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Abstract
Density functional theory offers accurate structure prediction at acceptable computational cost, 
but commonly used approximations suffer from delocalization error; this results in inaccurate 
predictions of quantities such as energy band gaps of finite and bulk systems, energy level 
alignments, and electron distributions at interfaces. The localized orbital scaling correction 
(LOSC) was developed to correct delocalization error by using orbitals localized in space and 
energy. These localized orbitals span both the occupied and unoccupied spaces and can have 
fractional occupations in order to correct both the total energy and the one-electron energy 
eigenvalues. We extend the LOSC method to periodic systems, in which the localized orbitals 
employed are dually localized Wannier functions. In light of the effect of the bulk environment on 
the electrostatic interaction between localized orbitals, we modify the LOSC energy correction to 
include a screened Coulomb kernel. For a test set of semiconductors and large-gap insulators, we 
show that the screened LOSC method consistently improves the band gap compared to the parent 
density functional approximation.

I. INTRODUCTION
The cost of solving the electronic Schrödinger equation scales exponentially with the size 
of the system, exceeding the computational resources available on the planet for any 
system larger than a few tens of electrons [1]. Density functional theory (DFT) sidesteps 
this exponential cost by treating the electron density as the fundamental variable instead 
of computing the wave function directly and by constructing an auxiliary noninteracting 
reference system sharing the density of the physical system [2,3]. Due to the accuracy 
attainable at a cost only cubic in the number of electrons N, DFT has become a 
mainstay of computational chemistry and materials science [4–7]. While DFT is exact 
in theory, the form of the universal exchange-correlation functional is unknown, and 
density functional approximations (DFAs) must be used in practice. Commonly used DFAs 
suffer from systematic delocalization and static correlation errors [8,9]. The delocalization 
error underlies the failure of DFAs to describe energy band gaps of finite and bulk 
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systems, energy level alignments, and electron distributions at interfaces [10]. Overcoming 
delocalization error remains an active and challenging research effort.

Connecting single-particle orbital energies ϵ to observable quantities was another long-
standing question in Kohn-Sham DFT. As a contrast, Koopmans [11] showed in 1934 that 
the Hartree-Fock ionization potential (IP) and electron affinity (EA) are given under the 
frozen orbital approximation by the negative of the highest occupied and lowest unoccupied 
molecular orbital eigenvalues, respectively. A series of three results established a rigorous 
connection for DFT.

First, Janak [12] derived a link between the Kohn-Sham orbital energies ϵm and the total 
energy E, viewed as a function of the orbital occupation numbers nm:

ϵm = ∂E
∂nm

. (1)

However, ∂E/∂nm was not yet linked to a physical observable.

A few years later, Perdew, Parr, Levy, and Balduz [13] showed that E is piecewise linear in 
the number of electrons N when computed with the exact functional; that is, for all δ ⩽ 1, 
we have

E N + δ = 1 + δ E N − δE N − 1 , δ < 0
1 − δ E N + δE N + 1 . δ ⩾ 0. (2)

This relationship, called the PPLB condition, connects the chemical potential μ(N) = ∂E/∂N 
to the IP and EA; observe that

μ N = −I N = E N − E N − 1 , ∂N < 0
−A N = E N + 1 − E N , ∂N > 0. (3)

Finally, Cohen et al. [14] proved that the chemical potential is given by the partial derivative 
of E with respect to the frontier orbital eigenvalues

μ(N) = ∂E
∂nf

. (4)

Crucially, f labels not only the highest unoccupied molecular orbital (HOMO) if ∂N < 0, 
but also the lowest unoccupied molecular orbital (LUMO) if ∂N > 0; this was the first time 
a physical meaning for the energy of the Kohn-Sham LUMO was established. This result 
holds for any local functional continuous in the electron density, as well as any nonlocal 
functional continuous in the Kohn-Sham density matrix; in the latter case, the work also 
extends Janak’s theorem to the eigenvalues from the generalized Kohn-Sham equations.

Combining these three results, we see that
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μ N = −I N = ϵHOMO, ∂N < 0
−A N = ϵLUMO, ∂N ⩾ 0. (5)

Thus, the frontier eigenvalues obtained from an N -electron DFT calculation correspond 
rigorously to physically relevant quantities [14]; if the PPLB condition is obeyed and the 
functional predicts the exact energies for N − 1, N, and N + 1 electrons, the correspondence 
is exact.

A feature derivable from these quantities is the fundamental or integer gap, defined as the 
difference between the IP and the EA:

Egap
integer  = I − A = E(N − 1) − 2E(N) + E(N + 1) . (6)

Egap 
integer  quantifies the difference between positively and negatively ionizing the system and is 

a crucial part of the accurate modeling of semiconductor electronic structure. If the PPLB 
condition is obeyed, Eqs. (3) and (5) also allow the gap to be computed from a single 
N-electron calculation as the discontinuity in the chemical potential; in this form, it is called 
the derivative gap, defined as

Egap 
deriv  = ∂E

∂N +
− ∂E

∂N −
= ϵLUMO − ϵHOMO . (7)

If the PPLB condition is obeyed, the derivative gap and the integer gap are equal [14]. In 
bulk systems with periodic boundary conditions, the PPLB condition is satisfied by any 
DFA continuous in the Kohn-Sham density or density matrix, regardless of systematic errors 
in its definition [10]; thus, the fundamental gap of bulk systems can be predicted by the 
(generalized) Kohn-Sham orbital gap, for functionals continuous in the density (density 
matrix), as in Eq. (7). In finite systems, however, the PPLB condition is not in general 
obeyed, and the gap computed from Eq. (7) may differ from that computed by calculating 
the (N ± 1)-electron energies to obtain the integer gap as in Eq. (6), the ∆SCF method.

