INTELLIGENT ULTRA-RELIABLE & LOW-LATENCY COMMUNICATIONS

ABSTRACT

Immersive and mission-critical data-driven applica-
tions, such as virtual or augmented reality, tactile Inter-
net, industrial automation, and autonomous mobility,
are creating unprecedented challenges for ultra-re-
liable and low-latency communication (URLLC) in
the sixth generation (6G) networks. Machine intel-
ligence approaches deep learning, reinforcement
learning, and federated learning (FL), to provide new
paradigms to ensure 6G URLLC on the stream of
big data training. However, classical limitations of
machine learning capabilities make it challenging to
achieve stringent 6G URLLC requirements. In this
article, we investigate the potential of variational
quantum computing and quantum machine learning
(QML) for 6G URLLC by utilizing the advantage of
quantum resources, such as superposition, entan-
glement, and quantum parallelism. The underlying
idea is to integrate quantum machine intelligence
with 6G networks to ensure stringent 6G URLLC
requirements. As an example, we demonstrate the
quantum approximate optimization algorithm for
NP-hard URLLC task offloading optimization prob-
lems. The variational quantum computation for QML
is also adopted in wireless networks to enhance the
learning rate of machine intelligence and ensure the
learning optimality for mission-critical applications.
Considering the security and privacy issues, as well as
computationalresource overheads in FL, distributed
quantum computation in blind and remote fashions
is further investigated for quantum-assisted FL.

INTRODUCTION

Intelligent ultra-reliable and low-latency com-
munication (URLLC) is the crucial objective in
applications enabled by the fifth/sixth generation
(5G/6G) networks, such as telemedicine, tactile
Internet, and virtual/augmented reality. It is envi-
sioned that 6G communication will provide a data
rate of up to 1 Terabits per second and fully sup-
port mission-critical applications, such as high-pre-
cision robot control, which requires stringent
end-to-end (E2E) latency and reliability. Although
5G URLLC can ensure E2E delay up to 1 millisec-
ond, the highly dynamic nature of 6G networks
presents unprecedented challenges in achieving
various stringent requirements [1]. In this scenar-
io, the model-based tools are very useful in ana-
lyzing and optimizing the performance of wireless
networks. However, due to non-convex optimiza-
tion problems and simplified assumptions in mod-
el-based methods, the required quality of service
(QoS) in 6G cannot be assured. In recent years,
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it has been shown that the near-optimal solutions
for complex systems can be obtained by utilizing
deep learning (DL) technologies, such as deep
neural networks (DNNs), deep reinforcement
learning (DRL), and federated learning (FL) [2].

To date, considerable efforts have been devoted
to taking the advantage of DL for intelligent wire-
less networks, such as DRL for open radio access
network (O-RAN) slicing and resource allocation to
ensure URLLC [3]. Although DL has the potential
to learn complex systems, it is not straightforward
to deploy DL technologies to ensure URLLC in
highly dynamic communication systems. One of
the major bottlenecks is the learning rate of DL
models, which decreases with system dimensional-
ity and may violate stringent latency requirements
of 6G networks. Furthermore, the learning optimal-
ity and computation-resource overheads in DRL
and FL, respectively, limit the efficiency of classical
machine learning (ML) models. These limitations
make it challenging to deploy DL for 6G URLLC.

Quantum supremacy — an experimental demon-
stration that quantum computers outperform their
classical counterpart — is one of the major milestones
of the 21st century in computing science (see Fig. 1
for quantum potentials). The advantages of quan-
tum computers have been shown decades ago in
solving factorization problems by utilizing quantum
resources, such as superposition and entanglement.
Recently, quantum computing has been introduced
in QML [5]. The QML integrates quantum comput-
ing with ML and gives birth to new ideas, such as the
variational quantum eigensolver (VQE) and quan-
tum approximate optimization algorithm (QAOA),
which have the potential to outperform classical
ML for solving complex optimization problems,
called quantum speedup [6]. For instance, Grover’s
search algorithm and quantum Fourier transform
can reduce computational complexity by a factor of

N in comparison with their classical counterparts,
where N denotes the number of data points [7].

