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Abstract—Wireless node density and gigabit-per-second de-
mands are pushing for more spatial reuse and higher frequency
bands, which are realized by directional beamforming methods.
Programming directionality of wireless beams is becoming a ma-
jor need for software-defined radio (SDR) platforms. We present
a low-cost “directional SDR” testbed that enables convenient
programming of millimeter wave (mmWave) beam directions
from a high-level programming language along with access to
legacy SDR methods.

I. INTRODUCTION

The deployment density of Internet-of-Things (IoT) devices
is increasing and the gigabit-per-second wireless capacity
demands are becoming expected in the emerging 5G and
the envisioned 6G [1] standards. Attaining gigabit-per-second
simultaneous per-user speeds in high density deployments
necessitates higher spatial reuse and utilization of higher
frequency bands of the electromagnetic spectrum. Both needs
point to more directionality in wireless signal propagation.
mmWave [2], [3] approaches are being tried for higher capac-
ity in return of less mobility, as these higher frequency bands
come with fragility to mobile and non-line-of-sight (NLOS)
operation due to high path loss. Proper integration of highly
directional bands,1 at 22 GHz and above, into general-purpose
mobile networking is an open research problem requiring joint
hardware and software solutions.
Directionality offers wide bandwidth, energy-efficient, and

inherently secure wireless communication. While offer-
ing higher spatial reuse and less interference, directional
transceivers also have key advantages in (+) wide bandwidth
and effective data rate as they operate with much shorter
wavelengths than legacy sub-6 GHz bands, (+) energy ef-
ficiency (i.e., low energy-per-bit transfers) as they dissipate
transmit power to a smaller volume, and (+) security (i.e., low
probability-of-intercept) as they attain better containment of
the radio signal and enable innovative spatial security solutions
such as null space beamforming [4]. On the other hand, direc-
tionality has disadvantages in terms of tolerance to mobility
and antenna size. Higher directionality requires (-) transmitter
and receiver to be facing towards each other, i.e., line-of-sight
(LOS) establishment or alignment, and (-) larger antenna form
factor to realize high gain which forces directional transceivers

1We realize that spectrum bands themselves are not directional. However,
omnidirectional beams become impractical due to significant increase in the
attenuation as the signal frequency increases. Hence, we simply call spectral
bands beyond 22GHz as ’directional bands’.

to be plausible only at high frequency bands with significant
attenuation and short range communication.
Attaining mobility at high(-rate) frequencies is challenging

due to their directionality. SDR in combination with beam-
steering antennas may opportunistically solve mobility and
LOS challenges of directionality. If such beam-steering an-
tennas could be controlled via SDR, very interesting fam-
ily of ‘software-defined beamforming’ designs become pos-
sible. The ability to control the direction of signals (e.g.,
setDirection() as an API in legacy SDR platforms) with
software allows PHY-MAC hybrid designs involving direc-
tional beamforming while maintaining multiple simultaneous
communications with neighbors. Further, unlike hardware-
based traditional tracking and acquisition techniques, such
directional SDR enables handling of LOS detection and es-
tablishment via software.
Making programmable directionality a first-class citizen of

SDRs requires flexible and effective integration of PHY layer
beamforming capability (where wireless beams are directional)
with high-level programming environments (where advanced
algorithmic methods such as machine learning and data struc-
tures are available). To this end, realizing SDR-based mmWave
testbeds with high programmability of the directional features
of the beams while keeping the data-plane processing over
field-programmable gate array (FPGA) is highly desired. In
this work, we present an economical SDR testbed that enables
programmable directionality in mmWave bands and measure-
ments. The testbed utilizes a widely used Universal Software
Peripheral Radio (USRP) device and provides convenience
of programming directionality using Python. We show an
example use of the testbed in angle-of-arrival (AoA) detection.
The rest of the paper is organized as follows. Section II

describes previous mmWave testbeds from the literature and
further clarifies the novelty of our work. Section III presents
the architecture of our proposed system and details how USRP,
GNU Radio, and Python are integrated for mmWave exper-
imentation. Section IV presents the testbed’s experimental
results for an AoA detection method. Finally, we summarize
our work and discuss various future research directions.

