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Abstract—We address distributed detection problem in a
mobile wireless sensor network, where each deployed sensor
stores randomly arriving energy units in a finite-size battery.
Sensors transmit their symbols simultaneously to a mobile
fusion center (FC) with M > 1 antennas, over temporally
correlated fading channels. To characterize the time variation
of the fading channel, we adopt a Markovian model and assume
that the fading channel time-correlation is defined by the Jakes-
Clark’s correlation function. We consider limited feedback of
channel gain, defined as the Frobenius norm of MIMO channel
matrix, at a fixed feedback frequency from the FC to sensors.
Modeling the randomly arriving energy units during a time slot
as a Poisson process, and the quantized channel gain and the
battery dynamics as homogeneous finite-state Markov chains,
we propose an adaptive transmission scheme such that the
J-divergence based detection metric is maximized at the FC,
subject to an average per-sensor transmit power constraint. The
proposed scheme is parameterized in terms of the scale factors
(our optimization variables) corresponding to the channel gain
quantization intervals. This scheme allows each sensor to adapt
its transmit power in each time slot, based on its current battery
state and the latest available channel gain feedback.

[. INTRODUCTION
The classical problem of binary distributed detection in a

netwaork, consisting of multiple nodes and a fusion center (FC),
has a long and rich history [1] [2]. Distributed detection using
wireless sensor networks (WSNs) has applications in diverse
domains, including environmental monitoring, surveillance,
healthcare, and transportation. Providing a guaranteed detec-
tion performance by a conventional WSN, in which sensors are
powered by non-rechargeable batteries and become inactive
when their stored energy is exhausted, is unfeasible [3]-[9].

Energy harvesting (EH) technology, which enables col-
lecting energy from renewable energy resources m ambient
environment, is a promising solution to address the energy
constraint problem in WSN applications. EH renders a WSN a
self-sustamable system with a lifetime that is not limited by the
lifetime of the conventional batteries. Since renewable energy
sources are intrinsically time-variant and sporadic, randomly
arriving energy and harvested energy using EH technology is
often modeled as a stochastic model.

Adaptive transmission in EH-powered WSNs with finite size
rechargeable batteries is necessary, in order to balance the rates
of energy harvesting and energy consumption for transmission.
In addition to randomly arriving energy, wireless commu-
nication channels change randomly in time due to fading.
These together prompt the need for developing new adapftive
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Fig. 1. Our system model and the schematic of battery state in time slot ¢.

transmission schemes for an EH-powered WSN, where sensors
can adapt their transmissions according to the random energy
arrivals and time-varying fading channels (available through
limited feedback from receiver to transmitter) such that a
certain system performance metric is guaranteed. Most works
on adaptive transmission with limited feedback assume a block
fading communication channel model, where the channel
is constant during a channel coherence interval and then
randomly and independently changes in the next coherence
interval (i.e., channel state information (CS8I) is uncorrelated
across transmission blocks). Adaptive transmission with lim-
ited feedback for a fading channel that changes over time in a
correlated manner is rarely studied in the literature [10]-[12].

In the following we provide a concise review of the most
related literature to our work, highlight how our present work
fills the knowledge gap in the literature, and how it is different
from our previous works m [13]-[16]. The authors in [7],
[9] have designed adaptive transmit power control schemes
that maximize J-divergence based detection mefric for binary-
hypothesis and multiple-hypothesis distributed detection prob-
lems, respectively. These schemes, however, cannot be applied
to EH-powered WSNs, since they are designed based on the
assumption that the available energy for transmission is fixed
(nonrandom). In the context of distributed detection, there are
only few studies that consider EH-powered WSNs [13]-[19].
The authors in [17], [18] assumed channels are error-free,
while [19] considered a binary asymmetric channel model.
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In our previous works [13]-{16] we assumed block fading
channel model, where discretized fading channel levels across
transmission blocks are statistically independent.