In this article, we investigate the potential of
quantum machine intelligence by utilizing the
advantage of quantum speedup to ensure strin-
gent URLLC requirements in intelligent 6G net-
works. This work aims to outline the challenges
and limitations of deploying DL for 6G URLLC and
enlist possibilities given by the realm of QML in
extremely dynamic wireless networks. In the follow-
ing section, we briefly overview the requirements
of 6G URLLC, followed by the potential of recent
advancements in DL, DRL, and FL for 6G URLLC,
and we outline the limitations of classical ML in the
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FIGURE 1. Quantum potentials in communication and computation: counterfactual quantum cryptogra-
phy, full-duplex quantum communication, and distributed quantum computation. Counterfactual quan-
tum key distribution enables particle-free secret sharing to provide absolute randomness, security, and
improved transmission quality. Quantum duplex coding allows remote parties to transmit one classical
bit in each direction by means of counterfactual disentanglement, while the quantum telexchanging
allows the exchange of one-qubit quantum information without using preshared entanglement and
without transmitting any physical particle over the quantum channel. In addition, the quantum telecom-
putation enables Bob to perform quantum remote control (computing) at a distant party (Alice) in a
cryptographic manner (see [4] and references therein).

achievability of the stringent requirements. Follow-
ing that, we present the advantage of QML for 6G
URLLC. In particular, we describe the potential of
variational quantum algorithms (VQAs), quantum
reinforcement learning (QRL), and quantum fed-
erated learning (QFL) for 6G applications. Further-
more, we demonstrate the numerical simulation
results to show that the VQA and QAOA can sig-
nificantly reduce the learning time to achieve high
throughput in wireless networks and perform opti-
mal decision making, respectively, to ensure strin-
gent E2E latency requirements. Lastly, we describe
the challenges in quantum computing and give our
concluding remarks.

INTELLIGENT LEARNING MoDELS FOR 6G URLLC

For mission-critical applications, URLLC is one of
the most challenging features of the next-gener-
ation (i.e., 6G) networks. The new technologies
and applications for 6G networks have more strin-
gent requirements for E2E delay and reliability.

URLLC v 6G
Ultra-high Reliability: Ultra-high reliability is a sys-
tem of systems, which aims to enhance the reli-
ability of the network by going beyond traditional
approaches. In 5G networks, URLLC aims to meet
99.999% (five-nines) reliability by using a plethora
of channel coding, channel estimation, and pack-
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et duplication transmission techniques. Although
reliability can be improved by retransmission,
it increases the latency and sacrifices network
resources. In practice, the reliability requirement
varies from 1077 to 103 based on the applica-
tions and services of the network. For instance,
the emergence of 6G-based technologies, such
as tactile Internet requires at least two folds of
improvement as compared to 5G systems. Con-
ventionally, a network provides common config-
urations of URLLC requirements, which may lead
to resource mismanagement. However, custom-
ized URLLC requirements increase the design
complexity of networks [1].

Low Latency: 5G URLLC can ensure E2E delay
up to 1 millisecond (ms). However, 6G-enabled
technologies, such as high-precision robot control
and autonomous vehicles require 0.1 ms latency
but the 5G networks cannot fulfill this gap. The
latency in radio access networks can be catego-
rized as user plane latency, control plane laten-
cy, and packet retransmission, where user plane
latency denotes the total time required for transmit
processing, packet transmission, and receive pro-
cessing, whereas control plane latency denotes
transition delay from an inactive state to an active
state. In addition, the E2E delay also includes the
communication delay between various layers of
the network. It is already well known that the
cross-layer technologies significantly affect the
latency and reliability of the network and require
effective approaches for cross-layer optimization to
ensure URLLC in 6G.

DEEP LEARNING

Deep Neural Networks: The DNNs are a combi-
nation of basic structures, such as feed-forward,
convolutional, and recurrent neural networks. In
general, DNNs are used to approximate a func-
tion y = ¢(x, B) where x, y, and 8 are input, out-
put, and learning parameters. For example, the
input/output in URLLC can be state-decision
pairs obtained from the optimization algorithm,
historic data of traffic loads, and trajectories of
mobile users. In practice, DNNs are composed
of many hidden layers where the DNN structure
and the number of hidden layers depend on the
type of data and required accuracy, respectively.
Although model accuracy is enhanced by increas-
ing the number of hidden layers, it significantly
increases the learning time, which may violate the
low-latency requirement of 6G networks. Despite
the long convergence time of DL models, DNNs
and recent ML advances have shown the advan-
tages in solving and learning complex commu-
nication networks. DNNs can accurately model
the communication systems by utilizing E2E opti-
mization. 6G URLLC requires effective signal pro-
cessing algorithms to deal with massive data and
complex problems. In this scenario, DL can effi-
ciently tackle an enormous amount of data due to
its parallel processing architecture and provide high
accuracy in prediction and estimation problems.
Predictions in URLLC: The major advantage
of DL over traditional ML techniques is the ability
to tackle an enormous amount of data. Hence,
DL plays a crucial role in solving physical and link
layer problems. It can predict network topologies,
such as channel information, the future behavior
of communicating parties, and customized services