A. Delocalization error
The delocalization error has a dramatic size-dependent manifestation. In finite systems, 
standard DFAs fail to obey the PPLB linearity condition, so the derivative gap is not 
equal to the integer gap. This is due to the error in the approximate exchange-correlation 
functional, which nearly always yields E convex in N, underestimating the piecewise 
linearity prescribed by the PPLB condition. This convex deviation has been identified 
as the cause for an unphysical smearing of the electron density in space, as well as 
underestimation of the total energy in a delocalized electron density; thus, we may identify 
it with delocalization error, as exhibited in small systems. In bulk systems, the delocalized 
nature of the orbitals produces a total energy linear with respect to fractional charge, 
yielding no deviation from the PPLB condition; however, delocalization error manifests as 
an incorrect slope of the E (N) line at integer N [10].
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The effects of delocalization error include the underestimation of band gaps and reaction 
barriers [15], undervaluation of dissociation curves [16–18], overestimation of conductance 
and polarizability [19], and incorrect energy level alignment and charge transfer across 
interfaces [20,21]. To capture the full derivative discontinuity and hence the band gap, it has 
been shown that the exact functional, whether local or nonlocal, cannot be a differentiable 
functional of the electron density or of the Kohn-Sham density matrix [22,23]. To reduce 
the systematic delocalization error, many approaches have been developed, including 
range-separated functionals [24–30], the screened range-separated hybrid functional [31], 
self-interaction error-corrected functionals [17,32–38], Koopmans-compliant functionals 
[39,40], and generalized transition state methods [41], along with related developments 
using localized Wannier functions [42].

The localized orbital scaling correction (LOSC) method was developed to eliminate 
delocalization error systematically [43,44]. Previous incarnations of LOSC were 
implemented for molecular systems with real orbitals and the boundary condition 
lim r ∞ρ r = 0. They accurately model IP, EA, photoemission spectra, dissociation curves, 
and polarizabilities, as well as restore size consistency [43–46]. In this work, we extend 
LOSC to periodic boundary conditions (PBCs) and complex orbitals. Additionally, we 
introduce a screened Coulomb interaction to the LOSC energy correction to enable the 
accurate computation of bulk system band structures.

B. Periodic boundary conditions
In PBCs, the eigenfunctions of the single-particle Hamiltonian are known as Bloch orbitals; 
they satisfy ℎs ψn

k = ϵnk ψn
k . The Bloch orbitals are also eigenfunctions of the unit-cell 

translation operator, so they take the form ψn
k = eik ⋅ r unk , where unk  has the periodicity 

of the unit cell and k is a point in the Brillouin zone (the reciprocal-space unit cell) 
[47,48]. The Bloch orbitals obey the normalization convention ψm

q |ψn
k = δ k − q δmn, where 

f |g = ∫Ddrf r g r . Here, δ(k) is the Dirac delta distribution, δmn is the Kronecker delta, 
and f is the complex conjugate of f. The domain of integration D is the periodic unit for the 
functions being integrated; for Bloch orbitals, D = ℝ3. The unk  are orthonormal in the band 
index n at a fixed k point in reciprocal space: that is, umk |unk = δmn, where the inner product 
integrates over one unit cell. Note that we assume closed-shell systems in this work.

The single-particle density can be represented in real space by the occupied Bloch orbitals as

ρs r = ∑
n

occ
V
2π3 ∫BZ

dk ψn
k r 2, (8)

where V is the volume of the unit cell and the integral is over the first Brillouin zone. Since 
the Hamiltonian is diagonal in k, we can solve for the Bloch orbitals in reciprocal space, 
requiring diagonalization only in one unit cell. In practice, the Brillouin zone is sampled 
with a finite number of points; in this work we use a Monkhorst-Pack mesh centered at the 
origin Г of the Brillouin zone [49]. Thus, integrals over the Brillouin zone become equally 
weighted sums over the k mesh
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V
2π 3∫ dk f k 1

Nk
∑
k

f k , (9)

where Nk is the number of k points in the mesh. Using a Monkhorst-Pack mesh centered 
at Г yields Bloch orbitals having the periodicity of an unfolded supercell comprised of Nk 
primitive unit cells; this supercell is referred to as the Born–von Karman cell [48]. The 
Bloch orbitals then obey the normalization convention ψm

q |ψn
k = Nkδkqδmn, where the integral 

is over the Born–von Karman cell.

II. METHODS
The LOSC method consists of two steps. First, we find orbitals that are spatially localized 
while remaining associated with specific energy ranges. Next, we compute a curvature 
matrix modeling the magnitude of the deviation from linearity. This is combined with 
the fractionally occupied localized orbitals to correct the convex deviation of E (N) from 
linearity at noninteger N, as well as incorrect total energies at integer N. Both steps are 
implemented as postprocessing after a converged self-consistent field calculation.

