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Abstract

Density functional theory offers accurate structure prediction at acceptable computational cost,
but commonly used approximations suffer from delocalization error; this results in inaccurate
predictions of quantities such as energy band gaps of finite and bulk systems, energy level
alignments, and electron distributions at interfaces. The localized orbital scaling correction
(LOSC) was developed to correct delocalization error by using orbitals localized in space and
energy. These localized orbitals span both the occupied and unoccupied spaces and can have
fractional occupations in order to correct both the total energy and the one-electron energy
eigenvalues. We extend the LOSC method to periodic systems, in which the localized orbitals
employed are dually localized Wannier functions. In light of the effect of the bulk environment on
the electrostatic interaction between localized orbitals, we modify the LOSC energy correction to
include a screened Coulomb kernel. For a test set of semiconductors and large-gap insulators, we
show that the screened LOSC method consistently improves the band gap compared to the parent
density functional approximation.

INTRODUCTION

The cost of solving the electronic Schrodinger equation scales exponentially with the size
of the system, exceeding the computational resources available on the planet for any
system larger than a few tens of electrons [1]. Density functional theory (DFT) sidesteps
this exponential cost by treating the electron density as the fundamental variable instead
of computing the wave function directly and by constructing an auxiliary noninteracting
reference system sharing the density of the physical system [2,3]. Due to the accuracy
attainable at a cost only cubic in the number of electrons N, DFT has become a

mainstay of computational chemistry and materials science [4—7]. While DFT is exact

in theory, the form of the universal exchange-correlation functional is unknown, and
density functional approximations (DFAs) must be used in practice. Commonly used DFAs
suffer from systematic delocalization and static correlation errors [8,9]. The delocalization
error underlies the failure of DFAs to describe energy band gaps of finite and bulk
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systems, energy level alignments, and electron distributions at interfaces [10]. Overcoming
delocalization error remains an active and challenging research effort.

Connecting single-particle orbital energies € to observable quantities was another long-
standing question in Kohn-Sham DFT. As a contrast, Koopmans [11] showed in 1934 that
the Hartree-Fock ionization potential (IP) and electron affinity (EA) are given under the
frozen orbital approximation by the negative of the highest occupied and lowest unoccupied
molecular orbital eigenvalues, respectively. A series of three results established a rigorous
connection for DFT.

First, Janak [12] derived a link between the Kohn-Sham orbital energies €, and the total
energy F, viewed as a function of the orbital occupation numbers 7;,;:

G_aE 1
m_anm' ()

However, JF dny,, was not yet linked to a physical observable.

A few years later, Perdew, Parr, Levy, and Balduz [13] showed that E'is piecewise linear in
the number of electrons N when computed with the exact functional; that is, for all [§] < 1,

we have

(1+68)E(N)—S8E(N —1), 6<0

E(N+9) = (1-8)E(N)+SE(N+1). 6 > 0.

(@)

This relationship, called the PPLB condition, connects the chemical potential (A N) = JF/ N
to the IP and EA; observe that

)= [—I(N):E(N)—E(N— 1), IN <0 o

A(N) = E(N + 1) — E(N), 0N > 0.

Finally, Cohen ef al. [14] proved that the chemical potential is given by the partial derivative
of E'with respect to the frontier orbital eigenvalues

oFE
U(N) = an, “

Crucially, flabels not only the highest unoccupied molecular orbital (HOMO) if 6N <0,
but also the lowest unoccupied molecular orbital (LUMO) if ON >0; this was the first time
a physical meaning for the energy of the Kohn-Sham LUMO was established. This result
holds for any local functional continuous in the electron density, as well as any nonlocal
functional continuous in the Kohn-Sham density matrix; in the latter case, the work also
extends Janak’s theorem to the eigenvalues from the generalized Kohn-Sham equations.

Combining these three results, we see that
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—I(N) = €iomo» ON <0

N) =
HN) =1 4(N) = ne, N > 0.

(%)

Thus, the frontier eigenvalues obtained from an N -electron DFT calculation correspond
rigorously to physically relevant quantities [14]; if the PPLB condition is obeyed and the
functional predicts the exact energies for N— 1, N, and N+ 1 electrons, the correspondence
is exact.

A feature derivable from these quantities is the fundamental or integer gap, defined as the
difference between the IP and the EA:
EX* =T—A=EN-1)=2E(N)+ E(N+1). (©)

gap

Ej¥" quantifies the difference between positively and negatively ionizing the system and is
a crucial part of the accurate modeling of semiconductor electronic structure. If the PPLB
condition is obeyed, Egs. (3) and (5) also allow the gap to be computed from a single
N-electron calculation as the discontinuity in the chemical potential; in this form, it is called

the derivative gap, defined as

oE

deriv. aE _
Egap - W = €rLumo — €nomo - 7

T oON

If the PPLB condition is obeyed, the derivative gap and the integer gap are equal [14]. In
bulk systems with periodic boundary conditions, the PPLB condition is satisfied by any
DFA continuous in the Kohn-Sham density or density matrix, regardless of systematic errors
in its definition [10]; thus, the fundamental gap of bulk systems can be predicted by the
(generalized) Kohn-Sham orbital gap, for functionals continuous in the density (density
matrix), as in Eq. (7). In finite systems, however, the PPLB condition is not in general
obeyed, and the gap computed from Eq. (7) may differ from that computed by calculating
the (N = 1)-electron energies to obtain the integer gap as in Eq. (6), the ASCF method.

