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Distributed Cooperative Kalman Filter Constrained by Discretized Poisson
Equation for Mobile Sensor Networks

Zigiao Zhang, Scott T. Mayberry, Wencen Wu, and Fumin Zhang

Abstract— This paper proposes cooperative Kalman filters
for distributed mobile sensor networks where the mobile sensors
are organized into cells that resemble a mesh grid to cover a
spatial area. The mobile sensor networks are deployed to map
an underlying spatial-temporal field modeled by the Poisson
equation. After discretizing the Poisson equation with finite
volume method, we found that the cooperative Kalman filters
for the cells are subjected to a set of distributed constraints.
The field value and gradient information at each cell center
can be estimated by the constrained cooperative Kalman filter
using measurements within each cell and information from
neighboring cells. We also provide convergence analysis for
the distributed constrained cooperative Kalman filter. Simu-
lation results with a five cell network validates the proposed
distributed filtering method.

I. INTRODUCTION

Mobile sensor networks are effective for collecting infor-
mation for natural processes such as hurricanes, ocean eddies
and forest fires [1]-[4]. The natural processes are often mod-
eled by physical parameters such as temperature, humidity,
flow direction, flow speed, light intensity etc, which are
functions of both space and time. They are called spatial-
temporal fields, often satisfying various partial differential
equations (PDE) derived from physics principles [5], [6].

The space and time are coupled in mobile sensing data
because the data are collected along trajectories of the mobile
sensors. Hence, mobile sensing data often need to be con-
verted into a map, which are estimates of the spatial-temporal
field. However, data collected by mobile sensors are subject
to measurement noise. By combining the measurements from
multiple sensors, the noise can be reduced so that a more
accurate map of the underlying spatial-temporal field can be
obtained [7]-[9].

Our previous work [10], [11] focused on solving the
field mapping problem for mobile sensor networks. The
movements of the mobile sensors are controlled so that
they form a formation with approximately constant relative
positions. We have derived the information dynamics, which
model the change of the spatial-temporal field along the
trajectory of the formation center. The information dynamics
can be used to predict the field value along the trajectory of
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the formation center. The measurements of all the sensors
are combined to provide an estimate of the field value at
the formation center. A cooperative Kalman filter can be
derived to fuse the prediction based on the information
dynamics and the estimates obtained through combining all
sensor measurements. In the case where the spatial-temporal
field satisfies known PDEs, we discretize the PDEs into
algebraic constraints on the field value at the formation center
[11], [12]. Our recent work [13] proposes a constrained
cooperative Kalman filter that is able to generate estimate
of the field value that satisfies the constraints induced by the
PDEs. This framework leads to a mapping solution using
mobile sensor networks where the map is constructed along
the trajectories of the formation center while at the same
time satisfying the PDEs.

In this paper, we generalize the cooperative Kalman filter
with PDE induced constraints to distributed mobile sensor
networks where a larger number of sensors are involved.
The major advancement from our previous work is that we
organize mobile sensors to form multiple cells. For each cell,
only sensor measurements pertaining to that cell are used to
estimate the field value at the center of the cell. The estimated
information at cell center will be shared among neighboring
cells. The collection of cells will form a mesh that covers a
larger area than a single formation. This new formulation is
welcome in practice because the sensor power can be better
distributed spatially. As a result, the map constructed will be
along the trajectories of a collection of cell centers rather
than a single formation center.

Under the distributed setting, field values at the cell centers
are related by the PDEs. Hence a major challenge is to
properly discretize the PDEs so that the constraints on the
field values at the cell centers can be well formulated. We are
motivated by the finite volume methods (FVM) introduced
by [14] that has found broad applications in numerical
computation of PDEs [15]. A mesh grid is first constructed
to cover the configuration space, then the FVM offers a
systematic way of discretizing the PDE over the mesh grid.
For a mobile sensor network, each node can be viewed as
a grid point in the mesh grid, providing measurements of
the field value at the grid point. Leveraging the FVM, we
demonstrate a discretization of the Poisson equation that can
be used as constraints for the cooperative Kalman filter.