A. Localization
The wavelike nature of the Bloch orbitals prohibits them from being spatially localized. In 
order to obtain a state that is localized in space, the discrete Fourier transform of the Bloch 
orbitals is used to produce Wannier functions [50]

wn
R = 1

Nk
∑
k

e−ik ⋅ R ψn
k . (10)

Wannier functions inherit the periodicity of the Born–von Karman cell, and are indexed by 
electron bands n and unit cells R in the supercell. They are symmetric under translation by 
unit cell vectors, so that wn

R(r) = wn
0(r − R); R = 0 is referred to as the home unit cell. There is 

a unitary, or gauge, freedom at each k point in the choice of Bloch orbitals that comprise a 
Wannier function, so we can define generalized Wannier functions [51]

wi
R = 1

Nk
∑
k

e−ik ⋅ R∑
n

Uni
k ψn

k = 1
Nk
∑
k

eik ⋅ R ϕi
k , (11)

where we refer to ϕi
k  as a transformed Bloch orbital (TBO). From now on, we will refer to 

generalized Wannier functions as Wannier functions.

The gauge freedom Uk in the TBOs can be chosen such that the resulting set of 
Wannier functions have advantageous properties. In order to obtain localization in space, 
Marzari and Vanderbilt suggested choosing Uk that minimize the Wannier functions’ 
spatial variance Δr2

i
= r2

i
− r i

2, where x i = wi
0 x wi

0 ; the resulting orbitals are called 

maximally localized Wannier functions [52]. In molecules, the scheme of minimizing spatial 
variance is referred to as Foster-Boys localization [53]. However, constructing maximally 
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localized Wannier functions from both valence and conduction bands is physically ill 
motivated. Because bands far apart in energy can mix freely and the Bloch bands form 
a complete basis, adding more virtual bands will result in increasing spatial localization of 
the maximally localized Wannier functions, with a corresponding loss of information about 
the energy dispersion of the bands.

In order to preserve locality in energy while maintaining spatial localization, enabling 
simultaneous treatment of the occupied and unoccupied spaces, we choose the Wannier 
gauge that minimizes a cost function considering both energy and spatial variance:

F = 1 − γ ∑
i

Δr2
i
+ γC∑

i
Δℎs

2
i, (12)

where 0 ⩽ γ ⩽ 1 and in the units used here C = 1a02/eV2, where a0 is the Bohr radius. This 
cost function was first proposed by Gygi et al. [54] for computations sampling the Brillouin 
zone only at Г and implemented for such systems by Giustino and Pasquarello [55]. It was 
used for LOSC in molecules [44] to treat system symmetries and degeneracies more robustly 
than the original localization, which used soft energy windows [43]; in molecular LOSC, 
the localized orbitals are called orbitalets. We recently extended F to systems with Nk ⩾ 1
[56]; we refer to such orbitals as dually localized Wannier functions (DLWFs). These 
formulations show how the combination of occupied and unoccupied spaces can be localized 
simultaneously to produce Wannier functions that are localized in both space and energy. 
This construction is critical for addressing delocalization error in finite systems because it 
allows for dynamic localization in the resulting orbitals; the orbitals can qualitatively and 
quantitatively differ depending on the geometry of the system [43,44]. In keeping with the 
principle of universality in functional development, we use the same mixing parameter in 
Eq. (12), setting γ = 0.477 14. The value of γ has important implications for the LOSC 
method; see Section VI of the Supplemental Material of Su et al. [44]. Setting γ = 0, for 
instance, yields maximally localized Wannier functions [52], while γ = 1 yields DLWFs that 
are pure Fourier transforms (up to k-dependent phases) of the Kohn-Sham bands.

Note that we have not proven that a unique global minimum of F exists; in practice, F has 
a fairly rugged landscape of solutions, and we have observed multiple local minima. We 
choose the DLWFs yielding the smallest total cost. Different DLWFs can produce somewhat 
different screened LOSC (sLOSC) corrections, with eigenvalues varying by up to a few 
tenths of an eV. The problem of multiple minima of F has also been observed in molecular 
LOSC [57], but was not found to be the dominant source of error. An additional question 
worth exploring is the effect of symmetry breaking, such as that due to perturbations of the 
crystal lattice, on the localization procedure.

The compromise between spatial and energy localization and the inclusion of unoccupied 
orbitals are key to producing localized orbitals that can address delocalization error while 
retaining size consistency. For example, the DFA HOMO and LUMO of H2

+ at (or near) 
the dissociation limit are delocalized over the whole molecule; since they are (nearly) 
degenerate, there exists a unitary freedom in the subspace spanned by both. Due to the 
symmetry of the system, we expect to obtain two separate H0.5+ fragments; the (small or) 
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vanishing gap means that any choice of γ < 1 in Eq. (12) will result in half-occupied orbitals 
localized on each H atom. This is the physical motivation for a localization scheme that 
minimizes the spatial variance of occupied and unoccupied orbitals while allowing only 
orbitals that are close in energy to mix [43].