A. Delocalization error

The delocalization error has a dramatic size-dependent manifestation. In finite systems,
standard DFAs fail to obey the PPLB linearity condition, so the derivative gap is not

equal to the integer gap. This is due to the error in the approximate exchange-correlation
functional, which nearly always yields £ convex in N, underestimating the piecewise
linearity prescribed by the PPLB condition. This convex deviation has been identified

as the cause for an unphysical smearing of the electron density in space, as well as
underestimation of the total energy in a delocalized electron density; thus, we may identify
it with delocalization error, as exhibited in small systems. In bulk systems, the delocalized
nature of the orbitals produces a total energy linear with respect to fractional charge,
yielding no deviation from the PPLB condition; however, delocalization error manifests as
an incorrect slope of the £ () line at integer N[10].

Phys Rev B. Author manuscript; available in PMC 2023 September 19.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Mabhler et al.

Page 4

The effects of delocalization error include the underestimation of band gaps and reaction
barriers [15], undervaluation of dissociation curves [16—18], overestimation of conductance
and polarizability [19], and incorrect energy level alignment and charge transfer across
interfaces [20,21]. To capture the full derivative discontinuity and hence the band gap, it has
been shown that the exact functional, whether local or nonlocal, cannot be a differentiable
functional of the electron density or of the Kohn-Sham density matrix [22,23]. To reduce
the systematic delocalization error, many approaches have been developed, including
range-separated functionals [24—30], the screened range-separated hybrid functional [31],
self-interaction error-corrected functionals [17,32—-38], Koopmans-compliant functionals
[39,40], and generalized transition state methods [41], along with related developments
using localized Wannier functions [42].

The localized orbital scaling correction (LOSC) method was developed to eliminate
delocalization error systematically [43,44]. Previous incarnations of LOSC were
implemented for molecular systems with real orbitals and the boundary condition

limy,_ «p(r) = 0. They accurately model IP, EA, photoemission spectra, dissociation curves,
and polarizabilities, as well as restore size consistency [43—46]. In this work, we extend
LOSC to periodic boundary conditions (PBCs) and complex orbitals. Additionally, we
introduce a screened Coulomb interaction to the LOSC energy correction to enable the
accurate computation of bulk system band structures.

B. Periodic boundary conditions

In PBCs, the eigenfunctions of the single-particle Hamiltonian are known as Bloch orbitals;
they satisfy h,

). The Bloch orbitals are also eigenfunctions of the unit-cell
ik-r

k K|
W) =€
translation operator, so they take the form

uy), where

wi)=e u,) has the periodicity

of the unit cell and k is a point in the Brillouin zone (the reciprocal-space unit cell)

[47,48]. The Bloch orbitals obey the normalization convention (wly,) = 6(k — q)3,,, where
(flg) = [,drf(r)g(r). Here, &K) is the Dirac delta distribution, &, is the Kronecker delta,
and f is the complex conjugate of £ The domain of integration 9 is the periodic unit for the

functions being integrated; for Bloch orbitals, & = R3. The

uy) are orthonormal in the band
index nat a fixed k point in reciprocal space: that is, (u,lu,) = 5,,, where the inner product

integrates over one unit cell. Note that we assume closed-shell systems in this work.

The single-particle density can be represented in real space by the occupied Bloch orbitals as

p(r) = Zﬁ[jk

where Vis the volume of the unit cell and the integral is over the first Brillouin zone. Since

2

w,(r) ®)

the Hamiltonian is diagonal in k, we can solve for the Bloch orbitals in reciprocal space,
requiring diagonalization only in one unit cell. In practice, the Brillouin zone is sampled
with a finite number of points; in this work we use a Monkhorst-Pack mesh centered at the
origin I of the Brillouin zone [49]. Thus, integrals over the Brillouin zone become equally
weighted sums over the k mesh
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14 1
— [ dkj(K)— = ) f(K), ©)
(2x)’ Nkzk:
where Ny is the number of k points in the mesh. Using a Monkhorst-Pack mesh centered
at ["yields Bloch orbitals having the periodicity of an unfolded supercell comprised of Ny
primitive unit cells; this supercell is referred to as the Born—von Karman cell [48]. The
Bloch orbitals then obey the normalization convention (y;ily,) = N,58,., Where the integral

is over the Born—von Karman cell.

. METHODS

The LOSC method consists of two steps. First, we find orbitals that are spatially localized
while remaining associated with specific energy ranges. Next, we compute a curvature
matrix modeling the magnitude of the deviation from linearity. This is combined with

the fractionally occupied localized orbitals to correct the convex deviation of £ (N) from
linearity at noninteger /N, as well as incorrect total energies at integer N. Both steps are
implemented as postprocessing after a converged self-consistent field calculation.

