
1.  Introduction
Temperate forests are estimated to store over 50 Pg of carbon in live vegetation (Xu et  al.,  2021). Changing 
climate patterns may threaten this important carbon pool leading to a release of stored carbon to the atmosphere. 
For example, warmer and drier summer conditions have already increased background tree mortality rates among 
subalpine conifer forests in Colorado since the 1980s (Andrus et al., 2021). Moreover, dynamic vegetation models 
predict that at least 50% of needleleaf evergreen trees in the Northern Hemisphere will reach mortality thresholds 
for temperature and pre-dawn moisture by 2100 (McDowell et al., 2016). One key mechanism of tree mortality 
under drought is thought to be hydraulic failure (Adams et al., 2017; Anderegg et al., 2015). However, addi-
tional factors are needed to explain the magnitude and spatial patterns of large tree mortality events (Trugman 
et al., 2021). Previous work has shown that the combined effects of drought stress and growing populations of 
endemic bark beetles contribute to large mortality events in California (Anderegg et al., 2020). Endemic bark 
beetles were responsible for tree mortality percentages in Ponderosa and Sugar pines as high as 89.6% and 48.1%, 
respectively, in forests hit the hardest by the 2012–2016 California drought (Fettig et al., 2019).

Abstract  Widespread tree mortality events occur during periods of severe drought in temperate conifer 
forests and are expected to become more frequent in many areas due to climate change. Improved mapping 
of individual tree mortality is needed to identify risk factors and design effective conservation strategies. In 
this study, we used National Ecological Observatory Network (NEON) lidar and multispectral reflectance 
airborne observations to map individual tree mortality over a 160 km 2 area during and after the 2012–2016 
drought for two sites in California's Sierra National Forest. We used NEON lidar to derive tree locations and 
crown perimeters and multispectral data to map tree mortality for more than 1 million trees. We found that 
25.4% of the trees in our study area died between 2013 and 2017, with considerably higher mortality at the 
lower-elevation Soaproot Saddle site. Between 2017 and 2019, an additional 2.0%–2.8% of the trees died each 
year. Two wildfires in 2020 and 2021 increased tree mortality within burned area perimeters by 49%–89% 
between 2019 and 2021. Consistent with previous work, we found that tree mortality risk increased as a 
function of tree height. Tree mortality was positively associated with distance from rivers, trees per hectare, 
and decreasing slope at the lower elevation site. In contrast, increasing slope was positively associated with tree 
mortality at the higher elevation site. Our approach and dataset provide a means to study the combined effects 
of drought and wildfire on tree mortality and may improve projections of forest resilience under a changing 
climate.

Plain Language Summary  Many trees died during the 2012–2016 California drought. Events like 
this could become more frequent as the climate warms. To understand the impact of the drought on California 
forests, we need to refine our estimates of tree death as new data become available. At two sites in the Sierra 
Nevada mountains, we used measurements of tree heights and high-resolution reflectance data from aircraft to 
map out individual trees and identify when they died based on their shape and color. We mapped the location, 
height, and crown perimeter of more than 1 million trees, and we estimate that about one-quarter of them died 
between 2013 and 2017. We found that taller trees, trees farther from rivers, and trees in dense stands were 
more likely to die, and these relationships were stronger at lower elevations. At lower elevations, shallower 
slopes were associated with more tree mortality, whereas steeper slopes were associated with higher mortality 
at higher elevations. Wildfires in 2020 and 2021 nearly doubled the number of dead trees within burned areas. 
Our study will help better predict when, where, and how trees die because of climate change.
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During the 2012–2016 California drought, evapotranspiration in the Sierra Nevada exceeded precipitation in 
mid-elevation forests by about 1,500 mm in the 4 years from 2012 to 2015 (Goulden & Bales, 2019). Canopy 
water content losses were observed throughout California's forests (Asner et al., 2016). Previous studies have 
found that topographic features related to hydrology play a key role in mortality risk during drought conditions 
in the Sierra Nevada. For example, lower elevation trees on shallower slopes are at higher risk of dying during 
drought (Paz-Kagan et al., 2017; Stovall et al., 2019). In addition, trees surrounded by granite outcrops, farther 
from rivers, and on southwestern slopes have been shown to have a higher risk of tree mortality (Paz-Kagan 
et al., 2017).

Stovall et al. (2019) used 2013 lidar from the National Ecological Observatory Network (NEON) and imagery 
between 2009 and 2016 from the National Agricultural Imagery Program (NAIP) to map and classify 1.8 million 
individual trees as dead or alive over two NEON sites in the Southern Sierra Nevada (Stovall et al., 2019). Large 
trees (greater than 30 m in height) were two times as likely to die as smaller trees (trees between 5 and 15 m in 
height) (Stovall et al., 2019). In contrast, a nearby study in Sequoia National Park over the same drought period 
showed that trees belonging to the genus Pinus were the only group to show an increasing trend in mortality with 
height, whereas most species showed an increase in resilience with height (Stephenson & Das, 2020). Since the 
western pine beetle prefers large Pinus trees, the authors reasoned that the pine beetles were responsible for the 
trend in increasing mortality with height for Pinus trees (Stephenson & Das, 2020).

To test hypotheses about drivers of tree mortality during drought conditions, we need accurate tree mortality 
maps that rely on robust and reproducible classification algorithms. In this study, we use an updated set of lidar 
and hyperspectral reflectance observations available from NEON for the years 2013, 2017, 2018, 2019, and 2021 
to create maps of tree mortality during and after the 2012–2016 California drought. Our approach makes use of 
these new data resources to build on the work of Stovall et al. (2019) within an open-source framework. We use 
all available lidar to identify the location of treetops and then identify the perimeters of individual tree crowns 
based on the lidar data for each year. Tree mortality is based on co-registered hyperspectral reflectance data from 
the same flights which are more closely aligned with the lidar data than the NAIP imagery used in past work. 
NEON data providers also correct their hyperspectral reflectance data using a surface bidirectional reflectance 
distribution function. As a result, vegetation indices such as relative greenness (green surface reflectance divided 
by the sum of red, green, and blue surface reflectance) and normalized difference vegetation index (NDVI) 
derived from their hyperspectral datasets are potentially more robust with respect to variations in solar zenith 
angle, collection angle, and surface topography. In contrast, for NAIP imagery, little information about the time 
of day and angle of data collection is publicly available to correct for these variations.

