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Abstract: Several heuristic procedures to estimate the rotor position of interior permanent magnet synchronous motors
(IPMSM) via signal injection have been reported in the application literature, and are widely used in practice. These methods,
based on the use of linear time-invariant (LTI) high-pass/low-pass filtering, are instrumental for the development of sensorless
controllers. To the best of authors’ knowledge, no theoretical analysis of these methods has been carried out. The objectives of
this note are (i) to invoke some recent work on the application of averaging techniques for injection-based observer design to
develop a theoretical framework to analyse the LTI filtering used in sensorless methods and (ii) to propose a new method that
on the one hand ensures improved accuracy and on the other hand can be related to the current filtering technique. An
additional advantage of the new method is that it relies on the use of linear operators, implementable with simple computations.
The effectiveness of the proposed scheme is assessed by experiments on an IPMSM platform driven by a 521 V DC bus with a
5-kHz pulse-width modulation.

 Nomenclature
Symbols

α − β stationary axis reference frame quantities
d - q synchronous axis reference frame quantities
np number of pole pairs
Rs stator resistance, Ω
ω angular velocity, rad/s
Φ magnetic flux, Wb
J drive inertia, kg m2

TL load torque, N m
f friction constant
θ rotor flux angle, rad
Ld, Lq d- and q-axis inductances, H
v, i stator voltage and current [V, A]
ωh angular frequency of injection signal, rad/s
ε period of injection signal ε = 2π /ωh , s
Vh amplitude of injection signal, V
⋅ Euclidean norm

s Laplace transform symbol
p differential operator p = d/dt
y(t) = ℋ[u(t)] bounded-input bounded-output operator ℋ acting

on the input signal u(t) to generate the output y(t)
yv virtual output
iαβ [iα, iβ]⊤

vαβ [vα, vβ]⊤

I, J
identity matrix on ℝ2 × 2 and 

0 −1
1 0

Superscripts

r actual reference frame
r^ estimated reference frame
r⋆ reference value
rh high-frequency component

rℓ low-frequency component
vαβ

C low-frequency control input

1 Introduction
Permanent magnet synchronous motors (PMSMs) are widely used
in industrial applications because of their superior power density
and high efficiency. One of the more—practically and theoretically
—challenging open problems for PMSMs is the design of
controllers without rotational sensors, the so-called sensorless
control. Two different types of sensorless control methodologies
are currently being used in practice. The first one is a model-based
method, which is known in applications as the back-emf or flux-
linkage estimation. In this method, the fundamental components of
the electrical signals are used to design a back-emf observer or a
flux observer [1–9]. The second one is a saliency-tracking-based
method, in which information is extracted from the high-frequency
components of stator currents via high-frequency signal injections
[10–13].

It is well-known that because of the loss of observability at
standstill [8], observer-based methods cannot be used in the low-
speed region [11]. On the other hand, the performance of the
saliency tracking-based method, which utilises the anisotropy due
to the rotor saliency and/or magnetic saturation, is not degraded at
low speeds. In this study, we address the problem of position
estimation for PMSMs at low speeds or standstill, using a signal
injection-based method.

There are two kinds of PMSMs, surface PMSMs (SPMSMs) or
interior PMSMs (IPMSMs), the difference being the location of the
permanent magnets, either on the surface of the rotor, for the
former, or buried in the cavities of the rotor core, for the latter.
There are several technical reasons why IPMSMs are more
convenient in applications than SPMSMs, see [14, Table 6.2]. On
the other hand, the magnetic characteristics of IPMSM, and
consequently the dynamic model is, far more complicated than one
of the SPMSMs—see the discussion in [14, Subsection 6.2.2] and
[7, Section 6]. As a matter of fact, because of the inability to deal
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with this complex dynamics, the overwhelming majority of papers
published by the control community in sensorless control operating
in medium- or high-speed regions are concerned with SPMSMs,
see e.g. [2–5, 8, 9]—with [15, 16] a notable exception. In contrast,
the saliency-tracking methods at low speeds have received more
attention from the applied journals in the context of IPMSMs.

Owing to the rotor saliency, the signal injection method is more
efficiently applied in IPMSMs than in SPMSMs. For this reason,
we consider in this study IPMSMs. In the last two decades, signal
injection-based approaches have been successfully applied, in a
heuristic manner, in various applications, some of them reported in
application journals [10–12, 14, 17, 18]. The classical approach is,
first, to inject high-frequency probing signals into the motor
terminal; then, extract the high-frequency components of the stator
currents to get position estimates. Besides the question of the
choice of the injection signal and its mode of application, the key
problem is the signal processing of the measured stator currents to
extract the desired information of the mechanical coordinates. This
task is usually achieved via the combination of linear time-
invariant (LTI) high pass-filters (HPFs) and low-pass filters (LPFs)
[14]—an approach that is justified by a series of technique-oriented
practical considerations, hard to fit into a rigorous theoretical
framework. To the best of our knowledge, no theoretical analysis
of these heuristic methods has been reported in the literature.

Our contributions in this study are threefold.