A. Localization

The wavelike nature of the Bloch orbitals prohibits them from being spatially localized. In
order to obtain a state that is localized in space, the discrete Fourier transform of the Bloch
orbitals is used to produce Wannier functions [50]

1 —ik -
k) = 5 D e Rut). (10

k

Wannier functions inherit the periodicity of the Born—von Karman cell, and are indexed by
electron bands 77 and unit cells R in the supercell. They are symmetric under translation by
unit cell vectors, so that wi(r) = w’(r — R); R = 0 is referred to as the home unit cell. There is
a unitary, or gauge, freedom at each k point in the choice of Bloch orbitals that comprise a
Wannier function, so we can define generalized Wannier functions [51]

1 ; 1 '
k) =N Ek e~ik-R E Unlws) = N Zk ek Rjpky, (11
n

where we refer to |¢;) as a transformed Bloch orbital (TBO). From now on, we will refer to

generalized Wannier functions as Wannier functions.

The gauge freedom UK in the TBOs can be chosen such that the resulting set of

Wannier functions have advantageous properties. In order to obtain localization in space,
Marzari and Vanderbilt suggested choosing IX that minimize the Wannier functions’

spatial variance (4r?) = (r2) — (r);, where (x), = (uf|x|uf); the resulting orbitals are called
maximally localized Wannier functions [52]. In molecules, the scheme of minimizing spatial
variance is referred to as Foster-Boys localization [53]. However, constructing maximally
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localized Wannier functions from both valence and conduction bands is physically ill
motivated. Because bands far apart in energy can mix freely and the Bloch bands form

a complete basis, adding more virtual bands will result in increasing spatial localization of
the maximally localized Wannier functions, with a corresponding loss of information about
the energy dispersion of the bands.

In order to preserve locality in energy while maintaining spatial localization, enabling
simultaneous treatment of the occupied and unoccupied spaces, we choose the Wannier
gauge that minimizes a cost function considering both energy and spatial variance:

F=(1- y)z (4r?) + ?’Cz (), (12)

where 0 < y < 1 and in the units used here C = 1a§/eV2, where a; is the Bohr radius. This
cost function was first proposed by Gygi ef al. [54] for computations sampling the Brillouin
zone only at I and implemented for such systems by Giustino and Pasquarello [55]. It was
used for LOSC in molecules [44] to treat system symmetries and degeneracies more robustly
than the original localization, which used soft energy windows [43]; in molecular LOSC,

the localized orbitals are called orbitalets. We recently extended F'to systems with N, > 1
[56]; we refer to such orbitals as dually localized Wannier functions (DLWFs). These
formulations show how the combination of occupied and unoccupied spaces can be localized
simultaneously to produce Wannier functions that are localized in both space and energy.
This construction is critical for addressing delocalization error in finite systems because it
allows for dynamic localization in the resulting orbitals; the orbitals can qualitatively and
quantitatively differ depending on the geometry of the system [43,44]. In keeping with the
principle of universality in functional development, we use the same mixing parameter in
Eq. (12), setting = 0.477 14. The value of ) has important implications for the LOSC
method; see Section VI of the Supplemental Material of Su et al. [44]. Setting y = 0, for
instance, yields maximally localized Wannier functions [52], while =1 yields DLWFs that
are pure Fourier transforms (up to k-dependent phases) of the Kohn-Sham bands.

Note that we have not proven that a unique global minimum of Fexists; in practice, F has

a fairly rugged landscape of solutions, and we have observed multiple local minima. We
choose the DLWFs yielding the smallest total cost. Different DLWFs can produce somewhat
different screened LOSC (sLOSC) corrections, with eigenvalues varying by up to a few
tenths of an eV. The problem of multiple minima of Fhas also been observed in molecular
LOSC [57], but was not found to be the dominant source of error. An additional question
worth exploring is the effect of symmetry breaking, such as that due to perturbations of the
crystal lattice, on the localization procedure.

The compromise between spatial and energy localization and the inclusion of unoccupied
orbitals are key to producing localized orbitals that can address delocalization error while
retaining size consistency. For example, the DFA HOMO and LUMO of H; at (or near)
the dissociation limit are delocalized over the whole molecule; since they are (nearly)
degenerate, there exists a unitary freedom in the subspace spanned by both. Due to the
symmetry of the system, we expect to obtain two separate HO-3* fragments; the (small or)
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vanishing gap means that any choice of y <1 in Eq. (12) will result in half-occupied orbitals
localized on each H atom. This is the physical motivation for a localization scheme that
minimizes the spatial variance of occupied and unoccupied orbitals while allowing only
orbitals that are close in energy to mix [43].

