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Building Subtraction Operators and Controllers
via Molecular Sequestration

Christian Cuba Samaniego ™, Yili Qian,

Abstract—We show how subtraction can be performed
via a simple chemical reaction network that includes molec-
ular sequestration. The network computes the difference
between the production rate parameters of the two mutu-
ally sequestering species. We benefit from introducing a
simple change of variables, that facilitates the derivation
of an approximate solution for the differential equations
modeling the chemical reaction network, under a time scale
separation assumption that is valid when the sequestra-
tion rate parameter is sufficiently fast. Our main result is
that we provide simple expressions confirming that tem-
poral subtraction occurs when the inputs are constant
or time varying. Through simulations, we discuss two
sequestration-based architectures for feedback control in
light of the subtraction operations they perform.

Index  Terms—Molecular sequestration, chemical
reactions, molecular controllers, biological systems.

[. INTRODUCTION

OLECULAR sequestration (titration) is a prevalent

mechanism in biology that consists of the stoichiomet-
ric binding of two species. Sequestration can involve many
classes of molecules; examples include RNA-RNA binding,
transcription factors binding to promoters, enzymes and their
substrates, receptors and their ligands, or antibodies and anti-
gens. This binding process plays a crucial role in various
biological processes, including signal transduction, regulation
of gene expression, immune response, and metabolic path-
ways. Is there an underlying operation being computed by
molecular sequestration, that is key to enable a broad variety
of functions? This question is difficult to answer in the native
context of the cell, but there is evidence that sequestration
enables the computation of the difference in the level of partic-
ipating molecules [1], [2]. In synthetic biology, mathematical
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modeling has shown how to leverage this property to build
molecular controllers [2], [3], [4], [5], [6], networks for
frequency modulation [7], bistable switches with tunable hys-
teresis [8], [9], gradient detectors [10], [11], and biomolecular
perceptrons [12]; some of these ideas have been experimen-
tally demonstrated [13], [14], [15], [16], [17], [18]. It is
abundantly evident that sequestration helps compute the differ-
ence of two inputs at steady-state [1], [2], [3], [4], [17], and
linear analysis shows that it works as a sum junction [19].
However, a complete analysis of the dynamical behavior of
these sequestration reactions is still missing, making it chal-
lenging to understand/design its behavior when the inputs are
time-varying and in the presence of dilution/degradation of the
reactants.

Another limitation that needs to be addressed is the fact that
sequestration can only calculate the positive part of a subtrac-
tion operation, due to the biological nature of the participating
components [20]. In this sense, it bears similarity to functions
computing an absolute value [7].

Here we provide a complete temporal analysis of a molec-
ular sequestration network, modeled through ordinary differ-
ential equations, and we show that it can compute differences
in the presence of dilution/degradation, both transiently and
at steady state. To come to this conclusion, we introduce a
change of variables that makes it easier to apply time scale
separation arguments, which decouples the system into a lin-
ear and non-linear part. This allows us to find an approximate
solution of the output of this network, which is proportional
to the difference of the molecular inputs, whether they are
constant or time varying. We then discuss how sequestration
can be used as a low-pass controller within biomolecular feed-
back loops. Through simulation we also show how low-pass
controllers in a “dual rail” architecture improves the response
speed of a feedback circuit tracking time-varying inputs. We
expect that our modeling results will boost the use of seques-
tration within complex synthetic biological networks, and that
they will facilitate the formulation of hypotheses about the
roles of sequestration in natural systems.

Il. AMODEL FOR MOLECULAR SEQUESTRATION AND
ITS SINGULAR PERTURBATION FORM

Our chemical network for subtraction includes two species,
X and Y, that mutually sequester and bind to form a com-
plex C (Fig. 1). We assume that X and Y have zero-order
time-varying production rates «(7) and B(t). We model dilu-
tion/degradation as a first-order process with rate parameter ¢,
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Fig. 1. Schematic of the reactions occurring in the molecular seques-

tration network considered here.

assumed to be the same for simplicity. The sequestration of X
and Y happens with a constant rate parameter y. We postulate
that y can be rescaled [3], [S]. The chemical reactions are:

y Dy PO

X—¢\@ Yi\@Decay

Y Production

X+Y AN c C i\ ¢ Sequestration/Decay. (1)

From the reactions in (1), we derive an Ordinary Differential
Equation (ODE) model using the law of mass action:

x(t) = a(r) — yx(r)y(r) — ¢x(1)
() = B(x) — yx(v)y(r) — ¢y(7)
c(t) = yx(z)y(r) — ¢c(7), )

where the x, y, and ¢ indicate derivatives with respect to the
time variable 7. Previous work considering similar reactions
assumed (i) ¢ = 0 and (ii) a(r) > B(r) for all time [2].