In this study, we compare our revised method for identifying individual tree mortality following the 2012–2016 
California drought to the method developed by Stovall et  al.  (2019) over a similar region and time interval, 
quantify tree mortality in subsequent years (2017–2021) in response to drought legacy effects and wildfire, and 
evaluate environmental geospatial controls on tree mortality. The method we develop may be useful for tracking 
tree mortality in other forests where aircraft lidar and spectral data are available. Insights from the regional maps 
of tree mortality over time may help inform forest stewardship, models simulating forest ecosystem processes, 
and environmental policy.

2.  Methods
2.1.  Study Site

We selected NEON's Soaproot Saddle and Lower Teakettle sites in the Sierra National Forest in the Sierra Nevada 
which experienced severe drought between 2012 and 2016 (Figure S1 in the Supporting Information S1). The 
spatial extent of these sites is shown in Figure 1. The elevations range from 1,000 to 1,400 m at Soaproot Saddle 
which has a mean precipitation of about 900 mm per year (Krauss et al., 2018). Because the site is located along 
the rain-snow transition, winter snow melts quickly (Krauss et  al.,  2018). Dominant tree species at Soaproot 
Saddle include Ponderosa pine (Pinus ponderosa), incense cedar (Calocedrus decurrens), canyon live oak (Quer-
cus chrysolepis), and California black oak (Quercus kelloggii) with high mortality observed among Ponderosa 
pine from bark beetle infestations during the drought (Krauss et al., 2018). Compared with Soaproot Saddle, 
Lower Teakettle has a higher elevation and wetter climate with respect to both precipitation and snow accumula-
tion which provides more moisture during the dry season. The elevation for Lower Teakettle ranges from 2,000 to 
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2,800 m with a mean precipitation of 1,220 mm per year (Krauss et al., 2018). In addition, snow accumulates at 
Lower Teakettle with a 30-year average maximum depth of 1,140 mm (Krauss et al., 2018). In contrast to Soap-
root Saddle, the forest of Lower Teakettle is characterized by red fir (Abies magnifica), white fir (Abies concolor), 
Jeffrey pine (Pinus jeffreyi), and lodgepole pine (Pinus contorta) (Krauss et al., 2018).

The yellow polygons in Figure  1 show the overlap of high-resolution lidar from NEON's airborne observa-
tion platform for the years 2013, 2017, 2018, 2019, and 2021 (NEON, 2021). NEON also has co-registered, 
high-resolution (1 m by 1 m) hyperspectral data (NEON, 2022b) corrected for atmospheric effects and topogra-
phy (Karpowics & Kampe, 2022) over the same spatial extent and years except for some missing data in 2013. 
These rich datasets provide the opportunity to make detailed tree mortality maps over time.

2.2.  Datasets

2.2.1.  Lidar and Canopy Height Models

We downloaded lidar point cloud tiles collected from NEON's airborne observation platform (NEON, 2021). 
The lidar resolution for 2013 is 3 points/m 2 and increases to 6 points/m 2 in 2017–2019 and 18 points/m 2 in 2021. 
Each lidar point is described by an x-, y-, and z-coordinate. The empirically-derived horizontal error is 3–5 cm, 
while the vertical error is estimated to be 5–10 cm (Krause & Goulden, 2022). To reduce noise, we filtered out 
any altimeter values more than five standard deviations from the mean. We also removed altimeter values greater 
than 120 m in height after normalizing the lidar to account for the surface topography.

In addition, we downloaded NEON's canopy height model raster data (NEON, 2022a) to help create vegetation 
masks to aid in the granite-detection algorithm described in Section 2.4 and to compute the canopy cover fraction. 
A recent study found significant effects of canopy cover on microclimate using plots ranging from 5 to 1,300 m 2 
in area (Zellweger et al., 2020). We chose to use the 2013 canopy cover fraction within a 20-m radius of each 

Figure 1.  The study sites outlined in yellow show the regions of overlapping lidar data between 2013 and 2021 for NEON's Soaproot Saddle and Lower Teakettle 
sites. Dark blue lines and polygons are lakes and named rivers from the National Hydrography Dataset Plus High-Resolution product from the United States Geological 
Survey. The background raster image shows the NASA Shuttle Radar Topography Mission elevation from low elevation (dark green) to high elevation (light purple). 
We shaded the background from no shade (northern aspect) to light shade (southern aspect) to illustrate the topography of the region. The center location of the 
zoomed-in image is shown with a black point in the California inset inside the Sierra Nevada ecoregion (black hashed polygon).
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tree's location (an area of about 1,260 m 2) to investigate tree mortality related to initial microclimate conditions. 
Because we find a polygon describing the crown perimeter of each tree for each year of data (Section 2.2.5), 
we exclude the individual tree's 2013 crown perimeter from the 20-m buffer when calculating the canopy cover 
fraction.

We also downloaded NEON's digital terrain model raster data (NEON, 2023) to derive slope and aspect to assess 
potential tree mortality drivers. Both the canopy height and digital terrain model data have a resolution of 1 m by 
1 m. To reduce potential noise in the high-resolution digital terrain model, we calculated the median slope and aspect 
within a 10-m radius of each tree. The algorithm we used to find each tree location is described in Section 2.2.5.

2.2.2.  Hyperspectral Reflectance Data

We downloaded mosaic orthorectified hyperspectral reflectance data from NEON's airborne observation plat-
form for the years 2013, 2017, 2018, 2019, and 2021 (NEON, 2022b). The surface radiance collected by the 
airborne observation platform is transformed to surface reflectance by removing atmospheric effects from haze, 
cloud shadow, waterbodies, water vapor and topography and applying a bidirectional reflectance distribution 
function (Karpowics & Kampe, 2022). This dataset includes 426 spectral bands and is distributed at a spatial 
resolution of 1 m by 1 m. The wavelength interval for band lengths between 340 and 1,349 nm is 0.40 nm, while 
the interval from 1,351 to 1,449 nm is 0.98 nm. We approximated the Landsat 8 spectral bands by taking the mean 
surface reflectance for blue (452–512 nm), green (533–590 nm), red (636–673 nm), near infrared (851–879 nm), 
and shortwave infrared 1 (1,566–1,651 nm) to create spectral indices and natural-color (red-green-blue or RGB) 
images for training labels. We also selected two water absorption bands, water band 1 (w1) from 1,440 through 
1,460 nm, and water band 2 (w2) from 1,935 through 1,955 nm, because the water in leaves is a strong absorber 
of radiation in these wavelengths (Carter, 1991). Reflectance in the water bands should be lower where there is 
higher leaf water content. All wavelength ranges listed here are inclusive of the boundaries.

