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Abstract 

With novel human–wildlife interaction, predation regimes, and environmental conditions, in addition to often fragmented and smaller 
populations, urban areas present wildlife with altered natural selection parameters and genetic drift potential compared with nonurban 
regions. Plumage and pelage coloration in birds and mammals has evolved as a balance between avoiding detection by predator or prey, 
sexual selection, and thermoregulation. However, with altered mutation rates, reduced predation risk, increased temperatures, strong 
genetic drift, and increased interaction with people, the evolutionary contexts in which these colorations arose are radically different 
from what is present in urban areas. Regionally alternative color morphs or leucistic or melanistic individuals that aren’t typical of most 
avian or mammalian populations may become more frequent as a result of adaptive or neutral evolution. Therefore, I conceptualize 
that, in urban areas, conspicuous color morphologies may persist, leading to an increase in the frequency of regionally atypical pelage 
coloration. In the present article, I discuss the potential for conspicuous color morphs to arise and persist in urban mammalian and 
avian populations, as well as the mechanisms for such persistence, as a result of altered environmental conditions and natural selection 
pressures. 
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Human-induced rapid environmental change is known to be a 
driver of evolutionary change in organisms during the Anthro- 
pocene ( Sih et al. 2011 , Hendry 2016 , Alberti et al. 2017 ) . As 
one of the most extreme examples of human-modified environ- 
ments, urban areas serve as potential hotspots for rapid evolu- 
tion ( Donihue and Lambert 2015 , Schell 2018 , Rivkin et al. 2019 , 
Diamond and Martin 2021 , Lambert et al. 2021 ) . Highly urban- 
ized regions are characterized by increased human presence and 
impervious surfaces, as well as a lack of green space, high ex- 
posure to pollutants, high levels of artificial light and ambient 
noise, and increased temperatures ( Grimm et al. 2008 , MacDon- 
nell et al. 2009 , Imhoff et al. 2010 , Niemelä 2011 , Szulkin et al. 
2020 ) . In addition, urban areas typically have elevated levels of 
vehicle traffic, human–wildlife conflict, and physical landscape 
structures that may alter gene flow ( e.g., habitat fragmentation, 
linear barriers ) or mortality rates ( e.g., vehicle collisions, conflict 
removals ) within and among urban wildlife populations ( Winchell 
et al. 2016 , Johnson and Munshi-South 2017 , Miles et al. 2019 , 
Schell et al. 2021 Cosentino and Gibbs 2022 ) . All these factors 
have been found to cause nonadaptive evolutionary phenotypic 
or genotypic responses in urban wildlife populations, and in se- 
lect cases, scientists have even conclusively discovered adaptive 
evolution in response to the urban environment ( Oke et al. 1973 , 
Noël et al. 2006 , Giraudeau et al. 2014 , Serieys et al. 2015 , Adducci 
et al. 2020 , Campbell-Staton et al. 2020 , Lambert et al. 2021 , Cronin 
et al. 2022 ) . 

However, despite recent advancements in the field of urban 
evolutionary ecology, pelage coloration has been largely ignored 
( but see Leveau 2021 ) . Coloration in birds and mammals serves 
many purposes, and several hypotheses have been proposed to 
explain the variation in plumage and pelage pattern and color 
( Caro 2005 ) . Substantial evidence supports avoidance of detec- 
tion, sexual selection and secondary fitness signaling, and ther- 

moregulation as drivers of coloration ( Roulin 2004 , Caro 2005 , Pro- 
tas and Patel 2008 , Stuart-Fox et al. 2017 , Pembury Smith and 
Ruxton 2020 ) . However, the interactions between these drivers 
are not well understood. With endothermic species, for example, 
how pelage and plumage coloration is affected by temperature 
is difficult to predict because of the numerous concurrent se- 
lection pressures and thermoregulatory mechanisms within the 
individuals. For example, desert-dwelling species might take on 
light colorations to reflect sunlight and blend into their surround- 
ings, but many desert species are black in coloration ( Buxton 1923 , 
Caro 2008 , Caro and Mallarino 2020 ) . That being said, over large 
geographic scales, typical trends of coloration and pattern have 
evolved convergently in many different lineages around the globe, 
suggesting similar selection pressures throughout many different 
regions and time periods ( Baker and Parker 1979 , Caro 2005 , Kron- 
forst et al. 2012 , Pembury Smith and Ruxton 2020 ) . Despite pelage 
and plumage coloration’s immense importance to a wide diver- 
sity of behavioral and physiological purposes, such as camouflage, 
territoriality, thermoregulation, and sexual selection signaling, a 
recent review of the impact of urbanization on coloration across 
taxa showed only 62 studies, 30 of which were spread across 
only three species ( rock dove, also known as the domestic pigeon, 
Columba livia ; great tit, Parus major ; peppered moth, Biston betularia ; 
Leveau 2021 ) . 

The present article builds on the literature on intraspecific 
pelage coloration ( figure 1 ) evolution in both urban and nonurban 
systems to develop new hypotheses for how pelage and plumage 
coloration may change in urban areas. In this paragraph, I will lay 
out several hypotheses that will be addressed throughout the ar- 
ticle ( table 1 ; for a visual summary, see figure 2 ) . I will explore 
the theoretical release from evolutionary constraints of novel 
pelage coloration phenotypes as an example of the potential for 
neutral or adaptive traits to persist in human-dominated 
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Figure 1. Three images white-nosed coatis ( Nusua narica ) . ( a ) An adult coati with normal pelage coloration and pattern blends into its surroundings. 
( b ) A conspicuous adult coati with leucism does not blend into its surroundings. This adult leucitic coati was one of few individuals to display leucism 

in this population. ( c ) Multiple coatis foraging with normal coloration and two juvenile coatis exhibiting leucism. The photographs were taken on a 
golf course outside a resort, a place with few or no predators left for coatis, in Playa del Carmen, Quintana Roo, Mexico in 2018. Photographs: 
Samantha Kreling. 

