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Abstract— Multiple-input and multiple-output (MIMO) tech-
nology is one of the significant components in the growing
fifth-generation (5G) communication systems. The 5G system
has expanded its frequency range and widened the bandwidth
to achieve higher throughput rates and more stable wire-
less qualities, which brings new challenges to the over-the-
air (OTA) MIMO evaluations. The wide bandwidth introduces
systematic uncertainties into the MIMO measurement because
of the increased amplitude and phase variation issues under
different frequencies in the wideband signals, and it could lead
to valid MIMO throughput measurement results when severe.
The effect on antenna isolation resulting from amplitude and
phase variation in wideband MIMO measurements is analyzed
based on the radiated two-stage (RTS) MIMO measurement
method. A wideband inverse matrix algorithm is introduced
to solve this issue and improve the wideband MIMO antenna
isolation. The proposed method can be used in both multiple
probe anechoic chamber (MPAC) and RTS chambers, which
paves the way for decreasing the OTA measurement uncertainties
on both 5G sub-6-GHz wideband MIMO and millimeter-wave
MIMO evaluations.

Index Terms— Multiple-input and multiple-output (MIMO),
over the air (OTA), radiated two-stage (RTS), wideband inverse
matrix.

I. INTRODUCTION

HE fifth-generation (5G) communication technology
brings a new Internet of Things (IoT) revolution, enabling
more advanced communication quality with higher throughput
rates and lower latency, and reducing communication costs
for wireless terminals. According to global system for mobile
communications associations (GSMA’s) forecast, the number
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of global IoT devices will reach approximately 24.6 billion
in 2025, and the applications of IoT devices will continue
to achieve explosive growth under the gradual maturation of
5G technologies [1]. In addition, multiple-input and multiple-
output (MIMO) technology, with higher and more stable
throughput rates, becomes one of the significant features in
5G systems to improve the user experience, which also brings
new challenges for MIMO system evaluation in research and
development (R&D), certification, and production line testing
before they can be marketed.

As the 3rd-Generation Partnership Project (3GPP) and
Cellular Telecommunication and Internet Association (CTIA)
defined, there are strict requirements for the accuracy, sta-
bility, and consistency of the overall wireless performance
of over-the-air (OTA) testing for wireless performance eval-
uation [2], [3], and the measurement methods should also
be applicable for 5G and beyond communication system
measurements. There are two standard MIMO OTA methods
specified: radiated two-stage (RTS) method and the multiple
probe anechoic chamber (MPAC) method [4], [5], and the
primary evaluation metric is the throughput rate. These two
methods provide a reliable method for MIMO performance
evaluation and means of uncertainty verification and design
optimization, which have been widely applied to the 4G long-
term-evolution (LTE) MIMO OTA evaluation. The methods
simulate a specified electromagnetic propagation environment
in an anechoic chamber and test throughput rates under the
defined channel models.

However, with the increased frequency bandwidth and more
complex radio frequency (RF) components in 5G system
design, the amplitude and phase variation issue under differ-
ent frequencies in communication links introduces significant
challenges and results in uncertainty in MIMO OTA evalua-
tions. When conducting 4G MIMO measurements, the testing
signals are narrowband (<20 MHz), so the amplitude and
phase variation issues are neglected because the amplitude and
phase in the frequency band are almost identical to the center
frequency. However, in 5G wideband MIMO measurements,
the variation of amplitude and phase in the frequency band,
especially the phase variations, must be considered in MIMO
measurement methods; otherwise, measurement uncertainties
can be introduced in 5G MIMO evaluations in both MPAC
and RTS methods.

