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ABSTRACT

This paper presents DroneChase, an automated sensing sys-
tem that monitors acoustic and visual signals captured from a
nearby flying drone to track its trajectory in both line-of-sight
and non-line-of-sight conditions under mobility settings. Al-
though drone monitoring has been an active research topic,
most of the existing monitoring systems focus only on line-
of-sight conditions and do not perform well under blockage
conditions. Inspired by the human ability to localize objects in
the environment using both visual and auditory signals, we
develop a mobile system that integrates the information from
multiple modalities into a reference scenario and performs
real-time drone detection and trajectory monitoring. Our de-
veloped system, controlled by the Raspberry Pi platform, col-
lects acoustic signals from 6 hexagonal channels placed 5 cm
away from each other and video signals from an HD RGB
camera. The monitoring system is placed in a moving vehicle
and is able to track the drone even when it is flying /hovering
behind the bush or trees. Furthermore, the portability of the
system enables continuous chasing of the drone, allowing
for uninterrupted monitoring and tracking even while on the
move. In addition, the proposed system performs reliably in
both day and night conditions.
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1 INTRODUCTION

Drones have gained immense popularity in recent years
due to their versatility and ability to be used in various
fields, including aerial photography, surveillance, deliv-
ery, and agriculture. Nevertheless, the proliferation of

This work is licensed under a Creative Commons Attribution International 4.0 License.

DroNet ‘23, June 18, 2023, Helsinki, Finland

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0210-5/23/06.

https:/ /doi.org/10.1145/3597060.3597237

Blockage
Trajectory

Multichannel (6)
Audio Recorder

‘Portable Surveillance System ‘

Figure 1: DroneChase’s concept: drone localization in low-
light, blockage, and mobility conditions [1].

drones has led to concerns about their potential use in
illicit activities such as espionage, smuggling, and even
terrorist attacks [13]. Developing effective drone local-
ization systems is therefore critical to ensure the safety
and security of critical infrastructure, public spaces,
and sensitive locations. In addition to providing early
warning and detection of unauthorized drone activity,
such systems can also assist in tracking and intercepting
rogue drones and provide valuable intelligence on the
activities of hostile actors. As a result, there is a growing
need for robust and reliable drone localization systems
that can operate in a range of environments.

Prior Research. Traditional vision-based approaches
can localize the drone with high accuracy [2, 6]. How-
ever, they require the drone to be within the line of
sight of the cameras and have good lighting conditions.
This can limit the capabilities of the system, particularly
when the drone is obscured by objects such as trees or
buildings. Despite the use of multiple cameras at dif-
ferent angles, these approaches still struggle to localize
the drone when it is behind objects. Similarly, radar-
based approaches also require line-of-sight conditions
and lose effectiveness under physical obstacles [22]. RF-
based approaches are proposed [3, 11] as an alternative
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Figure 2: System Overview.

method to localize drones. However, these methods ei-
ther necessitate the installation of wireless transceivers
on the drone, which involves re-engineering the flight
controller, or the need to know the communication fre-
quency/signal generated by the drone that can be uti-
lized for localization, but it is often not readily available
as companies tend to conceal this information. Addi-
tionally, several acoustic-based approaches have been
proposed. [5, 9, 19].

Nevertheless, these methods suffer from certain lim-
itations that hinder their practical application. Specif-
ically, they rely on cumbersome signal recording sys-
tems that lack mobility or require modifications to the
drone itself, such as adding speakers to generate sound
pulses for localization purposes. Therefore, there is a
need for alternative localization techniques that can
overcome these limitations and allow the drone to oper-
ate effectively in a broader range of environments with
increased coverage. Rather than relying on mathemati-
cal properties of sound that constrain the design of the
recording device, we opted for a data-driven approach
that harnesses the capabilities of machine learning.