To the best of our knowledge, this is the first work that
considers designing an adaptive transmission scheme for dis-
tributed detection in an EH-powered WSN with remporally
correlated fading channels. In particular, we consider a mobile
WSN, composed of EH-powered deployed sensors and a
mobile FC equipped with M > 1 antennas. Sensors store
their harvested energy in their finite size rechargeable batteries
and transmit their symbols to the FC simultaneously (forming
a virtnal MIMO system). We model the randomly atriving
energy units during a time slot as a Poisson process and the
dynamics of the battery as a finite-state Markov chain. Fading
channels between sensors and the FC are correlated across
transmission blocks (hence temporally correlated MIMO chan-
nels). To characterize the time variation of the fading channel,
we adopt the Markov model i [10], [11] and assume that
the fading channel time-correlation is defined by the Jakes-
Clark’s correlation function (which depends on the normalized
Doppler frequency). Considering limited feedback of channel
gain, defined as the Frobenius norm of MIMO channel matrix,
and choosing a fixed feedback frequency (e.g., each T time
slots), we develop an adaptive transmit power control scheme
for sensors such that ./-divergence detection metric at the FC is
maximized, subject to an average per-sensor power constraint.

II. SYSTEM MODEL

A. Observation Model ar Sensors

Suppose the time horizon is divided into slots of equal
length T.. Each time slot is indexed by an integer ¢ We
model the underlying binary hypothesis H; in time slot ¢ as a
binary random variable Hy € {0, 1} with a-priori probabilities
My =Pr(H;=0) and II; =Pr(H:=1)=1 — II;. We assume
that the hypothesis H; varies over time slots in an independent
and identically distributed {1.i.d.) manner. Let x, ; denote the
local observation at sensor r in time slot ¢. We assume that
sensors’ observations given each hypothesis with conditional
distribution f(an ¢|Hy = he) for h; € {0,1} are independent
across sensors. This model is relevant for WSNs that are tasked
with detection of a known signal in uncorrelated Gaussian
noises with the following signal model

thll
thol

Tnt = A+ Unts

forn=1,..., N, (1)

Tnzt = Ung,

where Gaussian observation noises vy ; ~N (0,2 ) are inde-
pendent over time slots and across sensors. Given observation
T, 8€DSOT 72 compules its local log-likelihood ratio (LLR)

f(a:n,t H, = 1))

5ﬂ($n,t) - log (f(-rn,t Ht _ 0)

and compares it against a given local threshold &, to choose its
non-negative transmission symbol cv, ;. When &,(z,) < 8y,
sensor n lets o, = 0. When &, (z,,+) > 68, sensor n chooses

(2)

ipp according to the rule in (14}, We have

no = Pr(aﬂ’3:0) = Ho(l—an) + Hl(l—Pdn),

3

n1 = Pr{an,:#£0) =g F, + I Fy,, (3)

= =

where the probabilities Iy and Py are
On + A% /207
Aoy, )’
Op — A* /205
Al

P, =Pr(tn(zne) > bnlH, = 0) :Q(

Py =Pr{En(zn2) > 0| Hy = 1):@( ) (4)

B. Markovian Battery State and Energy Harvesting Models

We assume sensors are equipped with identical batteries of
finite size K cells (units), where each cell corresponds to b,
Joules of stored energy. Therefore, each battery is capable of
storing at most Kb, Joules of harvested energy. Let By,
{0,1,..., K} denote the discrete random process indicating the
battery state of sensor n at the beginning slot ¢. Note that
B, =0and B, ; = K represent the empty battery and full
battery levels, respectively. Also, B,; = k implies that the
battery 1s at state %, 1.e., k cells of the battery 1s charged and
the amount of stored energy in the battery is kb, Joules.

Let &, denote the randomly arriving energy units during
time slot ¢ at sensor n, where each unit is &, Joules. We
assume &, ¢'s are 1.1.d. over time slots and across sensors. We
model £, as a Poisson randem variable with parameter p,
and probability mass function (pmf) p,, 2 Pr{&,: = m) =
e=Pa™ /m! for m = 0,1,...,00. Note that parameter p is the
average number of arriving energy units during one time slot
at each sensor. Let S;; be the number of stored (harvested)
energy units in the battery at sensor n during time slot £. Note
that the harvested energy Sp; cannot be used during slot ¢.
Since the battery has a finite capacity of K cells, we have
Sns € {0,1,...,K}. Also, S, are 1.1.d. over time slots and
across sensors. The two random variables S, ; and &, are
related as the following