In the RTS MIMO measurement method, an “Inverse
Matrix” is introduced for canceling the spatial transmission
matrix, realizing a “Direct Connection” between the base
station emulator (BSE) and receivers of the device under
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Fig. 1. Overview of a MIMO channel model.

test (DUT). In a real-world environment, the spatially cross-
transmitted signals cannot be eliminated by the inverse matrix,
so antenna isolation is defined to describe the magnitude
relationship between the crossed signals and the desired sig-
nals [6], [7]. Antenna isolation is a measurement uncertainty-
related parameter for OTA MIMO evaluations. Antenna iso-
lation greater than 20 dB is achievable for LTE MIMO
measurements for a 20-MHz bandwidth. However, with the
increased bandwidth in 5G systems (FR1 with 100 MHz and
FR2 with 400 MHz), the calculated inverse matrix cannot
be fully adapted to all the wide frequency bands because
of the dramatic variation of amplitude and phase. Thus the
“Direct Connection” in the test environment is challenging to
achieve, and the antenna isolation is significantly reduced, thus
resulting in high measurement uncertainties in RTS MIMO
measurements, and even failing to evaluate the actual wireless
performance of the DUT.

This article analyzes and verifies the effects of ampli-
tude and phase variations in wideband signals on MIMO
antenna isolation. Also, engineering issues to be considered
in the MIMO chamber design are proposed, and a wideband
inverse matrix algorithm is analyzed and realized to solve the
wideband MIMO antenna isolation. Finally, experiments are
performed to verify the effectiveness of the wideband inverse
matrix algorithm on antenna isolation in RTS MIMO evalua-
tions. This article is organized into five main parts. At first,
the theory of MIMO measurement based on the standard RTS
method is introduced in Section II. The wideband effects
on RTS MIMO evaluation are analyzed in Section III, and
the principles of solutions and realizations are explained in
Section IV. Finally, the verifications and experimental results
are shown in Section V and followed by the conclusion.

II. RTS METHOD INTRODUCTION

The channel models in OTA MIMO measurement are intro-
duced in this section, and the principle of the RTS MIMO
evaluation is briefly described. The importance of antenna
isolation in MIMO measurement is elaborated herein.

A. MIMO Channel Modeling

MIMO OTA testing is the simulation of the channel model
defined in 3GPP to represent the complex electromagnetic
propagation environment. As shown in Fig. 1, the base station
has M transmitting antennas, and the DUT has N receiving
antennas. The basic parameters for each transmission link in
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Fig. 2. Conducted 2 x 2 MIMO measurement.

this channel model include the number of clusters, the antenna
patterns of the wireless terminals and the base station, the
Doppler effects, the time delay, and the power distribution,
as well as the angle of departure (AoD) and the angle of arrival
(AoA) [8]. The channel model between the mth transmitting
antenna in the base station and the nth receiving antenna in
DUT is described as [8]

L 1% T
B () = > U2 2f ) Gyl pur (e1.404)
n,m GH
=1 n,DUT(O‘l,AOA)
v,V V.H
X1 X GZ,Bs(,Bl,AOD)
x H,V H,H x H (1)
oo Gl ps(Braop)

where / is one of the L subpaths; ¢ and f are the time and
tested center frequency, respectively; v;, ®;, and t; are the
prime phase, Doppler effect, and the time delay of the /th
subpath, respectively; G, p,r and G, g (X representing the
polarization) are the antenna gains of the nth receiving antenna
and the mth transmitting antenna, and & 04, Bi40p, and
x;"' are the AoA, the AoD, and the path loss from antenna
polarization y to x in the Ith subpath.

In traditional 2 x 2 MIMO measurements, as shown in
Fig. 2, the testing signals (the channel models and antenna
patterns are integrated) are transmitted from the channel
emulator to receiver ports of the DUT using cables. However,
desensitivity issues and high cable isolation result in measure-
ment inconsistencies with real usage applications, which can
lead to MIMO evaluation failure [9], [10], [11].

