation-resource overheads in DRL 
and FL, respectively, limit the efficiency of classical 
machine learning (ML) models. These limitations 
make it challenging to deploy DL for 6G URLLC.

Quantum supremacy — an experimental demon-
stration that quantum computers outperform their 
classical counterpart — is one of the major milestones 
of the 21st century in computing science (see Fig. 1 
for quantum potentials). The advantages of quan-
tum computers have been shown decades ago in 
solving factorization problems by utilizing quantum 
resources, such as superposition and entanglement. 
Recently, quantum computing has been introduced 
in QML [5]. The QML integrates quantum comput-
ing with ML and gives birth to new ideas, such as the 
variational quantum eigensolver (VQE) and quan-
tum approximate optimization algorithm (QAOA), 
which have the potential to outperform classical 
ML for solving complex optimization problems, 
called quantum speedup [6]. For instance, Grover’s 
search algorithm and quantum Fourier transform 
can reduce computational complexity by a factor of 
√𝑁𝑁	 in comparison with their classical counterparts, 
where N denotes the number of data points [7].

In this article, we investigate the potential of 
quantum machine intelligence by utilizing the 
advantage of quantum speedup to ensure strin-
gent URLLC requirements in intelligent 6G net-
works. This work aims to outline the challenges 
and limitations of deploying DL for 6G URLLC and 
enlist possibilities given by the realm of QML in 
extremely dynamic wireless networks. In the follow-
ing section, we briefly overview the requirements 
of 6G URLLC, followed by the potential of recent 
advancements in DL, DRL, and FL for 6G URLLC, 
and we outline the limitations of classical ML in the 
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achievability of the stringent requirements. Follow-
ing that, we present the advantage of QML for 6G 
URLLC. In particular, we describe the potential of 
variational quantum algorithms (VQAs), quantum 
reinforcement learning (QRL), and quantum fed-
erated learning (QFL) for 6G applications. Further-
more, we demonstrate the numerical simulation 
results to show that the VQA and QAOA can sig-
nifi cantly reduce the learning time to achieve high 
throughput in wireless networks and perform opti-
mal decision making, respectively, to ensure strin-
gent E2E latency requirements. Lastly, we describe 
the challenges in quantum computing and give our 
concluding remarks.

InteLLIgent LeArnIng modeLs for 6g urLLc
For mission-critical applications, URLLC is one of 
the most challenging features of the next-gener-
ation (i.e., 6G) networks. The new technologies 
and applications for 6G networks have more strin-
gent requirements for E2E delay and reliability.

urLLc In 6g
Ultra-high Reliability: Ultra-high reliability is a sys-
tem of systems, which aims to enhance the reli-
ability of the network by going beyond traditional 
approaches. In 5G networks, URLLC aims to meet 
99.999% (fi ve-nines) reliability by using a plethora 
of channel coding, channel estimation, and pack-

FIGURE 1. Quantum potentials in communication and computation: counterfactual quantum cryptogra-
phy, full-duplex quantum communication, and distributed quantum computation. Counterfactual quan-
tum key distribution enables particle-free secret sharing to provide absolute randomness, security, and 
improved transmission quality. Quantum duplex coding allows remote parties to transmit one classical 
bit in each direction by means of counterfactual disentanglement, while the quantum telexchanging 
allows the exchange of one-qubit quantum information without using preshared entanglement and 
without transmitting any physical particle over the quantum channel. In addition, the quantum telecom-
putation enables Bob to perform quantum remote control (computing) at a distant party (Alice) in a 
cryptographic manner (see [4] and references therein).
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et duplication transmission techniques. Although 
reliability can be improved by retransmission, 
it increases the latency and sacrifices network 
resources. In practice, the reliability requirement 
varies from 10–7 to 10–3 based on the applica-
tions and services of the network. For instance, 
the emergence of 6G-based technologies, such 
as tactile Internet requires at least two folds of 
improvement as compared to 5G systems. Con-
ventionally, a network provides common config-
urations of URLLC requirements, which may lead 
to resource mismanagement. However, custom-
ized URLLC requirements increase the design 
complexity of networks [1].