When o = 8 = 0, we can immediately provide intuition as
to why molecular sequestration realizes a subtraction operator.
First, sequestration implies there is a 1:1 binding ratio between
X and Y (one molecule of X binds to one molecule of Y).
Then, in the limit case where ¢ — 0, the final concentration
of the non-limiting species is the difference between the initial
concentrations of the sequestering species [1]. Suppose x(0) >
¥(0): the final concentration of X (non-limiting species) will
be equal to the difference in the initial concentrations x(0) —
¥(0), given that all free Y (the limiting species) is bound into
the complex C. In practice, however, matters are made more
complex due to the presence of time varying input functions
a(t) and B(r), and of degradation and dilution, scaled by
parameter ¢. Next, we illustrate how to examine this case
by introducing an approximation valid for constant and time-
changing inputs, which we assume to be bounded and non-
negative.

Assumption 1: There exist positive constants a*, 8* such
that 0 < a(r) < «* and 0 < B(t) < B* for all r > 0.

We do not introduce requirements on the relative magnitude
of the inputs.

To obtain a non-dimensional model, we first rescale time as

t = ¢7, and define new states variables x = (%)x, y= (%)y,
¢ = %)c, and new rates a(f) = —"‘g{n‘f’), B(r) = _ﬂg{n‘f’) and

= %y, where m = max(a*, 8*). Our non-dimensional

model is now:

F=a0 —piy -3,

b=h0 -7 -5,
=B —c 3)

Next, we apply a coordinate transformation that makes it pos-
sible to put the system in its singular perturbation form. We
begin by applying a coordinate transformation:

il =i4+¢ 3 =y +e 4)

The new variables X7 and 37 represent the total concentration
of species X and Y, which includes molecules that are free or
bound to make the complex C, and system (3) becomes:

= a@ -7,
= pm -3,
c=p@"-006" -0 -2 )

Let & = 1/p, system (5) can be put into a singular
perturbation form:

T =a@ — 37,

y'=pBm 3",
tc=@"-00" -0 —&e (©6)

Note that the first two equations of system (6) are linear and do
not depend on &. In the next sections, we use the transformed
system (6) to demonstrate its capacity to perform a subtraction
operation.

IIl. THE MOLECULAR SEQUESTRATION NETWORK
PERFORMS A SUBTRACTION OPERATION

We will show that the solution X of system (3) satisfies:

é11118+ () = &,(1) 2 max[0, GT —3)]. (7

In other words, X(f) can be approximated by %,, the non-
negative part of the subtraction of variables x7 and 37 that
capture the total amounts of molecules x and y. It is also pos-
sible to prove that limg_, o+ (1) = J,(2) = max[O, I )%T)]
with a similar approach. For the sake of brevity, we will focus
exclusively on demonstrating (7). Note that for £ — 0T,
the dynamics of ¢ in (6) evolve on a fast timescale. In par-
ticular, let T = ¢/& be the fast timescale, then we have
dé/dr = RT — &)(3T — &) — £¢, which has two equilibria that
are O(£) close to 37 and 3. In the following, we will prove
this formally and show that ¢(f) approaches the minimum of
#7(t) and 37 (1)

[Jim &) = r@’, 3" £ min 2" (), 3" 0)]. (8)

For this purpose, we define
e TG 3" — e ©)

and aim to find an upper bound for |e(?)|.

Lemma 1: The dynamics of the error (9) satisfy e(f) > 0
for all £ > 0.

Proof: The dynamics of (3) is positively invariant in the non-
negative orthant Rio. Since 3T (f)—&(f) = x(t) = 0 and 37 (1) —
&(t) = (1) = 0, we have e(r) = I'(f) — &(r) = min(R”, 37) —
¢ = 0. [ ]

The error dynamics can be written as:

1
D+e=D+F—E(}?T—F+e)(§)T—F+e)+(F—e),

=D+F—ée(A—F+e)+(F—e) (10)
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where DT indicates right-hand derivative with respect to time
and AGT,37) £ maxT,$7). We will first show that, as a
consequence of Assumption 1, the derivative D' is bounded.