II. RELATED WORK

Software-controlled mmWave experimentation has recently
received notable attention. Most of the efforts utilized FPGA-
based handling of the mmWave beams. OpenMilli [5] used
FPGA-based data plane with radio frequency (RF) frontend



to access mmWave bands while allowing beam-steering on a
patch antenna array. After this seminal effort, several followup
studies took place in expanding mmWave experimentation
capabilities using FPGA-based designs. A 12-element phased
array system [6] enabled strong PHY emulation capability and
studied various aspects of indoor 60 GHz links. Tick [7] added
MAC experimentation capability while offering programma-
bility using XML implemented by an FPGA. M-Cube [8]
enhanced the mmWave MIMO experimentation capabilities by
segregating control and data paths over multiple RF chains.
The design included a USRP that guides an FPGA on the
control path while a separate single data path connects to the
host machine which limits the system to a single datastream.
MilimeTerra [9] envisions enabling a similar capability with
commercial off-the-shelf antennas.
Efforts to study the effects of mobility on mmWave systems

have also received attention. Highly dynamic channel condi-
tions arising from mobility requires software capabilities to
manipulate the directions of the mmWave beams. A software
implementation of beam alignment for IEEE 802.11ad used
an FPGA-based baseband processing of RF signals [10]. A
mobile OFDM link was demonstrated [11] using a mmWave
phased array where the baseband module was switched be-
tween an FPGA and USRP to overcome USRP’s limited
bandwidth. The FPGA controls the phased array’s weights,
which limits the programmability.
The main disadvantage of the FPGA-based designs is that

their programmability is limited to the hardware language.
Translation of high-level programming languages to hardware
languages of FPGAs is limited to certain commands as FPGAs
have to be pre-configured before operation. This disallows
the capability of programming directionality (of potentially
multiple antennas) in real-time. SDR designs using USRPs can
utilize a large swathe of machine learning and multi-threaded
algorithmic methods available at high-level languages, e.g.,
Python. The closest to our work was [12], where a USRP-
based mmWave testbed, utilizing 60 GHz horn antennas, was
shown to capture channel measurements using GNU Radio.
The main difference of our testbed is the beam-steering capa-
bility controlled from a high-level programming language such
as Python. This capability allows us to define programmable
directional software interfaces, which can be used to imple-
ment a variety of algorithms that can steer directions of the
mmWave beams while performing other tasks, such as sensing
and computing, that run in parallel using other threads. This
approach allows the SDR programmer to conveniently utilize
directionality of the beams as part of sophisticated software
methods to attain higher level goals, e.g., beam alignment [13],
beam discovery and tracking [14], or AoA detection [15].

III. TESTBED ARCHITECTURE

The testbed design is centered around three goals, i.e., (1)
enabling the programmability of mmWave beam’s direction
from a high-level programming language, (2) enabling access
to existing (and future) advanced algorithmic techniques in
cognitive radio literature, and (3) using open-source modular

software to provide a high degree of programmability in
communication components. For the first, second, and third
goals, we respectively use Python code (some of which
is produced by GNU Radio), USRP, and GNU Radio. We
focused on showing the proof-of-concept and opted for the
most inexpensive way of building the testbed. The effective
bandwidth of the testbed can be improved with higher end
components by using the same architecture. Fig. 1 shows a
block diagram representation of the overall testbed architec-
ture. A USRP N210 is used to transmit and receive signals via
coaxial connections through the RF frontends and antennas.
Fig. 2 presents a picture of the actual testbed configuration
with labels mentioned in the block diagram.