• Provide a theoretical framework for the analysis of conventional
LTI filtering methods used in injection-based sensorless control
of IPMSMs.

• Propose a new method for the extraction of the information on
the mechanical coordinates that, using the aforementioned
framework, is shown to be superior to the existing LTI filtering
technique. An important aspect of this point is that the increase
in computational complexity with respect to the current
HPF/LPF practice should be negligible.

• Prove that the new proposed method admits an HPF/LPF
interpretation. This is an important issue since it shows the
connection—and downwards-compatibility—of the new method
with standard industry practice.

Towards this end, we rely on the recent work [13, 19–21], where
invoking averaging techniques, a rigorous theoretical analysis of
injection-based methods for observer design has been carried out.
The importance of disposing of rigorous analytic results can hardly
be overestimated, since it allows, on the one hand, to carry out a
quantitative performance assessment while, on the other hand, it
provides guidelines to make more systematic and simplify the
parameter tuning procedure. We underscore that the IPMSM model
adopted in the study is widely accepted by the drives community
since it precisely describes the behaviour of the machine in the
absence of magnetic saturation, a phenomenon that is conspicuous
by its absence when the load in the motor is within the normal
operating range.

The remainder of paper is organised as follows. In Section 2,
we recall the mathematical model of IPMSMs and formulate the
problem of estimation of position using signal injection. Section 3
discusses the classical frequency-based accuracy analysis of the
position estimators used for the conventional methods, and
highlights their theoretical limitations. In Section 4, the new
method is proposed, and then some comparisons and similarities
with the conventional methods are given in Section 5. Simulation
and experimental results are given in Section 6. The paper is
wrapped up with some concluding remarks in Section 7.

Caveat. An abridged version of this paper has been presented in
[22].

2 Model and problem formulation
The voltage equations of the IPMSM in the stationary frame are
given by [14]

vαβ = [RsI + L(θ)p − 2npωL1Q(θ)J]iαβ + npωΦ −sin θ
cos θ

, (1)

where we define the mappings

L(θ): = L0I + L1Q(θ)

Q(θ): = cos 2θ sin 2θ
sin 2θ −cos 2θ

,

with the averaged inductance L0 and the inductance difference
value L1 as

L0 := 1
2(Ld + Lq), L1 := 1

2(Ld − Lq) .

The stationary model (1), together with the mechanical dynamics,
can be expressed in the standard state-space form as follows:

L(θ) d
dt iαβ = F(iαβ, θ, ω) + vαβ

d
dt θ = npω

J d
dt ω = npΦ(iβcos θ − iαsin θ) − f ω − TL,

(2)

where we define the mapping

F( ⋅ ) := (2npωL1Q(θ)J − RsI)iαβ + npωΦ sin θ
−cos θ

.

Problem formulation (position estimation via signal injection):
Assume there is a stabilising controller operator ΣC measuring only
iαβ, and define its output as

vαβ
C (t) := ΣC[iαβ(t)] .

Inject a high-frequency signal to one axis of the control voltage,
say, the α-axis, i.e.

vαβ = vαβ
C +

Vhsin ωht
0

, (3)

where ωh := 2π /ε, with ε > 0 small, and Vh > 0. The problem is to
define an operator

ΣE: iαβ ↦ θ
^

such that

lim sup
t → ∞

θ
^(t) − θ(t) ≤ O(ε), (4)

where O is the uniform big O symbol. [That is, f (z, ε) = O(ε) if
and only if f (z, ε) ≤ Cε, for a constant C independent of z and ε.
Clearly, O(1) means the boundedness of a signal.]

It is well-known that high-frequency probing signals have
almost no effect on the motor mechanical coordinates. However,
due to the rotor saliency, it induces different high-frequency
responses in the α- and β-axes currents. This fact provides the
possibility to recover the angle from the high-frequency
components of stator currents.

3 Frequency decomposition and quantitative
analysis of conventional methods
In this section, we give the analysis of frequency decomposition of
the stator currents iαβ, which is instrumental for the design and
analysis of position estimators.

3.1 Conventional frequency analysis

First, we recall the conventional frequency decomposition in the
technique-oriented literature, which relies on the ad-hoc
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application of the superposition law [11, 14], i.e. suppose the
electrical states consist of high-frequency and low-frequency
components as

( ⋅ )αβ = ( ⋅ )αβ
h + ( ⋅ )αβ

ℓ .

If ω ≃ 0, the current responses can be separated as

vαβ
ℓ + vαβ

h = RsI + L(θ)p iαβ
ℓ + iαβ

h . (5)

For the approximated high-frequency model

vαβ
h ≃ L(θ)piαβ

h ,

neglecting the stator resistance, the angle θ can be regarded as a
constant, thus the high-frequency response contains the
information of θ, namely, for the input (3) we have

iαh = Vh(L0 − L1cos 2θ)
LdLqp [sin ωht]

iβh = −(VhL1sin 2θ)
LdLqp [sin ωht] .

