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Abstract—We address distributed detection problem in a
wireless sensor network, where each sensor harvests and stores
randomly arriving energy units in a finite-size battery. Sensors
transmit their symbols simultaneously to a fusion center (FC)
with M >1 antennas, over temporally correlated fading channels.
To characterize the channel time variation we adopt a Markovian
model and assume that the channel time-correlation is defined by
Jakes-Clark’s correlation function. We consider limited feedback
of channel gain, defined as the Frobenius norm of MIMO channel
matrix, at a fixed feedback frequency (e.g., every T time slots)
from the FC to sensors. Modeling the randomly arriving energy
units as a Poisson process and the quantized channel gain and the
battery dynamics as homogeneous finite-state Markov chains, we
propose an adaptive transmit power control strategy such that
the J-divergence based detection metric is maximized at the FC,
subject to an average transmit power per-sensor constraint.

I. INTRODUCTION
Event detection is one of the vital tasks in wireless sensor

networks (WSNs). Providing a guaranteed detection perfor-
mance by a conventional WSN, in which sensors are powered
by non-rechargeable batteries and become inactive when their
stored energy is exhausted, is unfeasible [1]–[13]. Energy
harvesting (EH) from the environment (e.g., ambient RF and
renewable energy sources) is a promising solution to address
the energy constraint problem in conventional WSNs [15]–
[19]. In EH-powered WSNs power/energy management is
necessary, in order to balance the rates of energy harvesting
and energy consumption for transmission. Since ambient RF
and renewable energy sources are intrinsically time-variant and
sporadic, stochastic models are suitable to model randomly
arriving energy and harvested energy. In addition, wireless
communication channels change randomly in time due to
fading. These together prompt the need for developing new
adaptive transmit power control strategies for an EH-enabled
transmitter that can adapt to the random energy arrivals and
time-varying fading channels (according to the limited channel
state information (CSI) available through feedback channel)
such that a certain detection performance is guaranteed.

Considering a WSN, composed of EH-enabled sensors and a
fusion center (FC), in [16] we developed an adaptive channel-
dependent transmit power control strategy for sensors such
that J-divergence detection metric at the FC is maximized.
In [16] we assumed that the FC has a single antenna, sen-
sors transmit over orthogonal channels, and fading channels
between sensors and the FC are independent and identically
distributed (i.i.d.) over time slots. In this work we extend [16]
to temporally correlated Markovian MIMO channels where
the FC has M > 1 antennas, sensors transmit their symbols
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Fig. 1: Our system model and the schematic of battery state in time slot t.

to the FC simultaneously, and fading channels between sensors
and the FC are correlated over time slots. Our proposed power
control strategy allows each sensor to adapt its transmit power
in each time slot, based on its current battery state and the
latest available channel gain feedback.

II. SYSTEM MODEL

A. Observation Model at Sensors
Suppose the time horizon is divided into slots of equal

length Ts. Each time slot is indexed by an integer t for
t=1, 2, ...,∞. We model the underlying binary hypothesis Ht

in time slot t as a binary random variable Ht ∈ {0, 1} with
a-priori probabilities Π0=Pr(Ht=0) and Π1=Pr(Ht=1)=
1−Π0. We assume that the hypothesis Ht varies over time slots
in an independent and identically distributed (i.i.d.) manner.
Let xn,t denote the local observation at sensor n in time slot
t. We assume that sensors’ observations given each hypothesis
with conditional distribution f(xn,t|Ht =ht) for ht ∈ {0, 1}
are independent across sensors. This model is relevant for
WSNs that are tasked with detection of a known signal in
uncorrelated Gaussian noises with the following signal model

Ht = 1 : xn,t = A+ vn,t,

Ht = 0 : xn,t = vn,t, for n = 1, . . . , N, (1)

where Gaussian observation noises vn,t∼N (0, σ2
vn
) are inde-

pendent over time slots and across sensors. Given observation
xn,t sensor n computes its local log-likelihood ratio (LLR)

ξn(xn,t) ≜ log

(
f(xn,t|Ht = 1)

f(xn,t|Ht = 0)

)
, (2)
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and compares it against a given local threshold θn to choose its
non-negative transmission symbol αn,t. When ξn(xn,t)<θn,
sensor n lets αn,t = 0. When ξn(xn,t)>θn, sensor n chooses
αn,t according to the rule in (11). We have