Our major contribution is the development of the cooper-
ative Kalman filter constrained by the Poisson equation for a
mobile sensor network with large number of sensors. Given
the popularity of the FVM, this method can be generalized
to handle constraints imposed by other types of PDEs [16].
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We show that the cooperative Kalman filter can also be
computed in a distributed fashion with provable convergence.
These contributions provide a general framework for state
estimation using a large distributed mobile sensor network.

II. PROBLEM FORMULATION

In this section, we will formulate the estimation problem
of field value and gradient along trajectory using distributed
mobile sensor networks for a spatial-temporal field in d-
dimensional space, where d € Z, and d > 2.

We assume that the field can be described by the following
Poisson equation in a spatial domain Q C R?

= f(r), (D

where r € Q represents location, ¢ € Ry represents time,
72(,7) : R x Ry — R is the field function, and V2 is the
Laplacian operator. Function f(-) : R — R is spatial varying,
not depending on time ¢ and assumed to be known. The
equation (1) has the initial condition z(r,0) = zo(r) for r € Q,
and the boundary condition z(r,7) = z(r,¢) for r € dQ, where
20(r) and z;(r,7) are arbitrary initial condition and Dirichlet
boundary condition, respectively.

Suppose a group of mobile sensors are employed in the
field described by (1), taking discrete measurements of the
field z(r,7) in a distributed way. These mobile sensors have
limited communication so that they can only share informa-
tion with their neighbors instead of everyone in the network.
Based on the information sharing, the mobile sensors form
communication cells with neighbors and serve as vertices of
these cells, as illustrated by Fig. 1

V2z(r1)

Assumption II.1 The mobile sensors keep fixed communi-
cation graph and fixed formation shape while moving in
the field. The spatial domain covered by the mobile sensor
network is defined as Q, with boundary d<,.

Remark I1.2 In this way, the communication cells have
fixed shapes and fixed mobile sensors as vertices. Each
mobile sensor belongs to fixed communication cell(s), where
the number of cells sharing the same mobile sensor can be
greater than 1, as shown in Fig. 1.

Assumption IL.3 There is no overlap between any commu-
nication cells. The intersection between two cells can only be
edges connecting two vertices of the communication graph.

Definition I1.4 Two communication cells are called neigh-
boring cells if they have shared edge(s) on the cell bound-
aries, e.g. C1,C, in Fig. 1.

Assumption IL.S Every communication cell has at least one
neighboring cell. Within each communication cell, the infor-
mation sharing is all-to-all among agents. The information
sharing among different communication cells only happens
between neighboring cells and the shared information is the
estimated information at cell centers.

Suppose the mobile sensors form multiple communication
cells denoted as Cy,C,- - ,Cy. Denote the ith mobile sensor
on cell C;j as (i,j) and the location of this mobile sensor

Fig. 1. Example of 7 communication cells with 9 agents, where the
blue nodes represent the agents and lines connecting two nodes represent
communication between two mobile sensors. Solid lines represent boundary
edges of a cell and dashed ones represent communication inside one cell.

at time step #; as r .. Then the noisy measurement p(rk ,k)
taken by this agent at (r% 1) can be written as

i,jr'k
( lj’k)+nl]7 (2)

p(ri k) =
i€ R is an i.i.d. Gaussian noise with zero mean

1]7
where n
Deﬁne the center location of cell C; at #; as rk and r

\c  Liec; rk j» where |C;| is the number of moblle sensors
belongmg to cell Cj. One of our goals in this work is
to estimate field value z(rcj,t) and corresponding gradient
Vz(r;,t) along trajectory.

Since the measurements taken by the mobile sensors are
discrete, the continuous PDE model (1) should be discretized
properly. The area covered by the sensor network can be
partitioned by the communication cells which resembles a
mesh grid for the FVM [14]. Thus, another goal of this
work is to discretize the PDE model using FVM to establish
algebraic relationships among the field values at cell centers.