to meet the high reliability and the stringent net-

work availability requirements in non-stationary 6G

networks. DL has been widely used in wireless net-

works as follows [2]:

+ The knowledge of channel state information
(CSI) enables the development of efficient
transmission, scheduling, and user-association
schemes. In dense networks, it is more challeng-
ing to accurately estimate CSI. To overcome
this challenge, recurrent and convolutional neu-
ral networks have been used to estimate CSlI
accurately and precisely, which can significantly
reduce the packet loss probability and enhance
the network reliability.

* In 6G URLLC, the E2E delay of 0.1 millisec-
onds and 1 million terminals/km2 will be cru-
cial in designing future technologies, such as
industrial automation. To guarantee these strin-
gent requirements, the O-RAN with artificial
intelligence (Al) has been proposed. The goal
is achieved by designing DL models for opti-
mized traffic steering and load balancing, which
prioritize the quality of experience (QoE) and
QoS parameters.

+ The analysis and controllability of mobile traf-
fic-flow data to achieve ultra-low latency and
ultra-high reliability are other challenging tasks
in 6G networks. The traditional traffic predic-
tion, such as Markov chain and autoregressive
models mainly focuses on modeling the sta-
tionary flow characteristics. Neural networks
with long short-term memory have been used
to effectively predict peak values of traffic flow
in the network.

DEEP REINFORCEMENT LEARNING

Reinforcement learning (RL) is a widely-used ML
approach in Al, which learns from reallife experi-
ences. It has the capability to learn optimal policies
to ensure URLLC in complex networks. However,
the learning rate and exploration-exploitation bal-
ance are critical aspects for an RL agent [2].

Key Elements: RL trains an agent by direct
interaction with the environment. At each time
instant, the agent selects an action based on a
policy n(a|s; = s) where s; denotes the state of
the system at time instant t. After taking the action
a, the agent observes the reward r and the next
state s of the system to update the action value
functions that depict the long-term accumulated
reward. For instance, the RL framework has been
recently deployed to learn the optimal policy for
resource allocation to ensure URLLC at a given
data rate. In this model:

+ The number of packets transmitted to each user
and the average packet length for each user
denote the state of the system.

+ The number of resources assigned to each user
represents the action taken by the agent at
each time step.

+ The data rate of each user denotes the reward
observed by taking an action at time instant t.
Optimal Policy Learning: In RL, the main goal is

to learn the optimal action-selection policy n*(a|s)

to maximize the cumulative reward. In general, RL
algorithms can be categorized as model-based and
model-free, where the term “model” refers to the
dynamics of the communication network. If the
dynamics of the communication system are known,
optimal policies to ensure URLLC can be learned
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by dynamic programming. However, as the num-
ber of users grows in the network, the state-action
space increases exponentially, which significant-
ly reduces the learning rate of the agent and may
violate the latency requirement of 6G networks.
To overcome this challenge, actor-critic algorithms
have been deployed in wireless networks to esti-
mate the state-action values and the policy by using
DNNs and the policy gradient theorem. In wireless
communication, many network problems can be
solved by using RL, such as resource allocation,
beamforming, and power control. In 6G networks,
the major challenge is the learning rate of the RL
agent to meet low-latency and high-rate require-
ments in massive non-stationary networks.

FEDERATED LEARNING

In traditional learning and communication net-
works, it requires participating end nodes to
transmit data samples to the central node to train
the ML model, which may pose security/privacy
issues and communication overheads. In this sce-

nario, decentralized learning, such as FL, can be a

possible solution [8].

