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Abstract— This article presents a new optimization method
for complex power distribution networks (PDNs) with irreg-
ular shapes and multilayer structures using deep reinforce-
ment learning (DRL), which has not been considered before.
A fast boundary integration method is applied to compute the
impedance matrix of a PDN structure. Subsequently, a new
DRL algorithm based on proximal policy optimization (PPO) is
proposed to optimize the decoupling capacitor (decap) placement
by minimizing the number of decaps while satisfying the desired
target impedance. In the proposed approach, the PDN structure
information is encoded into matrices and serves as the input of
the DRL algorithm, which increases the flexibility of the method
to be extended and generalized to different PDN configurations.
Also, the output of the algorithm determines the selection of
decap types and locations collaboratively, making it easier to
find the optimal solution in a huge search space. The proposed
method is compared with the state-of-the-art approaches and
shows consistent advantages in reducing the number of decaps
in different testing cases.

Index Terms— Boundary integration, decoupling capacitor
(decap), deep reinforcement learning (DRL), machine learning,
power distribution network (PDN).

I. INTRODUCTION

DECOUPLING capacitors (decaps) play a significant role
in lowering the alternating current (ac) impedance and
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reducing the consequent transient voltage noise in power
distribution networks (PDNs) [1]. Optimizing the locations and
types of decaps for complex printed circuit boards (PCBs) to
minimize the number of decaps is desired but troublesome,
because the impedance simulation is usually time-consuming,
and the search space for decap optimization is commonly
enormous. As power integrity is increasingly becoming a
bottleneck for modern integrated circuits (ICs) with lower
and lower power supply voltages, various decap optimization
methods have been proposed and investigated in recent years.

Optimization algorithms, such as the genetic algorithm
(GA) [2], [3], [4], [5], [6] and particle swarm optimization
(PSO) algorithm [7], [8], were adopted for decap optimization.
GA was employed in [2] and [3] to optimize decaps to
satisfy a target impedance, but the cost functions do not
ensure the minimum number of decaps. Cecchetti et al. [4]
and de Paulis et al. [5] proposed a GA by adding decaps
sequentially and selecting the best decap type and location by
minimizing the area where the PDN impedance violates the
target impedance for each new decap placement. However, this
method might miss the optimal solution with the minimum
number of decaps, since different decaps may contribute
collaboratively rather than individually. A GA was proposed
to minimize the number of decaps by considering the col-
laborative contribution of decaps and defining an objective
function associated with the number of placed decaps to satisfy
a given target impedance [6], but the method might need a
considerably long time to converge to the optimal solution.
Besides, the PSO algorithms [7], [8] do not exhibit clear
advantages over GA regarding the solution quality and speed.
Thus, the biggest challenge with these optimization algorithms
is that the optimum solution cannot be guaranteed, and the
optimization time is problematic for a large number of decap
locations.

There have also been some other optimization methods
that are worthwhile noticing [9], [10], [11]. A physics-
based approach was developed [9] with an iterative procedure
and complex decision-making conditions. Han et al. [10]
recently proposed a knowledge-based method and claimed
that their method could find the optimized decap design using
much fewer PDN simulations than other methods. Moreover,
a Newton–Hessian minimization method was proposed for
the fast optimization of decap locations [11]. However, the
capability of these methods [9], [10], [11] to find the optimal
solution for complex PDN scenarios was not demonstrated.
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Deep reinforcement learning (DRL) has been attracting
growing interest due to its tremendous success in handling
various complicated tasks [12], [13]. Therefore, researchers
have attempted to optimize decaps using DRL [14], [15],
[16], [17], [18] in recent years. Park et al. [14], [15] adopted
DRL for decap placement on silicon interposer-based ICs and
high bandwidth memory [16]. However, in their application
scenarios, the silicon interposer has a rectangular shape, and
there is only one decap type in the decap library. This makes
it difficult to apply their approach to complex PDN structures
with irregular shapes and multiple decaps types. Another DRL
algorithm was proposed to optimize decap selection given the
S-parameters of a PDN system [17], [18], but the algorithm
does not consider the geometry information of the PDN
system. Moreover, in [17] and [18], the decap locations and
types are separately optimized. The priority of decap locations
is determined by calculating the physical inductances; then,
DRL is applied to select the appropriate decap types to be
sequentially placed on the prioritized decap locations. The
capability of the proposed algorithm in [17] and [18] to
converge to high-quality solutions with fewer decaps than
other methods was not demonstrated.