In this paper, we propose a data-driven mobile sys-
tem, named DroneChase, as illustrated in Fig. 1 to detect
and localize the drone with high precision under block-
age and mobility conditions. The proposed method in-
volves creating a student model that emulates a higher-
dimensional teacher model, thereby facilitating contin-
uous drone localization. The objective is to develop a
system capable of learning auditory-visual correspon-
dences in a self-supervised manner, enabling classical

object detection tasks such as drawing bounding boxes

around the target, using only acoustic information from

a drone. In this paper, we made the following contribu-

tions:

e The proposed approach avoids the need for manual la-
beling. Instead, we employed a self-supervised train-
ing method that automates the labeling process for
the localization of drones.

e We developed a machine-learning model to localize
the drone and evaluated our model with real-world
settings. The system was placed on top of a car and
tested in various outdoor environments, including
low light and blockage scenarios.

e We developed affordable, portable hardware using
Raspberry Pi and Seeed ReSpeaker to capture multi-
channel surround sound data.

2 SYSTEM OVERVIEW

Our proposed system, DroneChase, offers a portable so-
lution for drone tracking that can be mounted on a ve-
hicle, allowing for effective chasing of the drone. Its
portability ensures that the system can provide exten-
sive coverage, making it highly practical to real-world
implementation

In lieu of the time-consuming and manual collection
of ground truth data, we present a novel approach that
employs a student-teacher-based architecture to exploit
the labeling capacity of the vision model and train the
acoustic model with those labels, thereby allowing for
the continual tracking of a drone via only acoustic sig-
nals. Removing the need for manual collection of labels
makes drone tracking systems scalable.
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Figure 3: Sound waves propagation around obstacles

As illustrated in Fig 2, our system has two phases:
the training phase and the testing phase. During the
training phase, the system trains an acoustic model in a
self-supervised manner using a vision model that local-
izes drones from video frames. In the testing phase, the
acoustic model operates independently, continuously
localizing drones without requiring any visual input.
The system is further composed of three subsystems:

Training vision model: We are using a transfer learn-
ing approach to train the YOLOV5 [7] on about 10,000
annotated images of drones. The model is able to achieve
high precision in localizing the drone in a certain envi-
ronment. Later this trained model is used as a teacher
model which will generate a ground truth guide for
the acoustic model. For this, we first perform video
resampling to ensure uniformity in frame rate and syn-
chronization with the sound signal, each frame of the
processed video is fed to the teacher model, and the
generated coordinates are used for loss function during
the training phase of the acoustic model.

Training acoustic model: The acoustic model takes
spectrograms of sound signals as an input instead of
the raw signal as the spectrogram provides information
in both time and frequency domains and thus can gain
more spatial information. We begin with resampling
all six channels” audio signals to maintain uniformity
of sample rate. Each channel is divided into segments
corresponding to the frame rate of the video, i.e., each
1-sec audio is divided into 30 segments. Then we apply
Short-Time Fourier Transform (STFT) on each segment
of every channel to compute their spectrograms. The
spectrograms of an audio segment of each channel are
stacked together and fed to Multi-input Convolution Re-
current Neural Network (CRNN) to output a bounding
box similar to the teacher model. CRNNs incorporate a
feedback mechanism that allows them to better capture
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temporal dependencies and utilize this information to
have a smoother tracking system

Testing acoustic model: During testing, the audio
signals first pass through the same pre-processing pro-
cedures as in training. Following that spectrograms are
generated and fed to the trained student model, The
model will then generate the coordinates of the bound-
ing box without any requirement for visual input. We
then apply to coordinate smoothing via the Kalman
filter to further stabilize the bounding-box movement.

3 APPROACH

Our approach is grounded on the physical principle of
wave diffraction, which enables sound waves to bend
and propagate beyond obstacles, as illustrated in Fig. 3.
Additionally, sound waves also convey spatial informa-
tion about their source. By leveraging these properties
of sound waves, we have proposed a machine-learning-
based approach that can localize the source of the sound,
even when it is hidden behind obstacles thus allowing
us to overcome the limitations posed by obstructed line-
of-sight and has the potential to significantly enhance
drone tracking capabilities in such conditions.