In order to solve the distributed state estimation problem,
we will work on two subproblems: 1) Discretize the PDE
model using FVM for each communication cell. 2) Estimate
field value and corresponding gradient at each cell center
along trajectory.

Our proposed solution follows a distributed constrained
cooperative Kalman filter strategy, where field value along
with corresponding gradient at each cell center are treated
as information states and the discretized PDE will be in-
corporated as state constraint. The constraint will build the
connections between each individuals cells.

III. INFORMATION DYNAMICS AND MEASUREMENT
EQUATIONS
In this section we will review the information dynamics
at cell center r* of C; and the measurement equations for
mobile sensors from C at time step ¢, respectively.
A. Information Dynamics

At the cell center r{‘./_ for any cell C;, we have the

following approximations [10] z(rk+1 k+1) ~ z(rfj,k) +
(rert — o )TVz(rk k), Vz(rk+l K+ 1) ~ Vz(rf k) +
V2Ll )0 = ) = Va0 )+ f0R AT S ),

where the last equality is given by PDE mocfel in (1).
Define state variable x(j,k) = [z (r’c‘j,k),Vz( Cj,k)]T, and
we can get the following state equation

x(],k+1):A(],k)x(],k)+U(],k)—|—e(],k), 3)
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|k
1 (’]c(;r 'Jc‘j)T:|’U(j7k)A|:f(rf,,

Ogx1 laxa
and e(j,k) is the noise term.

where A(j,k) £

B. Measurement Equation

For a given cell C;, we consider a mobile sensor i
belonging to this cell. Then the field value at r{‘ j can be
locally approximated using a Taylor series as

2(rfj k) = 2l k) 4 (rf ;= re ) TV(rE k) 4)
1
+ E(rﬁj _rﬁf)TH(r]g]ﬂk)(rfij _r]éj).
Let Z(j, k) = [z(r’]‘J,k), e ,z(r‘l‘cl_"j,k)]T be the vector of true

field values at the mobile sensor locations of the cell C .
Define

1 (Vf.j7¢j>T %<((r/l‘-f7r§j>®(rﬁ'-"7rﬁ/))T
,D(j,k) = : ’

()T H(ry =) B = )T

C(j k) =

where Q) is the Kronecker product. The Taylor approxima-
tions (4) for all sensors from cell C; can be written as

Z(j,k) =C(j,k)x(j. k) +D(j,k)H (j,k), (5)
where H(j,k) is a column vector obtained by rearranging

elements of the Hessian H (r’c‘j,k).

Let A(j,k) represent the estimate of the Hessian vector
H(j,k) at cell center rjc‘j, equation (2) can be rewritten as

P(j,k) = C(j,k)x(j,k)+D(j,k)H(j,k) (6)
+D(j.k)e(j.k)+n(j,k),

where P(j,k) = [p(r{ ; k), -
ment vector, €(j,k) is the Hessian estimation error, and
n(j,k) is the vector of noise nf‘ ; in (2). Hessian estimation
will follow the procedure of cooperative estimation in [10],
and we will not discuss the estimation details in this paper.

,p(r‘kchJ,k)]T is the measure-

IV. APPROXIMATION BASED ON FVM

In this section, we will apply the FVM from [14] to obtain
approximation for each individual cell C;. Each cell is com-
posed by vertices of mobile sensors and edges connecting
two sensors. The edges can be characterized into two types:
edges not on the boundary of the mobile sensor networks,
and boundary edges of the mobile sensor networks. Then
the cells can also be divided into two types: cells containing
no boundary edges (cell Cg in Fig. 1), and cells containing
boundary edges (cells C1,---,Cs in Fig. 1). All the values
in this section are at the same time step #;, so we will drop
time index k for simplicity.