Key Steps: FL is a decentralized learning tech-
nique, which enables distributed devices to learn
collaboratively without transmitting their data to
the central node. The key steps of the FL training
model are as follows:

+ Each learning node uses its local samples to
train the local ML model and transmits parame-
ters of the trained model to the central node.

+ The central node integrates local models by
performing model averaging and shares the
global model with all learning nodes.

From the key steps of the training process, it can
be seen that FL achieves privacy by allowing each
learner to obtain learning parameters from locally
available training data. Unlike centralized DL and
DRL schemes, local training data is not shared with
the central node. FL, thus, achieves privacy while
overcoming the latency issues in the network.

Distributed Learning: FL enables learning nodes
to reduce the unnecessary communication over-
head, which enables to achieve low latency in the
network. The learning nodes learn the tail distribu-
tion of network-wide queues locally without sharing
actual queue-length samples. Recently, FL has been
deployed to achieve accurate learning of network
queues by using the Lyapunov-based procedure
for transmitting power and resource allocation in
distributed nodes. This method shows a consider-
able reduction in queue lengths, which can grow
beyond a predefined threshold in contemporary
schemes. In addition, FL has been used in mobil-
ity prediction to estimate the future behavior of
non-stationary communicating parties to ensure
stringent URLLC requirements in 6G networks.

LIMITATIONS

Recent advances in ML, DL, and DRL have shown
the potential to solve complex problems. However,
the learning rate, learning optimality, and communi-
cation/computation overheads in classical ML and
FL pose limitations to achieve stringent 6G URLLC
requirements. This subsection highlights fundamen-
tal limitations of DL and DRL for 6G networks.
Learning Rates: Although DNNs have revolu-
tionized learning, prediction, and classification for
complex systems, they require the large number

of training samples to train the model as the num-
ber of hidden layers increases in neural networks.
Furthermore, the increase in the number of cross
layers to be optimized and the number of users
in the network significantly increase the complex-
ity of optimization problems. For instance, in mas-
sive networks, resource allocation problems along
with cross-ayer optimization tend to transform into
NP-hard optimization problems, which require long
training time and high computation overheads.
Although the DL model can be trained offline, due
to non-stationary dynamics of the environment, this
offline training leads to model mismatch. In this
scenario, deep transfer learning can be a possible
solution. The basic idea is to divide DNNs into two
parts: first, pre-trained and second, post-trained,
with fewer hidden layers. Although post-training of
the second part may counter model mismatch the
fewer hidden layers increase the prediction/estima-
tion error. These limitations of classical ML make
it challenging to achieve stringent URLLC require-
ments in 6G networks. In this scenario, quantum
neural networks (QNNs) have the potential to
overcome these challenges.

Learning Optimality: In RL, the main goal of
the agent is to learn the optimal policy directly
from the interaction with the environment where
the convergence time depends on the state-action
space and the knowledge of the environment. In
real-time implementations, the dimensionality of
the state action pairs poses the following limitations
on classical RL even in the best-case scenario (e.g.,
the dynamics of the environment are fully known):
+ In classical RL, the policies are learned based on

the state-action values, which require updating
the state-action values for each pair. In commu-
nication networks, a high dimensional state-ac-
tion space limits the learning rate. Although DRL
can generalize the estimation of state-action
values by using DL, a widely-used deep policy
gradient can learn deterministic policies only. It
is well known that stochastic policies outperform
deterministic policies. In quantum mechanics,
the measurement outcomes of a quantum sys-
tem are stochastic in nature, which can learn the
stochastic policies. In addition, the linear com-
bination of two or more quantum states rep-
resents a valid quantum state, which can update
the state-value functions of multiple pairs in par-
allel — called quantum parallelism.

* In classical RL, the e-greedy policy is one of
the most widely-used action-selection poli-
cies. Although e-greedy policy may create an
exploration-exploitation balance, it dramatically
changes the action-selection probabilities even
for a fractional change in state-action values.
Furthermore, the action-selection probabilities
of the secondbest action and the worst action
are the same in the e-greedy policy. In this sce-
nario, the Softmax actionselection approach
can be used. However, it requires setting a tem-
perature parameter, which may not be easy to
adjust with many parameters to be optimized.
In contrast, quantum superposition states pro-
vide the perfect means to generate random
numbers with smooth probability transitioning.
Computation Overheads: Distributed learning

is one of the fastest-growing technologies, which

can provide distributed storage and on-demand
services via cloud computing. The 6G-enabled
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problems. Howev-
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learning optimality,
and communication/
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in classical ML and