The learning problem for our system is modeled us-
ing a student-teacher framework, whereby the system
is trained simultaneously using both video frames and
multi-channel acoustic signals. The training procedure
of the network across multiple sensing modalities, i.e.,
vision, and acoustic is described in detail in this section.
This approach enables the acoustic student network to
learn how to localize the drone guided by the visual
teacher network in a self-supervised manner.

3.1 Vision Network

We used a transfer learning approach to train YOLOv5
[7] which was pre-trained on the Microsoft Common
Objects in Context dataset. Its architecture is a convo-
lutional neural network composed of a backbone and
a detection head. The backbone is based on the CSP-
Darknet53 architecture, which is a modified version of
Darknet53 used in YOLOv3 [14]. CSPDarknet53 com-
prises 53 convolutional layers, including residual blocks
that aid in training and performance enhancement. The
backbone also contains downsampling layers that re-
duce feature map spatial resolution while increasing
their depth. The overall architecture consists of 77 con-
volutional layers in both the backbone and detection
head. During training, we froze the backbone layers and
fine-tuned them on our annotated drone dataset.

After completing the training of YOLOV5, it is utilized
as a teacher network to create a stream of pseudo-labels
for the student network during its training. To enable
this, the data is initially prepared by resampling the
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Figure 4: Performance comparison of Our System with YOLO.

video to 30 frames per second (fps), ensuring uniform is flattened to create a feature sequence, which is then
synchronization with audio segments. This step is es- fed into a Long Short-Term Memory (LSTM) layer. The
sential in making certain that video recorded from any LSTM layer is then followed by two dense layers to
kind of hardware can be used with the system. produce the final output.

The processed video is then decomposed into sev- Loss Function. During the training of our learning
eral T = Is video clips, which are further divided into model, the objective is to minimize the loss functions
30 frames. These frames are continuously fed into the that are designed to represent the error between the
trained teacher model, which, in turn, generated out- predicted bounding box and the corresponding ground
put labels comprising coordinates of the bounding box. truth. In this approach, we utilized the Intersection Over
These pseudo-labels are then sent to the student net- Union (IoU) loss [23], which considers the spatial re-
work, which is simultaneously training on audio data. lationships between the predicted and ground truth
3.2 Acoustic Network bounding boxes. This loss function is relatively robust
We approached object detection from acoustic by fram- to variations in object size, position, and orientation,
ing it as a regression task. Acoustic data are collected making it an effective choice in object detection tasks.
from six different channels of our hardware as shown in IoU loss for bounding boxes is defined as:

Fig. 5 thus providing more spatial information. We first 1 n Area(ynt)
begin by resampling 6-channel audio data to 48000KHz, Lrou(y,t) =1— N i=1 Area(y Ut) )

Each of these channels is divided into T = 1s chunks,
and these are further divided into 30 segments that cor-
respond to each frame from video data. Each segment
is then converted into a spectrogram through STFT. Uti-
lized the hamming window function with window size
512, and 4 Hops, this gives us a spectrogram of shape
[257 x273]. Spectrograms of a segment from all 6 chan-
nels are stacked together and fed to the student network.

Here, y represents the predicted bounding box, t rep-
resents the target bounding box, N is the batch size, and
Area calculates the area of a bounding box.

Optimization. Furthermore, the network is trained
to utilize the Adam optimizer algorithm as proposed
by [8] with learning rate set to 0.0001. In order to avoid
overfitting we used L1 & L2 Kernel regularizer.

The student network utilized in our proposed ap- 3.3 Smoothing via Kalman Filter
proach is a CRNN, which comprises three 2D convolu- The coordinates/size of the bounding boxes regressed
tional layers. Each convolutional layer is followed by from the network is inevitably jittery, which is caused by
a batch normalization layer and a max pooling layer. ambient noises in the environments as well as the insta-
The output generated from the last convolutional layer bility of the network. We thus utilize Kalman Filter [20]
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Figure 5: DroneChase’s Prototype

to smooth the coordinates between adjacent frames.
Given the vector that represents the bounding box at
frame t, we define its state vector s; = [x!,y,w!, hf],
where x! and y' represent the coordinate, w' and h'
stand for the width and height. A state-space model
defining the bounding box movement thus can be rep-
resented as s; = As;_1, and the bounding box z; = Hs;.
As the time gap between adjacent frames is relatively
short, we define A = 1, H = I, and the process & mea-
surement noise co-variances are empirically set to 0.01 &
0.05, respectively. The smoothed bounding box can then
be derived as s}, where ¢} is the optimal state estimate.