{sn,t, if0< 8, <K -1,

Snt = .
K, if .z K

, (53
Based on (5) we can find the pmf of &, ; in terms of the pmf
of Eny. Let go 2 Pr(Sp; =) fore=0,1,..., K. We have

fo<e<K—1,

ife =K. ©

o = Pes

e oo
Zm:K Prs

The battery state at the beginning of slot ¢t + 1 depends on the

battery state at the beginning of slot ¢, the harvested energy

during slot ¢, and the transmission symbol oy, 4, Le.,

Bn,t+1 = min { [Bﬂ,t + Sn,t - ai,th /bu]+7 K}r (7)

where [z]T = max{0,z}. Considering the dynamic battery
state model in (7) we note that, conditioned on S, ; and oy ;
the value of By, ;. only depends on the value of B, ;. Hence,
the process By ; can be modeled as a Markov chain. Let &, ;
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K L K
W,)is=1n1 E Z Tigelinj(Sn, [ cit]) +Hn,02 gedi;(Snz. 0).
pa

k=01=1

where Ii%j(sn,taai,zTE/bu) = {

1, if j=min {[i + Sn;
0, ow.

— ek /bl K}, "

be the probability vector of battery state in slot ¢

T
B, 2 {Pr(Bm —0),...,Pr(Bn; = K)} C®

where Pr(B,: = k) in (8) depends on By:—1, Snt—1
and one—1. Assuming that the Markov chain is time-
homogeneous, we let ¥, be the transition probability matrix
of this chain with its (i,7)-th entry [¥,];; £ Pr{(B,, =
J|Brg—1 = i) for i,5 = 0,...,K. We can express
[Wr];; as (11). Since the Markov chain characterized by
s, is irreducible and aperiodic, there exists a unique steady
state distribution, regardless of the initial state. Let €, =
[Dr,01 Prly e Pn, x]? be the unique steady state probability
vector with the entries ¢, = lim; . Pr(B.; = k). This
vector satisfies the eigenvalue equation €, = &,W¥,. The
closed-form expression for ®,, can be written as [20]

&, =—(¥) —1-B) 1, )

where B is an all-ones matrix, I is the identity matrix, and 1
is an all-ones column vector.

C. Markovian Channel Gain Model

During time slot ¢ we assume NV sensors send their transmis-
sion symbols ay, ¢ simultanecusly to the FC, that is equipped
with M receive antemmas. Let g, ,; indicate the fading
channel gain between sensor n and m-th antenna of the FC
during time slot ¢. The M x N channel matrix &; becomes

G116 91,2 g1,Nt
92,1t 92,2t 92, Nt

G = . . . (10)
GM, 1t GMD2t M Nt

where g, ;'s are correlated over time slots, while are n-
dependent across sensors and across receive antennas. We
define the channel gain as the Frobenius norm of &4, Le.,
sy =||G4||% [11]. We consider a scalar quantizer at the FC that
maps s; into a point in set $ = {41, 82, ..., 8 }, which contains
L guantized channel gain values. The points in set S can
be found such that a certain distortion function is minimized
(e.g., mean of absolute quantization error E{|s; — $|} can
be minimized). The FC partitions the positive real line R+
into L intervals (Voronoi cells of the quantizer) using L given
quantization thresholds {p 7, where 0 =1 < po < ... <
pr—1 < iz = oo, and associates interval 7y = [y, jy 1) with
point &, ie., if s; lies i the interval 7; then the quantized
channel gain Q(s;) becomes 5. We model the time variation
of the quantized channel gain using a Markov chain [10]. The
Markov chain has [ states and the states are the points in set

S. To obtain this Markov model, similar to [11], we make the
following two assumptions:

(AS1) The entries of G have the Jakes-Clark’s cor-
relation function [21], i.e., we have E[g{j,t Gigitr] =
Jo(27 fpT), Vi, 7, where Jy is Bessel function of zeroth-order
and fp is the maximum Doppler frequency. (AS2) Inter-state
transitions only occur between adjacent states in the chain.