FL pose limitations to
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FIGURE 2. Quantum-classical hybrid computing for a small exemplary URLLC task offloading problem.
The task offloading optimization is cast as an NP-hard combinatorial optimization problem with a linear
URLLC cost function and is simply formulated as the routing problem in [9]. QAOA is a general-pur-
pose algorithm that can solve combinatorial optimization problems, such as max-cut, wireless schedul-
ing, vehicle routing, data analysis, and ML problems on NISQ computers.

technologies, such as augmented or virtual reality,
are highly computation-intensive and data-sensitive.
In this scenario, long-distance communication in
cloud computing may not be able to ensure the
stringent 6G URLLC requirements. Mobile edge
computing (MEC) is a new paradigm to provide
cloud computing at the network edge, which is
closer to the mobile user. It can virtualize the cloud
beyond the data center to meet latency, data sov-
ereignty, reliability, and interoperability require-
ments. However, the central problem is optimizing
the network performance to achieve a better QoS
for cloud computing by designing optimal task off-
loading and resource allocation. The combinatorial
nature of task offloading and coupling of resource
management increases the computational over-
head. The QAOA has the potential to exponential-
ly reduce the optimal-policy learning rate for task
offloading and resource management in MEC (see
Fig. 2 for exemplary illustration).

Computational Resources: It is envisioned that
6G will revolutionize communication networks
empowered by advances in Al, ML, and cloud
computing. The traditional centralized ML technol-
ogies pose privacy-risk communication overheads
to transmit training data to the central node with its
data aggregation problem. In this scenario, FL can
provide a decentralized solution, which enables
participating nodes to collaboratively train a learn-
ing model using their local samples. The participat-
ing nodes only update training parameters of the
DNN instead of transmitting their local data to the
central node. However, each participating node
requires enough computational resources to train
the DNN corresponding to their own local sam-
ples. In quantum information theory, blind com-

putation allows each participating node to use the
quantum computational resources of the central
node without revealing their training data.

QUANTUM LEARNING FOR 6G URLLC

VQAs are a class of quantum-classical hybrid algo-
rithms that can be implemented on NISQ devices
to gain quantum advantages in the near future.
To implement the VQA, a quantum computer
is initialized with a parametrized quantum state
[%(0)), where 0 is a tunable parameter to be opti-
mized on a classical computer. The quantum pro-
cessor evaluates the expectation value of (y (0) |
H|y(0)), where H is the problem-base Hamiltoni-
an. The function (H) determines the expectation
of the minimum value of the initial quantum state
with respect to the Hamiltonian. The process of
measuring on the quantum computer and send-
ing the parameter to be optimized on the classical
computer is repeated many times until it converg-
es to the optimal value.

QUANTUM APPROXIMATE OPTIMIZATION ALGORITHMS
QAOA is a type of VQAs, which can solve combi-
natorial problems and is one of the most import-
ant candidates to achieve quantum advantages in
real-world optimization problems. The combinato-
rial problems require finding an optimal solution
from a finite set of possible solutions. In general,
as the system dimensionality grows, it increases
the problem complexity and difficulty in finding
the optimal solution. The quantum algorithms,
such as the VQE and QAOA approximate reason-
ably high-quality solutions [9].

The QAOA is a quantum-classical hybrid
model that utilizes NISQ devices to evaluate the
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FIGURE 3. Case Study I: (n, £)-QAOA variational quantum computation for the (4, 2)-offloading problem to
minimize total URLLC cost in Fig. 2, where n and ¢ are the numbers of qubits and circuit layers, respec-
tively. The POWELL optimizer is used for classical optimization to update the variational parameters y
and B for cost Hamiltonian H. and mixer Hamiltonian H,,, respectively. The decision probability of opti-
mal offloading is obtained by using 2,000 experiments (runs) when the number (depth) of circuit layers
isequalto £ =1, 2,3, 4,5 (top left). For 5 layers (¢ = 5), the QAOA finds two optimal offloading routes
(total URLLC cost of 11) among 212 options with the probability of 0.9. By using again 2,000 experi-
ments for ¢ = 5, the average total URLLC cost and optimal offloading probability are depicted as a func-
tion of epochs (top right) along with the decision probability for all 212 offloading indices (bottom plot).