B. Energy corrections
The deviation from energy linearity with respect to fractional charges is characteristically 
quadratic in most exchange-correlation functionals [43,58,59]. To restore compliance with 
the PPLB condition for small finite systems, the global scaling correction (GSC) was 
developed. GSC corrects the total energy by an amount quadratic in the occupation numbers 
of the canonical molecular orbitals [58,60]. This method is effective at correcting the 
systematic deviation from the PPLB condition for systems with fractional charges and leads 
to accurate prediction of quasiparticle energies as the eigenvalues from the resulting one-
electron Hamiltonian. However, GSC is applicable only for systems of small and moderate 
size; the convex deviation of conventional DFAs from the piecewise linearity prescribed 
by the PPLB condition decreases with increasing system size, and the delocalization error 
manifests instead as underestimated ground-state energies for integer systems and incorrect 
linear Egs(N) curves with wrong slopes at the bulk limit [10]. The localized orbital scaling 
correction (LOSC) applies its energy correction adaptively by the construction of localized 
orbitals, allowing systematic and size-consistent correction of delocalization error [43,44]. 
In this section, we discuss the extension of LOSC to periodic systems.

A basic quantity in LOSC is the density matrix in the basis of DLWFs; its elements are 
occupations

λij
TR = wi

T ρs wj
R . (13)

The occupations between all pairs of DLWFs are used to remove quadratic deviations, while 
the diagonal terms are used to restore linearity. The energy correction defined by LOSC for 
each unit cell is given by

ΔELOSC = 1
2Nk

∑
TR
∑
ij

κij
TRλij

TR δijTR − λij
TR , (14)

where δij0R = δijδ0R; κ models the curvature of the deviation from linearity.

The diagonal terms in the energy correction are proportional to λii
TR − λii

TR 2; thus, if a DLWF 
has integer occupancy (implying λij

TR = 0 whenever i ≠ j or T ≠ R), then the energy correction 
due to that DLWF will also be zero.

The matrix λij
TR  of occupations between the DLWFs is the discrete Fourier transform of the 

occupation matrix between the TBOs. As such, it is positive semidefinite and Hermitian, and

trc λij
TR = 1

Nk
∑
k

Nf
k, (15)
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where trc denotes the trace per unit cell and Nf
k is the number of electrons below the Fermi 

energy at k.

Following Su et al. [44], the elements of the curvature matrix are given by

κij
TR = erf 8Sij

TR κii
TTκjj

RR + erfc 8Sij
TR κij

TR . (16)

Here, erfc(r) = 1 − erf (r) is the complementary error function. Sij
TR is the absolute overlap 

between DLWFs,

Sij
TR =∫ dr ρi

T(r)ρj
R(r), (17)

where ρiT r = wi
T r 2 is a DLWF’s charge density. The matrix elements κij

TR in Eq. (16) are 
given by

κij
TR = J ρi

T, ρj
R −X ρi

T, ρj
R , (18)

with

J ρi
T, ρj

R =∬ drdr′ρi
T(r)ρj

R r′ K r − r′ , (19a)

X ρi
T, ρj

R = τ2CX

3 ∫ dr ρi
T(r)ρj

R(r) 2/3 . (19b)

In the above, K (r) = 1/r is the Coulomb kernel, CX = 3
4

6
π

1/3
 is the Dirac exchange constant 

[61], and τ = 6(1 − 2−1/3) ≈ 1.2378 is a nonempirical parameter [43]. The derivation of how 
this correction restores the PPLB condition can be found in the supplementary data of Li et 
al. [43]. The use of κ instead of κ was introduced because the cost function in Eq. (12) can 
induce discontinuous jumps between localization characters during molecular dissociation 
[44]. The diagonal elements of κ and κ are equal, so when λii ∈ {0,1} the corrections from 
κ and κ are the same. In practice, X ρiT, ρjR  term is evaluated using numerical integration on 
a grid of real-space points. The Coulomb term J ρiT, ρjR  is evaluated in a plane-wave basis, 
detailed in Sec. II C.

Applying the extension of Janak’s theorem [12] to the generalized Kohn-Sham theory [14], 
the LOSC energy correction of Eq. (14) yields corrections to the Bloch orbital energy 
eigenvalues ϵnk given by
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Δϵnk = ∑
i

κii
00 1
2 − λii

00 Uni
k 2

− ∑
Ri ≠ 0j

κij
0RRe λij

0Reik ⋅ RUni
kUnj

k .
(20)

Consider the diagonal corrections given by the first summand in Eq. (20). There is no 

correction to the eigenvalue when a DLWF is half-occupied λii = 1
2 ; on the other hand, 

the correction is maximal when it is completely occupied or unoccupied. Li et al. [43] 
observed that the slopes of the quadratic DFA and the correct linear E (N) curves agree 
at half-integer N . Since the frontier orbital energy corresponds to this slope, we see that 
accurate frontier orbital energies are given by half-occupied frontier orbitals. The LOSC 
correction to the orbital energies arrives naturally at this conclusion, additionally agreeing 
with Slater transition state theory [62,63].

We may also view LOSC as a correction to the Kohn-Sham Hamiltonian. It is given by the 
functional derivative of the energy correction with respect to the density operator under the 
frozen orbital approximation

Δv = δΔELOSC

δρs wiR
, (21)

and can be written in operator form as

Δv = ∑
ij,TR

κij
TR δijTR

2 − λij
TR wi

T wj
R . (22)

(See the Supplemental Material [64] for details on this derivation.) The correction to the nth 
Bloch orbital eigenvalue is then given by Δϵnk = ψn

k Δv ψn
k .