landscapes. I predict an increase in heritable rare pelage col- 
oration as a result of increased exposure to toxins, pollutants, 
and chemical mutagens, in conjunction with strong genetic drift 
and higher densities of wildlife than in nonurban areas. In ad- 
dition, I hypothesize that through the human shield effect and 
subsequent decreased predation pressure, changes in pelage col- 
oration that would be negatively adaptive in nonurban areas may 
be neutral or beneficial in urban areas, allowing for alternative 
colorations to persist or even proliferate. Finally, there is potential 
for alternative color morphs to be selected for if they offer bet- 
ter thermoregulatory power to combat the increased heat load 
in urban areas, improve an individual’s detoxification ability to 
mitigate increased toxin loads, or provide better visibility by hu- 
mans to avoid direct human-mediated mortality ( e.g., black squir- 
rels are hit by cars less frequently than gray squirrels; Cosentino 
and Gibbs 2022 ) . 

Wildlife coloration in urban systems 

In this section, I will review relevant literature and dis- 
cuss the potential ways that urban wildlife may be released 
from the evolutionary constraints that drove the patterns of 
pelage and plumage coloration that we see in most wildlife 
( figure 3 ) . 

Genetic basis of mammalian and bird coloration 

The mechanism for the deposition of pigment in bird feathers 
and mammalian fur is nearly identical ( Lubnow 1963 , van Grouw 

2013 ) . Coloration in both taxa is predominantly due to the pig- 
ments produced in cells known as melanocytes ( Fox and Ververs 
1960 ) . These cells produce two types of melanin: Eumelanin is re- 
sponsible for black, gray, and dark brown colors, and phaeome- 
lanin is responsible for red and light brown colors ( Lubnow 1963 , 
Hoekstra 2006 ) . Multiple genes regulate the production of these 
pigments ( Lamoreux et al. 2010 ) . Abnormalities in coloration 
that affect melanism can occur from single point mutations, of- 
ten in the melanocortin 1 receptor ( MC1R ) or agouti ( AGOUTI ) 
genes ( Lamoreux et al. 2010 ) , and there are often multiple mu- 
tagenic pathways that may be responsible for the same or sim- 
ilar color aberrations ( van Grouw and de Jong 2009 , van Grouw 

2017 ) . 

Genetic drift 
Genetic drift may have signfiicant impacts on all of the hypothe- 
ses discussed in the present article on the feasibility of alterna- 
tive coloration traits persisting in urban areas. The high levels 
of fragmentation, often small founding populations, and poten- 
tial limitations to gene flow associated with urban areas means 
there is strong potential for genetic drift ( Miles et al. 2019 ) , or the 
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Table 1. Hypotheses and related mechanisms driving potential increases in conspicuous color morphs within urban environments. 

Hypothesis title Hypothesis Mechanism 

H1: Increased 
mutation load 

Increased mutation load in urban areas leads to 
increase in individuals with aberrant color. 

Air pollution and other toxic sources that are found at higher 
densities in urban areas induce germline heritable mutations. 

H2: Founder effect Populations founded by individuals with alternative 
coloration with little gene flow may create 
populations with high frequencies of these traits. 

Limited gene flow into populations will amass traits found within 
the original founding individuals among the population. 

H3: Low-nutrition diet Low-nutrition diets may cause a nonheritable 
whitening of pelage. 

Diets for wildlife in urban areas are typically composed of 
low-nutrition, high carbohydrate foods. This can lead to a lack 
of sufficient quantities of amino acids such as tyrosine, which 
are necessary to produce melanin, causing a lightening or 
whitening of pelage. 

H4: Urban graying High oxidative stress for wildlife in urban areas leads 
to nonheritable graying of pelage. 

High stress environments such as that in urban areas causes 
increases in oxidative stress, leading to graying of pelage. 

H5: Human shield Predation constraints on pelage coloration will be 
lifted through lowered predation rates, resulting in 
an increase of conspicuous coloration. 

Humans have for the most part eradicated large predators from 

urban areas. Although there are often higher densities of 
mesopredators in urban than nonurban areas, anthropogenic 
food supplementation results in lowered predation rates, 
releasing camouflage constraints in both predators and prey. 

H6: Background- 
matching 
heterogeneity 

Alternative color morphs that blend into 
anthropogenic backgrounds may be selected for in 
high predation environments. 

In addition to the backgrounds for wildlife to match in wildland 
areas, urban areas have a variety of anthropogenically created 
backgrounds such as bricks and concrete. In cities with higher 
predation pressure, localized populations of wildlife with 
altered coloration that blend into selected backgrounds may be 
selected for. 

H7: Human visibility Conspicuous morphs may proliferate in areas of high 
human density and where visibility of the animal 
increases fitness or survival rate ( i.e., 
nonconscious increased survival via humans ) . 

Increased visibility of conspicuous individuals conveys advantage 
in the form of reduced mortality. 

H8: Thermoregulation Color morphs that offer thermoregulatory 
advantages will proliferate. 

Urban areas are significantly warmer than rural areas. If the 
additional heat load is large enough to produce thermal stress 
on organisms, then color morphs that offer thermoregulatory 
benefits will be selected for. 

H9: Melanistic 
detoxification 

Melanistic morphs may have selective advantage 
through heavy metal detoxification. 

Melanin binds certain heavy metal ions rendering them inert and 
storing them in structures such as fur or feathers, detoxifying 
the body. In urban areas in which toxin load is higher and may 
have significant fitness consequences, individuals that are 
better at detoxification may have a selective advantage. 

H10: Sexual selection Urbanization may alter sexual selection preferences 
related to coloration. 