B. Energy corrections

The deviation from energy linearity with respect to fractional charges is characteristically
quadratic in most exchange-correlation functionals [43,58,59]. To restore compliance with
the PPLB condition for small finite systems, the global scaling correction (GSC) was
developed. GSC corrects the total energy by an amount quadratic in the occupation numbers
of the canonical molecular orbitals [58,60]. This method is effective at correcting the
systematic deviation from the PPLB condition for systems with fractional charges and leads
to accurate prediction of quasiparticle energies as the eigenvalues from the resulting one-
electron Hamiltonian. However, GSC is applicable only for systems of small and moderate
size; the convex deviation of conventional DFAs from the piecewise linearity prescribed

by the PPLB condition decreases with increasing system size, and the delocalization error
manifests instead as underestimated ground-state energies for integer systems and incorrect
linear Eyg(N) curves with wrong slopes at the bulk limit [10]. The localized orbital scaling
correction (LOSC) applies its energy correction adaptively by the construction of localized
orbitals, allowing systematic and size-consistent correction of delocalization error [43,44].
In this section, we discuss the extension of LOSC to periodic systems.

A basic quantity in LOSC is the density matrix in the basis of DLWFs; its elements are
occupations

Ay = (wllpfwr)) . (13)

The occupations between all pairs of DLWFs are used to remove quadratic deviations, while
the diagonal terms are used to restore linearity. The energy correction defined by LOSC for
each unit cell is given by

AELOSC _ zjlvk % ; EERKITI_R( 5™ f,R) (14)

where 6% = 8,60r; € models the curvature of the deviation from linearity.

The diagonal terms in the energy correction are proportional to A;* — |k]f“|2; thus, if a DLWF

has integer occupancy (implying A/ = 0 whenever i# jor T # R), then the energy correction
due to that DLWF will also be zero.

The matrix [A*] of occupations between the DLWFs is the discrete Fourier transform of the

occupation matrix between the TBOs. As such, it is positive semidefinite and Hermitian, and

!
M = & 2 (s)
k
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where tr, denotes the trace per unit cell and N is the number of electrons below the Fermi

energy at k.

Following Su et al. [44], the elements of the curvature matrix are given by

R = erf(8SIM Wil i + erfe(8S] ). (16)

Here, erfc(r) = 1 — erf () is the complementary error function. S)* is the absolute overlap
between DLWFs,

Sy = / dryp; (1)} (r), )

where p/(r) = |w,-T(r)|2 is a DLWF’s charge density. The matrix elements % in Eq. (16) are

given by
xy = Jol o] = X[ol, 0], 1"
with
Iol 0] = f/ drdr’p(¥)p}(r')K (| — ¥']), (195)
2C 2/3
X[ol 0] = 755 f dr[pl @)@ (1%

1/3
In the above, K (1) = 1/ris the Coulomb kernel, Cy = %(%) is the Dirac exchange constant

[61], and £=6(1 —2713) ~ 1.2378 is a nonempirical parameter [43]. The derivation of how
this correction restores the PPLB condition can be found in the supplementary data of Li ef
al. [43]. The use of & instead of x was introduced because the cost function in Eq. (12) can
induce discontinuous jumps between localization characters during molecular dissociation
[44]. The diagonal elements of ¥ and x are equal, so when A;; € {0,1} the corrections from
& and x are the same. In practice, X[p/, p'| term is evaluated using numerical integration on

a grid of real-space points. The Coulomb term J{p/, p;'| is evaluated in a plane-wave basis,
detailed in Sec. II C.

Applying the extension of Janak’s theorem [12] to the generalized Kohn-Sham theory [14],
the LOSC energy correction of Eq. (14) yields corrections to the Bloch orbital energy
eigenvalues e, given by
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acd=y ,z‘;.“(% - xf:")|U§,.

1

— D RRe{afe RTUL).
Ri#0;j

2

(20)

Consider the diagonal corrections given by the first summand in Eq. (20). There is no

correction to the eigenvalue when a DLWF is half-occupied (}»,-,- = %), on the other hand,

the correction is maximal when it is completely occupied or unoccupied. Li et al. [43]
observed that the slopes of the quadratic DFA and the correct linear £ (V) curves agree

at half-integer V. Since the frontier orbital energy corresponds to this slope, we see that
accurate frontier orbital energies are given by half-occupied frontier orbitals. The LOSC
correction to the orbital energies arrives naturally at this conclusion, additionally agreeing
with Slater transition state theory [62,63].

We may also view LOSC as a correction to the Kohn-Sham Hamiltonian. It is given by the
functional derivative of the energy correction with respect to the density operator under the
frozen orbital approximation

LOSC
Av = Mg— R 1)
Ps [wR)
and can be written in operator form as
[ 5y
TR i TR T R|
Av = 2 & 7’ -\ )|w,- w)|. (22)

ij,TR

(See the Supplemental Material [64] for details on this derivation.) The correction to the nth
Bloch orbital eigenvalue is then given by Ae; = (yy|4v]y;).