Substituting p = d /dt , we approximately get the high-frequency
components of the stator current as

iαβ
h = 1

ωhLdLq

−L1cos 2θ + L0

−L1sin 2θ
( − Vhcos ωht) . (6)

The derivation of the above high-frequency model is based on two
assumptions, namely, the superposition law and the slow angular
velocity ω ≃ 0, regarding which, the following remarks are in
order.

R1 The dynamics (2) is highly non-linear. It is well-known that
non-linear systems ‘mix’ the frequencies, making the superposition
law not applicable. Although using the classical decomposition (5)
to estimate position may work in practice, it fails to reliably
provide, neither a framework for a quantitative performance
assessment nor guidelines to tune parameters.

R2 The assumption ω ≃ 0 implies that the decomposition above
is applicable only at standstill or very low speeds.

3.2 Frequency analysis via averaging

Averaging analysis provides a rigorous and elegant decomposition
of the measured currents as follows. We refer the reader to [23, 24]
for the basic theory on averaging analysis. Applying averaging
analysis, it is shown in [13] that with ωh > 0 large enough

iαβ = īαβ + εyvS + O(ε2), (7)

where we defined the signal

S(t) := − Vh
2π cos(ωht), (8)

the (so-called) virtual output

yv := 1
LdLq

−L1cos 2θ + L0

−L1sin 2θ
, (9)

and īαβ is the current of the closed-loop system with vαβ = vαβ
C , i.e.

without signal injection. From (9) it is clear that the angular
position θ can be recovered from the virtual output yv, i.e.

θ = 1
2arctan

yv2

yv1 − L0

LdLq

.

Hence the position estimation problem is translated into the
estimation of yv. Towards this end, we notice that from a frequency
viewpoint, iαβ contains fundamental frequency component īαβ and
high-frequency component εyvS. It should be noticed that the high-
frequency term εyvS coincides with the one in (6), but the
averaging analysis characterises all the components in iαβ
quantitatively.

It is natural, then, that to ‘reconstruct’ yv—out of measurements
of iαβ—we need to separate these components via some sort of
HPF and LPF operations. This is the rationale underlying most of
the existing position estimators reported in the literature, see [14]
for a recent review.

R3 The tiny term O(ε2) in (7) is caused by second-order
periodic averaging analysis, which is concerned with solving a
perturbation problem in a properly selected time scale.

R4 Rigorously, the function arctan, adopted in the study for
convenience, should be replaced by the two-argument arctangent
function atan2( ⋅ , ⋅ ), the fact widely known in the drives
community.

3.3 Quantitative results of conventional methods

In [14], the position estimation method, for low rotation speeds,
shown in Fig. 1 is proposed. To evaluate the performance of the
classical method depicted in Fig. 1, without loss of generality,
select the LTI filters as the transfer function [Given a smooth signal
y(t) and its Laplace transform Y(s), the following operators in the
time domain can be written as HPF[y(t)] = 2p2

(λh + p)2 [y(t)] and

LPF[y(t)] = λℓ
λℓ + p [y(t)]. For brevity, we make a slight abuse of

notation using both HPF[y(t)] and HPF(s)Y(s) below.]

HPF(s) = 2s2

(λh + s)2

LPF(s) = λℓ
λℓ + s ,

(10)

with parameters

λh = ωh, λℓ = max ωhω⋆, 1 . (11)

The Bode diagrams of two filters are given in Fig. 2 with ωh = 500
and ω⋆ = 1. 

Applying averaging analysis at reduced speeds and setting
ϕ = 0, we have the following.

Fig. 1  Block diagram of the conventional signal injection method [14]
 

Fig. 2  Bode diagram of the HPF/LPF (10) ωh = 500, ω⋆ = 1
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Proposition 1: For the IPMSM model (2), suppose the control

vαβ
C  guarantees all the states bounded, with the speed

(ω̄, ω̇̄, v̇αβ
C ) ≤ ℓω

for some constant ℓω independent of ε. If the filters are selected as
(10) and (11), then the signal processing procedure depicted in
Fig. 1, namely

yh = HPF[iαβ]

Y = 2ωh
Vh

LdLqLPF[yhsin(ωht + ϕ)]

θ
^ = 1

2arctan Yβ
Yα − L0

(12)

with ϕ = 0 and

Y := col(Yα, Yβ),

guarantees

lim sup
t → ∞

θ
^(t) − θ(t) = nπ + O(ε

1
2)

for n ∈ ℤ, when ωh ≥ ωh
⋆ for some ωh

⋆ > 0, with ε = 2π /ωh.
Before presenting the proof, let us say a few words regarding

the proposition intuitively. The widely popular LTI filtering
technique for signal injection, illustrated in Fig. 1, is compactly
expressed in (12). To analyse it quantitatively, we make a mild
assumption of bounded angular velocity and its time derivative.
Proposition 1 figures out the steady-state accuracy O(ε1/2) of the
conventional LTI filtering method with the suggested parameters.
 

Proof: Applying the operator HPF to (7), we have [We omit the
exponentially decaying term εt of filtered signals in the following
analysis.]

HPF[iαβ] = HPF[īαβ] + 2π
ωh

HPF[D(θ)S] + O(ε2) + ϵt, (13)

with the definition

D(θ) := L−1(θ) 1
0 .