Lemma 2: Suppose that the initial conditions are such that
#7(0) <& and 7(0) < B, then there exist positive constants
M and T, independent of £, such that |[D*T' 37, $7)| < M and
0<T <T forall t>0.

Proof Consider the dynamlcs of the slow variables (37, 37)
in (6): xF =a@) =it ,3(t) — y Given Assumptlon 1,
let @ and S be the upper bounds for &(z) and ,B(t) respec-
tively. By the comparison principle, we have 0 < e <a
and 0 < yT(t) < B for all + > 0. Hence, we have
iT € [—a, @] and 3T € [ — B, B]. For this reason, there exists
an &-independent constant M such that |xT(t)| |&T(t)| <M/2
for all + > 0. Because F(xT yT) = minx7 .y Ty, we have
DT GT,57)| < 137(8)| + 37 ()] = M. The bound on I'(7) is
a trivial consequence of Assumption 1. |

The assumptions on initial conditions X7 (0) and 37 (0) are
for technical convenience and could be relaxed as the set
[0, @] x [O, ,3] is globally attractive for @T yT) We will now
use comparison principle [21] to develop bounds for the error
dynamics (10):

+ + ! e
D'e=D"T——-(A—-T)e— —+T —e¢
3 3
<B—le2—lA(t)e, (11)
B 3 3
where we applied the results in Lemma 2, and B2 M+T > 0
and A(r) £ max(37, 37)—min&7, $7) are both &-independent.
The following Theorem states that, pick any 7" > O such that
A(?) is bounded below by some &-independent constant for
all # < T, there exists a sufficiently small & such that |e(?)| <
OJE) for all t > T.

Theorem 1: Under Assumption 1 and suppose that there
exist £-independent constants 7,8 > 0 such that A(r) =
max (7, 37) — min(37, $7) > § for all 0 < ¢ < T. Then there
exist positive constants £* and p, such that

le(t)| < \/pE, Vi>T, Y0 <& <&*.

Proof: The proof consists of two parts. First, we show that
for any p > B the set Q £ [0, \/pE] is positively invariant.
This is because, by (11) and Lemma 1, for any e > p, we
have Dte < B — ¢?/&€ < B — p?/& < 0. Hence, the set Q is
positively invariant. Next, we show that the set 2 is attractive,
and for any e(0) ¢ €2, there exists sufficiently small & for e(r)
to enter €2 in any chosen 7. By inequality (11), we have

12)

tp<p_ 1 _8
D7e<B EA(t)efB Ee, Ve<T. (13)

By (13) and the comparison principle [21], we have

B
e(r) < 53(1 — exp(—41/§)) + ep exp(—d1/§),
eo 2 e(0).

Hence e(T) < £B/S + egexp(—8T/E) < 2£B/S, if g(&) =
&1n(35%) < T6. Since limg_ o+ g(¢§) = 0 and dg/d&(§) > 0
for sufﬁ(:lently small &, there exists an &§* such that g(§) <

T§ for 2all 0 < & < &*. Therefore, e(T) € Q for any & <
pé
I’

vi<T,

min( & *) This completes the proof, as we showed that

8 8

102

0
102 f 10° 10 ¢ 10°

Fig. 2. Error Analysis (A) The magnitude of the error e(t) =
min (xT,yT)— ¢ is plotted as a function of input frequency, f. The simula-
tion is carried out using the setting described in Remark 1 and ¢ is kept
constant at 0.01. The error is largely independent of the input frequency.
(B) the error magnitude is plotted as a function of £. The simulation is
carried out using the setting described in Remark 1 and input frequency
is kept constant at 0.1.

e(?) enters the positively invariant set Q of size O(/€) at
t =T for sufficiently small &. |

Because we have shown that e(f) converges to zero when
&€ — 0T, then expression (8) holds and so does our initial
equation (7).

Remark 1: Note that the error bound is independent of
the derivative of the inputs @(r) and ,3(t). This is sup-
ported by the simulation in Fig. 2, where we varied the
frequencies of the input sinusoidal signals but the error mag-
nitude remains roughly constant. The simulation in Figure 2
shows that O(y/€) is a tight upper bound of the error dynam-
ics. Simulations are carried out with @(f) = 1.2-(1.1+sin(f-1))
and B(H) = 1.5 (1.1 + cos(f - 1)).