In practice, the energy corrections are applied to disentangled Bloch orbitals. The 
conduction bands of most systems cannot be formed into sets of bands that do not 
cross anywhere in the Brillouin zone, a condition referred to as band entanglement. In 
order to obtain a finite set of bands for localization and energy correction, we use the 
disentanglement procedure outlined by Souza et al. [65]. This procedure obtains Nw bands 
from a set of Nb ⩾ Nw Bloch orbitals at each k point, chosen such that the subspace 
spanned by the disentangled bands is as smooth as possible in k. To correct the band 
gap of semiconductors and insulators, we include sufficiently many virtual bands in the 
construction of the Wannier functions to converge the localization of the frontier bands (that 
is, the valence band maximum and conduction band minimum) [56]. We find that Nb = 
Nocc + 3Ncoord and Nw = Nocc + 2Ncoord, where Nocc is the number of occupied bands 
per unit cell and Ncoord is the coordination number of the lattice, are sufficient; see the 
Supplemental Material [64] for details. The Nw disentangled Bloch bands yield Nw DLWFs 
per unit cell, so there are NwNk DLWFs in the Born–von Karman supercell on which they 
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are periodic. The energy corrections for the Nw disentangled Bloch rbitals at each k point 
are implemented using Eq. (20).

In this work, we restrict our attentions to closed-shell systems. Extending the LOSC method 
to spin-polarized materials is accomplished by finding the corrections from the spin-up and 
-down DLWFs independently and summing them to obtain ∆E LOSC; this functionality is 
planned for the next version of LOSC. However, treating the strong correlation common to 
open-shell materials brings its own set of challenges beyond the scope of this work. We 
discuss them briefly in Sec. IV below.

C. Coulomb integrals
Accurate calculation of the Coulomb interaction J ρiT, ρjR  is needed for LOSC to restore the 
PPLB condition. In PBCs, a plane-wave basis is typically employed. The Coulomb energy is 
diagonal in this basis, and the double integral required in real space collapses to a single sum 
over basis vectors G:

J ρi
T, ρj

R = ∑
G

4π
G2ρi

T G ρj
R G , (23)

where G = |G|. However, this sum converges only for neutral charge distributions, for which 
the G = 0 term vanishes. The DLWF densities are individually charged, so ignoring the 
divergent term coming from the net charge will significantly underestimate the Coulomb 
energy. There are many methods to evaluate the Coulomb energy for charged densities in the 
plane-wave basis accurately, including those of Makov and Payne [66], Kantorovich [67], 
Dabo et al. [68], and Li and Dabo [69]. We choose the spherical cutoff method [70–72], 
truncating the Coulomb kernel in Eq. (19a) at a cutoff radius Rc; this is taken to be half the 
length of the shortest Born–von Karman supercell lattice vector, ensuring that the Coulomb 
interactions between the a DLWF density and its images in neighboring supercells are zero. 
Thus, the spherical cutoff Coulomb kernel is

Kc r;Rc = 1/r, r < Rc

0, r ⩾ Rc
(24)

which has Fourier coefficients

Kc G;Rc =

4π
G2 1 − cos GRc , G ≠ 0

2πRc
2, G = 0.

(25)

Observe that Kc(G; Rc) does not diverge for any G. As long as the pair of DLWF densities 
in Eq. (19a) lie in a sphere of radius Rc, the spherical cutoff method is also accurate in 
highly anisotropic unit cells, unlike schemes such as that of Makov and Payne [67]. We 
enforce this containment condition in practice by checking that each DLWF density is well 
contained in a volume spanned by half of each Born–von Karman supercell lattice vector, 
and only compute curvature elements between pairs of DLWF densities that have centers 
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closer together than Rc. We evaluate the Coulomb integrals on the unfolded supercell in the 
plane-wave basis, which requires a fast Fourier transform (FFT) of the DLWF densities on 
the supercell.

D. Screening
Applying LOSC with a bare Coulomb interaction leads to severe overcorrection of 
semiconductors’ band gaps in PBCs. However, this is not surprising; we anticipate an 
effect of the other electrons in the lattice on J ρiT, ρjR . As shown by highly accurate methods 
such as GW, a screened Coulomb interaction is required to model the interaction between 
electrons in a periodic system accurately [73,74]. Recently, Mei and coworkers also found 
that the deviation from linearity of the total energy as a function of canonical orbital 
occupations is given to second order by a screened interaction [60]. We model the screening 
phenomenologically, attenuating the long-range 1/r behavior of the spherical cutoff Coulomb 
interaction by a complementary error function. This modifies the Coulomb kernel to read as

Ks r;Rc, α = erfc αr /r, r < Rc

0, r ⩾ Rc
(26)

where α is a screening parameter. We choose the α that best reproduces the experimental 
band gaps of a test set of semiconductors and insulators. For r larger than the screening 
radius α−1, Ks(r; Rc,α) decays exponentially instead of as 1/r. The Fourier coefficients of Ks 
are

Ks G;Rc, α =

4π
G2 1 − cos GRc erfc αRc − e−(G/2α)2Re erf αRc + iG

2α , G ≠ 0

2πRc
2 + π erf αRc α−2 − 2Rc

2 − 2 πe− αRc
2Rc/α, G = 0.