For the first term of (13), we have

HPF[īαβ] = 2
(wh + p)2 [r1(t)]

r1(t): = ∂ℱ
∂īαβ

⋅ (ℱ + L−1vαβ
C ) + ∂ℱ

∂ω̄ + L−1 O(ℓω)

+npω̄
∂ℱ
∂θ̄

+ ∂L−1

∂θ̄
vαβ

C

where we have used the assumption

(ω̄, ω̇̄, v̇αβ
C ) ≤ ℓω

in the last term, with

ℱ(iαβ, θ, ω) := L−1(θ)F(iαβ, θ, ω) .

There always exists a constant ωh
⋆ ∈ ℝ+ such that for ωh > ωh

⋆

HPF[īαβ] = 2
ωh

2 ⋅ ωh
2

(ωh + p)2 [O(1)] .

Some basic linear system analysis shows

ωh
2

(ωh + p)2 [O(1)] = O(1),

thus yielding

HPF[īαβ] = O(ε2) .

For the second term in the right-hand side of (13), we have

2π
ωh

HPF[D(θ)S] = − 2Vh
ωh

1
(ωh + p)2 [r2(t)]

r2(t): = a1cos(ωht) + a2ωhsin(ωht)
−a3ωhsin(ωht) − ωh

2D(θ)cos(ωht) .

with

a1: = d
dt (npωD′(θ)),

a2: = npωD′(θ),
a3: = ωhD′(θ)npω,

the derivatives of which are all bounded. If the parameter ωh is
large enough, we have

2π
ωh

HPF[D(θ)S] = 1
ωh

VhD(θ)sin(ωht) + O(ε2) .

Therefore, the currents filtered by the HPFs become

yh: = HPF[iαβ]

= 1
ωh

VhD(θ)sin(ωht) + O(ε2) . (14)

Multiplying sin(ωht + ϕ) on both sides with ϕ = 0, we get

sin(ωht)yh = Vh
2ωh

D(θ) − Vh
2ωh

D(θ)cos(2ωht) + O(ε2), (15)

where we have used the trigonometric identity

sin2 θ = 1
2(1 − cos 2θ) .

Applying the LPF to (15), for the first term we have

LPF Vh
2ωh

D(θ) = Vh
2ωh

D(θ) + O(ε3/2) .

For the second term, we have

LPF Vh
2ωh

D(θ)cos(2ωht) = O(ε3/2),

with straightforward calculations and the swapping lemma.
Therefore, the filtered signal satisfies

yα

yβ
:= LPF[sin(ωht)yh] = Vh

2ωh
D(θ) + O(ε3/2) .

Notice the explicit form of D(θ), thus we having
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Yα

Yβ
: =

2ωhLdLq
Vh

yα

2ωhLdLq
Vh

yβ

= L0 − L1cos 2θ
−L1sin 2θ

+ O(ε1/2) .

It is obvious that when time t goes to infinity, the identity

tan 2θ = Yβ
Yα − L0

+ O(ε1/2)

holds. Thus,

θ = 1
2arctan Yβ

Yα − L0
+ nπ + O(ε1/2) + ϵt,

with n ∈ ℤ. It completes the proof. □
The saliency-tracking-based method has an angular ambiguity

of π. It is possible to utilise the saturation effect in the d-axis of
machine, as well as yv to conduct the magnetic polarity
identification. The problem is out of scope of the study, and we
refer the readers to [12, 18] for more details. It should be
underscored that the above quantitative analysis does not rely the
constant speed assumption, making it also applicable to transient
stages in low speed region.

When the IPMSM is working at standstill, the estimation
accuracy at the steady stage becomes also O(ε). A corollary at
standstill is given as follows.
 

Corollary 1: For proposition (1) with ω ≡ 0, we have

lim sup
t → ∞

θ
^(t) − θ(t) = nπ + O(ε)

with n ∈ ℤ.
 

Proof: It follows clearly with λℓ = 1. □
The above corollary underscores that the position estimation at

standstill admits the same order of accuracy with the one of the
proposed virtual output estimator. This is because the angular
position θ degenerates as a constant for such a case.

4 Proposed estimation method
4.1 New design

In this section, we propose a new estimator following the
methodology in [25, 26]. Before presenting the new design, we
define three bounded-input bounded-output-stable, linear operators,

• first, the delay operator Dd, with parameter d > 0

Dd[u(t)] = u(t − d); (16)

• second, the weighted zero-order-hold operator Zw,
parameterised by w > 0, and defined as

χ̇(t) = u(t)

Zw[u(t)] = 1
w [χ(t) − χ(t − w)]; (17)

• third, the linear time-varying (LTV) operator Ggrad defined as

ẋ(t) = − γS2(t)x(t) + γS(t)u(t)

Ggrad[u(t)] = 1
ε x(t),

(18)

where γ > 0 is a tuning gain.

These operators are instrumental for the following design.