Low Latency: 5G URLLC can ensure E2E delay 
up to 1 millisecond (ms). However, 6G-enabled 
technologies, such as high-precision robot control 
and autonomous vehicles require 0.1 ms latency 
but the 5G networks cannot fulfill this gap. The 
latency in radio access networks can be catego-
rized as user plane latency, control plane laten-
cy, and packet retransmission, where user plane 
latency denotes the total time required for transmit 
processing, packet transmission, and receive pro-
cessing, whereas control plane latency denotes 
transition delay from an inactive state to an active 
state. In addition, the E2E delay also includes the 
communication delay between various layers of 
the network. It is already well known that the 
cross-layer technologies significantly affect the 
latency and reliability of the network and require 
effective approaches for cross-layer optimization to 
ensure URLLC in 6G.

Deep Learning
Deep Neural Networks: The DNNs are a combi-
nation of basic structures, such as feed-forward, 
convolutional, and recurrent neural networks. In 
general, DNNs are used to approximate a func-
tion y = f(x, q) where x, y, and q are input, out-
put, and learning parameters. For example, the 
input/output in URLLC can be state-decision 
pairs obtained from the optimization algorithm, 
historic data of traffic loads, and trajectories of 
mobile users. In practice, DNNs are composed 
of many hidden layers where the DNN structure 
and the number of hidden layers depend on the 
type of data and required accuracy, respectively. 
Although model accuracy is enhanced by increas-
ing the number of hidden layers, it significantly 
increases the learning time, which may violate the 
low-latency requirement of 6G networks. Despite 
the long convergence time of DL models, DNNs 
and recent ML advances have shown the advan-
tages in solving and learning complex commu-
nication networks. DNNs can accurately model 
the communication systems by utilizing E2E opti-
mization. 6G URLLC requires effective signal pro-
cessing algorithms to deal with massive data and 
complex problems. In this scenario, DL can effi-
ciently tackle an enormous amount of data due to 
its parallel processing architecture and provide high 
accuracy in prediction and estimation problems.

Predictions in URLLC: The major advantage 
of DL over traditional ML techniques is the ability 
to tackle an enormous amount of data. Hence, 
DL plays a crucial role in solving physical and link 
layer problems. It can predict network topologies, 
such as channel information, the future behavior 
of communicating parties, and customized services 

to meet the high reliability and the stringent net-
work availability requirements in non-stationary 6G 
networks. DL has been widely used in wireless net-
works as follows [2]:
•	 The knowledge of channel state information 

(CSI) enables the development of efficient 
transmission, scheduling, and user-association 
schemes. In dense networks, it is more challeng-
ing to accurately estimate CSI. To overcome 
this challenge, recurrent and convolutional neu-
ral networks have been used to estimate CSI 
accurately and precisely, which can significantly 
reduce the packet loss probability and enhance 
the network reliability.

•	 In 6G URLLC, the E2E delay of 0.1 millisec-
onds and 1 million terminals/km2 will be cru-
cial in designing future technologies, such as 
industrial automation. To guarantee these strin-
gent requirements, the O-RAN with artificial 
intelligence (AI) has been proposed. The goal 
is achieved by designing DL models for opti-
mized traffic steering and load balancing, which 
prioritize the quality of experience (QoE) and 
QoS parameters.

•	 The analysis and controllability of mobile traf-
fic-flow data to achieve ultra-low latency and 
ultra-high reliability are other challenging tasks 
in 6G networks. The traditional traffic predic-
tion, such as Markov chain and autoregressive 
models mainly focuses on modeling the sta-
tionary flow characteristics. Neural networks 
with long short-term memory have been used 
to effectively predict peak values of traffic flow 
in the network.

Deep Reinforcement Learning
Reinforcement learning (RL) is a widely-used ML 
approach in AI, which learns from real-life experi-
ences. It has the capability to learn optimal policies 
to ensure URLLC in complex networks. However, 
the learning rate and exploration-exploitation bal-
ance are critical aspects for an RL agent [2].