This article presents a new DRL algorithm that considers
the PDN information in the algorithm input and can handle
complex PDN structures. The impedance matrix of a complex
PDN structure is rapidly calculated using a boundary integra-
tion method [19], [20]. Subsequently, the decap optimization
is accomplished through an automatic self-exploration process
using DRL. The proposed algorithm, which considers the
collaborative contribution of different decaps, is compared
with the GA [5], [6] and the Newton–Hessian minimization
method [11], and demonstrates efficient and more reliable
convergence to the optimal solutions in different test cases.
Also, the algorithm output determines the selection of both
decap locations and decap types and is more expandable than
the method in [14] and [16] that only supports one decap
type. Moreover, the proposed method incorporates the PCB
shape, PCB stack up, IC location, and decap locations into
the algorithm input, which enhances the flexibility of the
algorithm to be extended and generalized to various PDN con-
figurations compared with the existing DRL approaches [14],
[15], [16], [17], [18].

The rest of this article is organized as follows. The
boundary integration approach for impedance calculation and
the other methods for decap optimization are briefly intro-
duced in Section II. The proposed DRL method is elaborated
in Section III and validated through several test cases in
Section IV. Finally, a conclusion is drawn in Section V.

II. PROBLEM DESCRIPTION

The boundary integration method [20] used for the
impedance calculation of complex PDN systems is briefly
reviewed in this section. Also, the mathematical formula-
tions of the decap optimization scenario studied in this
article are clarified. Moreover, the core concepts of several
other decap optimization methods [5], [6], [11] are briefly
summarized.

A. Impedance Calculation

The approach proposed in [20] can handle irregular PCB
shapes by approximating the PCB boundary into a perfect
magnetic conductor (PMC), dividing the boundary into seg-
ments, and calculating the quasi-static inductances through
1-D boundary integration. For multilayer PDN structures,
an equivalent circuit is constructed and rapidly solved using
a matrix reduction strategy [20]. Eventually, a Z -parameter
matrix containing the IC and decap ports can be efficiently
computed. The boundary integration method in [20] can tackle
complex PCB shapes, which is more potent than the cavity
model method [21] for rectangular shapes only and much
more efficient than the plane-pair PEEC (PPP) approach [22]
for complex board geometries. The details of the method are
explained in [20].

A segmentation method [23] is adopted to evaluate the PDN
impedance after placing decaps. Since the Z -parameter matrix
of the PCB board with the decap ports can be calculated
through the boundary integration method, the total impedance
after placing decaps can be obtained by connecting the
Z -parameter matrices of the PCB board and the decaps. This
process is much more efficient than repeatedly solving the
entire equivalent circuit during the decap optimization process.
The details of the segmentation method for decap connection
can be found in [18] and [23].

B. Decap Optimization

The available decap locations are treated as discrete loca-
tions in this article. In [6] and [11], the decap locations are
considered as continuous variables to be optimized. However,
this is not applicable when the placement of decaps needs to
compromise with other PCB components.

Therefore, in this article, we assume that there are N
available decap locations represented by variables L1, L2, . . . ,

L N and M decap types represented by C1, C2, . . . , CM . The
number of available decap locations N is determined by users
and depends on several factors, including the available layout
areas on a PCB and the difficulty of satisfying the target
impedance (the lower the target impedance is, the more the
decaps are required). Each decap location can be regarded as
a variable with discrete values

L i = 0, C1, C2, . . . , CM (i = 1, 2, . . . , N ) (1)

where L i = 0 means that no decap is placed on the
location L i .

In the industry, minimizing the number of decaps to save
cost while satisfying a target impedance is pursued. Thus,
the decap selection is converted to an optimization problem
to achieve this objective. Namely, the cost function of the
optimization process becomes

arg min
L1,L2,...,L N

Ndecap

s.t. Zpdn( f ) ≤ Z target( f ) (2)

where Ndecap represents the number of used decaps, namely,
the number of nonempty decap locations.
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Since the available decap positions are predefined in dis-
crete locations, an impedance Z -parameter matrix can be
calculated using the boundary integration method [20] by
treating each candidate decap location as a Z -parameter port.
Afterward, this Z -parameter matrix can be repeatedly utilized
to connect with different decaps for optimization purposes by
adopting the segmentation method [18], [23], which is highly
time-efficient.