(27)

The error function is unbounded for complex arguments, overflowing double-precision 
floating-point numbers even for relatively small G. Thus, we evaluate Ks(G; Rc,α) with a 
scaled form of erfz called the Faddeeva function, implemented in the numerically stable 
ACM Algorithm 916 [75,76]. For details, see the Supplemental Material [64].

In principle, the screening is system dependent. Improved accuracy would be attainable by 
setting its value to best reproduce each material’s band gap. However, the phenomenological 
screening model of sLOSC does not enable doing so while retaining predictive ability. This 
would require a rigorously screened Coulomb (or Hartree-exchange-correlation) interaction 
based on the linear response function χ r, r′ = δρs r /δv r′ . Ab initio screening of this 
kind appears in the extensions of the GSC method to hybrid functionals [77] and in the 
following exploration of orbital relaxation on GSC [78], the GSC2 method [60], as well 
as in recent work on Koopmans-compliant functionals [79–81]. For small, finite systems, 
the delocalization error is quantified by ∂2E / ∂ni2, where ni is the occupation number of 

the Kohn-Sham orbital ψi ; analytical expressions for ∂2E / ∂ni2 were derived in Yang et al. 
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[82]. In sLOSC, linear-response screening would very likely increase the accuracy, but at 
substantial computational cost to compute the nonlocal χ r, r′ .

III. RESULTS
We use the PBE functional [6] for the parent DFA calculations, with optimized norm-
conserving Vanderbilt pseudopotentials [83] generated by PSEUDODOJO [84]. Both self-
consistent field (SCF) and non-SCF calculations are carried out in the QUANTUM ESPRESSO 

code suite [85,86].

The energy cutoff for the fast Fourier transform is set to 100 Ry for wave functions and 
400 Ry for densities. The Brillouin zone is sampled with Monkhorst-Pack meshes centered 
at Г, which is necessary for the Wannier functions to be periodic on the Born–von Karman 
supercell. For SCF calculations, we use a 16 × 16 × 16 k mesh, while the other calculations 
are performed on 6 × 6 × 6 grids. The localization step of LOSC is implemented in a 
modified fork of the WANNIER90 code [87–89] and the energy correction as module to a fork 
of QUANTUM ESPRESSO.

To determine an optimal screening parameter α, we minimize the mean absolute percent 
error (MAPE) on the SC/40 set of semiconductors with experimentally available band 
gaps [90] together with six additional large-gap insulators. The experimental band gaps 
studied range from 23 to 27 eV. We find that α = 0.15 a0−1 achieves the lowest MAPE; 
co-incidentally, this value is numerically equal to the screening parameter used in the HSE 
density functional [90]. As shown in Fig. 1, LOSC with Coulomb screening (sLOSC) 
yields marked improvement of the band gap for the test set in comparison with the parent 
functional. It is also apparent that unscreened LOSC overcorrects the band gaps; indeed, it 
is less accurate than the parent functional. The performance of sLOSC in molecules is better 
than the parent functional, but unscreened LOSC achieves the best performance in molecular 
systems (see Table I). The Supplemental Material [64] details the variation in performance 
of screened LOSC for both bulk systems and molecules with the screening parameter α.

The band structures of sLOSC and of the parent functional are shown for the small-gapped 
semiconductor silicon in Fig. 2 and the larger-gapped insulator lithium fluoride in Fig. 3. 
They use the disentangled band structures, which are numerically indistinguishable from the 
true band structure at and below the conduction band minimum for the parent functional. 
Wannier interpolation in the same DLWF basis as that used in sLOSC is used to find the 
energy at the points in the Brillouin zone not explicitly treated by the localization and 
energy correction. The sLOSC correction to the band structure comes largely from the more 
localized DLWFs, for which there is a larger Coulomb self-energy J ρiR, ρiR . Because of this, 
sLOSC mostly corrects the energy of the occupied bands (which we observe to correspond 
closely to the occupied DLWFs in semiconductors); it affects the virtual bands much less. 
More work on molecule-surface and surface-surface interactions is required to determine 
whether LOSC yields correct energy level alignment and whether the larger correction to the 
valence bands is physically meaningful.
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IV. DISCUSSION
We have shown that despite the simple form of its phenomenological Coulomb screening, 
sLOSC systematically corrects the band-gap error associated with the parent functional 
for materials spanning a large range of band gaps. Screening improves the correction of 
delocalization error in bulk systems, but degrades the accuracy of molecular systems’ band 
gaps relative to unscreened LOSC; however, sLOSC still offers better band gaps than those 
computed by the parent functional. One key remaining challenge is to model the curvature 
more accurately for all systems; we expect that linear response of the electron density, used 
by Mei et al. [60] for accurate screening of the Kohn-Sham orbitals, could be used to find 
the exact expression for ∂2E/∂λij. This would alleviate the error imposed by modeling κ as a 
difference between Coulomb repulsion and Dirac exchange.