A. Cells Containing no Boundary Edges of the Network

Suppose cell C; contains no boundary edges of the net-
work, and every boundary edge of C; is shared by C; and
one of its neighboring cell. Consider a shared edge s by C;
and neighboring cell Cy. Denote the cell centers for C;,Cy
as cj,cy, respectively. Denote the two vertices of edge s as
aj,ay. As shown in Fig. 2, denote v;; as the unit outward
normal vector on edge s connecting a; and ay with 7;;

as the corresponding unit counterclockwise tangent vector,
and denote v;7 as the unit outward normal vector on edge
connecting c; and cy with 7;; as the corresponding unit
counterclockwise tangent vector. Define 6; to be the angle
between v,y and ;.

« Vit

o Tt
&0 T

a;r

Vjjr

Fig. 2. Mlustration of V;j1,T; s, Viz, Ty, 05 with given cell centers c¢;,cy and

given edge s connecting vertices a;,a;. Orange nodes represent cell centers.

Then we can obtain the following relationship

Vjjr = —tan BST/'/'I + Tiit » @)

1
os O
By taking integrals of (1) over cell C;, we can obtain

ay

Fig. 3. Example of cell containing no network boundary edges, which is Cg
in Fig. 1. Denote cell centers as ci,---,c7 and vertices as aj,---,a9. Then
I Jc V27 will use z values at a3, ag,a7,c4,Cs,C6,C7 according to equation
(8). Orange nodes represent cell centers and orange dashed lines represent
information sharing of cell centers from neighboring cells.

ffcj V2 = Yseac; ijj/ Vz-vip = ffcj f. Substituting v;
by (7) leads to Yeoc, —tan 6 fS,-,-r Vi T+ e fS,-j/ Vz-
Ty = [ fcj f. By finite difference method, we know that

NS .
Js., Vo Ty ~ 24— 24y, fS,—/ Vz Ty = —‘th{, (Z"i/ —2c;)- This

wﬁl lead to

1S -
Z [—tanes(Za,’_Zﬂi/)—’_m(ch’_ZC/)] _//ij.
3

Seacj'

B. Cells Containing Boundary Edge(s) of the Network

Suppose cell G, contains network boundary edge(s). For
the shared edges between C,, and neighboring cells, we apply
the same approach as that described in Fig. 2. In this part, we
consider a boundary edge s” with vertices a,,,a,s. Denote the
middle point of edge s" as ¢/,. Define unit outward normal
vectors V., V,» and corresponding unit counterclockwise
tangent vectors T/, T,, as shown in Fig. 4. Then we can

1

obtain v,y = —tan 657,y + g55g7 Tan- By taking integrals

of (1) over cell C,, we have ffcm V22 =Yoc, s ,Vzr

mm'

Vit = | Jc,, f- This leads to ¥scyc,, —tan 8y [, s, Vi T +
i
cos By mem/ V2 Ty = fme I
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Vmm/

Fig. 4. Tllustration of cell containing network boundary edge(s).

By finite difference method, we can obtain that | s ,Vz

T = Za, — Za,, and
|Smm ‘ :
(Z Zcm)u if Sunt ¢ 89}’7
/ Viz, | S|
' NS, |z 2 y ,
||Smm|( - 2 : _Zcm)’ if Snn’ eagrv
nn’

where dQ, is the boundary of the area covered the mobile
sensor networks. This will lead to

/ f _ |Smm/| Zay =+ Zan/
Cn cos O[S, 2
SE(IC\Q;

—Zey)t 9)
s€(9C,NIQ,)
|Smm’ |

) m Z tan 6y (Zan —Za, )

S€EACy

(ZC,,,/ —Zep) —

as
as

Cs5 ag

C3
Cq asg

Fig. 5. Example of cell containing boundary edges of the network, which
is cell C4 in Fig. 1. Denote the middle point between ag,a; as cj.

V. DISTRIBUTED ESTIMATION BY CONSTRAINED
COOPERATIVE KALMAN FILTER

In this section, we will construct a distributed constrained
cooperative Kalman filter using the local measurements to
estimate the information at the cell center while incorporating
the PDE information as a constraint to ensure the estimated
information satisfying the PDE model.