In practice, the energy corrections are applied to disentangled Bloch orbitals. The
conduction bands of most systems cannot be formed into sets of bands that do not

cross anywhere in the Brillouin zone, a condition referred to as band entanglement. In
order to obtain a finite set of bands for localization and energy correction, we use the
disentanglement procedure outlined by Souza et al. [65]. This procedure obtains N, bands
from a set of N, > N, Bloch orbitals at each k point, chosen such that the subspace
spanned by the disentangled bands is as smooth as possible in k. To correct the band

gap of semiconductors and insulators, we include sufficiently many virtual bands in the
construction of the Wannier functions to converge the localization of the frontier bands (that
is, the valence band maximum and conduction band minimum) [56]. We find that NV, =
Nyce T 3Neoord and Ny, = Nyee + 2 Nggord, Where Ny is the number of occupied bands

per unit cell and N is the coordination number of the lattice, are sufficient; see the
Supplemental Material [64] for details. The N,, disentangled Bloch bands yield N,;, DLWFs
per unit cell, so there are N,;,,N; DLWFs in the Born—von Karman supercell on which they
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are periodic. The energy corrections for the NV, disentangled Bloch rbitals at each k point
are implemented using Eq. (20).

In this work, we restrict our attentions to closed-shell systems. Extending the LOSC method
to spin-polarized materials is accomplished by finding the corrections from the spin-up and
-down DLWFs independently and summing them to obtain AE LOSC; this functionality is
planned for the next version of LOSC. However, treating the strong correlation common to
open-shell materials brings its own set of challenges beyond the scope of this work. We
discuss them briefly in Sec. IV below.

C. Coulomb integrals

Accurate calculation of the Coulomb interaction J|p;, o} is needed for LOSC to restore the
PPLB condition. In PBCs, a plane-wave basis is typically employed. The Coulomb energy is
diagonal in this basis, and the double integral required in real space collapses to a single sum
over basis vectors G:

T R 4 =T R
A G—ﬂzpf (G)p; (G), 23)
C

where G = |G|. However, this sum converges only for neutral charge distributions, for which
the G = 0 term vanishes. The DLWF densities are individually charged, so ignoring the
divergent term coming from the net charge will significantly underestimate the Coulomb
energy. There are many methods to evaluate the Coulomb energy for charged densities in the
plane-wave basis accurately, including those of Makov and Payne [66], Kantorovich [67],
Dabo et al. [68], and Li and Dabo [69]. We choose the spherical cutoff method [70-72],
truncating the Coulomb kernel in Eq. (19a) at a cutoff radius R; this is taken to be half the
length of the shortest Born—von Karman supercell lattice vector, ensuring that the Coulomb
interactions between the a DLWF density and its images in neighboring supercells are zero.
Thus, the spherical cutoff Coulomb kernel is

1/r, r<R.

K(r;R) = 0 F> R 24)

which has Fourier coefficients
4
—2[1 —cos(GR)], G#0

K(G;R) = (25)
27R’, G=0.

Observe that K G; R,) does not diverge for any G. As long as the pair of DLWF densities
in Eq. (19a) lie in a sphere of radius R, the spherical cutoff method is also accurate in
highly anisotropic unit cells, unlike schemes such as that of Makov and Payne [67]. We
enforce this containment condition in practice by checking that each DLWF density is well
contained in a volume spanned by half of each Born—von Karman supercell lattice vector,
and only compute curvature elements between pairs of DLWF densities that have centers
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closer together than R.. We evaluate the Coulomb integrals on the unfolded supercell in the
plane-wave basis, which requires a fast Fourier transform (FFT) of the DLWF densities on
the supercell.

D. Screening

Applying LOSC with a bare Coulomb interaction leads to severe overcorrection of
semiconductors’ band gaps in PBCs. However, this is not surprising; we anticipate an

effect of the other electrons in the lattice on J[p/, p}'|. As shown by highly accurate methods
such as GW, a screened Coulomb interaction is required to model the interaction between
electrons in a periodic system accurately [73,74]. Recently, Mei and coworkers also found
that the deviation from linearity of the total energy as a function of canonical orbital
occupations is given to second order by a screened interaction [60]. We model the screening
phenomenologically, attenuating the long-range 1/rbehavior of the spherical cutoff Coulomb
interaction by a complementary error function. This modifies the Coulomb kernel to read as

erfc(ar)/r, r < R,
K(r;R,a) = 0 (ar) F> R (26)

where a is a screening parameter. We choose the a that best reproduces the experimental
band gaps of a test set of semiconductors and insulators. For rlarger than the screening
radius a™!, K(r; R.,a) decays exponentially instead of as 1/z. The Fourier coefficients of K
are

K(G;R.,a)=

%[1 — cos(GR.)erfc(aR,) — e‘(G/Z")zRe[erf(aRL + %)”, G#0 @n

2 . 2
2R + 7rerf(ocRL)(ot_2 - 2R{) - Zﬁe_("'&) R/a, G=0.

The error function is unbounded for complex arguments, overflowing double-precision
floating-point numbers even for relatively small G. Thus, we evaluate K( G, R.,a) with a
scaled form of erfz called the Faddeeva function, implemented in the numerically stable
ACM Algorithm 916 [75,76]. For details, see the Supplemental Material [64].