A. Integration with USRP

We use UBX40 [16] as the daughterboard of the USRP,
which can only process sub-6 GHz signals. Thus, the mixed
signals have to be down- and up-converted for reception and
transmission at the mmWave spectrum.
RF Chain. To deal with the frequency limitation of USRP

devices, additional RF frontends that can process mmWave
signals can be attached to the daughterboard. One approach
is to connect a sequence of RF mixers, low noise amplifiers,
and power amplifiers to down/up-convert the signals [17]. This
approach is expensive due to the high cost of the individual
microwave components. Further, connecting the sequence of
devices adds more weight to the frontend and makes the
testbed less flexible for mobile settings. We use off-the-shelf
integrated circuit frontends, ADMV1013 [18] and ADMV1014
[19], which use Silicon Germanium (SiGe) semiconductor
material resulting in a more cost-effective electronic produc-
tion. These SiGe frontends provide excellent performance at
mmWave bands and can up/down-convert baseband signals
to/from 24-42 GHz. The frontends are programmed with Ana-
log Devices Analysis Control and Evaluation (ACE) software.
The local oscillator signals are set to 6 GHz and the ACE
software is used to set the RF frontends to quadrature mode,
quadrupling the local oscillator frequency.
Antennas. The testbed includes two Ka-band 15 dBi gain

horn antennas, each mounted to the RF frontends. The anten-
nas can operate with 26.5-40 GHz signals. On the Rx side,
the antenna is mounted onto an MG995 servo that can be
steered by an Arduino micro-controller which is connected to
a PC via USB. The servo is powered by the Arduino’s 5V DC
port. A pulse width modulated (PWM) signal, generated by
the Arduino, can rotate the servo within [0o,180o]. Instead of
horn antennas, electronically steered antenna arrays, such as
phased arrays, can be integrated to the testbed by controlling
the bias voltages of the digital phase shifters via the PWM
signals from the Arduino. A phased array antenna is currently
under development, and the use of horn antennas does not
compromise the testbed’s architectural value.
mmWave with GNU Radio. A number of software tools,

including licensed ones such as MATLAB and Lab View,
are available to program USRP devices. We use GNU Radio
[20] to implement the signal processing blocks in the testbed.



Fig. 1: Testbed architecture Fig. 2: Testbed setup Fig. 3: 8-PSK demodulation

GNU Radio is open source and its latest versions use Python,
which is heavily used in the cognitive radio community
and has many advanced libraries including machine learning
algorithms. GNU Radio enables tuning the Tx and Rx signals
(e.g., to 2 GHz) conveniently via PC. It has built-in digital
communication and signal processing blocks, such as mod-
ulation schemes, filters, and Fast Fourier Transform (FFT),
available via a Graphical User Interface (GUI). These GUI
blocks are implemented in Python and the user does not have
to program them from scratch.
GNU Radio makes it convenient to work with the USRP

over its GUI as well as Python translation. Fig. 5 presents a
simple GNU Radio GUI block interface used to transmit and
receive a Cosine signal over the USRP. The UHD:USRP Sink
block is used to drive the signal from the transmit port of the
UBX-40 daughter-board, labeled (TX/RX). The UHD:USRP
Source is used to receive the signal from the receive port of the
daughter-board, labeled (RX2). The two blocks communicate
with the USRP N210 (via an Ethernet connection) with IP
address set in the Device Address section.
The USRP N210’s maximum sampling frequency is 25

MHz via 1 Gigabit Ethernet connection. With the UBX-40
daughterboard, the effective bandwidth of the testbed is 20
MHz [21]. In the setup in Fig. 5, the Signal Source block
generates a 1kHz cosine signal with amplitude of 1. The
sampling rate is set to 1 MHz, which is more than enough to
sample a 1 kHz signal. The Tx and Rx signals are tuned to 2
GHz center frequency. Since we are working with a mmWave
channel, the Tx signal is up-converted to 26 GHz and down-
converted to 2 GHz at reception. Fig. 3 is an example of
a demodulated 8 phase shift keyed (8-PSK) signal that was
transmitted at a carrier of 26 GHz.

B. Programming Directionality in Python

GNU Radio is an excellent platform for manipulating sev-
eral radio properties from a high-level programming language
such as Python. However, software interfaces that allow easy
manipulation of beam direction are mostly lacking. Program-
mer typically has to figure out the best radio configuration
for beamforming, mostly in an antenna-specific manner [17],
[22]–[24]. Software constructs that will allow the programmer
to conveniently program the directionality of the mmWave
beams while working with other physical layer radio parame-

ters are heavily needed. In this section, we illustrate one such
design which uses multiple threads while building directional
SDR capabilities. Our horn antenna on the receiver side can
only be steered via the servo, controlled by the Arduino. GNU
Radio does not have a GUI block that can interface directly
with the Arduino micro-controller. Along with the antenna
steering capability, we aimed to retrieve the received signal
strength (RSS) so that advanced tasks such as AoA detection
can be easily programmed.