A. Discrete Constraint Derived from the PDE Model

From the approximation results using FVM described in
Section IV, we have the integral relationship described by (8)
or (9) for any cell C;. We observe that information of field
values at both neighboring cell centers and adjacent agent
locations at same time step are needed to have (8) or (9).

For cells of no boundary edges of the network, we rewrite
(8) as

For cells containing boundary edges of the network, we
rewrite (9) as

// f_ — tan Oy (z( nm’k)_z(rﬁ',m’k)) an
Cm seac
1 ‘Smm’| k k
+ (z(rc , k) —z(rg,,, k) +
5€(ACm\IQ,) COSGSI |Snn/| C, Cn
1 ‘Smm/| Z(I"ﬁﬁm,k)—f—Z(rﬁ/?m,k) k
o8 T3 ,|( 5 —z(rg,, k)
s€(9C,NIQ,) § m

Notice that if cell C; has no boundary edges, then dC;\
9Q, = dC; and dC,,N I, = 0. Then (10) can also be written
as (11) by replacing m,n with j,i respectively. Thus we
rewrite (11) in linear form for any cell C;

where A = LV AT,
. |S /] T
G(j, k) £ [Zseac m O1xq| » and
sk = [l f +  Eeactanbi(z(rf k)~
\S /|

Z(’fﬁ,ﬁk)) - Yie(ac; \ag)m (V]fuk) -
15,0 20%; k)+2(rk‘ k)

ZSE((?C_,’QBQr) COSQ&“S,','/‘ 2 .

B. Distributed Constrained Cooperative Kalman Filter

In order to estimate the information state of field value
and gradient at each communication cell center, we will run
a constrained cooperative Kalman filter locally for each cell,
which makes our proposed solution distributed.

Assumption V.1 We assume that the noises e(j,k), €(j,k),
n(j,k) are i.i.d. Gaussian noise with zero mean, and with
constant covariance matrix for all j, i.e. Ele(j,k)eT(j k)] =

W, Eln(j,k)n™(j k)] =Ry and E[e(j,k)€T(j,k)] = Q.

The constrained cooperative Kalman filter can be con-
structed using 6 steps:
(1) One-step state prediction

where £ (j,k— 1) is the constrained state estimate from pre-
vious time step, and £~ (j,k) is the one-step state prediction.
(2) Error covariance of £~ (j,k)

(3) Optimal gain
K(j, k) =R (J,k)CT(j, K)[C(j, )R (J,K)CT(j, k) (15)

+D(j,k)ODT(j, k) +Ry] !
(4) Updated unconstrained state estimate

(), k) =27(j,k) (16)

+K(j,k)(P(j,k) = C(j, k)& (j,k) = D(j,k)H(j,k)).
Sgc_ (—tane (z(r ,J,k) _Z(rf'{ﬁj’k)) (10) (5) Error covariance of £*(j,k)
1S Co (R (s k) ™" = (R™(j, ) ™! (17)
sos8, 5] ey K =20, "))) /)5 TR DGLRODT (k) + R €K,
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After running the 5 steps of the unconstrained filter, each cell
obtains an unconstrained state estimate £ (j,k) and it will
share this information with all neighboring cells to update
the constrained estimate.

Since there is no overlap between any pair of cells,

the formation of the mobl‘le |senszor network satisfies
. . S
GT(j,k)G(j,k) = (Zseacj m) #0,Vj,k.