C. Other Decap Optimization Methods
The GAs proposed in [5] and [6] for decap optimiza-

tion are denoted as full search and GA, respectively. The
Newton–Hessian minimization method [11] is called the
Newton–Hessian method for simplicity. These methods are
slightly modified for more straightforward implementation and
fair comparison with the proposed DRL method in this article,
but the core concepts of the three methods are maintained. The
details are explained as follows.

1) Full Search Method [5]: The full search method pro-
posed in [5] decomposes the decap optimization problem into
placing the decaps sequentially. In each decap selection, GA is
used to search and select the best decap location and decap
type that can minimize the areas where the PDN impedance
violates the target impedance. The original optimization prob-
lem has (M + 1)N possible cases in the search space, which
exponentially increase with the number of decap locations and
decap types. The full search method reduces this large search
space into a much smaller search space with a maximum
number of nearly M N 2 possible cases. Even though the
optimization speed of the full search method is fast, it is hard
to find the optimal solution, since it optimizes the selection and
placement of each decap individually without considering the
collaborative contribution of different decaps. In other words,
even though the full search method is fast, it might miss the
optimal solution, since it explores a subset of the whole search
space.

The full search method utilizes a GA to optimize the decap
location and decap type for adding each decap. Since the
maximum number of possible cases using the full search
method is only approximately M N 2, full search is also feasible
and expected to behave better than or at least the same as
using GA. By using the boundary integration method [20]
and the segmentation method [18], [23], the full search is still
acceptably time-efficient. Therefore, the full search strategy
is adopted in this article to reproduce the concept of the full
search method.

2) GA Method [6]: Another GA was proposed in the GA
method to minimize the number of decaps while satisfying
a target impedance or power supply induced jitter. Since
this article focuses on optimizing PDN frequency-domain
impedance, the method developed in [6] to satisfy a target
impedance is reproduced and compared with the proposed
DRL method. Unlike the full search method, which sequen-
tially and individually optimizes the selection of each decap,
the GA method optimizes the decap selection at different
locations simultaneously. Also, the GA method considers the
decap coordinates as continuous variables to be optimized.
As mentioned earlier, the proposed DRL method considers

discrete decap locations. Therefore, in this article, the objective
function of the GA method is modified as follows:

arg min
L1,L2,...,L N

[
max

(
Zpdn( f )

)
· Ndecap

]
s.t. Zpdn( f ) ≤ Z target( f ). (3)

Since the GA method optimizes the decap selection at
different locations with a collaborative contribution to the
impedance, the GA method is expected to find better solutions
than the full search method, given enough exploration time.
However, the GA method explores a search space with (M +

1)N possible cases, which might cause a much longer time to
find the optimal solution.

3) Newton–Hessian Method [11]: The Newton–Hessian
method also regards decap locations as continuous variables
and adopts the Newton–Hessian minimization method to opti-
mize the decap locations to minimize the maximum impedance
value. In the Newton–Hessian method, the decaps are placed
sequentially, and the decap types and decap locations are
optimized separately. The selection and placement of each
decap are divided into two steps. First, the decap type with
a resonance frequency closest to the frequency where the
maximum PDN impedance occurs is selected. Second, the
Newton–Hessian minimization method is applied to minimize
the maximum PDN impedance by using the selected decap
type of the first step and optimizing the decap location (x and
y values). Thus, the decaps are added to the PDN sequentially
until the target impedance is satisfied.

To compare the Newton–Hessian method with the pro-
posed DRL method in this article, we modified the orig-
inal method in [11] by assuming discrete decap locations.
Namely, in the Newton–Hessian method, instead of optimizing
the decap locations using the Newton–Hessian method, the
best decap location is determined by inspecting all the discrete
decap locations and finding the location that can minimize the
maximum PDN impedance.

The Newton–Hessian method has a similar problem as the
full search method in finding the optimal solution, since
the Newton–Hessian method also optimizes the selection and
placement of each decap individually and sequentially. In the
full search method, the type and location for each decap are
optimized simultaneously. However, in the Newton–Hessian
method, the best decap type is selected first, and then, the
best decap location is determined. Therefore, it is expected
that the Newton–Hessian method behaves worse than the full
search method, since the Newton–Hessian method explores a
subset of the search space in the full search method.