Π̂n,0 = Pr(αn,t=0) = Π0(1−Pfn) + Π1(1−Pdn),

Π̂n,1 = Pr(αn,t ̸=0) = Π0Pfn +Π1Pdn , (3)

where the probabilities Pfn and Pdn are

Pfn =Pr(ξn(xn,t)>θn|Ht = 0)=Q
(θn +A2/2σ2

vn

A/σvn

)
,

Pdn =Pr(ξn(xn,t)>θn|Ht = 1)=Q
(θn −A2/2σ2

vn

A/σvn

)
. (4)

B. Markovian Battery State and Energy Harvesting Models
We assume sensors are equipped with identical batteries of

finite size K cells (units), where each cell corresponds to bu
Joules of stored energy. Therefore, each battery is capable of
storing at most Kbu Joules of harvested energy. Let Bn,t ∈
{0, 1, ...,K} denote the discrete random process indicating the
battery state of sensor n at the beginning slot t. Note that
Bn,t = 0 and Bn,t = K represent the empty battery and full
battery levels, respectively. Also, Bn,t = k implies that the
battery is at state k, i.e., k cells of the battery is charged and
the amount of stored energy in the battery is kbu Joules.

Let En,t denote the randomly arriving energy units during
time slot t at sensor n, where each unit is bu Joules. We
assume En,t’s are i.i.d. over time slots and across sensors. We
model En,t as a Poisson random variable with parameter ρ,
and probability mass function (pmf) pm ≜ Pr(En,t = m) =
e−ρρm/m! for m = 0, 1, . . . ,∞. Note that parameter ρ is the
average number of arriving energy units during one time slot
at each sensor. Let Sn,t be the number of stored (harvested)
energy units in the battery at sensor n during time slot t. Note
that the harvested energy Sn,t cannot be used during slot t.
Since the battery has a finite capacity of K cells, we have
Sn,t ∈ {0, 1, ...,K}. Also, Sn,t are i.i.d. over time slots and
across sensors. The two random variables Sn,t and En,t are
related as the following

Sn,t =

{
En,t, if 0 ≤ En,t ≤ K − 1,

K, if En,t ≥ K.
(5)

Based on (5) we can find the pmf of Sn,t in terms of the pmf
of En,t. Let qe ≜ Pr(Sn,t = e) for e = 0, 1, . . . ,K . We have

qe =

{
pe, if 0 ≤ e ≤ K − 1,∑∞

m=K pm, if e = K.
(6)

The battery state at the beginning of slot t+1 depends on the
battery state at the beginning of slot t, the harvested energy
during slot t, and the transmission symbol αn,t, i.e.,

Bn,t+1 = min
{
[Bn,t + Sn,t − α2

n,tTs/bu]
+,K

}
, (7)

where [x]+ = max{0, x}. Considering the dynamic battery
state model in (7) we note that, conditioned on Sn,t and αn,t

the value of Bn,t+1 only depends on the value of Bn,t. Hence,

the process Bn,t can be modeled as a Markov chain. Let Φn,t

be the probability vector of battery state in slot t

Φn,t ≜
[
Pr(Bn,t = 0), . . . ,Pr(Bn,t = K)

]T
, (8)

where Pr(Bn,t = k) in (8) depends on Bn,t−1, Sn,t−1

and αn,t−1. Assuming that the Markov chain is time-
homogeneous, we let Ψn be the transition probability matrix
of this chain with its (i, j)-th entry [Ψn]i,j ≜ Pr(Bn,t =
j|Bn,t−1 = i) for i, j = 0, . . . ,K . We can express [Ψn]i,j
as (10). Since the Markov chain characterized by Ψn is
irreducible and aperiodic, there exists a unique steady state
distribution, regardless of the initial state [20]. Let Φn =
[ϕn,0, ϕn,1, ..., ϕn,K ]T be the unique steady state probability
vector with the entries ϕn,k = limt→∞ Pr(Bn,t = k). This
vector satisfies the eigenvalue equation Φn = ΦnΨn.

C. Markovian Channel Gain Model

During time slot t we assume N sensors send their transmis-
sion symbols αn,t simultaneously to the FC, that is equipped
with M receive antennas. Let gm,n,t indicate the fading
channel gain between sensor n and m-th antenna of the FC
during time slot t. The M ×N channel matrix Gt becomes

Gt =


g1,1,t g1,2,t · · · g1,N,t

g2,1,t g2,2,t · · · g2,N,t

...
...