B. RTS Method for MIMO OTA Measurements

The RTS MIMO measurement method is one of the standard
OTA MIMO evaluation methods [4], [5], which is imple-
mented through both mathematical and physical realization.
The RTS method is divided into two distinct stages. The
first stage is to obtain the receiving antenna patterns of each
antenna, and transmitting matrix H between the transmitting
ports of the base station and receiving ports of the DUT. The
second stage is to calculate and apply the inverse matrix M to
the channel emulator to perform the throughput measurement
process. The second stage can be realized in an instrument
based on the mathematical theory and RF components, such
as an amplifier, attenuator, and phase shifter.

As shown in Fig. 2, the testing signals with channel models
are delivered to receivers OTA, and the communication links
exist in each transmitting antenna and each receiver [12]. For
an N x N system, the relationships between transmitting
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Fig. 3. Communication link in a 2 x 2 OTA MIMO measurement.

antennas and receivers are written as

y(t) = H(1) * x(1) 2

where the received signals (yi, y2, ...
of the transmitting signals (xi, x2, ..
transmitting matrix H is defined as

hii(t) -+ hin(@)
H() = Lo . 3
hni(t) -+ hyn(@)

For the 2 x 2 MIMO OTA measurement shown in Fig. 3, the
desired signals for each receiving port cannot be delivered to
each receiver correctly because of the cross signal transmission
from Tx antenna 1 to Rx antenna 2, and from Tx antenna 2 to
Rx antenna 1. The transmitting matrix H in 2 x 2 MIMO
environment is then

,yn) are a function
.,Xy), and the total

Hyoot) = hia(@)  hia(@) @
B hy1(2) hz,z(f).

In order to eliminate the cross signal transmission in MIMO
OTA measurements, an inverse matrix M is used to eliminate
the effects of cross-transfer and realize a “Direct Connection”
between the transmitting signals to receivers. The inverse
matrix M in an N X N system is
my(t) -+ my n(F)
M) = st &)
my () ... myn(t)

after applying the inverse matrix M, the relationship between
transmitting signals to receivers in (2) is modified as

y(@) = [M(t) x H(1)]*x(1). (6)

As shown in Fig. 4, the total transmitting matrix 7 fora 2 x 2
MIMO system is then

T = [lu tu] = [M2u2(t) x Hypy ()]

by 1)
my m hii h
_ | 7
Mo My ha1 hx
In the ideal case, the total transmitting matrix 7 is an identity
matrix, i.e., t;; = t»» = 1 and t;3 = f; = 0. Therefore,

the testing signals from transmitting signals 1 and 2 are
delivered to receivers 1 and 2, respectively. The cross signals
are eliminated after applying the inverse matrix M. However,
in practice, the cross signals are not entirely eliminated due to
the reflection in the chamber and the limited accuracy of the
amplifier, attenuator, and phase shifter. To evaluate the impact
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Fig. 4. Inverse matrix M in a 2 x 2 OTA MIMO measurement.
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Fig. 5. Transmitting signal 2 to receiver 1 of the DUT.

of the cross signals for MIMO measurement, the concept of
antenna isolation is defined as

IOS] = 2010g10|t11/t12|
los, = ZOIOgloll‘zz/l‘z] |
los, = min(losy, 10s;) ()

where los; and los, represent the ratio (in dB) of the
desired signal to cross signal of receiving antennas 1 and 2,
respectively, and the Ios, is the system isolation fora 2 x 2
MIMO system.

In RTS MIMO testing, antenna isolation is a significant
factor related to MIMO measurement uncertainty and is
affected by the position and the receiving antenna patterns
of the DUT, as well as the transmitting antennas. In addition,
the differences in free-space path loss (FSPL) and antenna
directivity/pattern are reflected in the transmission matrix H.
However, once the inverse matrix is calculated and loaded,
these differences are eliminated. As long as the antenna
isolation requirements are met, the FSPL and antenna direc-
tivity/pattern will not have an impact on the test results.
To ensure lower uncertainty for RTS MIMO [13], [14], [15]
measurements, the isolation must be greater than 15 dB before
throughput measurements [16] to achieve a satisfactory “Direct
Connection.” After applying the inverse matrix and achieving
sufficient antenna isolation, the MIMO throughput measure-
ment can be performed to evaluate the MIMO performance of
the DUT [17], [18], [19].