Sexual selection can be a strong selection force. If urbanization 
alters what individuals select for in a mate on the basis of 
coloration, then coloration in urban areas may regionally vary 
from nonurban conspecifics. 

H11: Human interest Conspicuous morphs may proliferate in areas of high 
human density and where humans give 
preferential treatment to conspicuous individuals 
( i.e., conscious increased survival via humans ) . 

Preferential treatment to conspicuous individuals through 
physical protection and nutritional rewards may increase 
survival of conspicuous color morphs. 

H12: Hybridization Hybridization with domesticated animals may 
produce abnormal pelage coloration in wildlife. 

Mating between wild animals and closely related domestic 
species may result in wildlife of abnormal coloration that may 
mimic coat colorations produced by leucism or melanism. 

H13: Domestication 
syndrome 

When wild animals are domesticated ( intentionally 
or unintentionally ) , a variety of traits linked to 
behavioral states such as docility and boldness 
may be altered and produce variation within the 
“domestication suite,” including pelage coloration. 

The “domestication suite” is a standard set of phenotypic traits 
that tend to be altered during the process of domestication. 
One of these traits is pelage coloration. Urban areas often 
select for bold wildlife individuals, and unintentional 
rewarding to these individuals may produce similar selection 
outcomes as intentional domestication. 
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Figure 2. Conceptual figure to illustrate potential drivers and mechanisms influencing the theoretical release of novel coloration phenotypes in urban 
compared with rural areas. ( a ) Predators remove conspicuous individuals prior to breeding. ( b ) In urban areas, human presence directly or indirectly 
acts as a shield for prey and smaller carnivore species from large carnivores, reducing predation selection pressure. In addition, food supplementation 
for urban carnivores with anthropogenic resources may reduce predation risk. Combined removal of predation selection pressure releases novel 
phenotypes to persist in urban areas. ( c ) Where predation risk still exists, individuals with novel colorations have a higher probability of finding 
backgrounds that match their coloration because of a proliferation and wider variety of colors and textures across urban landscapes. ( d ) . Low 

nutrition foods may provide a nonheritable cause for increase in novel coloration in birds and mammals. In particular, tyrosine deficiencies may 
present similar, but nonheritable, patterns to leucism. ( e ) Increased exposure to toxins and pollutants may increase mutation rates, giving rise to a 
potential increase in frequency of novel pelage phenotypes. ( f ) Increased temperatures may select for different pelage colorations that assist in 
thermoregulation. However, because of the complexity of thermoregulation in endotherms, the direction for this selection is difficult to predict. 
( g ) Increased human visibility may result in direct reductions in mortality for conspicuous individuals or through increased interest in which 
conspicuous individuals are favored by human viewers as “novel” and “rare” sights. 

random change in the frequency of alleles within a population 
( Fisher 1922 , Wright 1945 ) . The combination of increased muta- 
tion load and drift ( e.g., founder effects, bottlenecks ) or selection 
may lead to regionally elevated frequencies of different wildlife 
traits ( Miles et al. 2019 ) . Founder effects, a specific type of genetic 
drift, may have particularly strong effects on wildlife populations 
such that there may be limited population establishment events 
dependent on species attributes and corridor availability, which 
may be limited in urban areas ( H1; Aziz and Rasidi 2014 , Gallo 
et al. 2017 , Kimmig et al. 2019 ) . This could lead to elevated lev- 
els of certain phenotypes if the original founders possessed those 
traits or recessive alleles that may produce those characteristics 
in future generations ( Boileau et al. 1992 , Crispo et al. 2011 ) . In- 
deed, we’ve seen strong population founder effects in the coat 
coloration of domestic cats based on settler origin in northeast- 
ern United States cities and cities across Europe ( Todd 1964 , 1966 , 
Goncharenko and Zyat’kov 2012 ) . For scenarios in which adaptive 
selection is occurring, its interactions with strong genetic drift in 
urban areas may either work to proliferate the mutations faster 

through the population by randomly dropping the frequency of 
typical coloration alleles. Alternatively, if there is only weak to 
moderate strength selection for alternative coloration, drift may 
outweigh selection timelines, and the population may randomly 
lose these new mutations. In addition, if the mutations causing 
abnormal coloration are recessive in nature, these alleles may be 
randomly lost in the population before the frequencies of the phe- 
notypic trait are high enough for selection to engage ( Andrews 
2010 , Lynch et al. 2016 ) . 

Mutation rate 

Urban regions have concentrated historic and ongoing industri- 
alization and development and are often littered with hotspots 
of chemical pollutant exposure ( McDonnell et al. 1997 , Apeagyei 
et al. 2011 ) . In addition, urban areas have higher densities of 
humans and increased vehicular traffic, leading to elevated air 
pollution levels ( Lawson et al. 2011 , Cakmak et al. 2012 , Da Sil- 
veira Fleck et al. 2014 ) . Many of the most common types of 
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Figure 3. Examples of different coloration patterns that can occur 
because of increased ( melanism ) or decreased ( leucism, albinism ) 
melanin production and oxidative graying compared with wildtype or 
regionally “normal” coloration. 

pollutants in urban areas are known carcinogens and mutagens 
( Cohen and Pope 1995 , Turner et al. 2020 ) and have been demon- 
strated to increase the general mutation rate in both humans and 
animals ( Ellegreen et al. 1997 , Yauk et al. 2008 , Dubrova 2019 ) . 
Certain studies have also shown some of these mutations to be 
heritable ( Yauk and Quinn 1996 , Somers et al. 2002 ) . With an in- 
creased mutation rate, novel phenotypes, including abnormal col- 
oration of wildlife pelage, may arise more frequently in urban than 
in nonurban areas ( H2 ) . In addition, urban areas often host higher 
abundances of urban adapter species than rural regions ( Tucker 
et al. 2020 ) , increasing the likelihood that a mutation both occurs 
and is fixed by selection because of higher abundances of individ- 
uals ( Kimura and Ohta 1971 ) . Importantly, mutation itself is rela- 
tively weak as an evolutionary force. In order to proliferate within 
a population, mutations would either need to be under strong di- 

rectional selection or occur at higher frequencies within a popu- 
lation because of genetic drift. 