...
...

gM,1,t gM,2,t · · · gM,N,t

 , (9)

where gm,n,t’s are correlated over time slots, while are in-
dependent across sensors and across receive antennas. We
define the channel gain as the Frobenius norm of Gt, i.e.,
st = ||Gt||2F [21]. We consider a scalar quantizer at the FC
that maps st into a point in set S = {ŝ1, ŝ2, ..., ŝL}, which
contains L quantized channel gain values. The points in set
S can be found such that a certain distortion function is
minimized. The FC partitions the positive real line R+ into L
intervals (Voronoi cells of the quantizer) using L quantization
thresholds {µl}Ll=1, where 0=µ1<µ2<. . .<µL−1<µL=∞,
and associates interval Il=[µl, µl+1) with point ŝl, i.e., if st
lies in the interval Il then the quantized channel gain Q(st)
becomes ŝl. We model the time variation of the quantized
channel gain using a Markov chain [22]. The Markov chain
has L states and the states are the points in set S. To obtain
this Markov model, similar to [21], we make the following two
assumptions: (AS1) The entries of Gt have the Jakes-Clark’s
correlation function [23], i.e., we have E

[
g∗i,j,t gi,j,t+τ

]
=

J0(2πfDτ), ∀i, j, where J0 is Bessel function of zeroth-order
and fD is the maximum Doppler frequency [24]. (AS2) Inter-
state transitions only occur between adjacent states in the
chain. Let πl=Pr(Q(st) = ŝl) be the steady-state probability
of state l of the Markov chain. We have πl =

∫ µl+1

µl
fs(s)ds,

where fs(s) is the probability density function (pdf) of st.
Assuming that the elements of Gt are i.i.d and distributed as
CN (0, 1), the channel gain st follows a chi-squared distribu-
tion with degree of freedom equal to MN . Hence, πl can be
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[Ψn]i,j=Π̂n,1

K∑
k=0

L∑
l=1

πlqkIi→j(Sn,t, ⌊cli⌋)+Π̂n,0

K∑
k=0

qkIi→j(Sn,t, 0),

where Ii→j(Sn,t, α
2
n,tTs/bu) =

{
1, if j=min

{
[i+ Sn,t − α2

n,tTs/bu]
+,K

}
.

0, o.w.
(10)

written as

πl=Pr(Q(st)= ŝl)=
2MN−1∑

i=0

exp(−µl)µ
i
l − exp (−µl+1)µ

i
l+1

i!
.

Let Θ be the transition probability matrix of this chain with
its (i, j)-th entry [Θ]i,j = Pr(Q(st) = ŝi|Q(st−1) = ŝj). We
have

[Θ]i,j =



β(µ2
l+1)

πn,l
, i = l+1, j = 1, ..., L−1

β(µ2
l )

πn,l
, i = l − 1, j = 2, ..., L

1− β(µ2
l )

πn,l
− β(µ2

l+1)

πn,l
, i = l, j = 2, ..., L−1

1− β(µ2
2)

πn,1
, i = 1, j = 1

1− β(µ2
L)

πn,L
, i = L, j = L

0, O.W.

where β is the level crossing rate of the random process s2t at
the level x and is given by [21] β(x) =

√
2πfDTsx

(Z−1/2)

(Z−1)! exp (x) .

D. Transmission Symbol, Received Signals at FC, and Opti-
mal Bayesian Fusion Rule

We consider a simple feedback strategy, in which FC sends
the quantized channel gain through a feedback channel to all
sensors, every T >1 time slots. At time slot t sensor n chooses
αn,t according to its current battery state k and the latest
available quantized channel gain, using the following rule

α2
n,t =


0, ξn(xn,t) < θn,

⌊c1k⌋bu/Ts, ξn(xn,t) ≥ θn, Q(st′) = ŝ1,
...