III. WIDEBAND MIMO MEASUREMENT ANALYSIS BASED
ON THE RTS METHOD

As indicated in (7) and Fig. 4, the matrix 7 should be nearly
the identity matrix, which means that the transmitting signals
1 and 2 are directly delivered to receiver 1 and receiver 2,
respectively, without cross-transmission. As an example, the
communication link from transmitting signal 2 to receiver 1 is
shown in Fig. 5. After applying the inverse matrix M in a
2 x 2 MIMO measurement, the two paths from transmitting
signal 2 to receiver 1 are not expected to exist. By adjusting
the amplitude and phase in the inverse matrix, these two path
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Fig. 6. Schematic for MIMO measurement chamber.

signals will have the same amplitude and opposite phase (180°
difference) when arriving at receiver 1. Then, the transmitting
signal 2 is eliminated in receiver 1 to ensure sufficient isolation
in (8) for MIMO measurements.

The inverse matrix M is implemented with amplifiers,
attenuators, and phase shifters [or digital signal processing
(DSP) modules and field programmable gate array (FPGA)] in
the channel emulator, which is widely used in 4G LTE MIMO
measurements with signal bandwidth less than 20 MHz. The
variation of amplitude and phase is not apparent when the
signal bandwidth is narrow, i.e., in this range, so signal
cancellation is implemented based on the center frequency to
realize high isolation.

However, when it comes to MIMO testing of the 5G
sub-6-GHz band, with a maximum bandwidth of 100 MHz
in a single carrier, the inverse matrix M is difficult to realize
adequately over the entire frequency band because of the sig-
nificant variation in amplitude and phase in the wideband sig-
nals, which is ignored in narrowband MIMO testing. As shown
in Fig. 5, these two signal paths are not sufficiently eliminated
when added together at receiver 1 without considering the
variation of amplitude and phase difference over the wide
frequency band. The causes and effects resulting from the
variation of amplitude and phase in wideband signals are
analyzed in this section, and simulation results are provided.

In the 4 x 4 MIMO measurement system shown in Fig. 6,
the MIMO test system comprises a minimum of four essential
components, including a computer, testing instruments, a sys-
tem control panel facilitating RF components and turntable
control, and an integrated anechoic chamber. During the
MIMO testing, the transmitting paths of testing signals are
comprised of various active and passive components, such
as the amplifier, filters, RF switches, measurement probes,
RF cables, and propagation paths. All these components have
a different impact on the amplitude and phase shift of the
signals over the frequency band.

A. Amplitude Functional Variation

As illustrated above, many factors contribute to the ampli-
tude flatness over the frequency band. Fig. 7 represents two
primary cases: the amplitude of signals with linear functional
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Fig. 7. Two basic cases: linear functional variation and nonlinear functional
variation.

TABLE I

MAXIMUM AMPLITUDE VARIATION FOR MIMO MEASUREMENT FOR DIF-
FERENT BANDWIDTHS

Bandwidth (MHz) Maximum Variation (dB)
20 4.0
40 2.1
50 1.8
60 1.4
80 1.1
90 1.0
100 0.8

Cancelled power of added two signals
with amplitude variation

Bandwidth 20MHz
Bandwidth 40MHz
Bandwidth SOMHz
Bandwidth 60MHz
Bandwidth 80MHz
Bandwidth 90MHz
Bandwidth 100MH:

Cancelled Power Lever (dB)

0 0.5 1 15 2 25 3 35
Amplitude Variation (dB)

Fig. 8.
variation.

Canceled power level under a different bandwidth and amplitude

variation and nonlinear functional variation. The first source
spectrum line is the reference signal without amplitude vari-
ation, and the second line is amplitude-modulated after the
propagation environment.