Importantly, there are also nongenetic or nonheritable causes 
of coloration abnormalities. Leucism, for example, may be caused 
by dietary deficiencies of tyrosine, an amino acid necessary for 
the synthesis of melanin ( H3; van Grouw 2013 ) . This is plausible 
because wildlife in urban areas have been found to have less nu- 
tritious diets than those in nonurban areas ( Isaksson and Ander- 
sson 2007 , Murray et al. 2015 ) . Similarly, oxidative stress, which 
is found at higher levels in urban animals ( Hutton and McGraw 

2016 ) , may lead to nongermline mutations in wildlife, causing 
graying or a lightening of coloration ( H4; Møller and Mousseau 
2001 , Izquierdo et al. 2018 ) . Finally, leucism may have negative 
effects for birds such that melanin deposits within their feath- 
ers provide mechanical strength to the structure and resistance 
to wear ( Lee and Grant 1986 , Bonser 1996 , Kose and Møller 1999 , 
Butler and Johnson 2004 ) . Regardless, this presumed decrease in 
fitness may be negligible in the context of urban regions in which 
individuals typically have to travel smaller distances for food and 
face less predation risk ( Berger 2007 , Suraci et al. 2019 , O’Donnell 
and delBarco-Trillo 2020 , Sadoul et al. 2021 ) . 

Natural selection 

For both predator and prey, camouflage can be imperative for 
survival ( Pembury Smith and Ruxton 2020 ) . Camouflage has 
been well documented as an antipredator mechanism for prey 
( Nachman et al. 2003 , Caro 2005 , Rosenblum et al. 2009 , Stevens 
et al. 2011 , Harris et al. 2020 ) . Drivers of camouflage in preda- 
tors have been less studied than antipredator responses for prey, 
but background matching crypsis can be important for successful 
hunting and overall fitness ( Pembury Smith and Ruxton 2020 ) . 

Prey and some mesopredator species may be more abundant 
in urban areas as result of the human shield, the phenomenon 
in which the human presence and urbanization act as an in- 
hibitor for apex predator establishment and persistence, allowing 
prey and smaller predatory species to thrive ( Berger 2007 , Geffroy 
et al. 2015 , Suraci et al. 2019 , Sadoul et al. 2021 ) . Although an in- 
crease in mesopredators may seem problematic for conspicuous 
prey, research has shown that urban areas have decreased pre- 
dation rates despite higher predator density because of anthro- 
pogenic food supplementation ( Fischer et al. 2012 , Eötvös et al. 
2018 ) . In nonurban settings with strong predation pressure, indi- 
viduals that do not match their environments are easily spotted 
and removed from the population quickly ( Belk and Smith 1996 , 
Caro 2005 ) . For example, species who experience camouflage mis- 
match due to climate change have seen significant declines be- 
cause of increased predation, to the extent that some species such 
as the snowshoe hare may require evolutionary rescue to persist 
( Mills et al. 2013 , Zimova et al. 2016 ) . With less predation risk and 
therefore less need to blend in to avoid predation in urban regions, 
prey coloration may be released from these constraints ( H5 ) . Al- 
though mutations are rare, individuals with alternative coloration 
may be able to persist and even proliferate without predation re- 
moving individuals before they reproduce, especially if there is 
strong genetic drift ( Miles et al. 2019 ) . 

Although predation pressures are generally reduced in urban 
areas, locations within cities may have regionally strong preda- 
tion pressures. With higher levels of landscape heterogeneity than 
nonurban areas ( Irwin and Bockstael 2007 , Schell et al. 2020 ) , ur- 
ban areas have additional types of background patterns and col- 
ors that may allow for a greater variety of color morphs to exist 
while continuing to avoid predation through crypsis ( figure 4 , H6 ) . 
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Figure 4. In addition to the background patterns and colorations found in natural habitat fragments in urban areas, urban areas offer a proliferation 
of human-created backgrounds that prey species may evolve to match to. This conceptual figure compares the typical coloration of black rats ( rat A ) 
to an alternative color morph ( rats B, C, and D ) that matches three common background colors and patterns in urban areas including bricks, asphalt, 
and concrete. 

Urban areas typically have a greater variety of background types 
to match than nonurban areas. For example, urban areas typi- 
cally have patches of naturalistic backgrounds that you would 
find in nonurban areas such as forest fragments and vegetated 
open spaces. In addition to these naturalistic backgrounds, several 
human-fabricated backgrounds such as brick, asphalt, concrete, 
and lawn are abundant in cities and can often cover vast areas 
contiguously ( Leveau 2021 ) . Selection via predation is most likely 
to occur in small-body prey species with high fecundity and that 
have relatively small home ranges, confining them to a particu- 
lar environmental background color and pattern ( Nachman et al. 
2003 , Rosenblum et al. 2009 ) . For population-level change to oc- 
cur, sufficiently high predation risk to select for individuals with 
aberrant color would be required. As an example of urban back- 
ground pattern matching, Kettlewell ( 1955 ) documented selec- 
tion for alternate color morphs in an urban area. Selection acted 
in favor of the more cryptic black peppered moths that blended 
into the trees that were covered with soot from nearby industrial 
factories, whereas light-color moths were easily identified and 
predated on. 