From the spectral bands, we created five vegetation indices including relative greenness, NDVI, normalized 
difference moisture index (NDMI), and two additional indices like NDMI created with the water absorption bands 
instead of the shortwave infrared 1 band. These indices are described in more detail in Table S1 in the Support-
ing Information S1. Because the relative greenness yielded the highest accuracy in the algorithm described in 
Section 2.3 (Table 1), we focus on relative greenness for this study. Diurnal variations in canopy moisture during 
the air campaigns may have contributed to lower performance of the moisture indices.

2.2.3.  National Hydrography Dataset

We downloaded the National Hydrography Dataset Plus High-Resolution for region 1803 which encompasses 
our study site from the United States Geological Survey (USGS) Earth Explorer website (U.S. Geological 
Survey, 2019). While we show named rivers within this dataset in Figure 1, we used all rivers in the dataset for 
our analysis of the relationship between distance to rivers and tree mortality.

2.2.4.  Landsat Surface Reflectance

We retrieved Landsat Collection 2 Level 2 Tier 1 surface reflectance data from the USGS EarthExplorer website. 
Path 42, row 34 completely covers our region of interest, so we used this tile in our analysis. To compute NDMI, 
we collected the near infrared band (NIR; Band 4 for Landsat 5 and Band 5 for Landsat 8) and shortwave infrared 
1 band (SWIR1; Band 5 for Landsat 5 and Band 6 for Landsat 8) and applied the formula

Table 1 
Performance of the Vegetation Indices Explored in This Study

Vegetation index

Vegetation 
index 

threshold

Crown area 
fraction 

threshold

Training 
accuracy 

(%)

Validation 
accuracy 

(%)

Validation sensitivity 
(correctly classified 

dead trees divided by 
total dead trees) (%)

Validation specificity 
(correctly classified 
live trees divided by 

the total live trees) (%)

Relative greenness 0.37 0.37 93.3 93.2 96.7 84.8

NDVI 0.54 0.29 92.6 91.7 96.2 81.1

NDMI1 0.38 0.32 91.9 91.3 95.5 81.3

NDMI 0.21 0.36 91.9 91.4 96.1 80.2

NDMI2 0.59 0.40 91.0 89.8 93.6 80.8
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NDMI =
NIR − SWIR1

NIR + SWIR1
� (1)

NDMI ranges from −1 to 1 where −1 represents dry conditions (low near infrared surface reflectance relative 
to shortwave infrared 1 surface reflectance) and 1 represents moist conditions. The change in dry season NDMI 
has been found to correspond to tree mortality (Goulden & Bales, 2019), so we compared our estimates of tree 
mortality against dry season NDMI. To obtain dry season NDMI, we selected the four Landsat tiles temporally 
nearest 15 September for a given year, filtered each tile for clouds, and took the median of the surface reflectance 
pixels for the surface reflectance bands before computing NDMI. We aggregated 2013 and 2017 tree mortality 
to the Landsat resolution and took the difference to compare to the corresponding change in NDMI from Landsat 
between late summer 2013 and 2017. Because some hyperspectral data is missing in 2013, this analysis does not 
span the entire region of interest shown in Figure 1.

2.2.5.  Tree Polygon Algorithm

Using a 96-m-by-96-m square moving window with a 24-m buffer, we combined all the lidar point clouds from 2013, 
2017, 2018, 2019, and 2021 for the Soaproot Saddle and Lower Teakettle sites into one combined point cloud of x, 
y, and z locations. We combined the point clouds so that we would detect any trees that were standing at any point 
between 2013 and 2021. If a tree fell or was logged between 2013 and 2017, for example, we would have the treetop 
location from the combined point cloud and use the corresponding change in crown area from 1 year to the next to 
classify it as dead. To filter noise in the lidar point clouds, we dropped any z-values greater or less than 5 standard 
deviations from the mean. Following lidR package documentation, we first rasterized the canopy height to 1-m 
resolution and smoothed the canopy height raster using a 3 × 3 median filter. Elsewhere in our methods, we used the 
NEON-processed canopy height models; however, for this portion of the methods, we generated the canopy height 
model corresponding to our moving window as we processed the lidar point cloud. We used the find_trees function (R 
package: lidR) to identify the treetops of the combined point cloud using the local maxima filter lmf (R package: lidR). 
The lmf function uses its own moving window on the smoothed canopy height raster to identify local maxima and 
classify them as treetops. We wanted the length of the local maxima filter window to grow with the height of the trees 
as suggested by the lidR package documentation, so we adjusted the window size according to the following function:

𝑤𝑤(ℎ) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

4m if ℎ < 32m

1

8
ℎ if 32m ≤ ℎ ≤ 80m

10m if ℎ > 80m

� (2)

where w is the width of the window and h is the height of the canopy, both in meters. We decided on the param-
eters for this function through trial and error on a subset of trees to reduce the number of trees that are counted 
more than once when the window is too small and that are missed when the window is too large.

After finding the locations of the trees from the whole point cloud, we went through each year of lidar data 
(2013, 2017, 2018, 2019, and 2021) to assign lidar points to each tree for each year. To do this, we used the 
function segment_trees with the dalponte2016 algorithm (R package: lidR) which has three adjustable parameters 
(Dalponte & Coomes, 2016). We selected a minimum threshold of 3 m and adjusted the rules for adding returns to 
a given tree so that returns need to be at least 65% of the height and 75% of the mean collection of returns assigned 
to a given tree. Because there are partial trees around the edges of the 96-m-by-96-m window, we filtered out any 
trees with treetop locations in the 24-m buffer to prevent partial trees or duplications in the segmentation process. 
We used the concaveman function to draw polygons around the x- and y-coordinates of each tree for each year (R 
package: concaveman) and adjusted the height of each tree using the canopy height model for each lidar year. The 
resulting attributes for each tree are the crown perimeter polygons and height for each year surveyed by NEON 
air campaigns. All analyses were completed using R, version 4.1.2.