Remark 2: If the complex C dissociates back into reac-
tants X and Y with reaction parameter y—, the error analysis
becomes perturbed by an additional term of order O (&), which
is negligible given the O(4/€) upper bound in Theorem 1.

Remark 3: With different degradation constants for x, y and
¢, equations (6) become coupled, and the analysis above can-
not be easily adapted to consider this case. Computational sim-
ulations (not shown) suggest that a large discrepancy among
degradation rates can deteriorate the subtraction computation.

IV. LINEAR APPROXIMATION AND COMPUTATIONAL
SOLUTION OF THE SUBTRACTION NETWORK

Building on the result of the previous section we can
introduce a linear approximation to the dynamics of the molec-
ular sequestration network (2). The approximation holds for
& — 0t. We now consider dimensional equations; we take
the derivative of the right side of equation (7) and substituting
the definition of &7 () and y' (r), we find:

B(T) — dpxp(v), X (1) =y (D),
x(7) < yT'(2).

a(t) —

BT =1 (14)

Similarly, we can derive the approximation for j:

0, I (r) > yI(z),
B(T) —a(r) — dyp(v), xL(r) <y (2).

These piecewise linear ODEs include two species whose
dynamics are decoupled and can be solved exactly and inde-
pendently. We can also map these ODEs to an “equivalent”
chemical reaction network sketched in Fig. 3. When « and 8
are constant, the dynamics of xI and yT are linear (see also the

)"p(f) =
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Fig. 3. Equivalent chemical reactions (A) The original seques-
tration network. (B) The equivalent reactions corresponding to the
approximated dynamics (14).
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Fig. 4. Approximated solution of molecular sequestration. Behavior
of the sequestration operator under (A) a constant inputs « = 1 uM/h
and 8 = 04 uM/h (y = 10/uM/h, and ¢ = 1/h) and (B) a time-
varying square wave input where «(r) = 0.5 x sgn[sin (% + 1)]/2 +
0.4M/h and B(zr) = 0.2uM/h. Top panels highlight the definition of
xp = xT — yT. The center panels compare the approximated dynam-
ics of xp (black) with the simulated dynamics of x (blue) and y (red).
Bottom panels simulated dynamics of x (blue) converging to the approx-
imated dynamics xp (black) as y — oo. These simulations integrate
equations (2) and the approximation (14).

first two non dimensional equations in model (5)) and x,(7)
can be found exactly.

Simulations of the subtraction module are shown in Fig. 4A.
Specifically, the bottom panel shows that the solution x(7)
(blue shades) of the nonlinear model (2) converges to the
approximation x, (black) as y — oo (§ — 0). When the
input rates «(7) and B(t) are time varying, equations (14) can
be easily integrated to obtain the estimates x, and y, without
pre-computing x” and y’: inequality x”(r) < y’(r) can be
replaced by x,(7) < 0, and x(z) > yT(t) can be replaced by
Xp(t) > 0 (similarly for y and y)).

We illustrate this with the simulations in Fig. 4B. As a test
of time-varying input we take «(7) to be a square wave, while
input B(t) is kept constant. The top panel of Fig. 4B reports
the trajectories for x” = x4 (red dotted line), y/ = y+c (blue
dotted line), and the approximate trajectory x, = x” —y! (14)
(black solid line). The center panel in Fig. 4B compares the
trajectories of x (solid blue line) and x;, (solid black line); this
plot also shows that y (solid red line) is small but not zero.
The bottom panel of Fig. 4B compares the trajectories of x

(solid blue lines) for different values of sequestration constant
v and the ideal trajectory x,(solid black line): larger y results
in the overlapping of x and x,. To summarize, for sufficiently
large y (which is equivalent to taking a small &) the solution
computed for the linear ODEs (14) approaches the full solution
of the nonlinear ODEs (6).

V. BUILDING MOLECULAR FEEDBACK CONTROLLERS
THROUGH THE SUBTRACTION OPERATOR

Network (2) has been used as a molecular feedback con-
troller [22]. In this context, we re-examine the network by
focusing on its capacity to perform a subtraction operation and
by taking advantage of the approximations derived earlier. Our
goal is to regulate a standard protein production/degradation
process, described by these chemical reactions:

A Os .
X1 — Y, Y — @, Production and Decay of Y,

where we do not have direct control over o and ¢, while
we can manipulate the abundance of species X;. We want to
match the level of the process Y with the level of a reference
species R (Fig. SA and B, gray box).