Conspicuous coloration may even offer advantages over cryp- 
tic coloration in areas with little predation risk and where pri- 
mary mortality is predominately from motor vehicle collisions or 
other visually mediated human-induced mortality sources ( H7 ) . 
This appears to be the case in Gibbs and colleagues ( 2019 ) where 
melanistic morphs of eastern gray squirrels ( Sciurus carolinensis ) 

dominate in the studied urban area and represented a dispro- 
portionately small percentage of roadkill. Recently, a multicity 
study showed repeated proliferation of melanistic morphs of this 
species over urban–rural clines. Notably, Cosentino and Gibbs 
( 2022 ) also acknowledged that melanism was positively correlated 
with northward latitude, suggesting that the melanistic morph 
may have better thermotolerance for extreme cold temperatures 
in winter and that there may therefore be multiple selection pres- 
sures at play. 

For predator species, access to anthropogenic foods may re- 
move predation-based selection pressures for camouflage. In 
urban areas, wildlife species tend to supplement their diets 
with anthropogenic resources that are either intentionally or 
unintentionally left accessible ( Contesse et al. 2004 , Williams et al. 
2006 , Murray et al. 2015 ) . This supplementation of food that does 
not require active pursuit may therefore loosen the predicted se- 
lection pressures on pelage coloration surrounding predator–prey 
relationships ( Skelhorn and Rowe 2016 , Pembury Smith and Rux- 
ton 2020 ) . As far as I am aware, no studies have addressed the 
frequencies of alternative color morphs in relation to predation 
regimes in urban areas. 

For endotherms such as birds and mammals, the relationship 
between color and body temperature is complex and highly de- 
pendent on several factors, such as behavior, the structural prop- 
erties of the feathers or hair, and the amount of fatty insula- 
tion ( Walsberg 1983 , Stuart-Fox et al. 2017 ) . Coloration is further 
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complicated by interacting selection pressures, such as preda- 
tion avoidance and links to physiological processes ( Cloudsley- 
Thompson 1999 , Stuart-Fox et al. 2017 ) . There are a few, albeit 
often contradictory, trends in endotherm coloration and thermal 
temperature ( Stuart-Fox et al. 2017 ) . For one, Gloger’s rule spec- 
ifies that endothermic animals are often darker in humid ar- 
eas than in less humid regions, although this has also been at- 
tributed to additional benefits conferred by melanization, such as 
hydroregulation and UV protection ( Gloger 1833 , Burtt and Ichida 
2004 , Kamilar and Bradley 2011 ) . Desert and other hot-ecosystem 

endotherms tend to either mirror the color of the soil and sand, a 
buff or sandy color, or tend to be black in coloration ( Buxton 1923 , 
Caro 2008 , Caro and Mallarino 2020 ) . Both coloration patterns may 
have potential benefits to animals in extreme ambient tempera- 
tures. As the amount of insulation in an individual declines, the 
potential effect of coat coloration on thermoregulation increases 
( Finch et al. 1980 , Dawson et al. 2014 ) . 

Urban centers have a steep increase in impervious surface and 
a reduction in tree cover when compared with nonurban areas 
( Arnfield 2003 ) . This leads to an average increase of 1.1–2 degrees 
Celsius in ambient temperatures in urban areas during the day 
( Hibbard et al. 2017 , Allen et al. 2018 ) . This increase in heat has 
already led to selection for thermal tolerant members in popu- 
lations of urban anoles ( Campbell-Staton et al. 2020 ) . Although 
mechanisms that confer thermal tolerance in this population of 
anoles are not physically visible to the human eye, such as a 
change in pelage coloration would be, it suggests that urban heat 
islands could lead to selection for particular color phenotypes if 
they confer a thermoregulatory advantage ( H8 ) . For instance, if 
all things are held constant between two individuals with differ- 
ing fur coloration, if one coloration provides better thermoregula- 
tory power, it may be selected for in that environment. Interest- 
ingly, different color morphs may convey opposite effects, having 
positive benefits in freezing temperatures and negative effects in 
extreme heat conditions or vice versa, further complicating the 
potential of directional selection ( Caro 2008 , Hetem et al. 2009 ) . 
As far as I found, the aforementioned study on melanization in 
squirrels across the eastern United States is the only mammalian 
study to look at a potential correlation between color morphology 
and ambient temperature in urban areas ( Cosentino and Gibbs 
2022 ) . A single herpetological study showed some correlations be- 
tween color polymorphism and temperature in a semiurban envi- 
ronment ( Evans et al. 2020 ) , but this has seemingly not been tested 
in other vertebrates or explicitly along an urban–rural gradient. 

Individuals in urban areas are likely to have increased expo- 
sure to toxins and heavy metals, which have significant effects on 
fitness ( Trust et al. 1990 , Dauwe et al. 2004 , Greenberg and Briem- 
berg 2004 , Snoeijs et al. 2004 , Rainbow 2007 , Eeva et al. 2009 , Plum 

et al. 2010 ) . The polymers that constitute melanin have negatively 
charged carboxyl, hydroxyl, and amine functional groups. These 
free electrons have been shown to bind to positive metal ions, act- 
ing as a detoxicant ( Larson and Tjälve 1978 , Liu et al. 2004 , Bridelli 
and Crippa 2008 ) . Melanistic morphs may therefore be able to 
detoxify their bodies by storing inert metal ions in melanin-laden 
structures such as feathers or fur ( Chatelain et al. 2014 ) . This 
mechanism has been suggested as a reason for more melanis- 
tic morphs of rock pigeons ( Columba livia ) in urban areas than in 
nonurban areas ( Obukhova 2007 , Chatelain et al. 2014 , 2016 ) . 