Key Elements: RL trains an agent by direct 
interaction with the environment. At each time 
instant, the agent selects an action based on a 
policy p(a|st = s) where st denotes the state of 
the system at time instant t. After taking the action 
a, the agent observes the reward r and the next 
state st+1 of the system to update the action value 
functions that depict the long-term accumulated 
reward. For instance, the RL framework has been 
recently deployed to learn the optimal policy for 
resource allocation to ensure URLLC at a given 
data rate. In this model:
•	 The number of packets transmitted to each user 

and the average packet length for each user 
denote the state of the system.

•	 The number of resources assigned to each user 
represents the action taken by the agent at 
each time step.

•	 The data rate of each user denotes the reward 
observed by taking an action at time instant t.
Optimal Policy Learning: In RL, the main goal is 

to learn the optimal action-selection policy p*(a|s) 
to maximize the cumulative reward. In general, RL 
algorithms can be categorized as model-based and 
model-free, where the term “model” refers to the 
dynamics of the communication network. If the 
dynamics of the communication system are known, 
optimal policies to ensure URLLC can be learned 

Ultra-high reliability is 
a system of systems, 
which aims to enhance 
the reliability of the 
network by going 
beyond traditional 
approaches. In 5G 
networks, URLLC aims 
to meet 99.999% 
(five-nines) reliability 
by using a plethora 
of channel coding, 
channel estimation, 
and packet duplication 
transmission techniques
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by dynamic programming. However, as the num-
ber of users grows in the network, the state-action 
space increases exponentially, which significant-
ly reduces the learning rate of the agent and may 
violate the latency requirement of 6G networks. 
To overcome this challenge, actor-critic algorithms 
have been deployed in wireless networks to esti-
mate the state-action values and the policy by using 
DNNs and the policy gradient theorem. In wireless 
communication, many network problems can be 
solved by using RL, such as resource allocation, 
beamforming, and power control. In 6G networks, 
the major challenge is the learning rate of the RL 
agent to meet low-latency and high-rate require-
ments in massive non-stationary networks.

Federated Learning
In traditional learning and communication net-
works, it requires participating end nodes to 
transmit data samples to the central node to train 
the ML model, which may pose security/privacy 
issues and communication overheads. In this sce-
nario, decentralized learning, such as FL, can be a 
possible solution [8].

Key Steps: FL is a decentralized learning tech-
nique, which enables distributed devices to learn 
collaboratively without transmitting their data to 
the central node. The key steps of the FL training 
model are as follows:
•	 Each learning node uses its local samples to 

train the local ML model and transmits parame-
ters of the trained model to the central node.

•	 The central node integrates local models by 
performing model averaging and shares the 
global model with all learning nodes.
From the key steps of the training process, it can 

be seen that FL achieves privacy by allowing each 
learner to obtain learning parameters from locally 
available training data. Unlike centralized DL and 
DRL schemes, local training data is not shared with 
the central node. FL, thus, achieves privacy while 
overcoming the latency issues in the network.

Distributed Learning: FL enables learning nodes 
to reduce the unnecessary communication over-
head, which enables to achieve low latency in the 
network. The learning nodes learn the tail distribu-
tion of network-wide queues locally without sharing 
actual queue-length samples. Recently, FL has been 
deployed to achieve accurate learning of network 
queues by using the Lyapunov-based procedure 
for transmitting power and resource allocation in 
distributed nodes. This method shows a consider-
able reduction in queue lengths, which can grow 
beyond a predefined threshold in contemporary 
schemes. In addition, FL has been used in mobil-
ity prediction to estimate the future behavior of 
non-stationary communicating parties to ensure 
stringent URLLC requirements in 6G networks.

Limitations
Recent advances in ML, DL, and DRL have shown 
the potential to solve complex problems. However, 
the learning rate, learning optimality, and communi-
cation/computation overheads in classical ML and 
FL pose limitations to achieve stringent 6G URLLC 
requirements. This subsection highlights fundamen-
tal limitations of DL and DRL for 6G networks.