A low-pass controller (LPC): We begin by applying the
analysis described earlier to a leaky molecular sequestration
controller [5]: this exercise is useful as it brings out its inherent
similarity to a low-pass controller (LPC). We introduce two
controller species, X; and Z;. The reference species R produces
X1 at a rate parameter 6.; to close the loop, we use species Y
(process output) to induce the production of species Z; at a
rate parameter .. The controller species X and Z; sequester
each other at a rate parameter y, (forming a complex Cp), and
they decay at rate parameter ¢.. The reactions are summarized
below (blue box in Fig. 5A):

O Ke .
R—X|, Y —1Z7 Production
Xi & g 7y ﬁ\ 1% Decay

X1+ 7, i C1  Sequestration.
Through the law of mass action, the closed loop model is:

X1 = Ocr — YeX121 — PeX1,
21 = K¢y — VeX121 — P2,
¢1 = yex121 — Pec,

y = osx1 — ¢yy. 15)

Our previous analysis (y — 00) allows us to derive a simple
interpretation of how this controller works. Through a change
of variable xlT = x1 + ¢, and le = 71 + ¢; we can find the
approximated solution to x1(7):

. [ 0er(m) = key(t) = ex1p(x) XL () =2l (7)
$1,p(0) = {0 S TS D

and similarly we can find the dynamics of z; . By defining
the rescaled error e(t) = i—ir(t) —y(7), it is easy to derive the
frequency response mapping e to xi,,. When xlT(r) > le(r):

Kc

X1p(w) = j—E(iw) = Ci(jo) E(jw),
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when xlT(r) < le(t), X1,p(jw) = 0. In expression (17), Cy (jw)
is an LPC with DC gain «./¢. and corner frequency ¢..
At low frequencies (w<¢.), Ci(jw) behaves like a propor-
tional controller with gain «./¢.. For ¢. — O, i.e., in the
absence of dilution/degradation, C;(jw) becomes an integrator
C1(jow) = k/jw, which is consistent with dilution-free seques-
tration controllers [3]. It is known that ideal integral behavior
is possible only in the absence of dilution/degradation [5]. In
the presence of degradation, the leaky molecular sequestration
controller can only achieve quasi-integral action: fast seques-
tration and large production rate parameters [5], [16], [18], or
input-output ultrasensitivity [5], [23] are required to minimize
the steady-state error between reference and output.

A dual-rail controller (DRC): It is apparent that the
approximated output xj, of our controller (16) is non-zero
only when xlT(r) > le(t), meaning that it only responds to the
positive part of the difference between xlT(r) and le(r). When
xlT(t) < le(r), a positive response could be obtained through
71, as a second output, or by including a second controller.
Hence, we propose a “dual rail” architecture that combines two
controllers in parallel and should improve the performance of
the single low-pass controller. To build a dual rail controller
(DRC), we connect two sequestration networks in parallel and
one in series, and we show that this architecture allows a
faster response when compared to a single sequestration mod-
ule. This idea builds on previous work introducing dual rail
molecular circuits [20] and feedback controllers [24], [25] in
the context of DNA nanotechnology.

The DRC is sketched in the orange box in Fig. 5B: it
includes three sequestration reactions, and two outputs, species
X that directly regulates the output Y (like in the single rail
controller) and species W, which removes output Y. The first
sequestration reaction is identical to the single rail controller
and produces X;. The second sequestration reaction consists
of species X> and Z;: when compare to the single rail con-
troller, the inputs to this reaction are swapped. The reactions
are:

0, K¢ .
R—7 Y —X» Production
X> &\ g 7y &\ 1%/ Decay

X2+ 7 Yo Cy  Sequestration.