Through this detoxification, melanin may indirectly improve 
immune functioning of individuals, because heavy metals will 
often weaken the immune system ( McGraw 2003 , Hong and 
Simon 2007 , Chatelain et al. 2014 , Serieys et al. 2018 , Murray et al. 
2019 ) . For example, one study exposed rock pigeons with a variety 

of melaninization to zinc and lead. These studies showed that, 
although birds with more melanin retained a higher concentra- 
tion of these heavy metals in their feather structures, their blood- 
work showed metal concentrations similar to that of the lighter- 
color birds. However, darker juvenile birds had a higher survival 
rate than their light-color counter parts ( Chatelain et al. 2016 ) . 
This suggests that melanization does play some role in fitness and 
survivorship, potentially through detoxification, but the mecha- 
nism may be complex and mediated by other traits. Other studies 
have also shown a correlation between melanin and metal con- 
centration in feather structures in white-tailed eagles and barn 
owls ( Niecke et al. 1999 , 2003 ) . In addition, researchers have spec- 
ulated that melanocytes play a direct role in vertebrate immu- 
nity and parasite resistance, although the mechanism is unclear 
( H9; Mackintosh 2011 , Gasque and Jaffar-Bandjee 2015 , Coté et al. 
2018 ) . Little experimental work has been done to understand the 
role of melanin in the immune system in wildlife, and most infor- 
mation that exists is entirely correlative. 

Sexual selection 

Urbanization may alter wildlife sexual selection preferences re- 
garding coloration ( H10 ) . For the purposes of this article, sexual 
selection’s implications for coloration primarily apply to avian 
species, because most mammalian species are not sexually di- 
morphic in color ( Price 2006 , McPherson and Chenoweth 2012 , 
Cooney et al. 2019 ) . Although many of the colors that are under 
sexual selection in birds are carotenoid based and derived from 

diet rather than melanin based ( McGraw 2006 ) , there are a few 

examples of altered sexual selection of melanin-based coloration 
in urban areas. Great tits ( Parus major ) in Barcelona, Spain, were 
found to have smaller black ties than forest birds. The tie is known 
to be a signal for sexual selection, and this was speculated to 
be a result of altered sexual selection in urban areas. However, 
Senar and colleagues ( 2014 ) also noted that birds with smaller 
ties were less exploratory and less bold and may have been se- 
lected in urban areas for these behavioral traits instead. White 
tail feathers in dark-eyed juncos ( Junco hyemalis ) are also a signal 
for sexual selection. An urban population in San Diego, Califor- 
nia, had an average 22% decline in white plumage, which could 
be a result of altered sexual selection parameters ( Yeh 2004 ) . No- 
tably, the authors mentioned that this result could also be due to 
genetic drift or phenotypic plasticity. Both examples show a de- 
crease in coloration and sexual signaling. A recent review look- 
ing at which species of birds are likely to establish population in 
urban regions showed that species with less plumage dichroma- 
tism, when males are brighter in color than females, were more 
likely to inhabit urban areas ( Iglesias-Carrasco et al. 2019 ) . Al- 
though the review did not provide many conclusive reasons as 
to why species with less plumage dichromatism persist in cities 
more frequently, they theorized that production of color may be 
more costly in urban regions. Perhaps displaying fewer or smaller 
colorations in sexual signals mirrors this trend. Although there 
isn’t much concrete evidence for altered sexual selection in avian 
species based on melanin-based coloration in urban areas, other 
sexually selected traits such as acoustic signals have been found 
to differ along an urban–rural gradient ( Cronin et al. 2022 ) . In Eu- 
ropean treefrogs ( Hyla arborea ; Troïanwski et al. 2015 ) , painted go- 
bies ( Pomatoschistus pictus ; de Jong et al. 2018 ) , and common cut- 
tlefish ( Sepia officinalis ; Kunc et al. 2014 ) , altered coloration in noisy 
areas ( e.g., urban ) is thought to mitigate the effects of noise pol- 
lution on acoustic cues and mate selection; because birds also 
use calls to attract mates, this suggests that avian species could 
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potentially alter coloration to attract mates in the presence of 
heavy noise pollution, where their calls are less likely to be heard 
by potential mates. 

Human interest 
Prior to the development of modern-day genetic techniques, sci- 
entists often categorized unique-color wildlife individuals as sep- 
arate species. These “species” were often regarded as highly 
prized and rare ( van Grouw 2017 ) . Many cultures around the 
globe have similarly assigned significant value and importance 
to individuals and populations of wildlife with unique and con- 
spicuous coloration ( Saunders 1998 , KnewWays 2010 , Service 
et al. 2020 ) . For example, the Kitasoo people of British Columbia 
have traditions and stories reaching back immemorial regard- 
ing moksgm’ol , leucistic black bears ( “spirit bears”) of the Great 
Bear Rainforest ( Service et al. 2020 ) . In addition, many areas in 
the US have bans on hunting leucistic or albino white-tailed deer 
( Wisconsin Department of Natural Resources 1940 , Iowa General 
Assembly 1988 , Illinois General Assembly 2021 ) and other leucis- 
tic wildlife ( Stencel and Ghent 1987 ) . Although melanistic wildlife 
individuals exist across the country, I could only identify protec- 
tive laws for leucistic animals. The coloration of animals may 
also sway our willingness to conserve them from a psychologi- 
cal standpoint, prioritizing the things humans find aesthetically 
pleasing ( Prokop and Randler 2018 ) . Studies using community 
sourced pictures of aberrant-color birds showed that people were 
more likely to send in photos of birds with rare coloration than 
they were of less conspicuous color morphs because of their more 
unique coloration ( Husby 2017 , Zbyryt et al. 2020 ) . Therefore, this 
increased visibility and inherent aesthetical fascination with con- 
spicuous color morphs may lead to selective protection or benefi- 
cial behavior of humans toward individuals of conspicuous color 
( H11 ) . 