Learning Rates: Although DNNs have revolu-
tionized learning, prediction, and classification for 
complex systems, they require the large number 

of training samples to train the model as the num-
ber of hidden layers increases in neural networks. 
Furthermore, the increase in the number of cross 
layers to be optimized and the number of users 
in the network significantly increase the complex-
ity of optimization problems. For instance, in mas-
sive networks, resource allocation problems along 
with cross-layer optimization tend to transform into 
NP-hard optimization problems, which require long 
training time and high computation overheads. 
Although the DL model can be trained offline, due 
to non-stationary dynamics of the environment, this 
offline training leads to model mismatch. In this 
scenario, deep transfer learning can be a possible 
solution. The basic idea is to divide DNNs into two 
parts: first, pre-trained and second, post-trained, 
with fewer hidden layers. Although post-training of 
the second part may counter model mismatch the 
fewer hidden layers increase the prediction/estima-
tion error. These limitations of classical ML make 
it challenging to achieve stringent URLLC require-
ments in 6G networks. In this scenario, quantum 
neural networks (QNNs) have the potential to 
overcome these challenges.

Learning Optimality: In RL, the main goal of 
the agent is to learn the optimal policy directly 
from the interaction with the environment where 
the convergence time depends on the state-action 
space and the knowledge of the environment. In 
real-time implementations, the dimensionality of 
the state action pairs poses the following limitations 
on classical RL even in the best-case scenario (e.g., 
the dynamics of the environment are fully known):
•	 In classical RL, the policies are learned based on 

the state-action values, which require updating 
the state-action values for each pair. In commu-
nication networks, a high dimensional state-ac-
tion space limits the learning rate. Although DRL 
can generalize the estimation of state-action 
values by using DL, a widely-used deep policy 
gradient can learn deterministic policies only. It 
is well known that stochastic policies outperform 
deterministic policies. In quantum mechanics, 
the measurement outcomes of a quantum sys-
tem are stochastic in nature, which can learn the 
stochastic policies. In addition, the linear com-
bination of two or more quantum states rep-
resents a valid quantum state, which can update 
the state-value functions of multiple pairs in par-
allel — called quantum parallelism.

•	 In classical RL, the e -greedy policy is one of 
the most widely-used action-selection poli-
cies. Although e-greedy policy may create an 
exploration-exploitation balance, it dramatically 
changes the action-selection probabilities even 
for a fractional change in state-action values. 
Furthermore, the action-selection probabilities 
of the secondbest action and the worst action 
are the same in the e-greedy policy. In this sce-
nario, the Softmax actionselection approach 
can be used. However, it requires setting a tem-
perature parameter, which may not be easy to 
adjust with many parameters to be optimized. 
In contrast, quantum superposition states pro-
vide the perfect means to generate random 
numbers with smooth probability transitioning.
Computation Overheads: Distributed learning 

is one of the fastest-growing technologies, which 
can provide distributed storage and on-demand 
services via cloud computing. The 6G-enabled 

Recent advances in 
ML, DL, and DRL have 

shown the potential 
to solve complex 

problems. Howev-
er, the learning rate, 
learning optimality, 

and communication/
computation overheads 

in classical ML and 
FL pose limitations to 
achieve stringent 6G 
URLLC requirements
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technologies, such as augmented or virtual reality, 
are highly computation-intensive and data-sensitive. 
In this scenario, long-distance communication in 
cloud computing may not be able to ensure the 
stringent 6G URLLC requirements. Mobile edge 
computing (MEC) is a new paradigm to provide 
cloud computing at the network edge, which is 
closer to the mobile user. It can virtualize the cloud 
beyond the data center to meet latency, data sov-
ereignty, reliability, and interoperability require-
ments. However, the central problem is optimizing 
the network performance to achieve a better QoS 
for cloud computing by designing optimal task off-
loading and resource allocation. The combinatorial 
nature of task offloading and coupling of resource 
management increases the computational over-
head. The QAOA has the potential to exponential-
ly reduce the optimal-policy learning rate for task 
offloading and resource management in MEC (see 
Fig. 2 for exemplary illustration).