2.2.6.  Training Data

We created an evenly spaced training grid. First, we drew a bounding box around all the NEON lidar data files for all 
years (2013, 2017, 2018, 2019, and 2021). Then, we selected a reference Landsat 8 image for path 42, row 34, which 
completely covers our region of interest. We transformed the raster image to the same coordinate reference system 
(CRS) as the NEON lidar data (UTM, Zone 11, CRS: 32611). The pixel size of the Landsat 8 images is 30 m by 30 m. 
Starting 315 m from the edges of the bounding box, we created an evenly spaced grid, with intersections separated 
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by 300 m in both the x- and y-directions, resulting in 120 points in the x-direction and 72 points in the y-direction 
for a total of 8,640 grid points. Each grid had a 30-m by 30-m square perimeter coinciding with Landsat data pixels.

We manually labeled trees inside these training squares using 2017 RGB imagery that we derived from the NEON 
hyperspectral data following our flowchart shown in Figure S2 in the Supporting Information S1. First, for any tree 
that had a crown area greater than 1 square meter that drops below 1 square meter in 2017, 2018, and 2019, we labe-
led the tree dead for the corresponding year. Next, if a quarter or more of the tree crown polygon was taken up by 
road, ground, or part of another tree, we labeled it as uncertain. If neither of those criteria were met, we considered 
evidence that the tree was alive or dead in 2017. If at least one third of the crown area of the tree was red or gray, 
we labeled it as dead if the same was true in 2018 and 2019. If the tree appeared dead by crown area color in 2017 
(i.e., if at least one third of the crown area was red or gray) but more than two-thirds of the crown area in 2018 or 
2019 was green, we labeled it as alive. Alternatively, if the crown area in 2017 was more than two-thirds green, we 
labeled it as alive. If we could not see that the tree was alive in 2017, we labeled it as live if at least two thirds of the 
crown area was green in 2018 or 2019 under the assumption that a tree alive in 2018 or 2019 must be alive in 2017.

We also recorded three levels of certainty (0, 0.5, and 1) where 0 refers to no certainty, 0.5 is less certain, and 1 
is relatively certain. While our analysis considered 0.5 and 1 acceptable levels of certainty, future analyses could 
filter out the trees with certainty values of 0.5. Additional detail for the assignment of labels and certainty values is 
included in Figure S2 in the Supporting Information S1. We visually inspected 9,025 trees and labeled 8,897 as dead 
or alive using our protocol. The life status of 128 trees was unclear, and these trees were not included in fitting param-
eters for the tree mortality algorithm. We labeled 6,377 trees (71.7%) as alive and 2,520 trees (28.3%) as dead. When 
we filtered out trees with no corresponding hyperspectral data, we had a total of 8,873 labeled trees for our algorithm.

2.2.7.  Wildfire Perimeters

We downloaded the National United States Forest Service Final Fire Perimeters to quantify the number of trees 
which died within wildfire perimeters in our region of interest (USDA Forest Service National Forest System 
Lands GIS and Fire personnel, 2023). The 2020 Creek Fire and 2021 Blue Fire both burned through the Soaproot 
Saddle site, affecting tree mortality between 2019 and 2021.

2.3.  Tree Mortality Classification Algorithm

Our algorithm for generating tree crown perimeter polygons and classifying the trees and live or dead is shown in 
Figure 2. We explored five vegetation indices (relative greenness, NDVI, NDMI and two additional normalized 
difference moisture indices derived from two water absorption bands) described in Table S1 in the Supporting 
Information S1 to classify trees as dead or alive. Previously, Stovall et al. (2019) masked NAIP imagery where the 
canopy heights were less than 5 m to isolate tree canopies and limit tree height to 5 m and greater. We followed 
the 5-m minimum height for our tree dataset, but we masked the hyperspectral data corresponding to canopy 
height model values less than 4 m so that we could still collect some lower canopy returns within the crown 
perimeters, particularly for trees near 5 m in height. In addition, we found that snow confounded tree mortality 
estimates in high elevation regions in early summer, so we also masked pixels where the mean luminosity (mean 
of the red, green, and blue bands) was greater than 0.2. For reference, we set the minimum reflectance to 0 and 
the maximum to 0.2 when viewing the RGB imagery in the Quantum Geographic Information System (QGIS) 
software (which is free and publicly available) for labeling trees for training data. Reflectance values greater than 
0.2 for the three visible light bands were bright surfaces such as snow or granite.

We partitioned our 8,873 labeled trees into a training, validation, and test dataset by randomly sampling 60% of 
the labels (5,331 trees) for the training set, 20% of the labels for the validation dataset (1,777 trees), and held out 
the remaining 20% of the labels (1,777 trees) for the testing dataset. We used both a validation dataset and testing 
dataset, so that we could use the validation dataset to select the best spectral index while setting the test dataset 
aside for the final accuracy assessment. We set a seed of zero for the random number generator within R to ensure 
reproducibility for the training, validation, and testing split.

Our model for classifying dead and live trees has two parameters that use an individual vegetation index derived 
from NEON's hyperspectral reflectance data. For all five indices we considered, increasing values of the index 
toward 1 indicate healthier vegetation (e.g., more green or moist), so we used the same algorithm to explore all 
five indices. The first parameter is a vegetation index threshold below which we label a pixel within a tree's crown 
perimeter dead. For example, healthy tree canopies typically have high NDVI values for which near infrared 
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Figure 2.  This diagram shows the starting datasets (green boxes at top-left), R scripts (white boxes), manual methods in Quantum Geographic Information System 
(yellow box in the middle), the resulting tree mortality maps (red box at bottom-right), and accuracy (blue box at bottom-left).

 21698961, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

007234 by U
niversity O

f C
alifornia - Irvine, W

iley O
nline Library on [28/09/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Journal of Geophysical Research: Biogeosciences

HEMMING-SCHROEDER ET AL.

10.1029/2022JG007234

8 of 18

surface reflectance is high relative to red surface reflectance. The second parameter follows the methods of 
Stovall et al. (2019) and is a threshold of dead pixels within a tree crown perimeter over which the tree is classi-
fied as dead. For example, Stovall et al. (2019) classified a tree as dead if more than 37.5% of its pixels within the 
crown area were classified as dead with respect to falling below an NDVI threshold.