Behavior, hybridization, and domestication 

syndromes 
Domestic animals exist at high densities alongside people in ur- 
ban areas. Although it is unusual, hybridization between domes- 
tic animals and closely related wildlife species can occur ( Adams 
et al. 2003 , Chapman and Jones 2011 , Leonard et al. 2014 , Galov 
et al. 2015 , Stronen et al. 2022 ) . Hybridization in general, whether 
it be between two domestic species or a domestic and nondomes- 
tic species, can result in a variety of different pelage and plumage 
colorations ( Hauffe et al. 2004 , Schmutz et al. 2007 , Zhang et al. 
2014 , Aguillon et al. 2021 ) . With urban wildlife in close proxim- 
ity to abundant domestic animals, there is the potential for hy- 
bridization to occur and introduce new coat or plumage pheno- 
types into the population ( Adams et al. 2003 ) . The high frequency 
of black-coated wolves in North America is a result of hybridiza- 
tion with domestic dogs and subsequent maintenance via het- 
erozygote advantage and disease resistance ( Wayne and vonHoldt 
2012 , Cubaynes et al. 2022 ) . In European wolves, dark coloration 
is very rare, but it is typically associated with urbanization and 
the presence of feral dogs ( Randi and Lucchini 2002 ) . Recently, 
in Queens, New York, three coyotes were found to be recent ( F1 
and F2 ) hybrids with domestic dogs. Some of the offspring had 
extremely abnormal coat coloration as a result ( Caragiulo et al. 
2022 ) . If these urban populations are small enough and with few 

enough migrants from other wild populations, these alternative 
colorations may be able to persist at a higher frequency than in 
nonurban populations ( H12 ) . 

In addition, urban wildlife populations are preferentially estab- 
lished by individuals with bolder personalities ( Caspi et al. 2022 ) . 
In some species, melanin production is pleiotropically linked to 
behavior and is often associated with bolder and more exploratory 
behavior ( Ducrest et al. 2008 , Mateos-Gonzalez and Senar 2012 ) . 
Bolder individuals that are more likely to approach humans and 
adapt to the novelty of urban environments may be selected for 
once they are established as well ( Brooks et al. 2020 ) . Selection for 
these individuals that tolerate humans and may even lose their 
fear of humans, mimics domestication studies such as the in- 
famous Russian silver fox farm experiments. These experiments 
showed that selection for less fearful and bolder animals eventu- 
ally lead to domestication and, as by-products of domestication—
a variety of phenotypic traits, the domestication syndrome—that 
were not frequent or present in the wild individuals became com- 
mon ( Trut 1999 , Hare et al. 2005 , Hare and Tomasello 2005 , Wilkins 
et al. 2014 ) . One of these byproducts was changes in coat col- 
oration, such as piebald coloration, white feet, chest spots, and tail 
tips ( Trut 1999 , Wilkins et al. 2014 ) . Over time, unintentional selec- 
tion for individuals that are bolder in urban areas may develop al- 
ternative coat coloration as a byproduct of unintentional domes- 
tication similar to the self-domestication hypothesis for wolves 
( H13; Hare and Tomasello 2005 , Hare 2017 ) . Brooks and colleagues 
( 2020 ) addressed this question in coyotes ( Canis latrans ) and simi- 
lar to earlier work showed that urban coyotes are bolder than their 
rural conspecifics ( Breck et al. 2019 ) but failed to confirm higher 
frequencies of domestication syndrome coat phenotypes in urban 
coyotes. 

Discussion, implications, and future work 

In this section, I review the potential implications of wildlife 
having aberrant color in cities and address how scientists 
can begin to assess trends in coloration across urban–rural 
gradients. 

Why aren’t we seeing high rates of 
aberrant-color wildlife in all urban areas? 
Ultimately, the selection pressures that influence pelage col- 
oration in wildlife are complex and interacting. Many of the stated 
hypotheses are dependent on strong genetic drift and limited gene 
flow from wildland populations to allow for the proliferation of 
wildlife with abnormal coloration. In addition, mutations in gen- 
eral are relatively infrequent, and typically have adverse effects. 
The chances of MC1R or AGOUTI mutations causing abnormal 
coloration are, therefore, rare in general. We may not be seeing 
aberrant-color wildlife in all urban regions because these muta- 
tions may simply have rarely occurred in urban areas and not 
had the chance to persist or were not coupled with strong enough 
genetic drift or selection in their respective environments to al- 
low for proliferation. Similarly, there are varying selection pres- 
sures among and within different cities. If predation pressure is 
still high in some cities or parts of cities, conspicuous individ- 
uals are unlikely to persist there, because they would likely be 
removed from the population before reproduction. In addition, al- 
ternative color morphs may have unknown underlying physiolog- 
ical differences that affect fitness negatively. Even if these indi- 
viduals with regionally abnormal color exist and are in the cor- 
rect genetic landscape to allow persistence, if there are unknown 
negative consequences that affect fitness or survival, they will 
likely not thrive in the population. On the other hand, if abnor- 
mal coloration conveys fitness or survival advantages on one axis 
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of selection, with a multitude of selection pressures influencing 
wildlife coloration, advantages conveyed by alternative pelage col- 
oration must strongly outweigh any potential opposing selection 
pressures. Finally, on evolutionary time scales, cities are a rela- 
tively new landscape, and studying wildlife in urban areas is an 
even more recent development. Scientists likely have little idea of 
what the frequency of different color morphs in urban and nonur- 
ban areas is. This subject has rarely been studied, and the hy- 
potheses suggested in the present article are all in need of further 
research. 

Implications 
Physical appearances in wildlife serve distinct and important 
purposes. From sexual selection and secondary fitness signal- 
ing to antidetection mechanisms, pelage pattern and coloration 
help determine the survival and reproductive success of individ- 
uals. Given time and the correct genetic landscape, urban areas 
may allow or even select for alternative color morphs. However, 
proliferation of conspicuous color morphs due to one mechanism 

may have dramatic implications for the other purposes of pelage 
coloration. 