Computational Resources: It is envisioned that 
6G will revolutionize communication networks 
empowered by advances in AI, ML, and cloud 
computing. The traditional centralized ML technol-
ogies pose privacy-risk communication overheads 
to transmit training data to the central node with its 
data aggregation problem. In this scenario, FL can 
provide a decentralized solution, which enables 
participating nodes to collaboratively train a learn-
ing model using their local samples. The participat-
ing nodes only update training parameters of the 
DNN instead of transmitting their local data to the 
central node. However, each participating node 
requires enough computational resources to train 
the DNN corresponding to their own local sam-
ples. In quantum information theory, blind com-

putation allows each participating node to use the 
quantum computational resources of the central 
node without revealing their training data.

Quantum Learning for 6G URLLC
VQAs are a class of quantum-classical hybrid algo-
rithms that can be implemented on NISQ devices 
to gain quantum advantages in the near future. 
To implement the VQA, a quantum computer 
is initialized with a parametrized quantum state 
|�(q), where q is a tunable parameter to be opti-
mized on a classical computer. The quantum pro-
cessor evaluates the expectation value of � (q)| 
H|�(q), where H is the problem-base Hamiltoni-
an. The function H determines the expectation 
of the minimum value of the initial quantum state 
with respect to the Hamiltonian. The process of 
measuring on the quantum computer and send-
ing the parameter to be optimized on the classical 
computer is repeated many times until it converg-
es to the optimal value.

Quantum Approximate Optimization Algorithms
QAOA is a type of VQAs, which can solve combi-
natorial problems and is one of the most import-
ant candidates to achieve quantum advantages in 
real-world optimization problems. The combinato-
rial problems require finding an optimal solution 
from a finite set of possible solutions. In general, 
as the system dimensionality grows, it increases 
the problem complexity and difficulty in finding 
the optimal solution. The quantum algorithms, 
such as the VQE and QAOA approximate reason-
ably high-quality solutions [9].

The QAOA is a quantum-classical hybrid 
model that utilizes NISQ devices to evaluate the 

FIGURE 2. Quantum-classical hybrid computing for a small exemplary URLLC task offloading problem. 
The task offloading optimization is cast as an NP-hard combinatorial optimization problem with a linear 
URLLC cost function and is simply formulated as the routing problem in [9]. QAOA is a general-pur-
pose algorithm that can solve combinatorial optimization problems, such as max-cut, wireless schedul-
ing, vehicle routing, data analysis, and ML problems on NISQ computers.
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objective function and utilizes a classical optimiz-
er to update its trial solution. The solution quality 
depends on variational parameters obtained by 
the classical optimizer and circuit depth (Fig. 3). In 
wireless networks, efficient and intelligent sched-
uling is required to meet the stringent URLLC 
requirements. However, it requires NP-hard heu-
ristics to design an efficient scheduler. To take 
advantage of quantum algorithms, scheduling can 

be formulated as combinational problems and 
the QAOA can be used to ensure URLLC in 6G 
networks, which has the potential to reduce the 
computational overhead in task offloading and 
resource management problems in MEC [10].

Quantum Neural Networks
The QNNs are a subclass of VQAs comprising 
quantum circuits that contain parameterized 

FIGURE 3. Case Study I: (n, ℓ)-QAOA variational quantum computation for the (4, 2)-offloading problem to 
minimize total URLLC cost in Fig. 2, where n and ℓ are the numbers of qubits and circuit layers, respec-
tively. The POWELL optimizer is used for classical optimization to update the variational parameters g 
and b for cost Hamiltonian Hc and mixer Hamiltonian Hm, respectively. The decision probability of opti-
mal offloading is obtained by using 2,000 experiments (runs) when the number (depth) of circuit layers 
is equal to ℓ = 1, 2, 3, 4, 5 (top left). For 5 layers (ℓ = 5), the QAOA finds two optimal offloading routes 
(total URLLC cost of 11) among 212 options with the probability of 0.9. By using again 2,000 experi-
ments for ℓ = 5, the average total URLLC cost and optimal offloading probability are depicted as a func-
tion of epochs (top right) along with the decision probability for all 212 offloading indices (bottom plot).
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gate operations [11]. QNNs utilize quantum 
bits instead of the classical bits and benefit from 
unique properties of quantum mechanics, such 
as quantum superposition and entanglement. The 
6G networks become highly heterogeneous with 
different terminal users and base stations. This het-
erogeneity tends to complicate network design 
and ultra-reliable communication protocols. Fur-
thermore, due to the low-latency constraint in 6G 
URLLC, the base station may not have enough 
time to acquire CSI of the corresponding devic-
es and transmit high-priority data packets with-
out CSI. QNNs have the potential to reduce the 
computational complexity of dynamical channel 
allocation and solve the complex network design 
to achieve low latency and ultra-reliability (Fig. 4).