We considered vegetation index thresholds from 0 to 1 with an increment of 0.01 and crown area fraction thresh-
olds of 0–1 with an increment of 0.01. We computed the accuracy on the training dataset for every combination of 
these two parameters. The grid search for the vegetation indices with the highest training dataset accuracy (NDVI 
and relative greenness) are shown in Figure 3. Here, accuracy is defined to be the number of correct classifica-
tions of a tree as dead or alive over the total number of classifications. The dark blue regions of the parameter 
space maps indicate an accuracy resulting from guessing that most of the trees are dead, while the green regions 
result from guessing that most of the trees are alive. When we classify trees with at least 37% of pixels under a 
relative greenness of 0.37 as dead, we achieve an accuracy of 93.3% on the training dataset.

2.4.  Application, Validation, and Testing of Method

Because the number of labels is much smaller than the total number of trees within the domain, we analyzed the 
accuracy of the parameters in our validation dataset in relation to the number of labeled training data values used 
to fit the parameters to see if we labeled enough trees. We set a seed in R and randomly sorted the training labels. 
Then we selected the first n labels to use as training data where n begins at 10 and increases by increments of 
10. We ran the whole algorithm apart from evaluating the performance on the testing dataset for each quantity of 
cumulative labels. We repeated this process for 30 randomly-generated sequences of the training data to capture 
the range in accuracy generated by the order in which the training data are selected. The outcome from this 
analysis is shown in Figure 4. We found that the accuracies on the training and validation dataset converge after 
including just a couple thousand trees for training data.

The optimal parameters and accuracy analysis of the indices explored in this study are arranged in order of training 
dataset accuracy in Table 1. We consider a true positive to be an instance where a dead tree is correctly classified as 
a dead tree. Sensitivity refers to proportion of true positives which are the total number of accurate classifications 
of dead trees over the total number of dead trees. Specificity refers to the number of correctly identified live trees 
over the total number of live trees. Of the five indices explored, relative greenness yielded the highest accuracy on 
the training and validation datasets and also had the highest sensitivity and specificity on the validation dataset.

The confusion matrices for the training, validation, and testing datasets are shown for relative greenness in 
Table 2. The accuracy of our relative greenness model was 92.1% on the dataset held out for testing. A sample 
image of trees labeled by our algorithm is shown in Figure S3 in the Supporting Information S1. Shadows visible 

Figure 3.  Accuracy levels for different combinations of vegetation index and crown area fraction parameters used to identify 
live or dead trees. In each panel, the x-axis shows the vegetation index threshold used to identify a pixel of a tree as live or 
dead. (a) The x-axis shows the relative greenness thresholds from 0 to 1 with an increment of 0.01. The y-axis indicates crown 
area fraction from 0 to 1 with an increment of 0.01. Dark blue shows the lowest accuracies, while yellow shows the highest 
accuracies. The highest accuracy on the training dataset (93.3% shown on the map by a black cross) occurs when we label 
trees as dead when at least 37% of their crown area is under a relative greenness of 0.37. (b) The x-axis shows the normalized 
difference vegetation index (NDVI) thresholds from 0 to 1 with an increment of 0.01. The y-axis indicates crown area fraction 
from 0 to 1 with an increment of 0.01. The highest accuracy for NDVI on the training dataset (92.6%) occurs when we label 
trees with at least 29% of their crown area has an NDVI less than 0.54.
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in the RGB image (Figure S3a in the Supporting Information S1) appear to be removed by the normalization in 
our relative greenness metric (Figure S3b in the Supporting Information S1).

2.5.  Granite-Detection Algorithm

We hypothesized that higher granite cover fraction near a tree would be associated with negative health outcomes 
for trees based on soil quality as in a previous study (Paz-Kagan et al., 2017) and due to higher relative sensible 
heating and less latent cooling among trees surrounded by granite outcrops compared with those surrounded by 
vegetation. To explore this hypothesis, we developed a granite-detection algorithm. We classified all pixels with a 
canopy height less than 0.5 m and a luminosity greater than 0.11 as granite pixels. Lastly, we rasterized National 
Hydrography Dataset waterbody polygons and United States Forest Service roads polygons to filter out any pixels 
that are associated with waterbodies or roads. To investigate the role of granite outcrops in tree mortality, we 
calculated the fraction of ground pixels within 20 m of a tree that are classified as granite.

2.6.  Tree Matching Algorithm

We downloaded the Stovall (2019) dataset from figshare and matched the trees to trees in our dataset to enable a 
comparison of our method with the previous work it builds upon. For each tree in our dataset, we found  the  distance 
from the x- and y-coordinates of the 2013 treetop location and each tree in the Stovall dataset. If the closest tree in 
the Stovall dataset fell inside the 2013 tree crown perimeter for our tree, we considered it a match. If multiple trees 
met this criterion, we selected the one closest in height to our tree. We matched 714,656 trees out of 1,011,634 
trees located in our region of interest with overlapping NEON spectral data. Our comparison is based on this set 
of 714,656 trees.

We used the matched dataset to compare the distribution of the mean NDVI within the crown area of trees in 
2017 and over time for each of the following categories: (a) trees where both studies label the tree as alive, (b) 
trees where both studies label the tree as dead, and (c) trees we labeled as live in 2017 but Stovall labeled as dead 
in 2016. We use the first two categories as reference datasets to determine whether the trees in the third category 
are more likely to be alive or dead in 2017.

Figure 4.  The accuracy of the of the parameters generated by a given number of labeled training data is assessed for the (a) 
training data used and (b) the 20% of data held out for validation (1,777 values). The blue ribbon shows the accuracy range of 
the 30 randomly-generated sequences of training data selection.