...
⌊cLk⌋bu/Ts, ξn(xn,t) ≥ θn, Q(st′) = ŝL,

(11)
where ⌊.⌋ is the floor function, index t′ ∈ {t, t− 1, ..., t−T},
and the scale factors {cl}Ll=1 are between zero and one and
are our optimization variables. In each time slot, sensors send
their symbols simultaneously to the FC. The received signal
at the FC corresponding to time slot t is yt = Gtαt + wt,
where yt=[y1,t, y2,t, , ..., yM,t]

T , αt=[α1,t, α2,t, , ..., αN,t]
T ,

wt=[w1,t, w2,t, , ..., wM,t]
T , and wt is a zero mean complex

Gaussian vector with covariance matrix R. The FC applies the
optimal Bayesian fusion rule Γ0(.) to obtain a global decision
u0,t [2]. In particular, we have

u0,t=Γ0(yt)=

{
1, ∆t > τ,

0, ∆t < τ,
∆t=log

(
f(yt|Ht = 1)

f(yt|Ht = 0)

)
where f(yt|Ht = ht) is the conditional pdf of yt and the
decision threshold τ = log(Π0

Π1
). From Bayesian perspective,

the natural choice to measure the detection performance is
the error probability, defined as Pe = Π0 Pr(∆t > τ |Ht =
0) + Π1 Pr(∆t < τ |Ht = 1). However, finding a closed
form expression for Pe is mathematically intractable. Instead,
we choose the J-divergence between the distributions of the
detection statistics at the FC under different hypotheses, as our
detection performance metric. This choice allows us to provide
a tractable analysis. Given the local thresholds {θn}Nn=1 in
(11) and the channel gain quantizer at the FC, our problem of
optimizing transmit power control strategy reduces to finding
the optimal scale factors {cl}Ll=1 in (11) such that the J-
divergence at the FC is maximized, subject to per-sensor
average transmit power constraints.
III. J-DIVERGENCE DERIVATION AND OUR CONSTRAINED

OPTIMIZATION PROBLEM
By definition [5], [7], the J-divergence between two pdfs

η1(x) and η0(x), denoted as J(η1, η0), is J(η1, η0) =
D(η1||η0)+D(η0||η1), where D(ηi||ηj) is the non-symmetric
Kullback-Leibler (KL) distance between ηi(x) and ηj(x).
The KL distance D(ηi||ηj) is defined as D(ηi||ηj) =∫∞
−∞ log

(
ηi(x)
ηj(x)

)
ηi(x)dx. Therefore, we obtain

J(η1, η0) =

∫ ∞

−∞
[η1(x)− η0(x)] log

(
η1(x)

η0(x)

)
dx. (12)

In our problem setup, f(yt|Gt, Ht=1) and f(yt|Gt, Ht=0)
play the role of η1(x) and η0(x), respectively. Given Gt

we note that Ht, αt, yt satisfy the Markov property, i.e.,
Ht → αt → yt [5], [7]. This implies that yt and Ht,
given αt, are conditionally independent. Therefore, we can
write f(yt|Gt, Ht = i) = f(yt|Gt,αt = 0)Pr(αt|Ht =
i) + f(yt|Gt,αt ̸= 0)Pr(αt|Ht = i) for i = 0, 1. We have

f(yt|Gt,αt) =
1

|2πR| 12
exp[−1

2
(yt−Gtαt)R

−1(yt−Gtαt)]

Although f(yt|Gt,αt) is Gaussian, f(yt|Gt, Ht =
0), f(yt|Gt, Ht = 1) are Gaussian mixtures. Unfortunately,
the J-divergence between two Gaussian mixture densities
does not have a general closed-form expression. Similar
to [5], [7], we approximate the J-divergence between two
Gaussian mixture densities by the J-divergence between two
Gaussian densities fG(yt|Gt, Ht = i) ∼ N (mi,Υi), where
the mean and the variance of the approximate distributions are
obtained from matching the first and second order moments
of the actual and the approximate distributions. For our
problem setup, the parameters m0,m1,Υ0,Υ1 become

m0 = GtAtPf, Υ0=R+GtAtP̂fA
T
t G

T
t ,

m1 = GtAtPd, Υ1=R+GtAtP̂dA
T
t G

T
t . (13)
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in which At=diag{α1,t, ..., αN,t}, Pf =[Pf1 , ..., PfN ]T , Pd =

[Pd1 , ..., PdN ]T , P̂f = diag{Pf1(1 − Pf1), ..., PfN (1 − PfN )},
and P̂d = diag{Pd1(1 − Pd1), ..., PdN (1 − PdN )}. After some
algebra, we obtain

J
(
fG(yt|Gt, Ht = 1), fG(yt|Gt, Ht = 0)

)
=

1

2
Tr
[
Υ0Υ

−1
1 +Υ1Υ

−1
0

+ (Υ−1
1 +Υ−1

0 )(m1 −m0)(m1 −m0)
T −R

]
(14)