To implement the simulation and determine the effect of
amplitude variations, two 5G new radio (NR) signals with
different amplitude variations were added together in antiphase
(180° difference) to analyze the canceled power levels at
different bandwidths, and the results are shown in Fig. 8 and
Table I. With the bandwidth and amplitude variation increase
shown in Fig. 8, the canceled power level decreases after
adding these two phase-reversed signals together, which would
result in lower isolation for the RTS method and introduce
MIMO measurement uncertainties. To improve the isolation
(>15 dB) in different bandwidths, the maximum amplitude
variation should be ensured as shown in Table I.
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Fig. 9. Phase variation in a chamber for a communication link.

For 5G MIMO measurements with a 100-MHz bandwidth,
it is difficult to guarantee the amplitude variation within 0.8 dB
for individual RF components, let alone for an anechoic
chamber design. Therefore, on the one hand, amplitude-flat
components and low-loss cables for chamber design can be
used to reduce the amplitude variation; on the other hand,
the amplitude variation can also be addressed by the method
introduced in Section IV.

B. Phase Variation

Unlike amplitude variation, phase variations with frequency
can be significant in a complex communication link path. For
example, assume that the attenuation of the RF cable can be
ignored, the wavelength and the phase progression are

2 2

2,:—:
B w. /€

and

1 _lw‘/ue
A 2x ®

where [ is the cable length, @ is the radian frequency of the
signals, and p and € represent the magnetic permeability and
electrical permittivity, respectively. The variation of the phase
with frequency is

Ap L /e
Aw 21
The phase variation at 2.45 GHz with a 100-MHz signal
bandwidth is simulated and shown in Fig. 9. As the frequency
increases, the phase varies with the frequency, as well as the
length of the total communication link, and the phase change
from the amplifier, filter, and other RF components. To cancel
the cross-link power shown in Fig. 5, the magnitude of the
phase variation under a different frequency of the two signals
should have the same trends and values to ensure that all the in-
band frequencies can be adjusted for phase cancellation (180°
difference). If not, even though the phase could be adjusted
for cancellation at the center frequency, the phase at off-center
frequencies is not canceled, thus resulting in a cross-link signal
that is not eliminated at off-center frequencies.
The phase of the communication link is a very sensitive
parameter, which is sensitive to the cable length, amplifier,

(10)
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Fig. 10. Magnitude of power canceling in a different bandwidth and phase
slop.

filters, and even the performance of antennas. It is difficult
to ensure that all communication links have the same phase
variation. It is assumed that the two-communication links in
Fig. 5 have a different slope of the phase, the canceled power
level is simulated, and results are simulated and shown in
Fig. 10. As the bandwidth and phase-slope difference increase,
the ability of power cancellation decreases. When the slope
of the phase difference is too large, the power level can
even be increased. In a large chamber, the cable length can
be significant (>100 m), and the RF components can be
more complex, thus resulting in a more complex change of
phase, as well as low isolation, and high MIMO measurement
uncertainty.

IV. SOLUTION

Amplitude and phase variations in the propagation environ-
ment bring challenges in wideband MIMO evaluation based
on the RTS method. The traditional inverse matrix M in the
RTS method is typically linearly adjusted without considering
amplitude and phase variation in wideband signals. Therefore,
the theoretical calculation and realization of the inverse matrix
M must be improved to accommodate wideband OTA MIMO
measurements.