objective function and utilizes a classical optimiz-
er to update its trial solution. The solution quality
depends on variational parameters obtained by
the classical optimizer and circuit depth (Fig. 3). In
wireless networks, efficient and intelligent sched-
uling is required to meet the stringent URLLC
requirements. However, it requires NP-hard heu-
ristics to design an efficient scheduler. To take
advantage of quantum algorithms, scheduling can

be formulated as combinational problems and
the QAOA can be used to ensure URLLC in 6G
networks, which has the potential to reduce the
computational overhead in task offloading and
resource management problems in MEC [10].

QUANTUM NEURAL NETWORKS
The QNNs are a subclass of VQAs comprising
quantum circuits that contain parameterized
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FIGURE 4. Case Study II: (m, n, £)-QNN variational quantum computation for power allocation in wireless
networks with a setup as in [12] for 10 users where m denotes the number of quantum Keras layers,
whereas n and ¢ denote the numbers of qubits and circuit layers in each quantum Keras layer, respec-
tively. We use a quantum-classical hybrid model with a learning rate of 0.0005 and a batch size of 30
to optimize the sum rate by learning the optimal policy for power allocation in the network. A data
set of channel matrices, along with optimal power sets, are generated to train our hybrid model. The
training data is inputted to convolutional dense layers to formulate our input for the (m, n, £)-quantum
circuit. As the qubit number n and the circuit layers ¢ increase, the mean square error (MSE) in power
allocation decreases significantly with the enhanced learning rate, which increases the sum rate due to
this quantum speedup. For training the hybrid model, we have implemented the quantum circuit on a
quantum simulator, which utilizes classical resources to simulate quantum computing. Due to this lim-
itation, we have set the number of quantum Keras layers to m = 1 for simplicity.

gate operations [11]. QNNs utilize quantum
bits instead of the classical bits and benefit from
unique properties of quantum mechanics, such
as quantum superposition and entanglement. The
6G networks become highly heterogeneous with
different terminal users and base stations. This het-
erogeneity tends to complicate network design
and ultra-reliable communication protocols. Fur-
thermore, due to the low-latency constraint in 6G
URLLC, the base station may not have enough
time to acquire CSI of the corresponding devic-
es and transmit high-priority data packets with-
out CSI. QNN have the potential to reduce the
computational complexity of dynamical channel
allocation and solve the complex network design
to achieve low latency and ultra-reliability (Fig. 4).

QUANTUM REINFORCEMENT LEARNING
Quantum Simulation for Model-Based RL: It is
well known that knowledge of the environment
can significantly speed up the learning rate of the
agent, which plays an important role in meeting

URLLC requirements in RL-assisted 6G technolo-
gies. In this context, quantum simulation has the
potential to exponentially enhance the learning
rate by taking advantage of quantum superposi-
tion and entanglement. Due to high computation-
al capabilities of quantum computers, QRL has
the potential to ensure stringent URLLC require-
ments in real-time learning. To take the quantum
advantage in RL, an agent can deploy quantum
simulation to enhance the learning rate subject
to high reliability, low latency, and efficient power
consumption [13] as follows:

+ In QRL, an agent can simulate the dynamics
of a communication network on a quantum
computer. In contrast to classical RL, an agent
can take advantage of quantum superposition.
It allows an agent to take all possible actions
a € A(s) in parallel, which enable the agent
to update state-action values Q(s, a) for all a
simultaneously, where A(s) denotes the set
of all possible actions for a given state s. The
agent stores the policy n(al|s) in qubits |ag)=
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Yb,la) and simulate the dynamics of a commu-

nication network with action |as) and state |s).
* As the agent knows the dynamics of a commu-

nication network, it can design the oracle func-
tion U, such that it transforms |a) to -|a) for
all a with the reward r > 0, where e denotes the
environment. Now the agent iterates the policy
by performing Grover’s iteration U,  to amplify
the selection probabilities of good actions.

Note that in both approaches, the policy is rep-
resented by a quantum state, which is stochastic
in nature and enables the agent to learn optimal
stochastic policies. To take action in real-time appli-
cations, the agent measures the learned policy |a,)
for given s in computational basis |a), observes
the measurement outcome a with probability
|b,1?, and takes action a. As the policy is perfectly
known at each time step, it can be cloned such
that the learned policy is not destroyed.