We implement the energy correction as a postprocessing step to a self-consistent calculation; 
such corrections are accurate when the change in electron density is small and hence the 
total energy correction is small. For every system considered in this work, ∆ELOSC does 
not exceed three parts in 105. The corresponding change to the density for such systems 
is also expected to be minimal. LOSC can also be implemented self-consistently [45]; 
this can correct the delocalization error of the total density, improving the accuracy of 
LOSC for systems with large total energy corrections. A self-consistent implementation of 
sLOSC could be necessary for the accurate computation of heterogeneous and interfacial 
systems. Since delocalization error leads to incorrect charge distributions, the sLOSC energy 
correction is likely to be larger, and self-consistently correcting the delocalized density is 
expected to yield better orbital energies.

Work is ongoing to implement sLOSC for spin-polarized materials and to investigate its 
treatment of metals. The DLWFs of gapless systems constructed from Bloch bands near the 

Fermi energy are expected to have occupations λii close to 12 , which means that the sLOSC 

correction to those eigenvalues will be small. While there may be changes to the overall 
band structure, it is likely that such systems will remain gapless.

This may not hold in semimetals, whose valence and conduction bands cross only in a small 
volume (or a single point) of the Brillouin zone. Metals, on the other hand, have one band 
that crosses the Fermi energy. sLOSC can open a gap in systems the DFA predicts to be 
semimetals; this occurs with the smallest-gapped system in our test set, InSb. Thus, it is 
not certain that true semimetals would remain so after the sLOSC correction. In addition, 
the treatment of strong correlation due to (near) degeneracy of spin states and the inclusion 
of topological or spin-orbit effects are beyond the scope of this work. A modification of 
molecular LOSC to include fractional spins was developed in Su et al. [91]; it could possibly 
be extended to bulk materials as well.

A. Comparison with other methods

1. DFT+U(+V)—(s)LOSC is related to the DFT+U [92,93] method for correcting 
delocalization error. The kinship can be seen in the similarity of the sLOSC energy 
correction, Eq. (14), to the rotationally invariant DFT+U correction [94]
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ΔEDFT+U = 1
2∑ℓ , σ

tr nℓσ 1 − nℓσ Uℓ, (28)

where Uℓ is the effective Hubbard parameter for orthonormal local orbital (LO) ℓ, combining 
atom and orbital indices, and nℓσ is the LO occupation matrix. Both offer an adjustment to 
the total energy quadratic in the occupation of the LOs. The energy correction of DFT+U 
comes only from interactions between LOs on the same atom, although DFT+U+V [95] 
extends this to interactions between atoms, analogous to the off-diagonal curvature elements 
κij of (s)LOSC. However, the LOs of DFT+U+(+V) are static (usually being d and f orbitals 
on transition metal centers), while the DLWFs of sLOSC dynamically localize based on the 
gauge set by the cost function F . Thus, where DFT+U(+V) must recompute the effective 
Hubbard parameter for every perturbation of the crystal structure or molecular geometry, the 
size of the correction in (s)LOSC follows from the DLWFs.

It is worth noting that, while DFT+U(+V) does not explicitly include energy localization 
in its construction, the Hubbard correction applies primarily to the Kohn-Sham orbitals that 
have the most overlap with the LOs; viewed another way, the (spatially) localized orbitals 
that have the most energy-local character (via their large overlap with energy eigenstates) 
[96]. In particular, the d and f atomic orbitals of transition metals correspond closely to flat 
bands in reciprocal space, which carry some energy information implicitly. However, they 
are independent of the system’s geometry. In contrast, the LOs of LOSC are dynamic: the 
orbitals can change with the geometric structure of the system. This is key to their utility 
in finite systems. In compact structures near equilibrium, the LOSC LOs can replicate the 
Kohn-Sham canonical orbitals, while becoming localized as chemical bonds are stretched. 
This allows the LOSC total energy correction to change with the geometry, as seen in Li et 
al. [43] and Su et al. [44].

Neither sLOSC nor DFT+U are suitable for solving the analog of delocalization error for 
systems with fractional spin [14,22]. For molecules, fractional-spin LOSC (FSLOSC) [91] 
extends the original LOSC method to this case; the judiciously modified DFT (jmDFT) 
method [97,98] does the same for DFT+U.

2. Koopmans-compliant functionals—Koopmans-compliant functionals [99,100] 
mitigate delocalization error by enforcing the PPLB linearity condition directly: in the 
Koopmans integral (KI) formulation [39]

ΔEKI = ∑
i

αi fiηi −∫
0

fi

dsi ϕi ℎs si ϕi . (29)

Here αi is an orbital-dependent screening function based on the relaxation of the LOs ϕi; 
fi is the (fractional) occupation of ϕi; ηi = ∫0

1dsi ϕi ℎPZ si ϕi , integrating the Perdew-Zunger 
self-interaction corrected Kohn-Sham Hamiltonian [32], gives the linearized slope of the 
energy with respect to fi; and the last term computes the nonlinearity in E that is replaced 
by fiηi. Like (s)LOSC, Koopmans-compliant functionals are dependent on the choice 
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of localized orbitals [101]. In extended systems, localized orbitals are necessary for a 
Koopmans-compliant correction to have any effect [80], and screening has also been found 
to effect improvements in band-gap calculation [79,81].