To construct the estimator, apply the first two operators to the
currents as follows:

Y f (t) := (Dd − Z2d)[iαβ(t)] . (19)

We make the observation that using the Laplace transform, the
action of (19) may be represented in the frequency domain as

Y f (s) = Gd(s)iαβ(s),

where we defined the transfer function

Gd(s) := e−ds + 1
2ds e−2ds − 1 . (20)

The description of the estimator is completed applying the third
operator Ggrad to Y f  to generate the estimate of yv, denoted as y^v,
i.e.

y^v(t) = Ggrad[Y f (t)] . (21)

See Fig. 3. The measured stator current iαβ is first filtered by the
transfer function Gd(s) defined in (20), then going through a
gradient descent operator Ggrad, and we will get the estimate of the
virtual output yv. As discussed in Section 3.2, it is equivalent to
obtaining the angular position θ, which is our target. This is the
signal processing procedure of our new design, the properties of
which will be introduced below.

Using the analysis reported in [25], with d = ε it is shown that
the estimator (19), (21) verifies

lim
t → ∞

y^v(t) − yv(t) ≤ O(ε) .

A rigorous statement is given as follows.
 

Proposition 2: For the dynamical model of IPMSMs (2),
suppose the control vαβ

C  guarantees all states bounded and the speed

ẏv ≤ ℓv (22)

for some constant ℓv, there exist constants ωh
⋆, γ⋆ > 0 such that for

ωh > ωh
⋆ and γ > γ⋆/ε , the estimate satisfies

lim sup
t → ∞

Ggrad
γ ∘ Gd(s)[iαβ(t)] − yv(t) = O(ε)

where yv is defined in (9) with d = ε.
 

Proof: We give a brief outline here. With the Taylor expansion,
we can obtain the time-varying regressor

Y f (t) = S(t)θv(t − d) + O(ε2), (23)

with

Y f (t) := Gd(s)[iαβ(t)], θv(t) = εyv(t) .

Define the error signal

Fig. 3  Block diagram of the proposed estimation method
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θ
~

v := θ
^
v − εyv .

Invoking (23) and Assumption (22), if γ > γ⋆/ε  we get

θ
~̇

v := − γS2(t)θ~v + O(ε) . (24)

Clearly, the signal S(t) is of persistent excitation, that is,

∫
t

t + 1
ε
S2(τ)dτ ≥ S0,

for all t ≥ 0 and some S0 > 0. Invoking Krasovskii's theorem and
carrying-out some basic perturbation analysis, it completes the
proof. □

Thus, defining the angle estimate as

θ
^ = 1

2arctan
y^v2

y^v1 − L0/LdLq
, (25)

the required asymptotic accuracy (4) is achieved.
R5 The above analysis shows the accuracy enhancement of the

new design, compared with the conventional LTI filtering
technique. It should be pointed out that all the operators used in the
new design are linear, making the algorithm highly efficient.
Indeed, the proposed algorithm can be regarded as an LTV
operator.

4.2 Parameter tuning

For the implementation of the proposed estimator, there are three
tunable parameters, namely, γ, ωh, and Vh. We are in position to
give some discussions on their selections.

D1 A larger gain γ yields a faster convergence speed of the
estimation error. The performance assessment, including the
transient and steady-state stages, of the virtual output estimates is
instrumental for its tuning.

D2 For the frequency parameter ωh, there is a trade-off between
the estimation accuracy and the sensitivity to unavoidable high-
frequency measurement noises [27]. On the one hand, a higher
frequency increases the accuracy. On the other hand, the
measurement is

iαβ = īαβ + εyvS + O(ε2) + ν, (26)

where ν is the measurement noise. Thus, a higher frequency will
decrease the signal-to-noise ratio.

D3 The amplitude Vh shares some similar effects on the
estimation performance with ωh, due to (26), since, a larger
amplitude Vh increases the signal-to-noise ratio. However, if the
probing amplitude Vh is sufficiently large, the oscillation in
mechanical coordinates is not neglectable.

4.3 Model with magnetic saturation

To clarify the underlying mechanism of conventional LTI filtering
methods we consider in this study the basic IPMSM model (1). The
proposed analysis may be adapted, almost verbatim, to more

general models, e.g. the model with magnetic saturation, which we
proceed to discuss below.

Considering the flux linkage λ ∈ ℝ2 and Faraday's law, we have

λ̇ = vαβ − Riαβ, (27)

which holds for the IPMSM models. The stator current satisfies the
constitutive relation

iαβ = ∇λHE(λ, θ), (28)

where HE(λ, θ) is the magnetic energy stored in the inductors. The
two equations above hold true independently of the consideration
of magnetic saturation, whose effect is captured in the energy
function. The model of the unsaturated IPMSM model (1) is
completed replacing

HE(λ, θ) = 1
2[λ − c(θ)Φ]TL−1(θ)[λ − c(θ)Φ] (29)

with c(θ) := col(cos θ, sin θ), with (27) and (28). As pointed out in
[13] under high-load condition, magnetic saturation should be
taken into account in the model. In such a case, the magnetic
energy is more complicated than the quadratic form (29), see [13,
28–32] for more details.