A. Inverse Matrix My for Wideband Signals

The traditional inverse matrix M is calculated and applied
based on the center frequency of the signals with narrow
bandwidth (e.g., 4G LTE with 20-MHz-frequency bandwidth).
However, this narrowband inverse matrix cannot be adapted to
the wideband signals because of the amplitude and phase vari-
ations in the communication link. As shown in Figs. 7 and 9,
with the amplitude and phase variation over frequency, the
transmitting matrix H at the center frequency can vary over
the total frequency band appreciably, thus resulting in an
unsuitable inverse matrix. To realize the inverse matrix to
cover the entire signal band, the wideband signal can be
divided into several narrowband signals, and then, the inverse
matrix calculated and applied in each narrowband to realize the
wideband inverse matrix. The total wideband inverse matrix
My is a mathematical transformation algorithm to adjust the
amplitude and phase under different frequencies f to meet
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the OTA chambers propagation environment. To realize the
wideband inverse matrix, the discrete Fourier transform (DFT)
and the inverse discrete Fourier transform (IDFT) are used
in the signal processing. Hence, the calculation of wideband
inverse matrix My can be divided into the following steps.

Step 1: Divide the wideband signals into n narrow-
band signals By, By, ..., B, (as shown in Fig. 11, signals
with 100 MHz as an example). Each B; was used for the
transmitting matrix calculation, and the number of narrowband
n is determined by the DFT length.

Step 2: Obtain the transmitting matrix H, H,, ..., H, at
the center frequency of By, B, ..., B,, and then, calculate
the inverse matrix M, M,, ..., M, of each narrowband. The
ith transmitting matrix H; and the inverse matrix M; for B;

are given as follows:
hian hir
H = i, i,
' [hi,ZI hix

M; = [mi,ll mi,lz] (11)

mio1 Mj22

where for narrowband signals, the H; =~ Hy) (Hpp)
represents the transmitting matrix at the center frequency),
so the inverse matrix at the center frequency is adapted to
the tested band. However, as the bandwidth increases, the H;
and M; varies with frequency significantly, and the amplitude
and phase variation would be reflected in H;. Hence, the
My is the function of frequency which could be written
as

mi ' (f) min'(f)

My (f) = 12)

my.1'(f) my n'(f)

where m ;' (f) is composed of m ji, m2 jk, ..., My, jk, Where
jand kequal to 1 or 2in 2 x 2 MIMO systems.

Step 3: Convert the desired signals in m ;' communica-
tion link from time domain to frequency domain using a
DFT

N—1

_ j2zmwn
Xjew) =D xju(m)e™ ¥

n=0

(13)

where x(n) is the discrete signal of x(7), N is the DFT length
(usually N = 8, 16, 32, 64, 128, 256, 512, or 1024), and X (n)
is the frequency-domain value of x(n).

Step 4: Calculate the output signals of the m;; com-
munication link for the wideband matrix My over different
frequencies. The calculated value in the frequency domain is
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Fig. 12. Measurement schematic and setup to represent a 2 x 2 MIMO
system: (a) schematic of a 2 x 2 MIMO system and (b) measurement setup.

represented as
X' (w) =X (wymj i (f).

Step 5: Convert the calibrated value from frequency domain
to time domain using an IDFT, so the calculated signal in the
wideband inverse matrix is written as

(14)

N—-1
’ ’ j 2z
Xjal () = D" X (wyel V.

w=0

(15)

Step 6: The transmitting signals for Tx antenna j are then

k=N
Tx;= > x;i (n). (16)
k=1
Applying the wideband inverse matrix, My, and the

DFT/IDFT algorithm to the RTS MIMO measurement, the
amplitude and phase variation can be calibrated and canceled
to achieve higher isolation for wideband signals, as well as
improving the measurement accuracy in 5G MIMO measure-
ments. In addition, the wideband inverse matrix My algorithm
can only be applied by DSP or FPGA on baseband data
in instruments instead of RF components because the wide
frequency band is “sliced” into individual narrower bands, and
the RF components are difficult to adjuste to adapt to such
wideband signals.
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V. VALIDATION
A. Measurement Setup and Steps