Quantum Reinforcement Learning
Quantum Simulation for Model-Based RL: It is 
well known that knowledge of the environment 
can significantly speed up the learning rate of the 
agent, which plays an important role in meeting 

URLLC requirements in RL-assisted 6G technolo-
gies. In this context, quantum simulation has the 
potential to exponentially enhance the learning 
rate by taking advantage of quantum superposi-
tion and entanglement. Due to high computation-
al capabilities of quantum computers, QRL has 
the potential to ensure stringent URLLC require-
ments in real-time learning. To take the quantum 
advantage in RL, an agent can deploy quantum 
simulation to enhance the learning rate subject 
to high reliability, low latency, and efficient power 
consumption [13] as follows:
•	 In QRL, an agent can simulate the dynamics 

of a communication network on a quantum 
computer. In contrast to classical RL, an agent 
can take advantage of quantum superposition. 
It allows an agent to take all possible actions 
a  A(s) in parallel, which enable the agent 
to update state-action values Q(s, a) for all a 
simultaneously, where A(s) denotes the set 
of all possible actions for a given state s. The 
agent stores the policy p(a|s) in qubits |as= 

FIGURE 4. Case Study II: (m, n, ℓ)-QNN variational quantum computation for power allocation in wireless 
networks with a setup as in [12] for 10 users where m denotes the number of quantum Keras layers, 
whereas n and ℓ denote the numbers of qubits and circuit layers in each quantum Keras layer, respec-
tively. We use a quantum-classical hybrid model with a learning rate of 0.0005 and a batch size of 30 
to optimize the sum rate by learning the optimal policy for power allocation in the network. A data 
set of channel matrices, along with optimal power sets, are generated to train our hybrid model. The 
training data is inputted to convolutional dense layers to formulate our input for the (m, n, ℓ)-quantum 
circuit. As the qubit number n and the circuit layers ℓ increase, the mean square error (MSE) in power 
allocation decreases significantly with the enhanced learning rate, which increases the sum rate due to 
this quantum speedup. For training the hybrid model, we have implemented the quantum circuit on a 
quantum simulator, which utilizes classical resources to simulate quantum computing. Due to this lim-
itation, we have set the number of quantum Keras layers to m = 1 for simplicity.
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Sba|a and simulate the dynamics of a commu-
nication network with action |as and state |s.

•	 As the agent knows the dynamics of a commu-
nication network, it can design the oracle func-
tion Ue such that it transforms |a to –|a for 
all a with the reward r > 0, where e denotes the 
environment. Now the agent iterates the policy 
by performing Grover’s iteration Uas to amplify 
the selection probabilities of good actions. 
Note that in both approaches, the policy is rep-

resented by a quantum state, which is stochastic 
in nature and enables the agent to learn optimal 
stochastic policies. To take action in real-time appli-
cations, the agent measures the learned policy |as 
for given s in computational basis |a, observes 
the measurement outcome a with probability 
|ba|2, and takes action a. As the policy is perfectly 
known at each time step, it can be cloned such 
that the learned policy is not destroyed.