The third sequestration reaction serves as a mechanism to
actively produce and remove plant species Y, and includes
the reactions:

As Os .
X —Y Y — o Production/Decay
X5 ﬂ\ w W ﬁ\ & Production/Decay
Y+w LN C Sequestration

The closed loop system including the dual rail controller is:

X1 = Ocr — yex121 — GeX1,
21 = Key — YeX121 — P2l
X = Key — YeX2z2 — PeXa,
22 = Ocr — YeX222 — Pez2,
Y = QX — Yeyw — @5y,

W= Box2 — Yeyw — Psw. (18)

3365
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Fig. 5. Simulations comparing controller performance. Reaction
schematics of the LPC (A) and DRC (B). (C) Example trajectories under
a square wave input. (D) Empirical frequency analysis. (E) Tracking
a sinusoidal reference under variation of individual parameters of the
controllers (¢ = K¢, ¢c, yc) and of the plant (as, ¢s). The nom-
inal parameters are 6c = k¢ = 10 /h, yo = ys = 10 /uM/h,
as=Ps=¢s=¢c=1/h

We omit the dynamics of ¢; (formed by binding of x; and z1),
¢y (formed by xp and z7) and ¢3 (formed by y and w).

LPC and DRC performance comparison: Fig. 5C shows
example kinetic traces of the LPC and DRC, showing that the
LPC tracks the reference with a larger steady state error. This
error may due to the presence of dilution ¢, # 0 (non-ideal
integral controller), or to poor error computation - intended
here as the computation of the positive part of the error only.
This controller can actively increase y (positive action), while
only dilution/degradation can decrease the amount of y. This
type of control strategy with just positive action leads to a
trade-off between the controller dynamics (that increases y)
and the process dynamics (that removes y). When ¢, # O the
gain k. /¢, decreases, contributing to a larger steady state error.
Even in the presence of dilution, the DRC shows a reduced
error presumably because it actively increases and reduces y
(using the full error computation).

Fig. 5D shows the “empirical” frequency response of the
two controllers as the sequestration rate y,. or the decay rate
¢, are varied. The controller equations in the LPC model (15)
and DRC model (18) were fed a periodic input reference 6.r =
0.5(sin(ft) +1)/240.3 uM/h, and fixed «.y = 0.3 uM/h (we
compute the frequency response of the controller in isolation,
assuming a constant level of y). We are not able to provide an
exact form of the DC gain for the DRC, due to the complexity
of its equations.

We then numerically integrated the equations, and measured
amplitude and frequency of the output x; for the LPC, and the
difference of x; — xp (these species deliver opposite actuation
on the plant) for the DRC. In these simulations (blue for the
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LPC, orange for the DRC) we vary either the sequestration
rate y. or the decay rate ¢, parameter. Both plots resemble
the Bode plot of an LPC with a corner frequency near ¢.. In
the left panel (¢.=1, y, varies), the “DC gain” of the DRC
does not depend on the sequestration constant y, as the LPC.
In the right panel, (¢, varies, y. = 10) the corner frequency
moves as the value of ¢.. There is a small offset between the
LPC and the DRC, that is inversely proportional to ¢.: as ¢,
decreases, passive down-regulation is reduced and the DRC
performs better than the LPC.

Finally, Fig. SE illustrates the closed loop performance
when the reference is a sinusoid, as individual parameters
are changed. We assume 6, = k. in all cases. Larger val-
ues of 6, = k. improve the tracking performance of both
LPC and DRC, however the LPC always shows a significant
larger error. Increasing or decreasing ¢, in the LPC does not
improve its tracking behavior, while for ¢ — 0 the DRC
shows error reduction. When y, is varied, even at small val-
ues the DRC maintains better tracking when compared to the
LPC. When the plant parameter « is perturbed, the DRC con-
firms to be better at rejecting this disturbance. When changing
the plant dilution constant ¢g, the DRC performance improves
for smaller values, while the LPC performance deteriorates.

VI. CONCLUSION AND DISCUSSION

We have described an approximation of the dynamic behav-
ior of molecular sequestration that illustrates how sequestration
computes the difference between input signals.

When compared to previous theoretical work on this topic,
our analysis includes dilution/degradation of the reactants
(which is always present in living cells) and considers time-
varying inputs. The approximation we derived is useful to
illustrate how leaky molecular sequestration controllers can
be considered low-pass controllers that perform only one side
of the subtraction operation. Through simulations, we showed
that a dual rail controller (DRC) performs a full subtraction
operation, and achieves a lower tracking error across a range
of parameters. The DRC requires three sequestration reac-
tions, one of which involves the output Y and species W.
In practice, this may be realized through de novo protein
switches [26], or o factors (Y) binding with anti-o factors
(W) driving o -responsive promoters to express X, and Z; [18].
The reactants X; and Z; (i = 1,2) may be realized intro-
ducing RNA-RNA interactions [16], [17]. We expect that our
study will accelerate and generalize the design of biomolecular
controllers.
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