To verify the wideband inverse matrix algorithm, a mea-
surement setup is constructed as shown in Fig. 12. Two
transmitting antennas and two receiving antennas are placed in
the anechoic chamber to simulate the antenna isolation for 2x?2
MIMO systems. In addition, a vector signal generator/analyzer
and the wideband inverse matrix algorithm are integrated into
an instrument to transmit the desired signals, analyze the
receiving signals, and verify the algorithm. The instrument,
the ODC200, produced by General Test System Inc., Nanshan
Dist., Shenzhen has multiple RF ports that can be configured
as either transmitters or receivers. For the verification process,
two ports are assigned to transmitting antennas and the other
two ports are assigned to receiving antennas, as shown in
Fig. 12(a). The wideband inverse algorithm is integrated into a
single module within the ODC200, and the relevant parameters
can be readily imported into this module before transmitting
the wideband signals. Moreover, the measurement procedures
are executed as follows.

1) Position the transmitting and receiving antennas within
an anechoic chamber to simulate the transmitter of the
testing instrument and the receiver of the DUT.

2) Choose signals with different bandwidths of the fre-
quency range of interest and divide the wideband signal
into several narrowband subsignals, ranging from 8 to
128 or greater.

3) Transmit continuous waves at the center frequency
of each narrowband subsignal from multiple transmit
antennas and receive the signals using multiple receiving
antennas to obtain the spatial complex transmission
matrix H for the transmitter and receiver.

4) Calculate the inverse matrix of each narrowband subsig-
nal and apply these parameters to the wideband inverse
matrix module using (12)—(16). Generate the output
time-domain signal, and transmit it through the transmit
antennas.

5) Configure the signal generator with a wideband sig-
nal and activate either transmitter 1 or transmitter 2.
After applying the wideband inverse matrix, measure
the power received by receiver 1 and receiver 2, and
calculate the antenna isolation for both scenarios.

6) Apply the inverse matrix of the center frequency point
to the wideband inverse matrix module, calculate the
output time-domain signal, and transmit it through the
transmitting antenna.

7) Repeat step (5) to obtain the antenna isolations.

8) Compare the spectrum and isolation results obtained
using the wideband inverse matrix from step (5) and
the narrowband inverse matrix at the center frequency
from step (7).

9) Configure various bandwidths and repeat steps (2)—(8).

B. Measurement Results

In this measurement, the frequencies 2.45 and 4.95 GHz are
selected as the center frequency with a maximum bandwidth
of 100 MHz to verify the algorithm.
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As shown in Fig. 13, due to the existence of the cables,
amplifier, filter, and attenuator, the maximum amplitude and
phase variation over the 100-MHz bandwidth is over 4 dB and
70° in 2.45 GHz and more significant over the 4.95-GHz range.
In addition, it should be noted that the observed discontinuity
in phase change, as presented in Figs. 13 and 14, is attributed
to the normalization of the phase results within the range of
—180° to 180°.

As shown in Fig. 14, the adjusted amplitude and phase
vary with the frequency in the wideband inverse matrix.
The adjusted amplitude/phase reaches nearly the maximum
of 5 dB/100° in the 2.45-GHz center frequency case and
8 dB/100° in the 4.95-GHz center frequency case over the
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TABLE 11
ANTENNA ISOLATIONS COMPARISON IN 2.45 AND 4.95 GHz
Center Bandwidth | Traditional Method Proposed Method
Freq (MHz) los, | los, | Ios, | los; | los, | Ios,
(MHz)
20 21.1 [ 26.8 | 21.1 | 33.8 33 33
40 157 | 21.7 | 157 | 33.8 | 349 | 338
50 13.9 | 203 | 13.9 34 35.2 34
2450 60 125 | 189 | 12.5 | 33.7 | 358 | 33.7
80 10.7 | 17.2 1 10.7 | 32.5 | 36.1 | 325
90 9.9 165 | 99 | 31.8 | 363 | 31.8
100 9.2 159 | 9.2 31 36.6 31
20 247 | 242 | 242 | 29.1 | 28.5 | 28.5
40 23.4 23 23 30.8 | 29.8 | 298
50 21.8 21 21 304 | 30.6 | 304
4950 60 204 | 194 | 194 | 30.8 | 31.1 30.8
80 175 1 159 | 159 | 30.3 | 31.8 | 30.3
90 164 | 146 | 14.6 | 304 | 31.93 | 304
100 154 | 13.8 | 13.8 | 30.5 32 30.5