It is worth mentioning that the Newton–Hessian method
is based on a flat PDN target impedance, and the maximum
PDN impedance serves as the criterion for selecting the best
decap types and locations. Therefore, a flat target impedance
will be used to compare the Newton–Hessian method and the
proposed DRL method. The full search and GA methods allow
using an arbitrary-shape target impedance. Hence, a typical
R–L shape target impedance will be used when comparing
the full search method and the GA method with the proposed
DRL approach, which will be shown in Section IV.
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Fig. 1. Basic procedure of a DRL algorithm.

III. PROPOSED METHOD

The proposed DRL approach, including the detailed DRL
algorithm, input and output matrix definition, deep neural
network (DNN) structure, and reward definition, is elaborated
in this section.

A. Brief Introduction of DRL

Reinforcement learning (RL) is a machine learning algo-
rithm that trains an intelligent agent to make beneficial deci-
sions in a dynamic environment. In DRL [12], [13], DNNs
are embedded in the RL algorithms to enhance the capability
of tackling complex environments. The basic procedure of a
DRL algorithm is depicted in Fig. 1.

Several critical elements of DRL are state, action, and
reward. State s is a situation or configuration the agent
observes from the environment. Action a is the movement that
the agent takes in response to the observed state. Reward r is
the feedback from the environment by taking the correspond-
ing actions. Policy πθ (s, a) maps the states to the actions and
selects the actions that promise the highest reward. In DRL,
the policy πθ (s, a) is represented by a DNN. The agent
continuously interacts with the environment by observing the
state, taking an action, obtaining a reward, observing the next
state, and so on. In such an iterative exploration process,
the parameter θ of the DNN policy is trained through the
exploration experiences, such that the actions with higher
rewards have a higher priority of being selected. The goal
is to optimize the policy after training, so the agent can
automatically take a sequence of actions in the environment
with a maximized reward.

B. PPO Algorithm

The policy-gradient algorithm [24] is a popular RL tech-
nique that has been applied to a wide range of problems. The
output of the policy network in policy-gradient algorithms is
the probability prediction for different actions. The general
objective function of policy-gradient algorithms is

MaximizeÊ t [ln πθ (at |st )Rt ] (4)

where lnπθ (at |st ) is the log probability for action at under
state st , Rt is the discounted reward, and Ê t represents
the mathematical expectation value. This objective function
encourages the algorithm to increase the probabilities for the
actions with high rewards.

One possible problem with the objective function (4) is that
when Rt is always positive, the probability πθ (at |st ) may be
raised up even if at is a bad action, which increases instability
of the training. One common trick to mitigate this issue is
to subtract a baseline value function Vt , an estimation of the
discounted reward from the current state onward, from the
discounted reward Rt [25]. Hence, besides the policy network
predicting the probabilities of different possible actions, a
value function neural network outputting the value function
Vt of the input state also needs to be trained as an estimation
of the discounted reward starting from the input state.

Another issue with the objective function (4) is that the pol-
icy may move far away from the old policy in the exploration,
which may result in a locally bad policy. The proximal policy
optimization (PPO) algorithm was proposed in 2017 [26] to
mitigate this problem by adding constraints to the parameter
change of the policy and networks. Implicitly, a clipping
objective function is defined as follows:

LCLIP(θ) = Ê t
{
min

[
rt (θ) Ât , clip(rt (θ), 1 − ε, 1 + ε) Ât

]}
(5)

where rt (θ) is the ratio of the output probabilities to the old
output probabilities

rt (θ) =
πθ (at |st )

πθold(at |st )
(6)

and the clipping function clip(rt (θ), 1 − ε, 1 + ε) constrains
the network parameter change rt (θ) between 1 − ε and 1 + ε,
where ε is set to 0.2 as recommended in [26]. Ât is called
the advantage function. When Ât is positive, the clipping
objective function (5) prevents the action probability from
being overly increased; when Ât is negative, the corresponding
action probability is inhibited from being overly decreased.
Therefore, the PPO approach can prevent large policy updates
and ensure a more stabilized convergence.

A generalized advantage estimation (GAE) was proposed
in [26] that includes the summation of discounted rewards
and value functions in the subsequent steps

Ât = δt + (γ λ)δt+1 + · · · + (γ λ)T −t+1δT −1 (7)

where

δt = rt + γ Vθ (st+1) − Vθ (st )

where T is the total number of steps; rt is the reward of action
at under state st ; γ is a discount factor; λ is a smoothing
parameter; Vθ (st ) and Vθ (st+1) are the predicted values for
states st and st+1 from the value network, respectively.