(6) Updated constrained state estimate

() k) =27(j, k) (18)
—G(j,k)(GT(j,k)G(j, k)~ (GT(j,k)x* (j, k) — 8(j,k)),
g(]?k) £ ffC f + Zseac tan9( ( /ak)

‘ IS, 12" (r k)
P(”M,k)) - er(acj\ag,) W -
S, PUE 0P )

ZSG aC;NIQy) cosB;\S 1 2 '

of g(],k) with 2 (rk_,,k) =

where

is an approximation
[1 01xa]£7(j,k) and it uses

measurements  p(r; ;,k), p(r% j7k) as  approximations

for z(rff j7k),z(rl’$ j»k). According to the definition
. ’ IS /1 T

G(j,k) = [Eseac_, 7WJ\SH/| led} , the updated

constrained estimate in (18) only updates the field

value estimate ”r(rkj,k), and does not affect the gradient
estimate VZ* (r{,,k) obtained by (16).

Remark V.2 For the 6 steps of the distributed constrained
cooperative Kalman filter described by (13)-(18), the first
5 steps in (13)-(17) only use the local information in one
communication cell, while the last step (18) uses estimated
information from neighboring cells.

VI. CONVERGENCE ANALYSIS

In this section, we will provide convergence analysis for
the proposed distributed constrained cooperative filter.

Agents from same cell have all-to-all communication. The
information dynamics and measurement equation considered
for each individual cell in this paper share the same structure
as those in [10], where a centralized cooperative Kalman
filter has been proposed with provable convergence. If we
do not consider the constraints, then the unconstrained dis-
tributed cooperative Kalman filter for each single cell is
convergent if conditions in Proposition VI.1 and Proposition
VI.2 are all satisfied.

Proposition VI.1 (Lemma 3.5 in [10]) The state dynamics
(3) are uniformly completely controllable if the following
conditions are satisfied:

(Cdl) The covariance matrix W is bounded, i.e., M I <W <
Ml for some constants Ay, A > 0.

(Cd2) The speed of each agent is uniformly bounded, i.e.,
Hrf, - rf;l ll2 < A3 for all i, j,k, and some constant A3 > 0.

Proposition V1.2 (Lemma 3.8 in [10]) The state dynamics
(3) with the measurement equation (6) are uniformly com-
pletely observable if (Cd2) and the following conditions are
satisfied:
(Cd3) The number of agents in one cell C; satisfies |C;| > d
for all j.

(Cd4) The covariance matrices R, and Q are bounded, i.e.,
Al <R, < Asl and 0 < Q < Agl for some Ayq,As5,A¢ > 0.
(Cd5) The distance between each agent and the formation
center is uniformly bounded from both above and below, i.e.,
A7 < ||Vf‘j—'”]fj||2 < Ag for all i, j,k, and some A7,A3 > 0.
(Cd6) There exists a constant time difference 8t, and for all
k > Ot, there exists a time instance k' € [k — 5t ,k], as well
as two agents i,y from cell Cj, such that (r¥ ri i r’L‘;) and
(rf.‘z/ i r’jj) are linearly independent.
Since the unconstrained cooperative Kalman filter is both
uniformly complete controllable (Proposition VI.1) and ob-
servable (Proposition VI.2), the unconstrained filter for each
individual cell is convergent. This means that [|x; —£;|» is
bounded for all j, where x; represents the true state value.
Define a combined state vector X (k) to include all dis-
tributed state vectors as X(k) = [xT(1,k),-- ,xT(N,k)]",
which represents the true state value. Similarly we can have
updated unconstrained combined state estimate X (k) =
[£7(1,k)T,--- ,£7(N,k)T]T and constrained combined state
estimate X* (k) = [£7(1,k)T,--- " (N,k)T]T. Then we can
have one constrained cooperative Kalman filter of X (k) as