QRL for Resource Management: Resource 
allocation is one of the most important tasks in 
wireless networks, which requires RL techniques 
to efficiently learn optimal policies. The QRL 
has the potential to enhance the learning rate. 
However, the quantum-assisted RL techniques 
require knowledge of the environment. Further-
more, 6G networks are non-stationary due to the 
high mobility of participating parties. To encoun-
ter the model mismatch problem, we can divide 
the QRL system into two parts. In the first part, 
QNN can be used to update the dynamics of the 
communication network at each step. In the sec-
ond part, the quantum simulator can be used to 
simulate the learned dynamics and find the opti-
mal policies to ensure URLLC. Due to the known 
dynamics of the communication, the learned opti-
mal policies can be validated by using quantum 
benchmarking to ensure QoE and QoS subject to 
stringent URLLC requirements.

Recently, QRL has been used to learn a real-
time optimal resource management policy [14]. 
It has been shown that the QRL can reduce the 
computational complexity of the optimal-policy 
learning problems. As optimal-policy learning can 
be formulated as a search problem in state-action 
space, Grover’s policy iteration approach reduces 
the computational complexity of an RL agent by 
a factor of

!𝑁𝑁!𝑁𝑁"	
where Ns and Na denote the number of possible 
states and actions, respectively [14].

Quantum Federated Learning
Quantum-enabled FL provides a possible solution 
to the problem of distributed processing power 
required for conventional FL. By taking advantage 
of quantum resources, such as quantum entan-
glement, QFL allows a client to perform quantum 
computation on a remote server without reveal-
ing input and output data to the server — called 
blind quantum computation [15]. This allows QFL 
to learn from distributed data by using computa-
tional resources of the central node only under 
quantum-safe security and privacy. Recently, blind 
quantum computation has been proposed to 
allow a client node to execute quantum compu-
tation using one or more remote quantum servers 
while keeping the structure of the computation 
hidden along with input and output data.

Although the primary task of FL is to ensure 
the privacy of the data, blind quantum computa-
tion protocols allow the client node to verify the 
operations being performed by the central node 
or its data. In addition, blind quantum computation 
allows unconditional security against any adversary 
on the channel between two nodes by utilizing 
principles of quantum mechanics, such as quantum 
non-locality and quantum non-cloning theorem. 
Therefore, the blind quantum computation tech-
nology takes the advantage of both conventional 
centralized learning and FL without compromising 
the security and privacy of data. In FL-assisted 6G 
URLLC applications, due to data sensitivity, QFL 
provides a key resource to address limitations of 
classical FL in the following manners:
•	 QFL mimics conventional central learning sys-

tems, which enhance the learning rate due to 
a single processing node. In contrast, QFL sig-
nificantly reduces communication overhead 
as it does not require transmission of training 
samples to the central node.

•	 In QFL, the server takes advantage of QNNs 
to further enhance the learning rate to ensure 
stringent URLLC in 6G networks.

Challenges and Research Directions
Quantum machine intelligence provides unprec-
edented tools, such as VQAs, QRL, and QFL to 
enhance the learning rate and ensure stringent 
URLLC as well as quantum-safe security in 6G net-
works. However, quantum technologies are still in 
their infancy. For instance, state-of-the-art quan-
tum computers have a limited number of qubits 
and require strictly controlled environments. The 
ongoing research is developing a pathway toward 
NISQ devices, which can play an important role 
in edge quantum learning.

Quantum Noise and Error Mitigation
Quantum error correction (QEC) is one of the 
key elements in achieving fault-tolerant quantum 
computing. Classical error correction schemes 
can achieve unprecedented levels of reliability in 
classical computing, whereas QEC codes, such as 
stabilizer coders are fairly limited. Quantum error 
mitigation provides alternate means to counter 
quantum noises by designing hardware-aware 
qubit control and pulse reshaping methodologies.

Distributed Quantum Learning and Communication
In FL, communication architecture plays an 
important role in enhancing the learning capa-
bility of the system. Recently, quantum commu-
nication has been attempted at the terahertz 
band. However, the limited performance of opti-
cal-to-terahertz converters may significantly affect 
the QFL efficiency. Dedicated optical fiber links 
are required between server and client nodes to 
exchange quantum information.
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