In principle, the screening is system dependent. Improved accuracy would be attainable by
setting its value to best reproduce each material’s band gap. However, the phenomenological
screening model of sSLOSC does not enable doing so while retaining predictive ability. This
would require a rigorously screened Coulomb (or Hartree-exchange-correlation) interaction
based on the linear response function y(r,r’) = 8p,(r)/5v(r’). Ab initio screening of this

kind appears in the extensions of the GSC method to hybrid functionals [77] and in the
following exploration of orbital relaxation on GSC [78], the GSC2 method [60], as well

as in recent work on Koopmans-compliant functionals [79—81]. For small, finite systems,
the delocalization error is quantified by 0*E/on’, where n;1s the occupation number of

the Kohn-Sham orbital |y,); analytical expressions for 0* E/ on? were derived in Yang et al.
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[82]. In sSLOSC, linear-response screening would very likely increase the accuracy, but at
substantial computational cost to compute the nonlocal y(r, r’).

RESULTS

We use the PBE functional [6] for the parent DFA calculations, with optimized norm-
conserving Vanderbilt pseudopotentials [83] generated by pseupopojo [84]. Both self-
consistent field (SCF) and non-SCF calculations are carried out in the QUANTUM ESPRESSO
code suite [85,86].

The energy cutoff for the fast Fourier transform is set to 100 Ry for wave functions and
400 Ry for densities. The Brillouin zone is sampled with Monkhorst-Pack meshes centered
at I', which is necessary for the Wannier functions to be periodic on the Born—von Karman
supercell. For SCF calculations, we use a 16 x 16 x 16 k mesh, while the other calculations
are performed on 6 x 6 x 6 grids. The localization step of LOSC is implemented in a
modified fork of the waNNIER90 code [87-89] and the energy correction as module to a fork
of QUANTUM ESPRESSO.

To determine an optimal screening parameter a, we minimize the mean absolute percent
error (MAPE) on the SC/40 set of semiconductors with experimentally available band

gaps [90] together with six additional large-gap insulators. The experimental band gaps
studied range from 23 to 27 eV. We find that a = 0.15 a;' achieves the lowest MAPE;
co-incidentally, this value is numerically equal to the screening parameter used in the HSE
density functional [90]. As shown in Fig. 1, LOSC with Coulomb screening (sLOSC)

yields marked improvement of the band gap for the test set in comparison with the parent
functional. It is also apparent that unscreened LOSC overcorrects the band gaps; indeed, it
is less accurate than the parent functional. The performance of SLOSC in molecules is better
than the parent functional, but unscreened LOSC achieves the best performance in molecular
systems (see Table I). The Supplemental Material [64] details the variation in performance
of screened LOSC for both bulk systems and molecules with the screening parameter a.

The band structures of sSLOSC and of the parent functional are shown for the small-gapped
semiconductor silicon in Fig. 2 and the larger-gapped insulator lithium fluoride in Fig. 3.
They use the disentangled band structures, which are numerically indistinguishable from the
true band structure at and below the conduction band minimum for the parent functional.
Wannier interpolation in the same DLWF basis as that used in SLOSC is used to find the
energy at the points in the Brillouin zone not explicitly treated by the localization and
energy correction. The sLOSC correction to the band structure comes largely from the more
localized DLWFs, for which there is a larger Coulomb self-energy J[ o', p/|. Because of this,
sLOSC mostly corrects the energy of the occupied bands (which we observe to correspond
closely to the occupied DLWFs in semiconductors); it affects the virtual bands much less.
More work on molecule-surface and surface-surface interactions is required to determine
whether LOSC yields correct energy level alignment and whether the larger correction to the
valence bands is physically meaningful.
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IV. DISCUSSION

We have shown that despite the simple form of its phenomenological Coulomb screening,
sLOSC systematically corrects the band-gap error associated with the parent functional

for materials spanning a large range of band gaps. Screening improves the correction of
delocalization error in bulk systems, but degrades the accuracy of molecular systems’ band
gaps relative to unscreened LOSC; however, sSLOSC still offers better band gaps than those
computed by the parent functional. One key remaining challenge is to model the curvature
more accurately for all systems; we expect that linear response of the electron density, used
by Mei ef al. [60] for accurate screening of the Kohn-Sham orbitals, could be used to find
the exact expression for ZE/AA j+ This would alleviate the error imposed by modeling xas a
difference between Coulomb repulsion and Dirac exchange.

We implement the energy correction as a postprocessing step to a self-consistent calculation;
such corrections are accurate when the change in electron density is small and hence the
total energy correction is small. For every system considered in this work, AE-OSC does

not exceed three parts in 10°. The corresponding change to the density for such systems

is also expected to be minimal. LOSC can also be implemented self-consistently [45];

this can correct the delocalization error of the total density, improving the accuracy of
LOSC for systems with large total energy corrections. A self-consistent implementation of
sLOSC could be necessary for the accurate computation of heterogeneous and interfacial
systems. Since delocalization error leads to incorrect charge distributions, the sSLOSC energy
correction is likely to be larger, and self-consistently correcting the delocalized density is
expected to yield better orbital energies.