Let m; = Pr(Q{s;) = &) be the steady-state probability
of state { of the Markov chain. We have m; = f:j“ Fe(s)ds,
where fo(s) is the probability density function (pdf) of s;.
Assuming that the elements of <, are independent and iden-
tically distributed as CA/(0, 1), the channel gain s; follows a
chi-squared distribution with degree of freedom equal to M N.
Hence, m; can be written as

PMN-—1

exp(—pa)pf — exp (g1 )pifys
il

m=Pr(Q(ss) =4) = Z

(12)
Let ©& be the transition probability matrix of this chain with
its (Z,j‘)—ﬂl EIltI’y [@]i,j = PI‘(Q(St) = §5‘Q(St,1) = §J) We
have

ﬁ(nuizii)

Ty 0

>

Blu})

Tep ?

Blui)  Pleivy)

i=1+1, §=1,.,L—1
i=1-1,j=2,..L
1

(O], = L= Tl Tat t=1, 1=2,.,L—
’ 1 Blug) P
Tyt =1, 1=
2
1_%’ ?':La]:L
0, O.W.

(13)

where 8 is the level crossing rate of the random process s? at

the level = and is given by [11] f(z) = Yl 25

D. Transmission Symbol, Received Signals at FC, and Opfi-
mal Bayesian Fusion Rule

We consider a simple feedback strategy, m which the FC
sends the quantized channel gain through a feedback channel
to all sensors, every T time slots, for a given T > 1. At time
slot ¢ sensor n chooses ap; according to its current battery
state k and the latest available quantized channel gain, using
the following rule

0, 5n($n,t) < Oy,
Lclkj bu/T81 £ﬂ(55n,t) = 9713 Q(St’) — §l:

n,t .

\_CLkJ bU/Tsv 5n($n,t) = Oy, Q(Sﬂ) =3r,

(14)
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where |[.| is the floor function, index ¢ € {t,t—1,...,t— T},
and the scale factors {¢; L, are between zero and one and
are our opfimization variables.

In each time slot, sensors send their symbols simultaneously
to the FC. The received signal at the FC corresponding to time
slot ¢ is 4y, = Gyoy, + w;, where y, = [y14, Y24, , ...,yM,t}T,
Xy = [Oﬁl’t, LDty ey CEN,t}T, Wy = [wu, W2t yanny ’LUM,t}T, and
wy 18 a Zero mean complex Gaussian vector with covariance
matrix R. The FC applies the optimal Bayesian fusion rule
T'o(.) to obtain a global decision up, [4]. In particular, we
have

ugr=Lo(y) = {

1, A > T,
0, At <T,

et (L0 =)
Fly,|H, = 0)
(15
where f(y,|H, = h;) is the conditional pdf of y, and the
decision threshold 7 = log(%’). From Bayesian perspective,
the natural choice to measure the detection performance is
the error probability, defined as P, = Il Pr(A; > 7|H; =
0) + I Pr(A; < 7|H; = 1). However, finding a closed
form expression for P, is mathematically intractable. Instead,
we choose the J-divergence between the distributions of the
detection statistics at the FC under different hypotheses, as our
detection performance metric. This choice allows us to provide
a tractable analysis. Given the local thresholds {6, , in
(14) and the channel gain quantizer at the FC, our problem of
optimizing fransmit power contyol strategy reduces to finding
the optimal scale factors {c;} | in (14) such that the average
per-time slot J-divergence at the FC is maximized, subject fo
per-sensor average Iransmil power consiraints.
II1. J-DIVERGENCE DERIVATION AND OUR CONSTRAINED
OPTIMIZATION PROBLEM
By definition [7], [?], the J-divergence between two pdfs
m(z) and mo(x), denoted as J(m,m), is J(n,m) =
D ||m0)+ D{(no||m ), where D{n;||n;) is the non-symmetric
Kullback-Leibler (KL) distance between #;(x) and n;(x).
The KL distance D{#;||n;) 15 defined as D(w;l|n;) =