According to [26], the total objective function of the PPO
algorithm is expressed as follows:

LCLIP+VF+S
t (θ) = Ê t

[
LCLIP

t (θ) − c1LVF
t + c2S[πθ ](st )

]
(8)

where LCLIP
t (θ) is defined in (5), and LVF

t is the square error
loss of the value network output

LVF
t =

[
Vθ (st ) − Ât

]2
. (9)

S[πθ ](st ) denotes the entropy of the output probability to
enhance exploration, and c1 and c2 represent two coefficients.
In this article, c1 is 0.5, and c2 is 0.01.
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Fig. 2. Encoding the board shape, IC location, and decap locations into 2-D matrices. (a) PCB information, including the PCB shape, IC location, decap
locations, and placed decaps represented by different numbers. Matrix representation of (b) PCB shape and IC location, (c) available top decap locations,
(d) available bottom decap locations, (e) placed top decaps, and (f) placed bottom decaps.

C. Matrix Definition and DNN Structure
As stated in Section I, this article considers the PDN

structure information in the algorithm input, including PCB
shapes, stack up, IC location, and decap locations. The PCB
shape, IC location, and decap locations on the top and bottom
layers are encoded into 2-D matrices, as illustrated in Fig. 2.
A maximum board area of 200 × 200 mm is defined, which
is enough for most decap placement applications. Fig. 2(a)
shows a PDN example with an irregular board shape, 20 decap
locations on the top and bottom layers, respectively, and some
decaps placed on the available locations. The decap values
are denoted by numbers ranging from 1 to 10, representing
ten different decap types. The R–L–C parameters for these
decap types can be found in [27]. The board shape and the IC
location are encoded into a 2-D matrix, e.g., a 16 × 16 matrix,
as shown in Fig. 2(b). This matrix size can be adjusted if a
different decap placement density is needed. If the required
decap density is high, the matrix size needs to be appropriately
enlarged. But on the other hand, enlarging the matrix size
will slow down the training speed and increase the compu-
tational burden. Hence, a trade-off is needed to determine
the optimal size of the 2-D matrices. The available decap
locations on the top and bottom layers are also encoded into
2-D matrices, as shown in Fig. 2(c) and (d). The 2-D matrices
in Fig. 2(e) and (f) illustrate the partial decap placement on
the top and bottom, representing the decaps that have been
placed. These two 2-D matrices are updated once new decaps

Fig. 3. (a) PCB stack-up example. (b) One-dimensional matrix representation
of the stack up.

are added to the board. Similar to the strategy in [27], the PCB
stack up is encoded into a 1-D matrix, as shown in Fig. 3.
A maximum number of nine layers is assumed in this article.
Hence, the PCB stack-up information is encoded into a 1 × 17
matrix, where the first nine elements represent the layer type,
and the last eight elements represent the dielectric thickness.
This matrix size can also be enlarged if more layers are needed.

The DNN structure employed for the proposed DRL algo-
rithm is depicted in Fig. 4. Besides the PDN structure
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Fig. 4. DNN structure for the policy and value networks used in the proposed DRL approach.

Fig. 5. Illustration of (a) placing decaps sequentially according to the output probability distribution of the policy network and (b) reward definition.

information, the impedance and the target impedance are also
included in the input state matrices as 1-D matrices. The
impedance needs to be updated if new decaps are placed and
the impedance changes. As shown in Fig. 4, the board shape,
IC location, and decap locations are represented by a 5 × 16 ×

16 matrix, while the other input parameters are 1-D matrices.
To combine all the input parameters into one single matrix,
each input 1-D matrix is converted to a 1 × 256 matrix through
a fully connected (FC) layer, reshaped into a 16 × 16 matrix,
and then cascaded with the 5 × 16 × 16 matrix. Consequently,
an 8 × 16 × 16 matrix is constructed and followed by
a series of convolutional layers [28]. In each convolutional
layer, batch normalization [29] and the LeakyReLU activation
function [30] are adopted.

The policy and value networks are embedded in the DNN
shown in Fig. 4. The output after the convolutional layers is
a 20 × 16 × 16 matrix followed by a Softmax function [31],
so that the output is converted to probabilities between 0 and
1 representing different action probabilities, which is the final
output of the policy network. The second and third dimensions
of this 20 × 16 × 16 matrix correspond to different decap
locations on the PDN, while the first dimension covers ten
different decap types and two decap placement layers (top

and bottom). The 8 × 16 × 16 matrix in Fig. 4 is followed
by two FC layers and one value output, which is the output of
the value network Vθ (st ) and an estimation of the GAE in (7).