Table 2 
The Confusion Matrices for Relative Greenness for Training, Validation, and Testing Datasets

Training accuracy: 93.3% 
(N = 5,331)

Validation accuracy: 93.2% 
(N = 1,777)

Testing accuracy: 92.1% 
(N = 1,777)

Estimated dead Estimated live Estimated dead Estimated live Estimated dead Estimated live

Labeled dead 1,234 234 445 80 429 93

Labeled live 124 3,739 41 1,211 47 1,208
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3.  Results
3.1.  Tree Mortality During and After the 2012–2016 Drought

We estimate that 324,301 of a total 1,011,577 trees (32.1%) were dead in the 
study domain by 2017 with 25.4% of the total trees dying between 2013 and 
2017 (Figure 5). Tree mortality was considerably higher at Soaproot Saddle 
than Lower Teakettle (Figures 5a and 5b for cumulative numbers and Figure 6 
for spatial maps). Of the 275,103 trees we mapped at Soaproot Saddle, we clas-
sified 49.6% as dead by 2017 (Figure 5a). In contrast, of the total 736,474 trees 
we mapped at Lower Teakettle, only 25.5% were dead by 2017 (Figure 5b). The 
differences between the two sites were further amplified when considering the 
change in mortality between 2013 and 2017. During this interval, tree mortality 
increased by 45.8% at Soaproot Saddle and by 17.4% at Lower Teakettle.

Maps of the temporal evolution of tree mortality are shown for Soaproot 
Saddle in Figure S4 in the Supporting Information S1 and for Lower Teakettle 
in Figure S5 in the Supporting Information S1. We found very little additional 
tree mortality at Soaproot Saddle between 2017 and 2019; however, additional 
mortality was visible by 2021 when absolute tree mortality reached a cumu-
lative level in non-fire affected areas of 55.9% (Figures 5 and 6). In Lower 
Teakettle, visible increases in tree mortality occurred each year between 2017 
and 2019, with little additional change in the final interval between 2019 and 
2021. There are some areas that appear misclassified in 2019 because trees 
labeled dead in 2019 are labeled live later in 2021. We explore some key areas 
of inconsistent classification in our 2019 tree mortality estimates in Figure S6 
in the Supporting Information S1. One region in Lower Teakettle (Figure S6a 
in the Supporting Information S1) appears to have high levels of snow cover 
and low luminosity, while the second region (Figure S6b in the Supporting 
Information S1) has trees that were brown in 2019 but green in 2021.

The Creek Fire in 2020 and the Blue Fire in 2021 contributed to significant 
additional tree mortality at Soaproot Saddle. While most of the Creek Fire 
affected areas of the Sierra National Forest to the northwest of our region 
of interest, part of the wildfire extent intersected our study domain, affect-
ing 76,644 trees (Figure S4d in the Supporting Information S1). Within the 
Creek Fire perimeter intersecting our study domain, 45.2% of the trees were 
dead in 2019 prior to the start of the fire. After the fire in 2021, 85.5% of the 
trees within the fire perimeter were dead (an increase of 89%). We found that 
tree mortality within the 2021 Blue Fire perimeter increased from 64.3% to 
95.6% between 2019 and 2021 (an increase of 49%) among the 11,068 trees 
within the Blue Fire's perimeter. We show a zoomed in image of the 2021 
Blue Fire burn area in Figure S7 in the Supporting Information S1.

We plotted the mean relative greenness and mean NDVI density distributions 
for our estimates of live and dead trees in Figure 7. The relative distribu-
tions for mean relative greenness reach a maximum at 0.42 for live trees and 
0.33  for dead trees. The mode for mean NDVI is 0.76 for live trees and 0.37 
for dead trees.

3.2.  Biophysical Drivers of Tree Mortality

Next, we consider biophysical drivers of tree mortality within our study 
region. We explored tree height, canopy cover fraction within 20 m (exclud-
ing an individual tree's canopy within its crown perimeter), distance from 
the nearest river, trees per hectare, the mean distance of the 10 nearest trees, 
slope, aspect, and the fraction of granite within 20 m to investigate the role 

Figure 5.  The cumulative tree mortality fraction for trees in the overlapping 
region of the lidar point clouds for each year of available data (2013, 2017, 
2018, 2019, 2021) is shown for (a) Soaproot Saddle, (b) Lower Teakettle, 
and (c) the combined dataset. The light gold in panels a and c represents the 
mortality between 2019 and 2021 within the perimeters of the 2020 Creek Fire 
and 2021 Blue Fire. For each year of data, we included trees that had crown 
areas greater than 1 square meter in 2013, a 2013 height greater than 5 m, and 
spectral data for the years 2017, 2018, 2019, and 2021. Due to missing spectral 
data in 2013, we were only able to classify 744,727 trees from 2013 in the 
study region as dead or alive using our algorithm, so the mortality fraction 
shown in for 2013 is based on those 744,727 trees. For the later years, there 
were 1,011,577 trees which met our criteria.
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of tree height and canopy cover, proximity to rivers, tree population density, and topography. We used the tree 
locations derived from the combined point cloud to compute the tree population density, mean distance of the 10 
nearest trees, distance from rivers, and fraction of granite within 30 m. For tree height and canopy cover, we used 
the tree heights and crown perimeters from 2013. Figure 8 shows our analysis of each of these feature variables 
for Soaproot Saddle and Lower Teakettle individually, while the analyses for the combined dataset are shown in 
Figure S8 in the Supporting Information S1. The slopes, y-intercepts, and mortality ranges for each feature vari-
able are shown in Table S2 in the Supporting Information S1.

To assess the correlations among feature variables and our target variable, we computed the correlations between 
each pair of feature variables and the change in mean relative greenness between 2013 and 2017 for each tree 
(Figure S9 in the Supporting Information S1). We chose change in mean relative greenness within the crown 
perimeter of the tree to have a continuous variable for the tree's health status rather than a binary 0 or 1 for dead 
or alive when computing the correlations among variables. We found that tree height has the strongest corre-
lation with change in mean relative greenness at the site level (Figure S9 in the Supporting Information S1). 
The likelihood of mortality increased by 8.4% for every 10-m increase in height at Lower Teakettle and by 10% 
for every 10-m increase in height at Soaproot Saddle (Table S2 in the Supporting Information S1). The drier, 
lower elevation site (Soaproot Saddle) also had stronger positive relationships between tree mortality and trees 
per hectare, distance to rivers, and canopy cover fraction than did Lower Teakettle (Table S2 in the Supporting 

Figure 6.  The spatial pattern of tree mortality in 2017 averaged on a 30-m-by-30-m grid for (a) Soaproot Saddle and (b) Lower Teakettle. Light yellow pixels indicate 
100% tree mortality for the trees in that pixel, while dark blue indicates 0% tree mortality. The aspect is converted from 0 to 360° to a scaled value reflecting North (1) 
to South (0) and overlayed in white to gray to show the underlying topography.
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Information S1). Whereas tree mortality fraction decreases with increasing 
slope at Soaproot Saddle, tree mortality fraction increases with increasing 
slope at Lower Teakettle.