The analysis of virtual outputs extraction in Sections 3–4 is
exactly the same for (29) and non-quadratic magnetic energy
HE(λ, θ). The difference appears on the way how to recover the
angular position θ from yv. For the latter, it can be formulated as
the following optimisation problem:

θ
^ = min

θ^ ∈ [0, 2π)
y^v − ∇λ

2HE(λ, θ) 1
0 ,

whose analytical solution, if it exists, depends on the particular
modelling of magnetic saturation. See [13] for the discussions
about saturated models.

5 Frequency interpretation of new estimator
We have shown that the new estimator (4) achieves performance
enhancement with a higher accuracy. In this section, we show the
structural and functional similarities between two methods.

The new estimator proposed in this study exactly coincides with
the block diagram in Fig. 1 assigning ϕ = 3π /2  and the filters as
follows:

HPF = Dd − Z2d

LPF = 1
2

Vh
2π

2

ℋ,
(30)

where ℋ is the single-input single-output LTV filter

ż(t) = − γS2(t)z(t) + γu(t)
ℋ[u(t)] = z(t) .

(31)

See Fig. 4. 
To illustrate the high-pass and low-pass filtering properties of

(30) and (31), we show in Fig. 5 the Bode diagram of the transfer
function Gd(s), defined in (20). From the figure it is clear that Gd(s)
verifies a high-pass property.

The frequency response of the operator ℋ, by fixing γ = 1 and
Vh = 1, is the same as the linear time periodic (LTP) system below

ẏ = − (cos ωht)2y + u . (32)

Introducing the change of state coordinate

y(t) = P̄−1(t)r(t)Fig. 4  Equivalent block diagram of the proposed estimation method
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with

P̄(t) := exp − 1
4ωhsin 2ωht , (33)

we get the LTV system

ṙ(t) = − 1
2r(t) + P̄(t)u(t) . (34)

Therefore, the LTP system (32) can be represented as in Fig. 6. 
From (33) it is clear that the matrix P̄(t) is almost identity for
sufficiently large ωh, while the transfer function 1/s + 0.5  admits
the low-pass property for a large ωh. Hence, the LTP system (32),
as well as the operator ℋ, is an LPF. In Fig. 1, the signal
sin(ωht + ϕ), entering before the LPF, has different parameters ϕ
for the classical design and the proposed one, which are 0 and
3π /2 , respectively. As shown in Figs. 2 and 5, this is caused by

the different phase lags (+π /2 and −2π) of the second-order LTI
filter (10) and the delayed LTI filter Gd(s) at the frequency ωh.

6 Simulations and experiments
6.1 Simulations

The proposed estimator is first tested by means of simulations in
Matlab/Simulink. We use the parameters of Table 1, the current-
feedback controller ΣC given below, together with the proposed
estimator. 

(i) Position estimator in Fig. 3 with (25).
(ii) Rotation between αβ-coordinates and misaligned dq-
coordinates, namely

idq = e−Jθ^iαβ, vαβ = eJθ^vdq .
(iii) Speed regulation proportional–integral loops

idq
⋆ = Kp + Ki

1
p (ω⋆ − ω^ ),

where ω⋆ is the reference speed, and ω^  is an estimate of the rotor
speed obtained via the following phase-locked loop (PLL)-type
estimator

η̇1 = Kp(θ
^ − η1) + Kiη2

η̇2 = θ
^ − η1

ω^
p = Kp(θ

^ − η1) + Kiη2

ω^ = 1
np

ω^
p .

(35)

(iv) Current regulation loops

vd = Kp + Ki
1
p (id⋆ − idℓ) − Lnpω^ iq

vq = Kp + Ki
1
p (iq⋆ − iqℓ) + Lnpω^ id + npω^ Φ,

where idq
ℓ  are filtered signals of idq by some LPFs.

We operate the motor at the slow speed of 30 rad/min with
TL = 0.5 Nm and the parameters ε = 10−3, γ = 104,
Vh = 1, ω⋆ = 0.5 and those in Table 2. Fig. 7 shows the simulation
results. In Fig. 7a, we also give the position estimate obtained from
the conventional LTI filters, denoted θ

^
LTI. Considering the root-

mean-square deviation (RMSD)

RMSD = 1
t2 − t1

∫
t1

t2
θ
^(s) − θ(s) 2ds

with θ, θ
^ ∈ S1, we calculate the RMSDs for two methods in the

interval [3, 17] s. They are 0.0872 and 0.1411 for the proposed
design and the conventional LTI filtering method, respectively. We
conclude that the new design outperforms the conventional LTI
filtering method with a higher accuracy. It is also observed that the
sensorless control law regulates the angular velocity at the desired
value. In Figs. 7e and f, we also test the position estimator, as well
as closed-loop performance, with different injection frequencies,
500 and 600 Hz, verifying the claim in D2.

6.2 Experiments

Losses and compensations. Before introducing the experimental
results, let us say something about the loss of phase shift, which is
unavoidable, as well as its compensations.