# global variables setting up the Arduino board
board = Arduino('/dev/ttyACM0')
board.digital[10].mode = SERVO;
sleepTimer = 0.1 # seconds

def setAngle(targetAngle):
board.digital[10].write(targetAngle);
sleep(sleepTimer);
return;

Fig. 4: Programmable directionality using a servo

1) Setting Beam Direction – setAngle(): In our testbed,
the Tx horn antenna is fixed and the Rx antenna is steered by
an MG995 servo, controlled directly by an Arduino board.
setAngle() (shown in Fig. 4) implements a programmable
beam direction by passing an angular value (in degrees) to
the Arduino board. The first three lines import the Arduino
libraries in Python. The board variable is set to the Arduino
board connection at comm port ttyACM0. The third line of
code is used to tie the servo to PWM Ardunio pin #10, which
is used to drive the servo for angular rotation. The setAngle()
function essentially sets the rotation amount in degrees by
writing to the pin #10. A small sleep, sleepTimer, of
100ms is placed to make sure the signal reception mea-
surements are made stably. This is needed since the servo
needs some time to mechanically move the horn antenna to
the targetAngle. Hence, a too small sleepTimer can
cause incorrect measurements of the received signal, while a
small sleepTimer allows faster return from the setAngle()
function, providing a fast beamforming time. We will show the
impact of tuning this sleep amount. The setAngle() as well
as similar directional SDR functions can be implemented for
configurable directional antennas other than the horn antennas
in our testbed. The sleep amount can be tuned according to
the beamswitching speed of the underlying antenna. Here, we
are working with 10s of milliseconds of sleep amount but, if



the underlying mmWave antenna is a phased array system, the
sleep amount can be tuned to microseconds.
2) Retrieving RSS and Multithreading: The setAngle()

function is not hard to implement as a standalone capability.
Several prior studies illustrated such beamforming capability.
However, providing such a directional SDR interface along
with other radio configuration and signal processing capabili-
ties is a challenge. As one of these capabilities, we focus on
retrieving RSS in GNU Radio. In order to access the RSS, we
utilize a ZMQ socket in GNU Radio, shown in Fig. 5. The
RSS data is pushed into the ZMQ PUSH block, which is then
pulled from the ZMQ PULL block. Since the socket is located
in the same PC, the IP address and TCP port assigned to the
push and pull ZMQ socket is at tcp://127.0.0.1:50001.
The ZMQ data holding the RSS values can be accessed by

importing the ZMQ library in Python. We implement class
RSSReader, shown below, to pull the RSS data.
class RSSReader:
keepRunning = True;
rawReceivedData = None; #latest retrieved RSS data
import zmq

def __init__(self, IPAddress):
self.maxValue = 0;
self.context = zmq.Context()
self.receiverSocket = self.context.socket(zmq.PULL)
self.receiverSocket.connect(IPAddress)
self.readerThread =
threading.Thread(target=self.reader,)
self.readerThread.start()

def __del__(self):
self.keepRunning = False #stop the reader thread
self.readerThread.join()

def reader(self):
while (self.keepRunning == True):

self.rawReceivedData = self.receiverSocket.recv()

def readRSS(self):
if(self.rawReceivedData != None):

# convert to an array of floats
float_list = array.array('f', self.rawReceivedData)
self.maxValue = np.amax(float_list);
return self.maxValue

else:
return 0;