An advantage of sLOSC over the Koopmans-compliant functionals for extended systems 
is that the DLWFs treat the valence and conduction bands together; on the one hand, 
DLWFs are empirically robust to increasing the number of conduction bands from which 
they are constructed, and on the other, sLOSC can in principle be applied to metals without 
additional modification. For gapped systems, the energy localization inherent in the DLWF 
cost function enforces separation between the occupied and virtual electronic manifolds 
without manual input. The system with the smallest gap in our analysis, indium antimonide 
(InSb, experimental gap 0.23 eV), which is predicted to be gapless by the DFA (and whose 
sLOSC gap is 0.260 eV) has DLWF occupations λii

RR ⩾ 0.98 in the valence manifold and 
⩽ 0.0074 in the conduction manifold. It is conceivable that DLWFs could also serve as 
effective LOs for Koopmans-compliant methods, even if their subspaces corresponding to 
the valence and conduction bands are not variational for total Koopmans-compliant energy.

3. Additional methods—The Fermi-Löwdin orbital (FLO) self-interaction correction 
(SIC) [36,102,103], which has its roots in the Perdew-Zunger (PZ) self-interaction 
correction method [32], also uses localized orbitals for an energy correction. However, 
the self-interaction error treated by both FLOSIC and PZ-SIC is well defined only for 
one-electron systems; LOSC and its derivatives account for the many-electron nature of 
delocalization error explicitly [17].

As mentioned in Su et al. [91], the generalized transition state method [41] and the Wannier-
function method of Ma and Wang [42] are effective at improving band-gap predictions. 
However, since they do not mix valence and conduction bands to create fractionally 
occupied orbitals, they cannot change the total energy of the DFA calculation; thus, they 
cannot restore size consistency to DFAs and will not be able to capture (for instance) 
molecular dissociation at the same time as improving band-gap predictions. This problem is 
shared by early Koopmans-compliant methods, which used the Kohn-Sham orbitals as the 
ϕi; it underlies the observation of Nguyen et al. [80] that localized orbitals such as Wannier 
functions are required for Koopmans compliance in extended systems.

B. Computational efficiency
The sLOSC method as implemented in this work scales as O Nw

3Nk  for the localization step, 
O Nw

2NG  for the computation of curvature elements, and O(NwNG logNG) for the FFT of the 
DLWF densities. Here, NG is the number of plane waves in the unfolded supercell, which is 
Nk times the number of plane waves in the unit cell. Calculating the curvature and energy 
corrections is the computational bottleneck for the systems evaluated in this work, with wall 
times for each system reaching a few hours using 16 threads on an Intel Xeon E5–2630v3 
processor. The systems that took the longest time were those with the largest number of 
core states, which have no effect on frontier state corrections; these could be neglected if 
only a correction to the band gap is desired. The running time was divided fairly evenly 
between the computation of the matrix elements defined in Eqs. (17), (19a), and (19b). We 
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note that the size of the integration domain for these quantities could be reduced from the 
full Born–von Karman supercell if the relevant DLWF densities are contained in a smaller 
region. This is supported by the fact that systems that had similar localizations for a 4 × 4 × 
4 and 6 × 6 × 6 k mesh yielded very similar energy corrections.

Along the same lines, we find that for the systems in the test set the correction results 
are converged with a 6 × 6 × 6 k mesh, but this is only necessary to achieve a converged 
localization. Certain systems exhibit a qualitatively different localization with a smaller 4 × 
4 × 4 k mesh; however, by decreasing the value of γ in the localization cost function F, a set 
of DLWFs qualitatively similar to the 6 × 6 × 6 case can be obtained.

Some other methods that attempt to address delocalization error in bulk calculations, such 
as the approach of Ma and Wang [42] and the screened range-separated hybrid functional 
[31], rely on supercell self-consistent calculations. These have cubic scaling in the number 
of electrons, so an unfolded Born–von Karman supercell arising from Nk k points sampling 
a unit cell with Nw Wannier functions scales as O Nk

3Nw
3 . Both of the aforementioned 

methods use Wannier functions as a localized charge representation and rely on manually 
choosing the Bloch orbitals to comprise the Wannier functions representing the frontier 
of the occupied space. The sLOSC method uses DLWFs, which naturally supply Wannier 
functions representing the frontier of the occupied and unoccupied spaces without the need 
for manual energy windowing.

Data and scripts pertaining to this work have been archived in the Duke Research Data 
Repository [114].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Comparison of experimental band gaps with those calculated by PBE (○), sLOSC (×), and 
unscreened LOSC (+). The inset shows systems with an experimental band gap less than 5 
eV.
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FIG. 2. 
Band structure of silicon under the PBE functional (dashes) and sLOSC (solid). The Fermi 
energy of the PBE calculation was 6.23 eV, while the PBE with LOSC Fermi energy was 
5.49 eV.
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FIG. 3. 
Band structure of lithium fluoride under the PBE functional (dashes) and sLOSC (solid). 
The Fermi energy of the PBE calculation was 0.97 eV, while the PBE with LOSC Fermi 
energy was −3.52 eV. The core states are not included in the figure.

Mahler et al. Page 22

Phys Rev B. Author manuscript; available in PMC 2023 September 19.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

Mahler et al. Page 23

TABLE I.

Mean absolute percent error of the band gap for PBC and molecular test sets. For details on the systems tested, 
see the Supplemental Material [64].

Method PBE LOSC sLOSC

PBC 47.5% 158.6% 19.7%

Molecule 79.8% 10.1% 43.6%
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