3.3.  Comparison With Previous Work

To make a fair comparison with Stovall et al. (2019), we only compared trees 
from Stovall et al.  (2019) that intersected a crown perimeter of one of our 
trees. If multiple tree top locations intersected our crown perimeter, we chose 
the one with the closest tree height to ours. Both studies only consider trees 
above 5 m in height. The number of trees we found in the overlapping domain 
of the two studies, the fraction of those trees we were able to match, and 
the corresponding mortality fraction of each group is shown in Table S3 in 
the Supporting Information S1. While the tree top locations relative to the 
lidar point clouds in the two studies are similar in a high-resolution example 
(Figure S10 in the Supporting Information S1), Stovall et al.  (2019) found 
more trees overall. The spatial patterns and differences in tree top locations 
at Soaproot Saddle and Lower Teakettle are shown for representative regions 
in Figure S11 in the Supporting Information S1.

Because different years were studied by Stovall et al. (2019) compared with 
this study, the closest comparison of tree mortality after the drought is the 
cumulative tree mortality in 2016 from Stovall et al. (2019) compared to our 
2017 mortality. While Stovall et al. (2019) found a cumulative mortality of 
41% for 2016 compared with our 32% from 2017, we can compare only the 
region of overlap. Using the values from Table S3 in the Supporting Infor-
mation  S1, we find that our cumulative tree mortality fraction in 2017 in 
the overlapping domain of the two studies is 33% versus 40% for Stovall 
et al. (2019).

To consider spatial differences in mortality between the two studies, we 
rasterized the Stovall et  al.  (2019) dataset to the Landsat grid. Figure  9 
shows the mortality fraction from our study, that of Stovall et al. (2019), and 
the difference between the two studies. In the difference maps (Figures 9c 
and 9f), brown areas represent pixels where our tree mortality estimates are 
higher than those of Stovall et al. (2019), while green areas represent pixels 
where our estimates of tree mortality are lower.

Table 3 shows the confusion matrix or comparison table of our study labels 
from 2017 NEON imagery and lidar data and labels from Stovall et al. (2019) 
based on 2013 lidar data and 2016 NAIP imagery. Our method for matching 
the trees from our study to the Stovall et  al.  (2019) study is described in 
Section 2.5. For the 714,486 trees we were able to match, the studies have 
72.8% agreement, though this agreement is primarily determined by trees 
that are alive, the larger of the two groups in the study. Both studies label 
the same 368,576 trees as live and  the same 151,393 trees as dead. Because 
our study is based on surface reflectance 1  year later than that of Stovall 
et al. (2019), the trees that they labeled as live that we labeled as dead are not 
necessarily incompatible. These trees may have been alive in 2016 and then 

died by 2017. However, 125,785 of the trees that Stovall et al. (2019) labeled as dead in 2016 were labeled as 
alive in 2017 in this study. In other words, 45.4% of the matched trees labeled as dead in the Stovall et al. (2019) 
study are labeled as alive in our study.

To better understand the differences between the two approaches, we compared the mean NDVI within the crown 
perimeters of trees we labeled as live, but Stovall et al. (2019) labeled as dead (Figure 10). The trees where both 
studies agree are well-separated by mean NDVI. Overall, the distribution of the mismatched trees shown in 
Figure 10a more closely matches the distribution of the live trees shown in Figure 10b.

Figure 7.  The relative frequency distributions of live (dark blue) and dead 
(light yellow) trees are shown for (a) mean relative greenness and (b) mean 
normalized difference vegetation index (NDVI) during 2017 for all the 
individual trees in the study domain shown in Figure 1.
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Because we used the combined point cloud to collect our tree locations, we can track each individual tree over 
time. We plotted the mean NDVI within the crown perimeters between 2013 and 2021 and the change in the 
crown area over the same time frame (Figure 11). The mean relative greenness for the trees we labeled as live and 
Stovall et al. labeled dead more closely resembles the trees both studies labeled as live than those labeled dead. 
In Figure 11b, we see higher variance in crown area. However, the trees that both studies agree are dead by 2017 
show a decline in crown area, with a crown area of 0 m 2 falling within one standard deviation of the mean. The 
other two categories (where both studies agree the trees are live in blue, and where only our study labels trees as 
live in gray) decline more slowly. We would still expect to see some decline from 2013 to 2021, since this group 
of trees includes trees that die between 2017 and 2021.

We compared the tree mortality between 2013 and 2017 rasterized to the Landsat grid to the change in late 
summer NDMI over the same years. We used the change between 2013 and 2017 to capture the large tree mortal-
ity event at the end of the 2012–2016 drought and due to the years of data availability of the NEON datasets 
(2013, 2017, 2018, 2019, and 2021). The result is shown in Figure S12 in the Supporting Information S1. We 
found that there is a negative linear association with an R 2 value of 0.37. This indicates that higher tree mortality 
is associated with a decrease in late summer NDMI consistent with work by Goulden and Bales (2019).

Figure 8.  We selected bins spanning the domain of each feature variable (the variables on the x-axes of the panel images) for live and dead trees and computed the 
likelihood of mortality for each bin of each feature variable. The size and color of the points indicate the order of magnitude of the number of trees in each bin. We 
computed a trend line through the points for any point representing a bin containing at least 50 trees.
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4.  Discussion
We mapped the spatial patterns of tree mortality under drought conditions 
in the Sierra Nevada. We loosely followed the methodology charted by 
Stovall et al. (2019) but made several key changes with respect to the datasets 
used and the ways in which trees were segmented and labeled. We found 
evidence that fewer trees may have died by 2016 than previously estimated, 
although there were broadly similar patterns with higher levels of mortality 
at the lower elevation Soaproot Saddle. Our lower estimate of cumulative 
tree mortality (32% vs. 41%) could be due to differences in the total number 
of trees analyzed (we analyzed half the number of trees) and proportion of 

Figure 9.  Fractional mortality comparison. (a) The mortality fraction at Soaproot Saddle for our study, (b) for the study by Stovall et al. (2019), and (c) the difference 
between the two. (d–f) The same as (a–c) for Lower Teakettle. All pixels are 30 m × 30 m Landsat pixels. For our study, the mortality fraction is computed for the year 
2017, while mortality fraction is computed for 2016 for Stovall et al. (2019) due to differences in methods and corresponding data availability. The aspect is overlayed 
in white (north) to gray (south) to show the underlying topography.