4 EVALUATION
4.1 System Implementation

We implemented an DroneChase system as shown in
Fig.5 using Seeed Respeaker and Raspberry Pi to record
audio signals. To make the hardware compact we used
a 5V battery pack with raspberry pi. This device is ca-
pable of collecting 6 channels of surround sound at a
maximum sample rate of 48KHz with an SNR of 59 dB
using 6 MEMS microphones and consumes only 2.7W.
For recording video, we are using Logitech Conference
Cam BCC950, which records 1080p video at 30 fps.
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In our study, we employed a total of six microphones
to capture spatial information, in contrast to traditional
mono or stereo recorders. Our findings indicate that
this approach resulted in a significant improvement in
the overall quality of the recorded audio, as evidenced
by the data presented in Table 1. To support the circuit,
Raspberry Pi, and battery, we developed a customized
3D-printed case, which provided both ergonomic and
sturdy support for the recording system.

4.2 Experiment Methodology

In this study, a dataset of drone flying was collected
consisting of 60 minutes of video and audio data in dif-
ferent environmental conditions. The drone flies in a 7m
X 7m x 7m cubical area following a random trajectory
to avoid any bias in the data. We used DJI Phantom-
4 drone for our experiment purpose. The video was
recorded at 30 fps, with 1920 x 1080 resolution which is
widely used by most cameras, and audio was recorded
at a sampling rate of 48KHz for higher fidelity.

Data Split. We split video frames and audio clips into
three parts: 72K for training, 18K for validation, and 18K
for testing. One audio clip is 33.3ms i.e., 1600 samples
and each frame is of 1920 x 1080 resolution. This dataset
was used to train and evaluate the proposed system.
4.3 Evaluation Results

Evaluation Metric. To evaluate our method, we used the
traditional object detection evaluation metric, Average
Precision (AP). We report the AP at IoU with 0.5 and
0.75 thresholds. The formula for AP, is given by:
_ 1 el

AP = 1G] gl
where G is the set of ground truth objects, |G| is the
cardinality of G, Iverson bracket notation [IoU(y, t) >
t] evaluates to 1 if the condition is met i.e., if JoU >
threshold ¢, and 0 otherwise.

We also calculated the average of AP across IoU thresh-
olds from 0.3 to 0.75 with an interval of 0.05 as:

K
K] i|=‘1 APy 3)
where K is the set of IoU thresholds, and |K] is the car-
dinality of K which is 10 in this case (IoU thresholds
from 0.30 to 0.75 with an interval of 0.05), and APgg;
is the Average Precision at IoU threshold K[i] which is
calculated using Eq(2).

Result Analysis. We evaluated our system with var-
ious channel configurations, as shown in Table 1. It
turned out that using all 6 channels gives a more promi-
nent result, mainly because it separates orientation bet-
ter and has more spatial information. In our case, 2 chan-
nels (mic3,mic6), 4 channels (micl,mic6,mic2,mic3), and

ToU(y,t) >t )

AveAP3O:75 =
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Approach || AP | APys | APyys

Mono 33.27 | 30.03 | 11.38
Stereo 37.25 | 37.66 | 16.87
3 Channels 41.32 | 40.93 16.26
4 Channels || 49.065 | 48.808 | 21.59
5 Channels || 53.40 | 50.73 | 22.98
6 Channels || 61.20 | 59.43 | 25.63

Table 1: Compared Average Precision (AP) across multiple
channels. Higher AP suggests better results.

6 channels show better improvement in performance
with the best result on using all 6 channels.