[ log (27(%) n;{x)dx. Therefore, we obtain

Somem) = [ mta) — m(oios (5} o,
—co "?0(5'3)
In our problem setup, f(y:|Gs, Hr=1) and f(y,|Gy, H;=0)
play the role of #(xz) and no(z), respectively. Given G%
we note that Hy, o, y, satisfy the Markov property, iLe.,
H, — or — y, [7], [9]. This implies that y, and H,
given e, are conditionally independent. Therefore, we can
write f(y, |Gy, Hy = 1) = fly,|Ge, a0 = 0)Prieg|Hy =
i)+ f{y,| G, or #0) Pr{o|He =) for ¢ =0, 1. We have
1

Geyop) = —— ex
Pyl Ge, o) orR[3

P[*l(yt*Gﬂt)Rfl(yrGtﬂft)]

2
(17
Although  fy,|Gy o) 18 Gaussian, f(y,|Gy, He =
0), f(y:|Gs, Hy = 1) are Gaussian mixtures. Unfortunately,
the J-divergence between two Gaussian mixture densities
does not have a general closed-form expression. Similar
to [7], [9], we approximate the .J-divergence between two
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Gaussian mixture densities by the .J-divergence between two
Gaussian densities f<(y, |Gy, Hy =) ~ N{(my, Y;), where
the mean and the variance of the approximate distributions are
obtained from matching the first and second order moments
of the actual and the approximate distributions. For our
problem setup, the parameters g, g, Yo, T1 become

mo =G AP, Yo=R+GAPAIGT,
m: =G AP, Y.=R1GAPATCT. (18

in which Azzdiag{al,t, --A,QfN,t}, Pf:[.pfi, ...,PfN}T, Pd =
[Pa,y oo Pay]”, P = diag{ P, (1 — Pr,), ..., Pry(1 — Pey)
and Py =diag{Py, (1 — Pa,), ..., Pay (1 — Pay)}. After some
algebra, we obfain

J(fc(yz|GtaHt - ]-)1 fc(yt‘GtaHt - 0)) =

1

S Tr[Xo X+ Xy Y5

(O Yo (ms — mo)(m —mo) — R] (19

Note that J m (19) depends on ¢, whereas afm in (14)
depends on the quantization interval to which s = ||Gy||%
belongs. Let J@ = E{J|sy € [i,peqe]} and PY =
E{og ,|se € [wi, pay1]}, respectively, denote the expectations
of J in (19) and «Z , in (14) over sy, conditioned that s, €
14, iy 1] Since J® does not have a closed-form expression
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Fig &: K=6,M=5N=1,L=4,0=2,Fy = 2 mW

we compute it via Monte Carlo simulation. Using (14) we find
?555) = ﬁn}i 25:0 ¢ x7s| 0ck . Our optimization problem of
maximizing the average per-time slot J-divergence, subject to
per-sensor average transmit power constraints, with respect to
the optimization variables {¢;}Z , in {14) become

L

P1) i

max
feidisy

i=1
L
stoo € [0,1,¥, Y P < Po,vn.
i=1

where 7 is the maximum allowed per-sensor average power.

Solving (P1) and its computational complexity: We note
that (P1) is not concave with respect to the optimization
variables. Moreover, the objective function and the constraints
in (P1) are not differentiable with respect to the optimiza-
tion variables. Hence, existing gradient-based algorithms for
solving non-convex optimization problems cannot be used to
solve (P1). We resort to a grid-based search method, which
requires Z-dimensional search over the search space [0, 1],
Clearly, the accuracy of this solution depends on the resolution
of the grid-based search. Suppose the intervals [0, 1] is divided
into N, sub-intervals. Therefore, the search space of (P1),
denoted as D, consists of (N, )% discrete points in the original
L-dimensional search space. We note that the FC needs to
perform two tasks for each point in D: task (i) forming ¥, and
&, task (ii) calculating 7 and 75”. Our numerical results
show that for a fixed {¢;}L, the computational complexity
of task (i) and task (i} are Q(K*?) and O(M x N x K*7),
respectively. Hence, the computational complexity of solving
PLyis O ((N)F(E®2+ M x N x K27)).