The variable rawReceivedData is used to store the in-
coming RSS stream and converted to float types in an infinite
while loop. The maximum value of the RSS array is returned
when the readRSS() function is called. We chose the
maximum RSS within the rawReceivedData because the
RSS measurements in rawReceivedData can be noisy and
picking the maximum RSS measurement is a more reliable
way of measuring the actual RSS, which is mostly determined
by the distance.
GNU Radio runs its own thread. Since the RSS data is a

continuous feed, like several other physical layer parameters,
it becomes necessary to use multithreading to implement the
convenience needed for the programmer. The RSSReader
class implements a thread that starts in the constructor of the
class and stops in the destructor.
3) Advanced Directional SDR Algorithms: To illustrate the

convenience of our testbed for directional SDR methods, we
implement a naive algorithm for detecting AoA. The algorithm
initializes the beam direction to zero degrees and rotates the

Fig. 5: GNU Radio with ZMQ socket blocks

beam until observes a reduction in the RSS. The following
function implements this simple technique:
def detectAoA():
myRSSReader = RSSReader("tcp://127.0.0.1:50001")
currentAngle = 60; # initialize the starting angle
bestRSS = 0;
setAngle(currentAngle);
currentRSS = myRSSReader.readRSS();
while (bestRSS <= currentRSS):

bestRSS = currentRSS;
currentAngle = currentAngle + 1;
setAngle(currentAngle);
currentRSS = myRSSReader.readRSS();

del myRSSReader;
return max(currentAngle - 1, 0);

The beam will continuously rotate till a peak in the RSS value
is observed. The function ends by deleting the myRSSReader
class object and returning the angle at which the peak RSS
was observed. This method assumes that there is only one
peak RSS value across the different reception angles, i.e., it
assumes there is no multipath or NLOS reception.

IV. EXPERIMENTAL RESULTS

When working with directional wireless channels, aligning
the receiver antenna to the best AoA is an important problem
in practice. This process involves scanning the reception qual-
ity at different angles. To evaluate the impact of sleepTimer
on the performance of our testbed, we implemented a naive
AoA detection algorithm (Sec. III-B3) and measured the
accuracy of the AoA detection as sleepTimer varies. We
constructed three scenarios to test the algorithm. In the first
scenario (Fig. 6), the Tx antenna positioned and fixed at 90o at
perfect alignment. The Rx antenna rotates starting from 60o.
For the second scenario (Fig. 7), the Tx antenna is misaligned
and rotated 135o to the right, facing the wall. The Rx antenna
starts its rotation from 125o. In both of these scenarios, K
band Horn antennas are used to transmit a 26 GHz signal,
2.5ft apart, and placed 1ft away from the wall. In the third
scenario (Fig. 8), we modified the second scenario by using
Ka band Horn antennas to transmit a 30 GHz signal and placed
them closer to each other at 1ft apart, equal to their distance
to the wall. In all the scenarios, we measured the RSS and
AoA by using different sleepTimer, from 5ms to 200ms,
in the setAngle() function.
The impact of sleepTimer on the accuracy of RSS

measurements and the AoA detection is observable when it
is comparable to the amount of time it takes to steer the Rx
antenna. As shown in Fig. 9(a) of the first scenario, the RSS



Fig. 6: Aligned: Transmitter at 90o Fig. 7: Misaligned: Transmitter at 135o Fig. 8: Misaligned: Transmitter at 150o
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Fig. 9: Transmitter is aligned at 90o: RSS vs. the receiver’s
rotation angle for varying sleepTimer
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(a) Progress of detectAoA()
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Fig. 10: Transmitter is misaligned at 135o: RSS vs. the
receiver’s rotation angle for varying sleepTimer

increases as the Rx antenna is rotated in increments of 1o.
The RSS increases until the beams are aligned at the correct
AoA of 90o. However, as sleepTimer becomes faster, the
measured RSS becomes less accurate with a lag across the
rotation angle. This is because the thread measuring the RSS
does not wait long enough for the Rx antenna to get to its
correct orientation after receiving the command to steer 1o.
This inaccuracy becomes unacceptable when sleepTimer is
lower than 15ms, causing the peak RSS to occur at a rotation
angle notably larger than 90o. This AoA detection error is
detailed in Fig. 12. To observe the RSS beyond the desired
target AoA, a complete sweep was performed up to 180o. As
expected, in Fig. 9(b), the RSS increases as the Rx antenna
approaches to the AoA and slowly decreases as it orients away
from the AoA. In the complete sweep, we consistently observe
that the accuracy of the measured RSS deteriorates with faster
sleepTimer.
When there is a misalignment, AoA detection becomes
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Fig. 11: Transmitter is misaligned at 150o: RSS vs. the
receiver’s rotation angle for varying sleepTimer