QRL for Resource Management: Resource
allocation is one of the most important tasks in
wireless networks, which requires RL techniques
to efficiently learn optimal policies. The QRL
has the potential to enhance the learning rate.
However, the quantum-assisted RL techniques
require knowledge of the environment. Further-
more, 6G networks are non-stationary due to the
high mobility of participating parties. To encoun-
ter the model mismatch problem, we can divide
the QRL system into two parts. In the first part,
QNN can be used to update the dynamics of the
communication network at each step. In the sec-
ond part, the quantum simulator can be used to
simulate the learned dynamics and find the opti-
mal policies to ensure URLLC. Due to the known
dynamics of the communication, the learned opti-
mal policies can be validated by using quantum
benchmarking to ensure QoE and QoS subject to
stringent URLLC requirements.

Recently, QRL has been used to learn a real-
time optimal resource management policy [14].
It has been shown that the QRL can reduce the
computational complexity of the optimal-policy
learning problems. As optimal-policy learning can
be formulated as a search problem in state-action
space, Grover’s policy iteration approach reduces
the computational complexity of an RL agent by
a factor of

VNsNg

where N and N, denote the number of possible
states and actions, respectively [14].

QUANTUM FEDERATED LEARNING

Quantum-enabled FL provides a possible solution
to the problem of distributed processing power
required for conventional FL. By taking advantage
of quantum resources, such as quantum entan-
glement, QFL allows a client to perform quantum
computation on a remote server without reveal-
ing input and output data to the server — called
blind quantum computation [15]. This allows QFL
to learn from distributed data by using computa-
tional resources of the central node only under
quantum-safe security and privacy. Recently, blind
quantum computation has been proposed to
allow a client node to execute quantum compu-
tation using one or more remote quantum servers
while keeping the structure of the computation
hidden along with input and output data.

Although the primary task of FL is to ensure
the privacy of the data, blind quantum computa-
tion protocols allow the client node to verify the
operations being performed by the central node
or its data. In addition, blind quantum computation
allows unconditional security against any adversary
on the channel between two nodes by utilizing
principles of quantum mechanics, such as quantum
non-locality and quantum non-cloning theorem.
Therefore, the blind quantum computation tech-
nology takes the advantage of both conventional
centralized learning and FL without compromising
the security and privacy of data. In FL-assisted 6G
URLLC applications, due to data sensitivity, QFL
provides a key resource to address limitations of
classical FL in the following manners:

+ QFL mimics conventional central learning sys-
tems, which enhance the learning rate due to

a single processing node. In contrast, QFL sig-

nificantly reduces communication overhead

as it does not require transmission of training
samples to the central node.

+ In QFL, the server takes advantage of QNNs
to further enhance the learning rate to ensure
stringent URLLC in 6G networks.

CHALLENGES AND RESEARCH DIRECTIONS
Quantum machine intelligence provides unprec-
edented tools, such as VQAs, QRL, and QFL to
enhance the learning rate and ensure stringent
URLLC as well as quantum-safe security in 6G net-
works. However, quantum technologies are still in
their infancy. For instance, state-of-the-art quan-
tum computers have a limited number of qubits
and require strictly controlled environments. The
ongoing research is developing a pathway toward
NISQ devices, which can play an important role
in edge quantum learning.

QuANTUM NOISE AND ERROR MIGATION

Quantum error correction (QEC) is one of the
key elements in achieving fault-tolerant quantum
computing. Classical error correction schemes
can achieve unprecedented levels of reliability in
classical computing, whereas QEC codes, such as
stabilizer coders are fairly limited. Quantum error
mitigation provides alternate means to counter
quantum noises by designing hardware-aware
qubit control and pulse reshaping methodologies.

DISTRIBUTED QUANTUM LEARNING AND COMMUNICATION

In FL, communication architecture plays an
important role in enhancing the learning capa-
bility of the system. Recently, quantum commu-
nication has been attempted at the terahertz
band. However, the limited performance of opti-
cal-to-terahertz converters may significantly affect
the QFL efficiency. Dedicated optical fiber links
are required between server and client nodes to
exchange quantum information.
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