Note that J in (14) depends on Gt, whereas α2
n,t in (11)

depends on the quantization interval to which st = ||Gt||2F
belongs. Let J̄ (i) = E{J |st ∈ [µi, µi+1]} and P̄(i)

n =
E{α2

n,t|st ∈ [µi, µi+1]}, respectively, denote the expectations
of J in (14) and α2

n,t in (11) over st, conditioned that
st ∈ [µi, µi+1]. Since J̄ (i) does not have a closed-form
expression we compute it via Monte Carlo simulation. Using
(11) we find P̄(i)

n = Π̂n,1

∑K
k=0 ϕn,kπi⌊cik⌋. Our constrained

optimization problem of maximizing the J-divergence, subject
to per-sensor average transmit power constraints, with respect
to the optimization variables {cl}Ll=1 in (11) become

max
{cl}L

l=1

L∑
i=1

J̄ (i)(P1)

s.t. cl ∈ [0, 1], ∀l,
L∑

i=1

P̄(i)
n ≤ P0, ∀n.

where P0 is the maximum allowed average transmit power
per-sensor. We note that (P1) is not concave with respect to
the optimization variables. Moreover, the objective function
and the constraints in (P1) are not differentiable with respect
to the optimization variables. Hence, existing gradient-based
algorithms for solving non-convex optimization problems can-
not be used to solve (P1). We resort to a grid-based search
method, which requires L-dimensional search over the search
space [0, 1]L. Clearly, the accuracy of this solution depends on
the resolution of the grid-based search. Suppose the intervals
[0, 1] is divided into Nc sub-intervals. Therefore, the search
space of (P1), denoted as D, consists of (Nc)

L discrete points
in the original L-dimensional search space.

Computational complexity of solving (P1): We note
that the FC needs to perform two tasks for each point
in D: task (i) forming Ψn and Φn, task (ii) calculating
J̄ (i) and P̄(i)

n . Our numerical results show that for a fixed
{cl}Ll=1 the computational complexity of task (i) and task

(ii) are O(K3.2) and O(M × N × K2.7), respectively.
Hence, the computational complexity of solving (P1) is
O
(
(Nc)

L(K3.2 +M ×N ×K2.7)
)
. To curb the computa-

tional complexity of the grid-based search method, we plan to
explore random search algorithms (in which only a randomly
chosen subset of the points in D is searched to find a solution)
that have a low-computational complexity and provide a close-
to-optimal performance for our future work.

IV. SIMULATION RESULTS AND CONCLUDING REMARKS

In our simulations, we let R=Iσ2
w and define the SNR cor-

responding to observation channel as SNRs = 20 log(A/σv).
We let Pdn

=0.9, ∀n, SNRs=3dB, P0=2mW (except Fig. 4),
N = 3 (except Fig. 5), σ2

w =1,K = 5, fDTs = 0.05 (except
Fig. 4 and 5), and T =10 (feedback is sent every 10 slots). For
L=2 the optimization variables are {c1, c2}. Fig. 2 illustrates
the objective function J̄ (1) + J̄ (2) versus the scale factor c2
given c1 =0.5. We observe that the objective function is not
a concave function of c2. Still there exists a point, denoted
as c∗2, at which the function attains its maximum. Starting
from small values of c2, as c2 increases (until it reaches c∗2),
the function value increases, because the harvested energy
can recharge the battery and can yield more power for data
transmission. However, when c2 exceeds c∗2, the harvested
and stored energy cannot support the data transmission and
the function value decreases. Fig. 3 depicts the optimized
{cl}’s versus the quantization thresholds {µl}’s for L = 6.
We note that, as l increases (i.e., channel gain st increases),
cl first increases and then decreases. Considering (11) this
implies that, given the battery state k, as st increases α2

n,t first
increases and then decreases. Fig. 4 shows the error probability
Pe versus P0, as fDTs and ρ vary for L=4. Given the pair
(fDTs, ρ), as P0 increases Pe decreases. Also, Pe decreases
when (i) given the pair (P0, ρ), fDTs decreases; (ii) given the
pair (P0, fDTs), ρ increases. Fig. 5 depicts Pe versus N as
fDTs and M vary for L = 4. Given the pair (fDTs,M ), as
N increases Pe reduces, until it reaches an error floor. This
is because for larger N values, Pe becomes limited by the
communication channel noise σ2

w. Furthermore, we notice that
Pe decreases when (i) given the pair (N , M ), fDTs decreases;
(ii) given the pair (N , fDTs), M increases.
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