D. Reward Definition
The proposed DRL approach trains the agent and learns

the optimal decap placement strategy through an iterative
exploration process. Fig. 5(a) illustrates the iterative decap
placement process according to the output probability dis-
tribution of the policy network. As shown in Fig. 4, the
output probabilities of the proposed DRL method include
the probabilities for decap location selection (on the top and
bottom layers) and decap type selection. In Fig. 5(a), only the
probability distribution of different decap locations is plotted
for simplicity. In the training and exploration process, the
current board state is input to the DNN, which outputs the
probability for different actions. Subsequently, one action is
selected according to the probability distribution, the board
state is updated, and the next action is determined. Such
an iterative procedure is continued until the decap locations
are full or the target impedance is satisfied. For each action,
a reward is assigned to evaluate the quality of the action and
guide the DNN training toward reward maximization.
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The reward is essential to the effective training of the DRL
agent. The reward defined in the proposed DRL method is
depicted in Fig. 5(b), as expressed by

rt =

(
Nt+1 − Nt

N

)
+ T (10)

where Nt and Nt+1 are the number of frequency points at
which the target impedance is satisfied before and after the
current action is taken, respectively, and T is an extra term
determined by whether the target impedance is satisfied and
the number of placed decaps, expressed by

T =

{
1 + N − Ndecap, if target z is satisfied
−p, if locations are full and target z is not satisfied

(11)

where N is the total number of available decap locations,
Ndecap is the number of placed decaps, and p is a penalty term
representing the maximum percentage for which the target
impedance is violated.

This reward definition in (10) is similar to [15], but the extra
term T is slightly different. In [15], the term T is equal to 1 if
the target impedance is satisfied, and 0 otherwise. However,
in this article, a larger value for T is assigned if fewer number
of decaps are used to satisfy the target impedance, which
encourages the algorithm to converge faster to the optimal
solution. Moreover, the penalty term p in (11) is used to better
guide the algorithm toward a possible solution even if the
target impedance is hard to be satisfied.

The reward definition (11) aims to minimize the number of
decaps to satisfy a target impedance. Users can flexibly adjust
this reward definition to meet different requirements, such as
reducing costs or occupying layout areas.

E. DNN Training and Testing

Algorithm 1 briefly summarizes the training and testing
procedure of the proposed algorithm. The policy and value
networks are trained through exploration experiences by max-
imizing the loss function (8) (or minimizing it by adding a
negative sign). Every epoch means starting decap placement
on an empty PDN until all decap locations are full or the
target impedance is met. In each epoch, eight different envi-
ronments are used (i.e., Nenv = 8 in Algorithm 1), which
means that the agent explores the decap placement strategy
independently eight times. Since each decap placement is
determined from the probability distribution, the eight envi-
ronments are different from each other due to randomness.
The experiences from the eight environments are stored and
used to train the policy and value networks after each epoch is
finished.

The PPO algorithm introduced in Section III-B is adopted
as the DRL algorithm in this article. To accelerate the
convergence of the training process, this article proposes a
modified PPO algorithm as described in Algorithm 1. The
improvement is that another memory B is defined to store the
best experiences with the fewest decaps during the training
phase. After each epoch, the exploration experiences stored in

Algorithm 1 Proposed Modified PPO Algorithm
Input: N_epoch, number of epochs for training;

N_env, number of environments for training;
Input PDN information, including board shape,
stackup, decap locations, and target z;
N_loc, number of decap locations in total;
n_decap_best , initial value is N_loc;
Define a policy and value DNN;
Define hyperparameters, including learning rate,
discount factor γ, smoothing parameter λ;
Define memory A to store training experiences;
Define memory B to store the best experiences
with the fewest decaps;

for n_epoch ∈ {1, . . . , N_epoch} do:
// Training the DNN

for n_env ∈ {1, . . . , N_env} do:
Obtain the initial board state st ;
for n_decap ∈ {1, . . . , N_loc} do:

Input board state st into DNN;
Obtain output value Vt and action
probability distribution πθ (at |st );
Choose one action at according to the
probability distribution;
Obtain reward rt and the next state st+1;
st = st+1;

if target z satisfied or n_decap =

N_loc:
if n_decap < n_decap_best :

n_decap_best = n_decap;