total 100-MHz bandwidth. However, for 4G LTE with a
20-MHz bandwidth in the center frequency, this adjusted
amplitude/phase is reduced to 1 dB/30° in the 2.45-GHz
center frequency case and 3 dB/10° in the 4.95-GHz center
frequency case, which means that the inverse matrix at the
center frequency is not suitable for the wideband signals.

As illustrated in Fig. 15, transmitting signal 2 to receiver
1 is taken as an example. After applying the inverse matrix,
the ideal case is that the signals are canceled or significantly
reduced. As shown in Fig. 15, the traditional inverse matrix
considers only the center frequency of the signal band; there-
fore, based on the spectral analysis of the results, it was found
that the power cancellation effect of the wideband signal is
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most effective at the center frequency due to the utilization of
transmission and inverse matrices at this frequency. However,
this approach is not effective for signals located far from
the center frequency when the bandwidth is expanded, which
ultimately presents a challenge in enhancing the final antenna
isolation. After applying the proposed wideband inverse matrix
algorithm, the power across the entire signal bandwidth is sig-
nificantly reduced, thus leading to improved antenna isolation
in OTA MIMO systems.

As shown in Table II, the antenna isolation decreases
as the bandwidth increases using the traditional method
with the inverse matrix at the center frequency. When it
comes to the 100-MHz bandwidth, the antenna isolation is
reduced to less than 15 dB, thus resulting in high MIMO
measurement uncertainty. However, the antenna isolation is
vastly improved to greater than 25 dB using the proposed
method.

VI. CONCLUSION

With the rapid developments for 5G wireless systems, the
OTA measurement has become the most efficient method to
evaluate the transceiver performance of a DUT. As one of the
critical aspects of performance evaluation, the MIMO OTA
measurement should reflect the actual usage performance for
MIMO devices with the increased bandwidth in 5G commu-
nications. As the bandwidth of 5G signals increases (sub-6
GHz reaches a maximum of 100 MHz in a single-frequency
bandwidth; mm-wave reaches a maximum of 400 MHz), the
functional variation of amplitude and phase is increased, which
results in lower antenna isolation in the RTS OTA MIMO
evaluation because the traditional inverse matrix method can
only be adapted to narrowband signals with small amplitude
and phase variation.

A wideband inverse matrix is proposed herein to solve the
RTS MIMO measurement for wideband signals. The frequency
in the wideband signals is divided into several narrowband
slices, and the transmitting matrix H and inverse matrix M are
obtained and calculated in each part. Finally, the signals are
calculated using the total wideband inverse matrix Mw, DFT,
and IDFT method [in (11)-(15)] to obtain the final desired
transmitting signals.

After applying the wideband inverse matrix algorithm
to the MIMO system, the antenna isolations are improved
significantly (25 dB in 100-MHz bandwidth) to reduce
the MIMO measurement uncertainty. The proposed algo-
rithms can be applied to both uplink and downlink MIMO
measurements when the transmitting matrix and its wide-
band inverse matrix are measured. For MIMO measurements
with carrier aggregation (CA), the frequency carriers can
be divided into several single carriers using filters, and the
wideband matrix can be calculated and applied to each fre-
quency carrier. The output signals can then be combined
for MIMO evaluations to realize RTS MIMO measurements
with CA. In addition, this calculation process and algo-
rithm can also be used in the MPAC method to handle the
amplitude and phase variation in the chamber. This article
paves the way for engineers to correctly evaluate the MIMO
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performance in wideband signals and reduce the measurement
uncertainty.
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