Work is ongoing to implement sLOSC for spin-polarized materials and to investigate its
treatment of metals. The DLWFs of gapless systems constructed from Bloch bands near the

Fermi energy are expected to have occupations A;; close to %, which means that the sSLOSC

correction to those eigenvalues will be small. While there may be changes to the overall
band structure, it is likely that such systems will remain gapless.

This may not hold in semimetals, whose valence and conduction bands cross only in a small
volume (or a single point) of the Brillouin zone. Metals, on the other hand, have one band
that crosses the Fermi energy. sSLOSC can open a gap in systems the DFA predicts to be
semimetals; this occurs with the smallest-gapped system in our test set, InSb. Thus, it is

not certain that true semimetals would remain so after the SLOSC correction. In addition,

the treatment of strong correlation due to (near) degeneracy of spin states and the inclusion
of topological or spin-orbit effects are beyond the scope of this work. A modification of
molecular LOSC to include fractional spins was developed in Su et al. [91]; it could possibly
be extended to bulk materials as well.

A. Comparison with other methods

1. DFT+U(+V)—(s)LOSC is related to the DFT+{/[92,93] method for correcting
delocalization error. The kinship can be seen in the similarity of the SLOSC energy
correction, Eq. (14), to the rotationally invariant DFT+U correction [94]
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1
AEpey = 3 Z tr(n,,(1 — n,,)|U,, (28)
Z,o

where Uyis the effective Hubbard parameter for orthonormal local orbital (LO) £ combining
atom and orbital indices, and n 4 is the LO occupation matrix. Both offer an adjustment to
the total energy quadratic in the occupation of the LOs. The energy correction of DFT+U
comes only from interactions between LOs on the same atom, although DFT+{A V[95]
extends this to interactions between atoms, analogous to the off-diagonal curvature elements
&, of (s)LOSC. However, the LOs of DET+UA(+ V) are static (usually being dand forbitals
on transition metal centers), while the DLWFs of sSLOSC dynamically localize based on the
gauge set by the cost function F. Thus, where DFT+U(+ V) must recompute the effective
Hubbard parameter for every perturbation of the crystal structure or molecular geometry, the
size of the correction in (s)LOSC follows from the DLWFs.

It is worth noting that, while DFT+U(+ V) does not explicitly include energy localization
in its construction, the Hubbard correction applies primarily to the Kohn-Sham orbitals that
have the most overlap with the LOs; viewed another way, the (spatially) localized orbitals
that have the most energy-local character (via their large overlap with energy eigenstates)
[96]. In particular, the dand fatomic orbitals of transition metals correspond closely to flat
bands in reciprocal space, which carry some energy information implicitly. However, they
are independent of the system’s geometry. In contrast, the LOs of LOSC are dynamic: the
orbitals can change with the geometric structure of the system. This is key to their utility
in finite systems. In compact structures near equilibrium, the LOSC LOs can replicate the
Kohn-Sham canonical orbitals, while becoming localized as chemical bonds are stretched.
This allows the LOSC total energy correction to change with the geometry, as seen in Li ef
al. [43] and Su et al. [44].

Neither sSLOSC nor DFT+ U are suitable for solving the analog of delocalization error for
systems with fractional spin [14,22]. For molecules, fractional-spin LOSC (FSLOSC) [91]
extends the original LOSC method to this case; the judiciously modified DFT (jmDFT)
method [97,98] does the same for DFT+U.

2. Koopmans-compliant functionals—Koopmans-compliant functionals [99,100]
mitigate delocalization error by enforcing the PPLB linearity condition directly: in the
Koopmans integral (KI) formulation [39]

AEq = 2 a

1

fi
fn, — / ds,<¢,|h.f(si)|¢i>] . (29)

Here a;is an orbital-dependent screening function based on the relaxation of the LOs ¢
f;is the (fractional) occupation of @; n, = [, ds{p|hw(s)|@,), integrating the Perdew-Zunger
self-interaction corrected Kohn-Sham Hamiltonian [32], gives the linearized slope of the
energy with respect to 7;; and the last term computes the nonlinearity in E'that is replaced
by £;n;. Like (s)LOSC, Koopmans-compliant functionals are dependent on the choice
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of localized orbitals [101]. In extended systems, localized orbitals are necessary for a
Koopmans-compliant correction to have any effect [80], and screening has also been found
to effect improvements in band-gap calculation [79,81].