The unintended consequences of human-mediated selection 
may have vast and wide-ranging effects on wildlife populations. 
For example, laws that protect leucistic and albino wildlife may 
encourage proliferation of these specific color morphs. There are 
multiple states in the United States with protections on wildlife 
with abnormal coloration ( Wisconsin DNR 1940 , Iowa General As- 
sembly 1988 ) . Even at the municipal level, there are towns that 
provide protections to these individuals with alternative color, 
such as for white morphs of Eastern gray squirrels in Olney, Illi- 
nois ( City of Olney municipal code 6.12.020.B ) . Towns like Olney 
( e.g., Marionville, Mississippi, United States; Marysville, Kansas, 
United States; Kenton, Tennessee, United States; Kent, Ohio, 
United States; Exeter, Ontario, Canada ) even profit from these in- 
dividuals of unique color through tourism, incentivizing their pro- 
tection. However, protection of these individuals may have un- 
intended population consequences. Leucism and albinism have 
been linked to potentially negative health and fitness outcomes in 
wildlife, such as weakened feathers in birds or may be the result 
of inbreeding as seen in domestically raised white tigers ( Lee and 
Grant 1986 , Bonser 1996 , Kose and Møller 1999 , Butler and John- 
son 2004 , Xu et al. 2013 ) . Therefore, artificially selecting for these 
color morphs could significantly decrease the average fitness of 
these populations, making them more vulnerable to human and 
climate-related disturbances. 

In addition, with the many behavioral and physiological roles 
that wildlife pelage and plumage coloration plays, selection for 
individuals with aberrant colors on one axis may have negative 
consequences on another. For example, if individuals with aber- 
rant color are selected for in cities on the basis of a thermoregu- 
latory advantage, how will this affect secondary fitness signaling 
and mate selection? In addition, if individuals with aberrant color 
are selected for on the basis of withstanding the greater temper- 
atures found in urban heat islands, they may be more suscepti- 
ble to climate volatility and sudden cold snaps that may present 
themselves more frequently as climate change progresses and 
daily weather patterns becomes less predictable ( Sheshardri et al. 
2021 ) . 

Finally, there has been a global increase in human–wildlife con- 
flict in recent decades, which is predicted to only get worse with 
climate change ( Abrahms 2021 , Schell et al. 2021 ) . In urban ar- 
eas, people are often at closer proximity to wildlife than nonurban 

areas. If people begin favoring wildlife individuals with alterna- 
tive coloration, through protective laws or supplemental feeding, 
the proximity to these individuals may further increase, leading 
to higher likelihoods of conflict arising ( Thirgood et al. 2005 ) . In 
addition, if alternative coloration is caused nongenetically, such 
as through urban graying or low nutrition foods, these individuals 
may be more susceptible to accumulating pathogens or diseases 
as a result of lowered immune responses ( Murray et al. 2019 ) . Cou- 
pled with close proximity to humans, this could potentially in- 
crease the risk of disease spillover ( Murray et al. 2019 , Messmer 
2020 ) . 

Future studies 
Although Leveau ( 2021 ) found more than 60 studies that, to some 
extent, addressed frequencies of different color morphs between 
urban and nonurban regions, the vast majority of these stud- 
ies were concentrated on just three species. Addressing pelage 
and plumage coloration frequency across different study systems 
and taxa will be imperative for understanding the likelihoods 
of proliferation for different phenotypes. In addition, few of 
the hypotheses I suggest above have been studied at all. I 
suggest that researchers prioritize understanding how environ- 
mental change due to urbanization can alter the strength and 
direction of adaptive and nonadaptive evolutionary forces across 
phenotypic traits. Urban evolutionary ecology is a nascent field 
and urban adaptive and nonadaptive evolution is therefore poorly 
understood. I suggest building on literature regarding urban evo- 
lution in general and applying these findings to coloration mor- 
phology specifically. Although the focus is beginning to change, 
to date, much of the research on urban wildlife evolution has 
been conceptual in nature or correlative rather than mechanis- 
tic ( Diamond and Martin 2021 , Lambert et al. 2021 ) . Much more 
research on the mechanisms behind adaptation or regional ge- 
netic changes in urban wildlife is needed. In addition, those stud- 
ies that did look at urban evolution have primarily been focused 
on specific locales and have lacked replication across urban areas 
( Lambert et al. 2021 ) . 

Scientists should leverage existing museum collections, cam- 
era trap networks ( Urban Wildlife Information Network ) , commu- 
nity science data ( Zbyryt et al. 2020 , Cosentino and Gibbs 2022 ) , 
and census data ( e.g., the Squirrel Census ) to begin to monitor and 
understand the phenotypic frequencies of different color morphs 
across urban–rural gradients. In addition, conducting laboratory 
studies may help us understand when atypical color morphs 
may be advantageous. Borrowing methods from studies such as 
Campbell-Staton and colleagues ( 2020 ) , scientists can conduct 
thermal tolerance studies to understand how pelage and plumage 
color morphology affects heat load in different thermal environ- 
ments. Similarly, laboratory experiments can help us further un- 
derstand how exposure to different chemicals and mutagens may 
influence mutation load and subsequent heritability of those mu- 
tations and whether there are any biases in the genetic regions 
they are likely to mutate within. Exposing laboratory animals to 
polluting compounds common in urban areas ( e.g., lead, various 
hydrocarbons, fine particulate matter ) and tracking potential ge- 
netic changes will help us understand the likelihood of different 
mutations, such as those that produce coloration changes. Finally, 
although they are difficult to enact, transplant experiments with 
individuals of atypical color between urban and nonurban con- 
ditions could help us understand how predation pressures and 
general environmental conditions influence survival and the re- 
production rates of these individuals. 
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