more complicated due to multipath signals reflected from the
environment. In the misalignment scenarios (Figs. 7 and 8),
we observe that the impact of faster sleepTimer is stronger
as seen in Figs. 10 and 11. Fig. 12 compares the error in
AoA detection for the three scenarios, showing similar error
behavior against the sleepTimer. The completed sweep in
the third scenario also shows that there can be multiple humps
in the RSS, complicating the AoA detection. As displayed in
Figure 11(b), the first/left hump (around 150o) is the reflection
of the main lobe and the second hump (around 175o) is the
reflection of a sidelobe. Our naive AoA detection algorithm
inspects the RSS measurements at each angle and successfully
finds the correct AoA. However, this is merely because it
started its sweep from 125o.
Obviously, more sophisticated algorithmic designs are nec-

essary to increase the likelihood of finding the correct AoA
in minimal amount of time. One simple improvement would
be to continue scanning until another hump in the RSS values
is observed. Further, instead of inspecting every angle one
by one, the algorithm can look at the rate of change in the
RSS values and accordingly increase or decrease its speed of
scanning the reception angles, e.g., go with large increments
if the RSS is not increasing fast enough and reduce the
increments on the reception angle as the rate of increase on
RSS reduces. Even further, the receiver radio system can learn
the behavior of the directional channel over time and guide its
AoA detection based on time of day. For example, the number
of humps in the RSS values make be more or fewer during
different times of the day. Implementation of these advanced
AoA detection mechanisms will be very convenient in our
testbed by simply using Python libraries.



Fig. 12: sleepTimer vs. detected AoA

One of the key disadvantages of our system demonstration is
the sleep time delay, sleepTimer, involved with steering the
angle using servo motors, along with the horn antennas. Our
beam steering is performed in the order of milliseconds. More
expensive systems use electronically steerable patch/phased
array antennas in order to alter beam direction. Testbeds
such as COSMOS can achieve beam steering in the order
of microseconds [25]. Our frontend is flexible and capable
of using a variety of antenna types, including patch/phased
arrays, which can be used for future research work. Further,
unlike other testbeds, our proposed architecture grants the user
the ability to customize their software via open source code.
This allows the user to control the flow of data, such as RSS
and AoA, using multi-threading via Python. This makes the
system more convenient, especially for those that are new to
GNU Radio.

V. SUMMARY AND FUTURE WORK

To respond to increasing need for directional wireless
methods, we designed a mmWave testbed that allows ma-
nipulation of beam direction from a high-level programming
language, Python. The testbed utilizes a programmable RF
chain that up/down-converts mmWave signals for integration
with USRPs, features the open-source GNU Radio for legacy
communication and signal processing modules for program-
ming the USRP, and offers software constructs allowing con-
venient programming of beam direction while enabling access
to advanced programming libraries of Python. The testbed
successfully runs GNU Radio with other parallel threads for
streaming data and implementing beam-steering of mmWave
horn antennas. We demonstrated the testbed’s efficacy by
implementing a simple AoA detection algorithm.
Several exciting directions of directional SDR future work

are possible with the capability to program directionality of
mmWave beams. Importing machine learning as well as other
advanced algorithmic libraries of Python will allow testing of
sophisticated solutions to well-known problems in directional
wireless (e.g., AoA detection, tracking and localization, and

beam alignment) as well as emerging problems of inter-
est such as compressed sensing of the channel in presence
of intelligent surfaces. The testbed itself has sizable room
for improvement. For example, utilizing another USRP and
beam-steering capability on the transmitter side will enable
more advanced directional SDR methods, placing the transmit
and receive units on portable platforms will enable mobile
experimentation, and integrating more powerful FPGAs for
datapath processing can enhance the effective bandwidth while
maintaining programming flexibility.