IV. SIMULATION RESULTE AND CONCLUSIONS

To find the quantization thresholds {u;}Z, for our sim-
ulations, we minimize mean of absolute quantization er-
ror (MAB), defined as E{|s; — &|} = 3.5 [2* (= —
) fa, (2)de. In particular, we take the derivative of MAE with
respect to p; and set the derivative equal to zero. We reach at

Foolpigt) = Fo, () + ( — pua) fo, () (20)

- : | —® Jolu = 006,7=1)|

B —o— fpTy =006, 5 =3
—w - fpTy =00, p=12
—n— ol = 0D p=3
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Fig 5 K =85, M=4, N=3,L=4

Recall gy = 0 and pp = co, and hence £y, (0) = 0 and
F.,(co) = 1. We initiate gy and find po using (20). Having
i1, o, we find pg using (20). We repeat this until we find
all {p;}’s. At this point, we check whether the condition
F.(co) = 1 is met. If F, (co) is less (greater) than one,
we increase (decrease) the initial value of 4y and find a new
set of values for {.; }’s. We continue changing the initial value
of py and finding new values for {p;}’s, until the condition
F.,(co) =1 is satisfied.

In our simulations, we let R=17I¢2, and define the SNR cor-
responding to observation channel as SNR, = 20log(.A/7,).
We let Py, =0.9,%n, SNR, =3dB, o2, = 1. Fig. 2 illustrates
the objective function of problem (P1) versus o given o; =0.5,
We observe that the objective function is not a concave
function of co. Still, there exists a point, denoted as <2, at
which the function attains its maximum. Starting from small
values of oo, a8 oo increases (until it reaches <), the function
value increases, because the harvested energy can recharge
the battery and can vield more power for data transmission.
However, when ¢ exceeds <3, the harvested and stored energy
cannot support the data transmission and the function value
decreases. Fig. 3 depicts the optimized {¢;}s versus the
quantization thresholds {g;}’s. We note that, as [ increases
{i.e., channel gain s increases), ¢; first increases and then
decreases. Considering (14} this implies that, given the battery
state k, as s, increases o, first increases and then decreases.
Fig. 4 illustrates o ; when the optimized {c;}’s are adopted.
This figure shows how much power a single sensor should
spend for its data transmission, given its battery state and
the available feedback information. Fig. 5 shows the error
probability F. versus P, as fpT. and p vary. Given the pair
{(fpT:, p), as P, increases F. decreases. Also, P, decreases
when (i) given the pair (7, p), T, decreases; (ii) given the
pair (P, fpT.), p increases. Fig. 6 depicts . versus IV as
FoT. and M vary. Given the pair (fpT., M), as N increases
F. reduces, until it reaches an error floor. This is because for
larger N values, F. becomes limited by the communication
channel noise ¢2. Furthermore, we notice that F. decreases
when (i} given the pair (N, M), fpT. decreases; (ii) given
the pair (N, fpT.), M increases. Fig. 7 depicts P, versus
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K as fpT, and L change. Given the pair {(fpTs, L), as K
increases £, decreases, until it reaches an error floor. This 1s
because for larger K values, power ai’t i (14) is no longer
restricted by K, and instead it is restricted by p. Also, &2,
becomes dominant and leads to an error floor. Furthermore,
we notice that P, decreases when (1) given the pair (K, L),
fpTs decreases; (i1} given the pair (K, fpT,), I increases.
In a nutshell, we addressed binary distributed detection
problem in a mobile WSN, with a limited feedback from
the mobile FC to the deployed sensors. The FC feeds back
the quantized channel gain (the Frobenius norm of MIMO
channel matrix) at a fixed feedback frequency. We developed
an adaptive transmission scheme for sensors such that J-
divergence detection metric at the FC is maximized, subject to
an average per-sensor power constraint. The insights obtained
in this work are useful for adaptive transmit power control
of EH-powered mobile WSNs. We plan to extend our work to
variable feedback frequency, and explore the optimal feedback
strategy (which exploits the fading channel time-correlation
and depends on the normalized Doppler frequency), subject to
a constraint on the average feedback rate (measured in bits/T7).
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