X (k) =Alk—=DX"(k=1)+U(k—1),
R™ (k) =A(k—1)R" (k= 1)AT(k—1)+W,

K(k) =R~ (k)CT(k)[C(k)R™ (k)CT (k) + D(k)QDT (k) + R] '
X (k) =X~ (k) +K(k )( (k) = (k)£ (k) = D(k)H (k)),
(R*(k))™" = (R™ (k)™ +CT(k)[D(k)QDT (k) +R] ' C(k),
Xt (k) = X" (k) = G(k)(GT (k)G(K)) ™ (GT (k)" (k) — &(K)),
where  A(k) = diag(A(1,k),--- AN, )) Clk) =
diag(C(l,k),~~7 ( )) ( ): [DT(I k) T(N7k)]
P(k) = [PT(lvk)v ( )] G(k)

diag(G(1,K), - G(N.K). (k) — 8(1,k), -
Since the combined filter is constructed by stacklng
all distributed filter together and the unconstrained
filter for each individual cell is convergent, the
combined unconstrained filter is also convergent as

X =2 = /T, [r—x,[13 < £, [ —x,{l2. By Theorem

4 in [17], ||X — X+H2 < ||X = X*||2, where |- || is the I
norm. Since the unconstrained combined cooperative Kalman
filter is convergent, the constrained combined cooperative
Kalman filter is also convergent. Thus, each distributed
constrained cooperative Kalman filter is convergent.

VII. SIMULATION RESULTS

In this section, a simulation using a mobile sensor net-
work (with formation shown in Fig. 6) will be provided to
demonstrate that the proposed distributed algorithm enables
mobile sensor networks to estimate information at each cell
center along trajectories of a collection of cell centers.

We consider a electric potential field in R? described by
the Poisson equation V2z(r,t) = & Where p is a total volume
charge density and & is the permittivity of the medium. We
place the point charge at [0,0]T. The center of the mobile
sensor networks is moving in a fixed formation shown in Fig.
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Fig. 6. A mobile sensor network with 5 square communication cells. Blue
nodes represent sensor, and orange nodes represent cell centers. Blue solid
lines represent cell boundary edges and blue dashed ones represent commu-
nication edges inside one cell. Orange dashed lines represent information
sharing between neighboring cell centers.

Fig. 7. A 5-cell mobile sensor network follows an elliptical trajectory in an
electric potential field. The red ellipse represents the trajectory, the yellow
lines represent boundary edges, and white dots represent cell centers.

6 with the velocity v(t) = [— <= sin(55-), 1= cos(z5=)]T for
2000s. The trajectory of r., satisfies (ry—5.5)2+4(ry,—7)? =
16 where r., = [ry,r,]T as shown in Fig. 7. Each boundary
edge for one single cell has length 0.5.

Statistical data of estimation errors at cell centers are
provided in Table I along with the data of measurement
noise. The subscript n represents measurement noise, and

the subscript e represents constrained estimation error. From
TABLE 1
STATISTICAL DATA OF ESTIMATION ERRORS AND NOISE
[ Cell Cy [ Cell ¢, [ Cell G5 [ Cell Cy4 [ Cell Cs

mean, -0.0012 | -0.0013 | -0.0014 | 0.0009 0.0017
mean, -0.0021 | 0.0003 0.0028 0.0041 | -0.0041
std, 0.0579 0.0589 0.0588 0.0586 0.0581
std, 0.0243 0.0245 0.0242 0.0245 0.0245

Table I, we can observe that the mean for the constrained
estimation error is close to zero for each cell, which means
that the estimation generated by the constrained distributed
cooperative Kalman filter is accurate. The estimation for cell
C, is more accurate compared with the estimation for the
other cells. This is because cell C; is the center cell of the
mobile sensor network, and it exchanges information with
all other cells while other cells only share information with
cell C,, as shown in Fig. 6. Besides, the standard deviation
of the constrained estimation error is smaller than that
of measurement noise, which demonstrates that distributed

constrained cooperative Kalman filter is capable of reducing
the noise and providing accurate estimation.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a distributed cooperative Kalman
filter under constraints induced by the Poisson equation. The
method enables a large number of mobile sensors to be
leveraged for mapping a spatial-temporal field. Our results
demonstrate that the finite volume method is an effective tool
to convert PDEs into a spatial-temporal relationship that can
be leveraged by mobile sensor networks. We will generalize
our method to other types of PDEs in future work.
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