Empty memory B;
Store experiences in B;

else:
Store experiences in A;

end if
break;

end if
end for

end for
Use the experiences in both A & B and the
objective function in Eqn. (8) to train DNN;
Empty memory A;
// Testing the DNN
Obtain the initial board state st ;
for n_decap ∈ {1, . . . , N_loc} do:

Input board state st into DNN;
Obtain action probability distribution;
Choose action at with the highest probability;
Obtain the next state st+1;
st = st+1;

Record the best solution;
end for

end for
Obtain the best solution with the fewest number of decaps
during the training and testing phases

memory A and the best experiences stored in memory B are
used collectively to train the DNN. In contrast, the original
PPO algorithm only uses the experiences in memory A for
training.
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Fig. 6. Case 1. The board layer types (from the top layer to the bottom layer) are GND, PWR, GND, GND, and GND; the dielectric thickness (from top to
bottom) is 0.3, 0.2, 0.4, and 0.3 (unit: mm). (a) Decap placement solution using the proposed DRL method (13 decaps). (b) Convergence of the best solution
for five independent runs during the training and testing process. (c) Impedance of the proposed DRL method and the target impedance.

The best decap solution during the training process is
recorded. After the training of each epoch, the DNN is also
tested by choosing the highest probability for each action. The
best decap solution for the training and testing process in each
epoch is recorded, which is expected to converge to the optimal
solution as the training proceeds. The Adam optimizer [32]
was used for training, and the learning rate was 0.0001 in
this article. The training was performed on an NVIDIA Tesla
K80 GPU.

The proposed DRL method can learn from the exploration
experiences with the corresponding reward and is expected to
be more effective than the GA method [6], which is closer to
random searching. Also, the sequence of actions contributes
collaboratively to the reward in DRL rather than individually,
rendering the proposed method more promising than the full
search method [5] and the Newton–Hessian method [11] in
finding the optimal solutions.

IV. METHOD VALIDATION

Three testing cases with different PDN configurations and
target impedances are employed in this section to compare
the proposed method with the full search method [5], the GA
method [6], and the Newton–Hessian method [11]. The decap
placement solutions of different approaches are compared.
The detailed parameters of the decap types represented by
numbers 1–10 can be found in [18]. The solution comparison
and time consumption of different approaches for five inde-
pendent runs are listed in Table I. The full search method
and the Newton–Hessian method, which explores a much
smaller search space, took less time than the proposed DRL
and the GA methods. Therefore, it is less meaningful to
compare the time consumption of the full search and Newton–
Hessian methods in Table I, but only the numbers of decaps
are listed for the two approaches. Moreover, since these two
methods implemented in this article are deterministic without
randomness, only one solution is obtained for each testing
case.

A. Case 1

In Case 1, the PCB has five layers, and the PDN configura-
tion is shown in Fig. 6. There are 20 available decap locations.

TABLE I
SOLUTION COMPARISON OF DIFFERENT

METHODS (TIME–DECAP NUMBER)

An R–L shape target impedance is used. In the proposed DRL,
the discount factor γ is 0.99, and the smoothing parameter
λ is 0.99. The proposed DRL converged to a solution of
13 or 14 decaps after searching for several minutes. The full
search method took less computation time, as it explored the
solution in a much narrower search space, but it only found a
solution of 15 decaps. The GA method, on average, consumed
a comparable time to the proposed method and also converged
to 13 or 14 decaps. The Newton–Hessian method can only be
applied to a flat target impedance, so it is not compared with
the other approaches in this case. In this case with 20 decap
locations, it can be concluded that the proposed DRL can
find slightly better solutions than the full search and has
a comparable performance with the GA approach regarding
solution quality and convergence speed.

B. Case 2

In Case 2, the PCB has five layers, and the PDN con-
figuration is shown in Fig. 7. There are 60 available decap
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Fig. 7. Case 2. The board layer types (from the top layer to the bottom layer) are GND, PWR, GND, GND, and GND; the dielectric thickness (from top
to bottom) is 0.3, 0.5, and 0.3 (unit: mm). (a) Decap placement solution using the proposed DRL method (26 decaps). (b) Decap placement solution using
the full search method (33 decaps). (c) Target impedance, impedance of the proposed DRL method and the full search method.