The excitation signal is injected into the modulation signal for
the stationary α-axis. The excitation in the α-axis is, indeed, also
affected by the inverter imperfections, for instance, the lockout
time. Further on, the current iα responding to the excitation is
phase-shifted by 90° with respect to the voltage only in an ideal
case, whereas the winding does not have any resistance. In
practice, it should be a non-zero winding resistance, with the phase
shift lower than 90°. Additional impact is due to the excitation-
frequency eddy-currents in the magnetic circuit. Acting as a short-
circuited secondary winding in a transformer-like electromagnetic
setup, the iron losses introduce an additional change of the phase
shift. Thus, these factors, but not limited to them, cause the phase
of high-frequency component in iαβ, see the term S( ⋅ ) in (7), to be
different from the one in the test signal.

Fig. 5  Bode diagram of the transfer function Gd(s) ωh = 500, n = 2
 

Fig. 6  Equivalent block diagram of the LTP system (32)
 

Table 1 Parameters of the IPMSM: simulation (first column)
and experiments (second column)
Number of pole pairs np 6 3
permanent magnet flux linkage constant (Φ), Wb 0.11 0.39
d-axis inductance (Ld), mH 5.74 3.38
q-axis inductance (Lq), mH 8.68 5.07
stator resistance (Rs), Ω 0.43 0.47

drive inertia (J), kg m2 0.01 ≥ 0.01
 

Table 2 Parameters of the controller and the PLL estimator
[Kp, Ki] in the speed loop [1, 5]
[Kp, Ki] in the current loop [5, 5]
[Kp, Ki] in the PLL estimator [5, 0.01]
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Fig. 8 illustrates the effect of the phase shift loss on the virtual
output estimate y^v1 via simulations, namely, adding ‘artificial’
phase shifts in the high-frequency components of (7) to study the
changes of y^v1. In terms of (9), the virtual output yv1 admits the
form yv1 = acos 2θ + b with some constants a and b. In Fig. 8 we
observe the phase shift causes the drifts of amplitude a and bias b.
A natural compensation method is using the signal
S(t) = − Vhcos(ωht + ϕp) rather than (8) in the gradient descent
operator Ggrad, with ϕp tuned in [0, 2π).

Here we introduce an alternative approach to compensate all the
losses, which not only contain the phase shifts but also the
inductance values, at the ports of virtual output estimates, i.e. using
the compensated virtual outputs

y^v1
p := ℓ1y^v1 + ℓ2, y^v2

p := ℓ3y^v2,

and corresponding angle estimate

θ
^ = 1

2arctan
y^v2

p

y^v1
p − L0

LdLq

.

The parameter adjustment principle of ℓi (i = 1, 2, 3) is to make the
infimums and supremums of the signals y^v1

p  and y^v2
p  coincide with

the ones calculated from (9). For more details, we first run the
motor at a constant speed, with the obtained estimates y^v
approximating some periodic signals, the means and amplitudes of
which may differ from the calculations from (9). We then tune ℓi in
order to let y^v have the same means and amplitudes with the ones
in (9). It is clear that ℓ1 and ℓ3 are proportional to the amplitudes,
and ℓ2 affects the mean value. Such a procedure can be done
offline, and then we apply the well-tuned parameters for online
estimation.

System configuration. The scheme developed in this study was
tested on an IPMSM platform, shown in Fig. 9. The test IPMSM is
a FAST IPMSM, whose parameters are given in Table 1. It has a
72 V line-to-line peak at 1000 revolutions per minute (RPM). The
voltage of DC bus is 521 V, with the frequency of pulse-width
modulation (PWM) 5 kHz.

The experimental setup comprises two synchronous motors, one
of which runs in the speed control mode, used to maintain the
speed at the desired level. The motors are coupled by means of a
toothed belt, which also connects an inertial wheel. In Fig. 9, the
experimental setup is also equipped with two mechanically
coupled, inverter supplied brushless DC motors: (i) main power
supply unit comprising the line rectifier and two three-phase PWM
inverters with control circuits, (ii) DC-bus support with dynamic
breaking, (iii) speed controlled motor, (iv) torque controlled motor,
(v) inertia coupled with both motors. The motor under the test is
obtained by taking an industry-standard FAST motor and
introducing changes into the rotor magnetic circuit so as to obtain
the difference (2:3) between the d-axis and q-axis inductance. This
motor runs in the torque-control mode. The speed and position are
obtained through the high-speed digital serial link from standard
industrial high-resolution sensors mounted on the shaft. The
sampling time is Ts = 300 ns, and the acquisition time is set to
cover at least two electrical periods. The three-phase currents,
voltages and the rotor position were measured from the drive
measurement system—a ‘Sincoder’ shaft sensor.

In experiments, we only test the proposed estimator, thus the
estimated signals are not used in the closed-loop system, whose
bandwidth of the speed loop is larger than 100 Hz. The test signal
is injected into the modulating signal in the α-axis. The test motor
is driven by another motor which kept the speed at 60 RPM.