An advantage of sSLOSC over the Koopmans-compliant functionals for extended systems

is that the DLWFs treat the valence and conduction bands together; on the one hand,
DLWFs are empirically robust to increasing the number of conduction bands from which
they are constructed, and on the other, sSLOSC can in principle be applied to metals without
additional modification. For gapped systems, the energy localization inherent in the DLWF
cost function enforces separation between the occupied and virtual electronic manifolds
without manual input. The system with the smallest gap in our analysis, indium antimonide
(InSb, experimental gap 0.23 eV), which is predicted to be gapless by the DFA (and whose
sLOSC gap is 0.260 eV) has DLWF occupations AL > 0.98 in the valence manifold and

< 0.0074 in the conduction manifold. It is conceivable that DLWFs could also serve as
effective LOs for Koopmans-compliant methods, even if their subspaces corresponding to
the valence and conduction bands are not variational for total Koopmans-compliant energy.

3. Additional methods—The Fermi-Lowdin orbital (FLO) self-interaction correction
(SIC) [36,102,103], which has its roots in the Perdew-Zunger (PZ) self-interaction
correction method [32], also uses localized orbitals for an energy correction. However,

the self-interaction error treated by both FLOSIC and PZ-SIC is well defined only for
one-electron systems; LOSC and its derivatives account for the many-electron nature of
delocalization error explicitly [17].

As mentioned in Su ef al. [91], the generalized transition state method [41] and the Wannier-
function method of Ma and Wang [42] are effective at improving band-gap predictions.
However, since they do not mix valence and conduction bands to create fractionally
occupied orbitals, they cannot change the total energy of the DFA calculation; thus, they
cannot restore size consistency to DFAs and will not be able to capture (for instance)
molecular dissociation at the same time as improving band-gap predictions. This problem is
shared by early Koopmans-compliant methods, which used the Kohn-Sham orbitals as the
¢;; it underlies the observation of Nguyen et al. [80] that localized orbitals such as Wannier
functions are required for Koopmans compliance in extended systems.

B. Computational efficiency

The sLOSC method as implemented in this work scales as O(N,’Z,N,() for the localization step,
O(N:.N) for the computation of curvature elements, and O(N,,Ng1ogNg) for the FFT of the
DLWEF densities. Here, N is the number of plane waves in the unfolded supercell, which is
Ny times the number of plane waves in the unit cell. Calculating the curvature and energy
corrections is the computational bottleneck for the systems evaluated in this work, with wall
times for each system reaching a few hours using 16 threads on an Intel Xeon E5-2630v3
processor. The systems that took the longest time were those with the largest number of
core states, which have no effect on frontier state corrections; these could be neglected if
only a correction to the band gap is desired. The running time was divided fairly evenly
between the computation of the matrix elements defined in Egs. (17), (19a), and (19b). We
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note that the size of the integration domain for these quantities could be reduced from the
full Born—von Karman supercell if the relevant DLWF densities are contained in a smaller
region. This is supported by the fact that systems that had similar localizations for a 4 x 4 x
4 and 6 x 6 x 6 k mesh yielded very similar energy corrections.

Along the same lines, we find that for the systems in the test set the correction results

are converged with a 6 x 6 x 6 k mesh, but this is only necessary to achieve a converged
localization. Certain systems exhibit a qualitatively different localization with a smaller 4 x
4 x 4 k mesh; however, by decreasing the value of y in the localization cost function F, a set
of DLWFs qualitatively similar to the 6 x 6 x 6 case can be obtained.

Some other methods that attempt to address delocalization error in bulk calculations, such
as the approach of Ma and Wang [42] and the screened range-separated hybrid functional
[31], rely on supercell self-consistent calculations. These have cubic scaling in the number
of electrons, so an unfolded Born—von Karman supercell arising from Ny k points sampling
a unit cell with V,, Wannier functions scales as O(N;N.,). Both of the aforementioned
methods use Wannier functions as a localized charge representation and rely on manually
choosing the Bloch orbitals to comprise the Wannier functions representing the frontier

of the occupied space. The sSLOSC method uses DLWFs, which naturally supply Wannier
functions representing the frontier of the occupied and unoccupied spaces without the need
for manual energy windowing.

Data and scripts pertaining to this work have been archived in the Duke Research Data
Repository [114].
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Refer to Web version on PubMed Central for supplementary material.
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Comparison of experimental band gaps with those calculated by PBE (O), sLOSC (%), and
unscreened LOSC (+). The inset shows systems with an experimental band gap less than 5

eV.

Phys Rev B. Author manuscript; available in PMC 2023 September 19.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Mabhler et al.

Page 21

Energy (eV)

FIG. 2.
Band structure of silicon under the PBE functional (dashes) and sLOSC (solid). The Fermi

energy of the PBE calculation was 6.23 eV, while the PBE with LOSC Fermi energy was
5.49 eV.
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FIG. 3.

Band structure of lithium fluoride under the PBE functional (dashes) and sSLOSC (solid).
The Fermi energy of the PBE calculation was 0.97 eV, while the PBE with LOSC Fermi
energy was —3.52 eV. The core states are not included in the figure.
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TABLE I.

Mean absolute percent error of the band gap for PBC and molecular test sets. For details on the systems tested,
see the Supplemental Material [64].

Method PBE LOSC sLOSC

PBC 47.5% 158.6% 19.7%
Molecule  79.8%  10.1% 43.6%
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