VI. DEMO: AOA DETECTION WITH Q-LEARNING

Machine Learning (ML) can be subdivided into three cate-
gories, supervised, unsupervised, and reinforcement learning.
Numerous ML methods have been used to determine AoA.
Methods such as K-clustering and Support Vector Machine
(SVM) [26], [27] are, respectively, unsupervised and super-
vised approaches that have been used to determine AoA. Other
algorithms, such as Multiple Signal Classification (MUSIC)
[28], include a subspace approach which decomposes the
received signal into two sub-spaces that include both the
signal and noise subspace. The subspace information can then
be used to determine the AoA. The MUSIC algorithm does
not perform well in the presence of multi-path signals [29].
Therefore, this algorithm may not be ideal to use when signals
are exposed to noisy environments commonly experienced in
mmWave channels.
To illustrate the usability of our test-bed in real-time

mmWave beam-steering, we implement a model-free rein-
forcement learning algorithm, Q-learning, to detect the AoA
on the RX side. Q-learning is widely used for a number of
applications, such as video gaming and localizing drones [30].

A. Mapping AoA Detection Problem to Q­Learning

Q-learning is characterized by parameters such as agent,
action, reward, and state space. The agent performs an action
within the environment. Every action taken results in either a
positive or negative reward. Further, once an action is taken,
the agent moves onto the next state. Fig. 13 presents the Q-
learning diagram of our experimental setup. In our setup, the
agent resides at the Rx horn antenna and can perform two
actions, either turn left or right by one degree resolution. The
reward is defined as the difference between the current and
previous RSS values, which rewards the actions turning the
antenna towards the AoA and penalizes otherwise. The state
space can be any value from 0 to 180 degrees with one degree
resolution. Therefore, our state-action table, also called Q-
table, can be represented by 180 rows of angular states and 2
columns of actions. As the learning progresses, the Q-table is
populated according to the Bellman equation [30]

Q(st, at) = Q(st, at)+α∗(rt+γmax
a

Q(st+1, a)−Q(st, at))

(1)
where st is the current state, st+1 is the next state chosen by
the agent, rt is the difference between the RSS at times t and
t − 1 (i.e., RSSt − RSSt−1), α ∈ (0, 1) is the learning rate,
and γ is the discount factor.
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Fig. 13: Q-Learning Block Diagram

Fig. 14: States of Q-Learning Fig. 15: Average RSS

Q-learning uses a greediness parameter, ε ∈ (0, 1), in decid-
ing which actions to take. Higher ε increases the likelihood that
the Q-learning agent chooses a random action while lower ε
makes the agent exploit the Q-table by selecting an action that
results in the current maximum Q value. At every iteration, the
agent will take an action based off this greediness and update
the Q-table using (1), and learn from the environment. After
sufficient iterations, the Bellman equation in (1) guarantees
that the learning converges to a solution.

B. Initial Results

For our demo presentation, the transmitter is fixed at 90
degrees pointing towards the receiver horn antenna. α is
initialized to 1 and linearly decays with step size 10−5. γ
is set to 0.98. Q-learning continues for 1,500 iterations for
five total runs. The sleepTimer is set to 200ms.
Figs. 14 and 15, respectively, show the average state of

the agent (i.e., the steering angle of the Rx antenna) and
the average RSS measured by the agent as the Q-learning
continues when ε is set to 0.2 and 0.5. In all the experiments
the agent’s initial state is set to 70 degrees. As seen in Fig.
14, the agent starts exploring the environment, and turns left
within the first few iterations. It further explores Rx angles
beyond 90 degrees and learns that the reward deteriorates as
it gets away from the correct solution. Then, it turns right
beginning to converge to the desired AoA of 90 degrees. The
variances of the average state (in Fig. 14) visited by the agent
are 3.748 and 6.276 for ε = 0.2 and ε = 0.5, respectively. This
verifies that the agent is acting in a more exploratory manner
when ε is higher.
These initial results show that our testbed can implement

Python ML methods to perform mmWave beamsteering in
real-time. The results above are for a simple case where
the transmitter is pointing directly towards the receiver. The
demo will illustrate the concept for various scenarios including
multipath setups. We will also present convergence analysis of
the Q-learning based AoA detection for mmWave channels.
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