Fig. 8. Convergence of decap number for the modified PPO (proposed),
original PPO, and GA method by taking the average result of 18 independent
runs for Case 2.

locations, and an R–L target impedance is used. Hence, the
Newton–Hessian method is not included in the comparison.
In the proposed DRL, the discount factor γ is 0.99, and the
smoothing parameter λ is 1. The proposed DRL converged
to a solution of 26–28 decaps after training for 20–70 min.
Since the search space becomes much larger than Case 1 due
to a much larger number of decap locations, searching for
the optimal solution becomes more challenging. However, in
Case 2, the full search method could only find 33–38 decaps
even after searching for about 30–60 min. Fig. 7 compares
the decap distribution and impedance result for one solution of
26 decaps for the proposed DRL and one solution of 33 decaps
for the GA method. Moreover, in Case 2, the full search
method could only find a solution of 33 decaps. The result
comparison demonstrates that when the search space becomes
much larger due to a larger number of decap locations, the
proposed DRL method shows more remarkable advantages
over the full search and GA methods.

Moreover, to demonstrate the advantage of the modified
PPO algorithm over the original PPO and GA method, the
convergence of the number of decaps for the three meth-
ods is compared in Fig. 8 by taking the average results of
18 independent runs. As explained earlier, the original PPO
method denotes the PPO algorithm without memory B to
store the best experiences. It can be concluded from Fig. 8

that the modified PPO algorithm can noticeably accelerate the
convergence compared with the original PPO algorithm and
can also converge much faster than the GA method.

C. Case 3
In Case 3, a flat target impedance of 0.012 � is adopted,

so that the Newton–Hessian method can be applied and
compared with the other approaches. There are 20 available
decap locations. In the proposed DRL method, the discount
factor γ is 0.99, and the smoothing parameter λ is 0.99.
The proposed DRL achieved a solution of 7–8 decaps in
several minutes. The full search method and the GA method
behave similar to the proposed method in this case, but the
Newton–Hessian method only found a solution of ten decaps.
The result comparison is shown in Fig. 9. As explained in
Section II, the Newton–Hessian method selects the decap type
with a resonance frequency closest to the frequency where
the maximum impedance occurs. As observed in Fig. 9(b),
the Newton–Hessian method chooses the same kind of decap,
which causes an overdesign issue in the impedance result
shown in Fig. 9(c). However, the proposed DRL method
achieved the same target impedance using fewer decaps
and mitigated the overdesign problem. This test case indi-
cates that the decap selection and placement method in the
Newton–Hessian method is not an optimal strategy.

V. CONCLUSION

This article presents a new DRL methodology for decap
optimization on complex PDN structures. The method encodes
the PDN structure information into the input matrices, includ-
ing the PCB shape, stack up, IC location, and decap locations,
and outputs the probabilities for different decap locations
and types. The impedance matrix of a complex PDN is fast
computed using a boundary integration method. Subsequently,
the DRL algorithm is trained through self-exploration and
records the best training and testing solution as the train-
ing proceeds. Compared with the state-of-the-art approaches,
including the full search method [5], the GA method [6],
and the Newton–Hessian method [11], the proposed algorithm
demonstrates a more reliable convergence to the optimal
solution by considering the collaborative contribution of a
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Fig. 9. Case 3. The board layer types (from the top layer to the bottom layer) are GND, PWR, GND, GND, and GND; the dielectric thickness (from top
to bottom) is 0.3, 0.4, 0.2, and 0.3 (unit: mm). (a) Decap placement solution using the proposed DRL method (seven decaps). (b) Decap placement solution
using the Newton–Hessian method (ten decaps). (c) Target impedance, impedance of the proposed DRL method and the Newton–Hessian method.

sequence of decap location and type selections. Also, in the
proposed DRL method based on the PPO algorithm, this article
presents a modified PPO algorithm that converges noticeably
faster than the original PPO algorithm and the GA method.
Moreover, the proposed DRL method can find better solutions
than the full search and Newton–Hessian methods, since these
two approaches search in a much smaller space.

The proposed method exhibits the capability of converging
to high-quality decap solutions with complex PDN input infor-
mation. By varying the input parameters and generating large
amounts of PDN data [27], it is promising to pretrain a DRL
algorithm that can predict a high-quality decap solution for a
new PDN. Even though Park et al. [16] recently showed the
feasibility of constructing a pretrained DRL model, however,
their model can only be generalized to different IC and decap
locations, with the other parameters being the same, making
their algorithm impractical in real applications. Based on the
work of this article, a DRL model can be pretrained and
generalized to different PDN configurations by adopting the
transfer learning [13] or meta-learning technique [33], which
will be addressed and presented in our future publications.
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