Experimental results. In the first experiment, the amplitude of
the test signal is 2 V, with the frequency 400 Hz with zero
reference currents (idd and iqd), in this way we can increase the
resolution of the measurement system. The parameters of the
estimator are selected as γα = 1.25 × 104 and γβ = 2.5 × 104. Let us
first consider a normal operation mode with a 400 Hz test signal
and zero load, and run the motor at a constant speed. For such a
case, Fig. 10a shows the performance of the proposed position
estimator, which generally works well. The test signal was only
injected to the α-axis, which is illustrated in Fig. 10b after Clarke
transform. Under the same conditions, we compare the proposed
angular estimator with the conventional LTI filter in Fig. 11a, in
which we observe the accuracy enhancement of the new design. 
This is probably because the phase lag in the virtual output
estimates of the proposed design is smaller than that of the LTI
filter, see Fig. 11b. Of course, the performance of the conventional
methods may be further improved via some particular technique-
oriented tricks in the applied literature, which, however, are out of
scope of this study.

Fig. 7  Simulation results
(a) The angle θ and its estimates (test frequency 1000 Hz), (b) The angle θ and its
estimates (test frequency 1000 Hz), (c) Angular velocity and its estimate, (d) Stator
currents iαβ, (e) The angle θ and its estimates (test frequency 600 Hz), (f) The angle θ
and its estimates (test frequency 500 Hz)

 

Fig. 8  Loss effect of shift drifts
 

Fig. 9  Experimental testing setup
 

1872 IET Power Electron., 2020, Vol. 13 Iss. 9, pp. 1865-1874
© The Institution of Engineering and Technology 2020



The motor platform utilised 5 kHz PWM, thus we should select
the frequency of the test signal less than one-tenth of this value, i.e.
500 Hz, in order to be able to ‘generate’ the desired sinusoidal
signals. We first test an 800 Hz probing signal, but unfortunately, it
does not work as expected. We present some experimental results
in Fig. 12 to illustrate estimation performance with the injection
frequencies 200 and 100 Hz, respectively. We conclude that the
performances degenerate with the frequency varying from 400 to
100 Hz. A possible interpretation, as discussed in D2, is that such a
case has a low signal-to-noise ratio with a large ωh. A similar result
was observed for magnetic levitation systems in [25]. Therefore,
the injection frequency is suggested to be selected in 200, 400 Hz
for the tested motor in our experimental testing setup. For any
other equipment, the probing frequency can be selected following
the same procedure above, considering both the frequency of PWM
signals and the signal-to-noise ratio.

To evaluate the proposed HPF, we consider the cases with non-
zero reference current iqd, which is proportional to the load TL, with
angular velocities at 60 and 40 RPM, respectively. The
corresponding results with constant loads are illustrated in
Figs. 13a and b, in which we get relatively satisfactory
performances. We then test the performance with time-varying
loads at 40 RPM in Fig. 13c, where a slight distortion may be
observed probably due to a relatively heavy load. [To further
improve estimation performance, magnetic saturations should be
taken into account, but it is out of scope of this paper.] Fig. 14
shows the results when the motor under a constant load is reversing
from +20 to −20 RPM in around one second. It is sufficient to
verify the effectiveness of the proposed method in several
demanding conditions.

7 Conclusion
This study addresses the problem of position estimation of
IPMSMs at low speeds and standstill. Although the saliency-
tracking-based methods are effective and widely-studied, the
theoretical analysis of the conventional methods, taking into
account the non-linear dynamics of IPMSMs, was conspicuous by
its absence. This study attempts to fill in this gap analysing the
stator current iαβ via the averaging method, with guaranteed error
with respect to the injection frequency ωh. Also, with the key
identity (7), we develop a new position estimator, which ensures an
improved accuracy. Moreover, we establish the connection between
the new method and the conventional one, showing that they can

Fig. 10  Experimental results (zero load, 400 Hz injection signal, constant
speed)
(a) Angle θ and its estimates, (b) Stator voltage uα

 

Fig. 11  Comparison between the proposed estimator and the conventional
LTI filter via experiments
(a) Angle θ and its estimates, (b) Virtual output yv1 and its estimates ŷv1

 

Fig. 12  Effects of the injection frequency
(a) Test frequency 200 Hz, (b) Test frequency 100 Hz

 

Fig. 13  Estimation performance with loads
(a) ω = 60 RPM with constant load (iqd ≃ 1 A), (b) ω = 40 RPM with constant load
(iqd ≃ 1 A), (c) Time-varying load at ω = 40 RPM

 

Fig. 14  Speed reversal from +20 RPM to −20 RPM (iqd ≃ 1.8 A)
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be unified in the HPF/LPF framework from the perspective of
signal processing.

The following extensions and issues are of interest to be further
explored.

• For the sake of clarity, we only study the basic case of signal-
injection methods for the IPMSM model (1). The proposed
method can also be extended to other motor models, for
instance, saturated interior (or surface mounted) PMSMs.

• It is of interest to couple the proposed method with some model-
based (non-invasive) techniques, for instance the gradient
descent observer in [5, 7], in order to be able to operate the
sensorless controller over a wide speed range. Such an approach
has been pursued in [15, 16].

• The proposed method is relatively sensitive to power converters
dead times. It is of practical interest to develop a self-
commissioning methods by means of adaptive observers, which
is promising to obtain a more practically useful scheme.
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