Table 3 
Confusion Matrix for Stovall et al. (2019) Label Comparison

Labeled dead in 
Stovall et al.

Labeled live in 
Stovall et al.

Labeled dead in this study 151,393 trees (21.2%) 68,732 trees (9.6%)

Labeled live in this study 125,785 (17.6%) 368,576 trees (51.6%)
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low-to-high elevation regions that we considered. For example, trees from the 
lower elevation site (Soaproot Saddle) were more likely to die, so consider-
ing fewer trees from that region will lead to a lower tree mortality estimate. 
However, within the region where our study overlaps with previous work, our 
method—which had 93% accuracy on our training dataset—disagreed with 
45.4% of the labels for trees labeled dead by Stovall et al. (2019). Comparison 
of NDVI and crown area time series for this set of mismatches revealed a 
pattern that was more consistent with the characteristics of live trees identi-
fied by both studies.

Differences in spatial patterns from previous research efforts may be due 
to differences in the preprocessing of the spectral reflectance data. Spectral 
reflectance data are sensitive to the time of day that the returns are collected. 
While NEON hyperspectral data is corrected for atmospheric effects and 
topography (Karpowics & Kampe, 2022), there is not enough information 
provided with the NAIP imagery to apply this correction. Previous work 
correcting NAIP imagery using Landsat data revealed significant differ-
ences in reflectance indices such as NDVI before and after correction (Zhang 
et al., 2019). The differences in reflectance in the NAIP imagery at different 
times of day and different angles of reflection in the highly variable terrain 
in the Sierra Nevada mountains may account for many of the differences 
between the tree mortality map presented in this study and previous results 
by Stovall et al. (2019).

Consistent with previous work, we found that tree mortality risk increases 
with height. We found a steep increase in mortality risk with height (about 
10% per 10 m of height) at the lower elevation site (Soaproot Saddle) up to 
a tree height of 30 m. Trees taller than 30 m maintained a 70% likelihood of 
mortality after the drought. At the higher elevation site (Lower Teakettle), we 
found a more moderate increase in mortality risk with height (about 8.4% per 
10 m of height). There was much more tree mortality at the lower elevation 
Soaproot Saddle site, consistent with previous work on drought-associated 
tree mortality (Byer & Jin, 2017; Stovall et al., 2019).

After the drought, 2.0% of the trees died between 2017 and 2018, and 2.8% 
died between 2018 and 2019. Legacy effects from the 2012–2016 drought 
may have kept mortality levels elevated in subsequent years. Most of these 
additional increases occurred at Lower Teakettle. When we mapped addi-
tional tree mortality for each year of data, we found some inconsistencies, 
particularly between 2019 and 2021 where trees that we labeled as dead in 
2019 were later labeled as live in 2021. On closer examination in QGIS, 
one region is in an area where there is both visible snow and low luminosity 
in the surface reflectance, potentially due to a late evening or early morn-
ing data collection flight. The low luminosity poses a challenge to remov ing 

snow-filled pixels by our methods which impose a luminosity threshold. Other areas in the eastern regions of 
Lower Teakettle appear brown in 2019 but look green and healthy in spectral imagery from July 2021. Because 
our algorithm only looks at the spectral signature of the trees for a given year, we would not expect these trees to 
be accurately classified without additional processing.

Because biophysical drivers of tree mortality vary significantly by species (Stephenson & Das, 2020), improve-
ments in species classification models from high-resolution spectral and lidar data may help to create accurate 
maps of tree mortality risk. Future directions for this work include using the individual tree mortality dataset 
to build tree mortality models which incorporate non-linear relationships and interactions among biophysical 
features. Raster data provided with this study may be helpful to scientists working to improve Landsat-based esti-
mates of tree mortality. In addition, these estimates of the impact of drought and subsequent wildfire may assist 

Figure 10.  Comparison of mean crown area normalized difference vegetation 
index (NDVI) distributions for trees labeled differently and the same between 
our study and that of Stovall et al. (2019). The x-axis shows mean NDVI of 
individual trees, while the y-axis shows the relative frequency distributions. (a) 
We show the mean NDVI relative frequency distributions for trees that were 
identified as live in this study but dead in Stovall et al. (2019). The boundaries 
for the middle 99% of the mean NDVI values of these trees are shown by 
the black vertical bars that carry down into the next panel. (b) The mean 
NDVI relative frequency distributions of trees that both our study and Stovall 
et al. (2019) labeled as live are shown in blue, while the relative frequency 
distributions for trees we both labeled dead are shown in light yellow.
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land managers in forest conservation efforts and may provide helpful parameters for dynamic vegetation models 
which include these effects.

5.  Conclusion
Our study provides an open-source methodological framework for estimating tree mortality from high-resolution 
lidar and spectral data that can be applied to other forests using hand-labeled training data and parameters specific 
to  the trees in new study sites. We estimate that 49.6% of trees were dead by the end of the 2012–2016 California 
drought at Soaproot Saddle and 25.5% were dead at Lower Teakettle. While tree mortality at Soaproot Saddle 

Figure 11.  Comparison of normalized difference vegetation index (NDVI) and crown area for different sets of labeled 
trees from Stovall et al. (2019) and the approach developed here. (a) NDVI time series with the crown perimeter of trees 
labeled as live in both studies (blue), dead in both studies (yellow), or as live in the current study but dead in Stovall et al. 
(gray). (b) The same as for panel a but for crown areas derived solely from National Ecological Observatory Network lidar 
measurements.
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appears to saturate in 2017, we found that trees at higher elevations continue to die at a rate of about 2% per 
year after the drought subsided. Moreover, we found that subsequent wildfire at Soaproot Saddle increased tree 
mortality fraction by 49%–89% within burned areas. The datasets provided here may help to constrain dynamic 
vegetation models to improve our understanding of forest disturbance now and in the future.
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