We further evaluated our system on different settings
that include Low light, Blockage, High winds and etc.
As shown in Table 2, our standalone acoustic system
performed significantly well compare to vision model
YOLOVS5. As illustrated in Fig.4, the corresponding re-
sult of the vision-based approach’s fail cases.

Approach || APy Blockage [ APs. Normal

YOLOV5 8.43 87.16
Our System 42.95 61.20

Table 2: Compared Average Precision (AP) between YOLO
and our system. Higher AP indicates better performance.

5 RELATED WORK

Vision-based Drone Localization. Vision-based drone
localization systems detect drones from video frames
captured by cameras leveraging various deep-learning-
based object detectors e.g., [14, 15]. and [10] combine
Faster R-CNN with ResNet-101 to detect drones from
long-range surveillance videos, similarly [12] localize
drone swarms using cameras mounted on a headset. Al-
ternatively, spatial-temporal attention and U-net-based
frameworks have also been proven effective on drone
localization [2, 6]. However, vision-based methods re-
quire good line-of-sight and lighting conditions and
may raise privacy concerns.

RF- and Radar-based Drone Localization. RF- and
radar-based drone localization research utilizes RF sig-
nals transmitted between the drone and operator to de-
termine location, with good performance but requires
mounting additional wireless transceivers on the drone,
and more importantly, the communication frequency
of drones must be known while manufacturers tend
to conceal this information. [3, 11]. Radar-based meth-
ods emit electromagnetic waves and analyze reflected
signals, but similar to vision-based methods, they re-
quire line-of-sight and lose effectiveness with physical
occlusions. [4, 21, 22].

Acoustic-based Drone Localization. There has been
activating research on drone localization leveraging
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the Time Difference of Arrival (TDoA) of acoustic sig-
nals [5, 16-18]. However, these systems have significant
limitations. For instance, [16] require a cumbersome
hardware setup involving 40 microphones, while [18]
proposes an indoor solution that can only be effective
if the drone has limited movement space. Additionally,
[5, 17] requires a large setup space with a minimum sep-
aration distance of 20 meters between microphones. Al-
ternatively, [19] mount speakers that transmit acoustic
pulses on the drone, while ground-based microphones
detect the pulses and determine the drone’s location. De-
spite the promising results, mounting additional hard-
ware on the drone inevitability affect its mobility and
requires considerable hardware changes. [9] proposed
an audio-visual-based approach, but similarly, the in-
convenient hardware setup (i.e., 30 cameras) largely
limits its usage scenario. Compared to existing solu-
tions, our system is low-cost, highly portable, and does
not require any hardware modification to the drone, al-
lowing for easy deployment in various scenarios and
reducing the need for additional engineering efforts.

6 CONCLUSION AND FUTURE WORK

We present DroneChase, an automated cross-modality
learning system for self-supervised drone localization. It
uses a student-teacher model and YOLOv5-based auto-
matic labeling. We utilized a cost-effective mobile audio
sensor for data collection and developed a quantitative
evaluation method to assess the system’s performance
under various environmental conditions. We conducted
experiments in challenging scenarios such as high wind,
night-time, blockages, and crowded campus settings,
as well as a moving car to mimic a dynamic environ-
ment. Our findings show the system’s capacity to im-
prove tracking in challenging conditions, We provide a
live demonstration of DroneChase’s real-time outdoor
drone tracking performance [1].

However, our current system is limited to tracking
a single drone at a time. In future work, we plan to ex-
pand our approach to enable the tracking of multiple
drones simultaneously. We also aim to collect data in
even more severe environmental conditions to further
demonstrate the robustness of our system. This study
also paves the way for developing a generalized model
that can track different objects that emit sound waves.
We intend to investigate more sophisticated audio pro-
cessing techniques and explore the use of other sensing
modalities such as radar so that it can enhance our sys-
tem’s tracking capabilities.
Acknowledgments. This material is based partly upon
work supported by the National Science Foundation
under Award Numbers 2132112 and 2152357.
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